FUJITSU SEMICONDUCTOR DATA SHEET DS07-12506-4E 8-bit Proprietary Microcontroller CMOS F2MC-8L MB89150/150A Series MB89151/151A/152/152A/153/153A/154/154A/155/155A MB89P155/PV150 ■ DESCRIPTION The MB89150/A series has been developed as general-purpose version of the F2MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers. In addition to a compact instruction set, the MB89150 series microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, timers, a serial interface, a remote control transmission output, external interrupts, an LCD controller/driver, an LCD booster, and a watch prescaler. *: F2MC stands for FUJITSU Flexible Microcontroller. ■ FEATURES • • • • • • • • • • F2MC-8L family CPU core Dual-clock system High-speed processing at low voltage Minimum execution time: 0.95 µs/2.7 V, 1.33 µs/2.2 V I/O ports: max. 43 channels 21-bit time-base timer 8/16-bit timer/counter: 1 channel (8 bits × 2 channels) 8-bit serial I/O: 1 channel LCD controller/driver: Max. 36 segments × 4 commons (built-in booster) Remote control transmission output (Continued) ■ PACKAGE 80-pin Plastic QFP (FPT-80P-M06) 80-pin Plastic LQFP (FPT-80P-M11) 80-pin Plastic LQFP 80-pin Ceramic MQFP (FPT-80P-M05) (MQP-80C-P01) MB89150/150A Series (Continued) • Buzzer output • Watch prescaler (15 bits) • External interrupts (wake-up function) Four independent channels with edge detection function plus eight level-interrupt channels ■ PRODUCT LINEUP Part number Parameter MB89151/A MB89152/A MB89153/A MB89154/A MB89155/A MB89P155 MB89PV150 Classification Mass production products (mask ROM products) ROM size One-time PROM product Piggyback/ evaluation product (for evaluation and development) 4 K × 8 bits 6 K × 8 bits 8 K × 8 bits 12 K × 8 bits 16 K × 8 bits 16 K × 8 bits 32 K × 8 bits (internal (internal (internal (internal (internal (internal (external mask ROM) mask ROM) mask ROM) mask ROM) mask ROM) PROM, ROM) programming with generalpurpose EPROM programmer) RAM size 128 × 8 bits 256 × 8 bits CPU functions Number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time: Ports I/O port (N-ch open-drain): 136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.95 µs/4.2 MHz 8.57 µs/4.2 MHz 8 (6 ports also serve as peripherals, 3 ports are a high-current drive type.) Output port (N-ch open-drain): 18 (16 ports also serve as segment pins, 2 ports serve as boost capacitor connection pins.)*1 I/O port (CMOS): 16 (12 ports also serve as an external interrupt.) Output port (CMOS): 1 (Also serves as a remote control.) Total: 43 (max.) Timer/counter 8-bit timer counter × 2 channel or 16-bit event counter × 1 channel 8-bit serial I/O 8 bits LSB first/MSB first selectability LCD controller/ driver External interrupts 512 × 8 bits Common output: Segment output: Bias power supply pins: LCD display RAM size: Booster for LCD driving: Dividing resistor for LCD driving: 4 32 (max.)*1 4 36 × 4 bits Built-in*1 Built-in (an external resistor selectability) No reference voltage generator and booster for LCD driving 4 (edge selectability) 8 (level interrupt only) (wake-up function) Buzzer output 1 (7 frequencies are selectable by the software.) (Continued) 2 MB89150/150A Series (Continued) Part number MB89151/A MB89152/A MB89153/A MB89154/A MB89155/A MB89P155 MB89PV150 Parameter Remote control transmission output 1 (Pulse width and cycle are software selectable.) Standby modes Sleep mode, stop mode, and watch mode Process CMOS 2.2 V to 6.0 V (single clock)/2.2 V to 4.0 V (dual clock) Operating voltage*2 EPROM for use 2.7 V to 6.0 V MBM27C256A -20TV (LCC package) *1: Selected by the mask option. See section “■ Mask Options.” *2: Varies with conditions such as the operating frequency and the connected ICE. (See section “■ Electrical Characteristics.”) ■ PACKAGE AND CORRESPONDING PRODUCTS MB89151/A MB89152/A MB89153/A MB89154/A MB89155/A Package MB89P155 MB89PV150 FPT-80P-M06 × FPT-80P-M11 × FPT-80P-M05 × MQP-80C-P01 : Available × × × : Not available Note: For more information about each package, see section “■ Package Dimensions.” 3 MB89150/150A Series ■ DIFFERENCES AMONG PRODUCTS 1. Memory Size Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points: • On the MB89151/A, addresses 0140H and later of the register bank cannot be used. On the MB89152/A, 153/A, 154/A, 155/A, and MB89P155, addresses 0180H and later of each register bank cannot be used. • On the MB89P155, addresses BFF0H to BFF6H comprise the option setting area, option settings can be read by reading these addresses. • The stack area, etc., is set at the upper limit of the RAM. 2. Current Consumption • In the case of the MB89PV150, add the current consumed by the EPROM which is connected to the top socket. • When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM. However, the current consumption in sleep/stop modes is the same. (For more information, see sections “■ Electrical Characteristics” and “■ Example Characteristics.”) 3. Mask Options Functions that can be selected as options and how to designate these options vary by the product. Before using options check section “■ Mask Options.” Take particular care on the following point: • On the MB89PV150, options are fixed, except for the segment output selection. 4 MB89150/150A Series ■ PIN ASSIGNMENT 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 P42/SEG22*4 P41/SEG21*4 P40/SEG20*4 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 (Top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 SEG2 SEG1 SEG0 COM3 COM2 COM1 COM0 VCC V3 V2 V1 V0 P32*2/C0*1 P31*2/C1*1 P30/RCO X1A X0A P27/BUZ*3 P26*3 P25/SCK 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 P01/INT21 P02/INT22 P03/INT23 P04/INT24 P05/INT25 P06/INT26 P07/INT27 P10/INT10 P11/INT11 P12/INT12 P13/INT13 P14 P15 P16 P17 P20/EC P21*3 P22/TO P23/SI P24/SO P43/SEG23*4 P44/SEG24*4 P45/SEG25*4 P46/SEG26*4 P47/SEG27*4 P50/SEG28*4 P51/SEG29*4 P52/SEG30*4 P53/SEG31*4 P54/SEG32*4 P55/SEG33*4 P56/SEG34*4 VSS P57/SEG35*4 X1 X0 MOD1 MOD0 RST P00/INT20 (FPT-80P-M05) *1: For products with a booster circuit *2: For products without a booster circuit *3: N-ch open-drain high-current drive type *4: Selected using the mask option (in units of 4 pins) 5 MB89150/150A Series 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 P42/SEG22*4 P41/SEG21*4 P40/SEG20*4 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 SEG4 SEG3 (Top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 P01/INT21 P02/INT22 P03/INT23 P04/INT24 P05/INT25 P06/INT26 P07/INT27 P10/INT10 P11/INT11 P12/INT12 P13/INT13 P14 P15 P16 P17 P20/EC P21*3 P22/TO P23/SI P24/SO 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P43/SEG23*4 P44/SEG24*4 P45/SEG25*4 P46/SEG26*4 P47/SEG27*4 P50/SEG28*4 P51/SEG29*4 P52/SEG30*4 P53/SEG31*4 P54/SEG32*4 P55/SEG33*4 P56/SEG34*4 VSS P57/SEG35*4 X1 X0 MOD1 MOD0 RST P00/INT20 (FPT-80P-M11) *1: For products with a booster circuit *2: For products without a booster circuit *3: N-ch open-drain high-current drive type *4: Selected using the mask option (in units of 4 pins) 6 SEG2 SEG1 SEG0 COM3 COM2 COM1 COM0 V CC V3 V2 V1 V0 P32*2/C0*1 P31*2/C*1 P30/RCO X1A X0A P27/BUZ*3 P26*3 P25/SCK MB89150/150A Series 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 P40/SEG20*4 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 (Top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 SEG4 SEG3 SEG2 SEG1 SEG0 COM3 COM2 COM1 COM0 V CC V3 V2 V1 V0 P32*2/C0*1 P31*2/C1*1 P30/RCO X1A X0A P27/BUZ*3 P26*3 P25/SCK P24/SO P23/SI P03/INT23 P04/INT24 P05/INT25 P06/INT26 P07/INT27 P10/INT10 P11/INT11 P12/INT12 P13/INT13 P14 P15 P16 P17 P20/EC P21*3 P22/TO 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P41/SEG21*4 P42/SEG22*4 P43/SEG23*4 P44/SEG24*4 P45/SEG25*4 P46/SEG26*4 P47/SEG27*4 P50/SEG28*4 P51/SEG29*4 P52/SEG30*4 P53/SEG31*4 P54/SEG32*4 P55/SEG33*4 P56/SEG34*4 VSS P57/SEG35*4 X1 X0 MOD1 MOD0 RST P00/INT20 P01/INT21 P02/INT22 (FPT-80P-M06) *1: For products with a booster circuit *2: For products without a booster circuit *3: N-ch open-drain high-current drive type *4: Selected using the mask option (in units of 4 pins) 7 MB89150/150A Series 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 P40/SEG20*2 SEG19 SEG18 SEG17 SEG16 SEG15 SEG14 SEG13 SEG12 SEG11 SEG10 SEG9 SEG8 SEG7 SEG6 SEG5 (Top view) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 100 99 98 97 96 95 94 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 101 102 103 104 105 106 107 108 109 110 111 112 81 82 83 84 93 92 91 90 89 88 87 86 85 SEG4 SEG3 SEG2 SEG1 SEG0 COM3 COM2 COM1 COM0 VCC V3 V2 V1 V0 P32 P31 P30/RCO X1A X0A P27/BUZ*1 P26*1 P25/SCK P24/SO P23/SI P03/INT23 P04/INT24 P05/INT25 P06/INT26 P07/INT27 P10/INT10 P11/INT11 P12/INT12 P13/INT13 P14 P15 P16 P17 P20/EC P21*1 P22/TO 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P41/SEG21*2 P42/SEG22*2 P43/SEG23*2 P44/SEG24*2 P45/SEG25*2 P46/SEG26*2 P47/SEG27*2 P50/SEG28*2 P51/SEG29*2 P52/SEG30*2 P53/SEG31*2 P54/SEG32*2 P55/SEG33*2 P56/SEG34*2 VSS P57/SEG35*2 X1 X0 MOD1 MOD0 RST P00/INT20 P01/INT21 P02/INT22 (MQP-80C-P01) *1: N-ch open-drain high-current drive type *2: Selected using the mask option (in units of 4 pins). • Pin assignment on package top Pin no. Pin name Pin no. Pin name Pin no. Pin name Pin no. Pin name 81 N.C. 89 A2 97 N.C. 105 OE 82 VPP 90 A1 98 O4 106 N.C. 83 A12 91 A0 99 O5 107 A11 84 A7 92 N.C. 100 O6 108 A9 85 A6 93 O1 101 O7 109 A8 86 A5 94 O2 102 O8 110 A13 87 A4 95 O3 103 CE 111 A14 88 A3 96 VSS 104 A10 112 VCC N.C.: Internally connected. Do not use. 8 MB89150/150A Series ■ PIN DESCRIPTION Pin no. Pin name LQFP*1*3 MQFP*4 QFP*2 16 18 X0 15 17 X1 18 20 MOD0 17 19 MOD1 19 21 20 to 27 Circuit type Function A Main clock oscillator pins C Operating mode selection pins Connect directly to VSS. RST D Reset I/O pin This pin is an N-ch open-drain output type with a pullup resistor and a hysteresis input type. “L” is output from this pin by an internal reset source. The internal circuit is initialized by the input of “L”. 22 to 29 P00/INT20 to P07/INT27 E General-purpose I/O ports Also serve as an external interrupt 2 input (wake-up function). External interrupt 2 input is hysteresis input. 28 to 31 30 to 33 P10/INT10 to P13/INT13 E General-purpose I/O ports Also serve as external interrupt 1 input. External interrupt 1 input is hysteresis input. 32 to 35 34 to 37 P14 to P17 F General-purpose I/O ports 36 38 P20/EC H N-ch open-drain general-purpose I/O port Also serves as the external clock input for the timer. The peripheral is a hysteresis input type. 37 39 P21 I N-ch open-drain general-purpose I/O port 38 40 P22/TO I N-ch open-drain general-purpose I/O port Also serves as a timer output. 39 41 P23/SI H N-ch open-drain general-purpose I/O port Also serves as the data input for the 8-bit serial I/O. The peripheral is a hysteresis input type. 40 42 P24/SO I N-ch open-drain general-purpose I/O port Also serves as the data output for the 8-bit serial I/O. 41 43 P25/SCK H N-ch open-drain general-purpose I/O port Also serves as the clock I/O for the 8-bit serial I/O. The peripheral is a hysteresis input type. 42 44 P26 I N-ch open-drain general-purpose I/O port 43 45 P27/BUZ I N-ch open-drain general-purpose I/O port Also serves as a buzzer output. *1: *2: *3: *4: FPT-80P-M11 FPT-80P-M06 FPT-80P-M05 MQP-80C-P01 (Continued) 9 MB89150/150A Series (Continued) Pin no. LQFP*1*3 MQFP*4 QFP*2 48 50 47 Circuit type Function P32 J Functions as an N-ch open-drain general-purpose output port only in the products without a booster. C0 — Functions as a capacitor connection pin in the products with a booster. P31 J Functions as an N-ch open-drain general-purpose output port only in the products without a booster. C1 — Functions as a capacitor connection pin in the products with a booster. G General-purpose output-only port Also serves as a remote control transmission output. 46 48 P30/RCO 14 16 P57/SEG35 12 to 6 14 to 8 P56/SEG34 to P50/SEG28 5 to 1 7 to 3 P47/SEG27 to P43/SEG23 80, 79, 78 2, 1, 80 77 to 58 79 to 60 SEG19 to SEG0 K LCD controller/driver segment output-only pins 57 to 54 59 to 56 COM3 to COM0 K LCD controller/driver common output-only pins 52 to 49 54 to 51 V3 to V0 — LCD driving power supply pins 44 46 X0A B Subclock crystal oscillator pins (32.768 kHz) 45 47 X1A 53 55 VCC — Power supply pin 13 15 VSS — Power supply (GND) pin *1: *2: *3: *4: 10 49 Pin name FPT-80P-M11 FPT-80P-M06 FPT-80P-M05 MQP-80C-P01 J/K N-ch open-drain general-purpose output ports Also serve as LCD controller/driver segment output. Switching between port and common output is done by the mask option. J/K P42/SEG22, P41/SEG21, P40/SEG20 MB89150/150A Series • External EPROM pins (MB89PV150 only) Pin no. Pin name I/O Function 82 VPP O “H” level output pin 83 84 85 86 87 88 89 90 91 A12 A7 A6 A5 A4 A3 A2 A1 A0 O Address output pins 93 94 95 O1 O2 O3 I Data input pins 96 VSS O Power supply (GND) pin 98 99 100 101 102 O4 O5 O6 O7 O8 I Data input pins 103 CE O ROM chip enable pin Outputs “H” during standby. 104 A10 O Address output pin 105 OE O ROM output enable pin Outputs “L” at all times. 107 108 109 A11 A9 A8 O Address output pins 110 A13 O 111 A14 O 112 VCC O EPROM power supply pin 81 92 97 106 N.C. — Internally connected pins Be sure to leave them open. 11 MB89150/150A Series ■ I/O CIRCUIT TYPE Type A Circuit Remarks Crystal or ceramic oscillation type (main clock) • At an oscillation feedback resistor of approximately 1 MΩ/5.0 V X1 X0 Standby control signal CR oscillation type (main clock) (except MB89PV150/P155) X1 X0 Standby control signal B Crystal oscillation type (subclock) • At an oscillation feedback resistor of approximately 4.5 MΩ/3.0 V X1A X0A Standby control signal C D • At output pull-up resistor (P-ch) of approximately 50 kΩ/5.0 V • Hysteresis input R P-ch N-ch E R • CMOS I/O • The peripheral is a hysteresis input type. P-ch P-ch N-ch Port Peripheral • Pull-up resistor optional (except MB89PV150) (Continued) 12 MB89150/150A Series (Continued) Type Circuit Remarks F • CMOS I/O R P-ch P-ch N-ch • Pull-up resistor optional (except MB89PV150) G • CMOS output • P-ch output is a high-current drive type. P-ch N-ch H R • N-ch open-drain I/O • CMOS input • The peripheral is a hysteresis input type. P-ch N-ch Port Peripheral I • Pull-up resistor optional (except MB89PV150/P155) • N-ch open-drain I/O • CMOS input R P-ch • P21, P26, and P27 are a high-current drive type. N-ch • Pull-up resistor optional (except MB89PV150/P155) J • N-ch open-drain output R P-ch • Pull-up resistor optional (except MB89PV150/P155) • P31 and P32 are not provided with a pull-up resistor. N-ch K • LCD controller/driver segment output P-ch N-ch P-ch N-ch 13 MB89150/150A Series ■ HANDLING DEVICES 1. Preventing Latchup Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum Ratings” in section “■ Electrical Characteristics” is applied between VCC and VSS. When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings. Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital power supply (VCC) when the analog system power supply is turned on and off. 2. Treatment of Unused Input Pins Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor. 3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use. 4. Treatment of N.C. Pins Be sure to leave (internally connected) N.C. pins open. 5. Power Supply Voltage Fluctuations Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched. 6. Precautions when Using an External Clock Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode. 14 MB89150/150A Series ■ PROGRAMMING TO THE EPROM ON THE MB89P155 The MB89P155 is an OTPROM version of the MB89150/A series. 1. Features • 16-Kbyte PROM on chip • Options can be set using the EPROM programmer. • Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer) 2. Memory Space Memory space in the EPROM mode is diagrammed below. Address Normal operating mode 0000 H 0080 H EPROM mode (Corresponding addresses on the EPROM programmer) 0000 H I/O RAM Vacancy (Read value FFH) 0180 H Not available 3FF0 H 8000 H Option area 3FF6 H Not available Vacancy (Read value FFH) C000 H 4000 H Program area (EPROM) PROM FFFFH 7FFFH 15 MB89150/150A Series 3. Programming to the EPROM In EPROM mode, the MB89P155 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter. • Programming procedure (1) Set the EPROM programmer to the MBM27C256A. (2) Load program data into the EPROM programmer at 4000H to 7FFFH (note that addresses C000H to FFFFH while operating as a normal operating mode assign to 4000H to 7FFFH in EPROM mode). Load option data into addresses 3FF0H to 3FF5H of the EPROM programmer. (For information about each corresponding option, see “7. Setting OTPROM Options.”) (3) Program with the EPROM programmer. 4. Recommended Screening Conditions High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program. Program, verify Aging +150°C, 48 Hrs. Data verification Assembly 5. Programming Yield All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times. 6. EPROM Programmer Socket Adapter Package Compatible socket adapter FPT-80P-M05 ROM-80SQF-28DP-8L FPT-80P-M06 ROM-80QF-28DP-8L3 FPT-80P-M11 ROM-80QF2-28DP-8L2 Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760 16 MB89150/150A Series 7. Setting OTPROM Options The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map: • OTPROM option bit map Bit 7 Bit 6 Vacancy Vacancy Oscillation stabilization time Vacancy 3FF0H Readable Readable WTM1 WTM0 See section “■ Mask Options.” Readable P07 Pull-up 3FF1H 1: No 0: Yes P06 Pull-up 1: No 0: Yes P05 Pull-up 1: No 0: Yes P04 Pull-up 1: No 0: Yes P17 Pull-up 3FF2H 1: No 0: Yes P16 Pull-up 1: No 0: Yes P15 Pull-up 1: No 0: Yes Vacancy Vacancy Readable 3FF3H 3FF4H 3FF5H Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset pin output 1: Yes 0: No Clock mode Power-on selection reset 1: Dual clock 1: Yes 0: Single clock 0: No P03 Pull-up 1: No 0: Yes P02 Pull-up 1: No 0: Yes P01 Pull-up 1: No 0: Yes P00 Pull-up 1: No 0: Yes P14 Pull-up 1: No 0: Yes P13 Pull-up 1: No 0: Yes P12 Pull-up 1: No 0: Yes P11 Pull-up 1: No 0: Yes P10 Pull-up 1: No 0: Yes Vacancy Vacancy Vacancy Vacancy Vacancy Vacancy Readable Readable Readable Readable Readable Readable Readable Vacancy Vacancy Vacancy Vacancy Vacancy Vacancy Vacancy Vacancy Readable Readable Readable Readable Readable Readable Readable Readable Vacancy Vacancy Vacancy Vacancy Vacancy Vacancy Vacancy Vacancy Readable Readable Readable Readable Readable Readable Readable Readable Notes: • Set each bit to 1 to erase. • Do not write 0 to the vacant bit. The read value of the vacant bit is 1, unless 0 is written to it. 17 MB89150/150A Series ■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE 1. EPROM for Use MBM27C256A-20TV 2. Programming Socket Adapter To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below. Package Adapter socket part number LCC-32(Rectangle) ROM-32LC-28DP-YG LCC-32(Square) ROM-32LC-28DP-S Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760 3. Memory Space Memory space in each mode is diagrammed below. Address Normal operating mode Corresponding addresses on the EPROM programmer 0000 H 0080 H 0000 H I/O RAM 0280 H Not available 8000 H EPROM 32 KB PROM 32 KB FFFFH 7FFFH 4. Programming to the EPROM (1) Set the EPROM programmer to the MBM27C256A. (2) Load program data into the EPROM programmer at 4000H to 7FFFH. (3) Program to 0000H to 7FFFH with the EPROM programmer. 18 MB89150/150A Series ■ BLOCK DIAGRAM 21-bit time-base timer Main clock oscillator X0 X1 Clock controller P22/TO Port 2 Subclock oscillator (32.768 kHz) X0A X1A Internal bus 8-bit timer/counter 8-bit timer/counter P20/EC Reset circuit (WDT) RST 8 8 External interrupt 2 (wake-up function) Port 0 P00/INT20 to P07/INT27 8-bit serial I/O P25/SCK P24/SO P23/SI Buzzer output P27/BUZ*4 2 CMOS I/O port P21*4,P26*4 N-ch open-drain I/O port 4 P14 to P17 External interrupt 1 (wake-up function) 4 N-ch open-drain output port 16 CMOS I/O port RAM ( M ax . 256 × 8bit s ) F 2 M C- 8L LCD controller/ driver Port 4 and port 5 P10/INT10 to P13/INT13 4 Port 1 4 4 4 4 P54/SEG32*3 to P57/SEG35*3 P50/SEG28*3 to P53/SEG31*3 P44/SEG24*3 to P47/SEG27*3 P40/SEG20*3 to P43/SEG23*3 20 CPU SEG0 to SEG19 4 COM0 to COM3 RO M ( M ax . 16 K × 8 bit s ) M O D0, M O D1, V CC , V SS 36 × 4 bits VRAM Reference voltage generator and booster*1 V0 to V3 Port 3 Other pins 4 Remote control output P32/C0*2 P31/C1*2 P30/RCO N-ch open-drain output port (Only P30 is a CMOS output type.) *1: Selected by mask option *2: Used as ports without a reference voltage generator and booster *3: Functions selected by mask option *4: N-ch open-drain high-current drive type 19 MB89150/150A Series ■ CPU CORE 1. Memory Space The microcontrollers of the MB89150/A series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89150/A series is structured as illustrated below. Memory Space MB89PV150 0000H 0080H MB89151/A 0000H I/O RAM 512 B 0100H 0080H Not available 00C0H RAM 128 B 0100H Register 0080H 0100H Register 0140H I/O RAM 256 B 0080H 0100H I/O RAM 256 B 0000H 0100H I/O RAM 256 B 0080H 0100H Register 0180H 0180H 0180H 0080H Register Register MB89155/A MB89P155 MB89154/A 0000H 0000H 0000H I/O MB89153/A MB89152/A I/O RAM 256 B Register 0180H 0200H 0280H Not available Not available Not available Not available Not available Not available 8000H External ROM 32 KB C000H D000H E000H E800H F000H FFFFH 20 FFFFH ROM 4 KB FFFFH ROM 6 KB ROM 8 KB FFFFH ROM 16 KB ROM 12 KB FFFFH FFFFH MB89150/150A Series 2. Registers The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided: Program counter (PC): A 16-bit register for indicating instruction storage positions Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8-bit data processing instruction, the lower byte is used. Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used. Index register (IX): A 16-bit register for index modification Extra pointer (EP): A 16-bit pointer for indicating a memory address Stack pointer (SP): A 16-bit register for indicating a stack area Program status (PS): A 16-bit register for storing a register pointer, a condition code 16 bits Initial value FFFDH : Program counter PC A : Accumulator Undefined T : Temporary accumulator Undefined IX : Index register Undefined EP : Extra pointer Undefined SP : Stack pointer Undefined PS : Program status I-flag = 0, IL1, 0 = 11 Other bits are undefined. The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.) Structure of the Program Status Register 15 PS 14 13 12 RP 11 10 9 8 Vacancy Vacancy Vacancy RP 7 6 H I 5 4 IL1, 0 3 2 1 0 N Z V C CCR 21 MB89150/150A Series The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below. Rule for Conversion of Actual Addresses of the General-purpose Register Area Lower OP codes RP “0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ b1 b0 ↓ ↓ Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt. H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions. I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset. IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit. IL1 IL0 Interrupt level 0 0 0 1 1 0 2 1 1 3 1 High-low High Low = no interrupt N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0. Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise. V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur. C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction. 22 MB89150/150A Series The following general-purpose registers are provided: General-purpose registers: An 8-bit register for storing data The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 8 banks can be used on the MB89151 (RAM 128 × 8 bits), and a total of 16 banks can be used on the MB89152/3/4/5 (RAM 256 × 8 bits). The bank currently in use is indicated by the register bank pointer (RP). Note: The number of register banks that can be used varies with the RAM size. Register Bank Configuration This address = 0100H + 8 × (RP) R0 R1 R2 R3 R4 R5 R6 R7 8 banks (MB89151) 16 banks (MB89152/3/4/5) Memory area 23 MB89150/150A Series ■ I/O MAP Address Read/write Register name Register description 00H (R/W) PDR0 Port 0 data register 01H (W) DDR0 Port 0 data direction register 02H (R/W) PDR1 Port 1 data register 03H (W) DDR1 Port 1 data direction register 04H (R/W) PDR2 Port 2 data register 05H (W) DDR2 Port 2 data direction register Vacancy 06H 07H (R/W) SYCC System clock control register 08H (R/W) STBC Standby control register 09H (R/W) WDTC Watchdog timer control register 0AH (R/W) TBTC Time-base timer control register 0BH (R/W) WPCR Watch prescaler control register 0CH (R/W) PDR3 Port 3 data register Vacancy 0DH 0EH (R/W) PDR4 Port 4 data register 0FH (R/W) PDR5 Port 5 data register 10H (R/W) BZCR Buzzer register 11H Vacancy 12H Vacancy 13H Vacancy 14H (R/W) RCR1 Remote control transmission register 1 15H (R/W) RCR2 Remote control transmission register 2 16H Vacancy 17H Vacancy 18H (R/W) T2CR Timer 2 control register 19H (R/W) T1CR Timer 1 control register 1AH (R/W) T2DR Timer 2 data register 1BH (R/W) T1DR Timer 1 data register 1CH (R/W) SMR1 Serial mode register 1DH (R/W) SDR1 Serial data register 1EH to 2FH Vacancy (Continued) 24 MB89150/150A Series (Continued) Address Read/write Register name 30H (R/W) EIE1 External interrupt 1 enable register 31H (R/W) EIF1 External interrupt 1 flag register 32H (R/W) EIE2 External interrupt 2 enable register 33H (R/W) EIF2 External interrupt 2 flag register 34H to 5FH Register description Vacancy 60H to 71H (R/W) VRAM Display data RAM 72H (R/W) LCR1 LCD controller/driver control register 1 73H to 7BH Vacancy 7CH (W) ILR1 Interrupt level setting register 1 7DH (W) ILR2 Interrupt level setting register 2 7EH (W) ILR3 Interrupt level setting register 3 7FH Vacancy Note: Do not use vacancies. 25 MB89150/150A Series ■ ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings ( VSS = 0.0 V) Parameter Power supply voltage LCD power supply voltage Symbol Value Unit Max. VSS – 0.3 VSS + 7.0 V VSS – 0.3 VSS + 7.0 V V0 to V3 pins on the product with booster VSS – 0.3 VCC + 0.3 V V0 to V3 pins on the product without booster VI1 VSS – 0.3 VCC + 0.3 V VI1 must not exceed VSS +7.0 V. All pins except P20 to P27 without a pull-up resistor VI2 VSS – 0.3 VSS + 7.0 V P20 to P27 without a pull-up resistor VCC V0 to V3 Input voltage VO1 VSS – 0.3 VCC + 0.3 V VO1 must not exceed VSS +7.0 V. All pins except P20 to P27, P31, P32, P40 to P47, P50 to P57 without a pull-up resistor VO2 VSS – 0.3 VSS + 7.0 V P20 to P27, P31, P32, P40 to P47, and P50 to P57, without a pull-up resistor IOL1 — 10 mA All pins except P21, P26, P27, and power supply pins IOL2 — 20 mA P21, P26, and P27 Output voltage “L” level maximum output current Remarks Min. IOLAV1 — 4 mA Average value (operating current × operating rate) All pins except P21, P26, P27, and power supply pins. IOLAV2 — 8 mA Average value (operating current × operating rate) P21, P26, and P27 “L” level total maximum output current ∑IOL — 80 mA “L” level total average output current ∑IOLAV — 40 mA Average value (operating current × operating rate) “H” level maximum output current IOH1 — –5 mA All pins except P30 and power supply pins IOH2 — –10 mA P30 “L” level average output current (Continued) 26 MB89150/150A Series (Continued) (VSS = 0.0 V) Parameter Symbol Value Min. Unit Max. Remarks IOHAV1 — –2 mA Average value (operating current × operating rate) All pins except P30 and power supply pins. IOHAV2 — –4 mA Average value (operating current × operating rate) P30 “H” level total output current ∑IOH — –20 mA “H” level total average output current ∑IOHAV — –10 mA Power consumption PD — 300 mW Operating temperature TA –40 +85 °C Storage temperature Tstg –55 +150 °C “H” level average output current Average value (operating current × operating rate) Precautions: Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Recommended Operating Conditions (VSS = 0.0 V) Parameter Power supply voltage Symbol VCC Value Unit Remarks Min. Max. 2.2*1 6.0 V Normal operation assurance range Single clock system of the mask ROM product. 2.2*1 4.0 V Normal operation assurance range Dual-clock system of the mask ROM product. 2.7*1 6.0 V MB89P155/PV150 1.5 6.0 V Retains the RAM state in stop mode LCD power supply voltage V0 to V3 VSS VCC*2 V V0 to V3 pins LCD reference power supply input voltage VIR 1.3 2.2 V V1 pin on the products with a booster Reference power external input Operating temperature TA –40 +85 °C *1: The minimum operating power supply voltage varies with the execution time (instruction cycle time) setting for the operating frequency. *2: The LCD power supply voltage range and optimum value vary depending on the characteristics of the liquidcrystal display element. 27 MB89150/150A Series 6 Operating voltage (V) 5 Operation assurance range 4 3 2 1 1 2 3 4 Main clock operating frequency (at an instruction cycle of 4/Fc) (MHz) 4.0 2.0 Minimum execution time (instruction cycle) (µs) 1.0 5 0.8 Note: The shaded area is assured only for the MB89151/A, 152/A, 153/A, 154/A, and MB89155/A. Figure 1 Operating Voltage vs. Main Clock Operating Frequency (MB89P155/PV150, and single-clock MB89151/A, 152/A, 153/A, 154/A, and MB89155/A) 6 Operating voltage (V) 5 4 Operation assurance range 3 2 1 1 2 3 4 Main clock operating frequency (at an instruction cycle of 4/Fc) (MHz) 4.0 2.0 Minimum execution time (instruction cycle) (µs) 1.0 5 0.8 Figure 2 Operating Voltage vs. Main Clock Operating Frequency (Dual-clock MB89151/A, 152/A, 153/A, 154/A, and MB89155/A) Figures 1 and 2 indicate the operating frequency of the external oscillator at a minimum execution time of 4/FCH. Since the operating voltage range is dependent on the minimum execution time, see the minimum execution time if the operating speed is switched using a gear. 28 MB89150/150A Series 3. DC Characteristics (VCC = +5.0 V, VSS = 0.0 V, TA = –40°C to +85°C) Parameter VIH “H” level input voltage Condition Value Unit Remarks Min. Typ. Max. 0.7 VCC VCC + 0.3 V CMOS input 0.8 VCC VSS + 0.3 V Hysteresis input VSS − 0.3 0.3 VCC V CMOS input EC, SI, SCK, INT10 to INT13, INT20 to INT27 VSS − 0.3 0.2 VCC V Hysteresis input VSS − 0.3 VSS + 6.0*1 V Without pull-up resistor P00 to P07, P10 to P17, P20 to P27 RST, MOD0, MOD1, VIHS VIL “L” level input voltage Pin Symbol EC, SI, SCK, INT10 to INT13, INT20 to INT27 P00 to P07, P10 to P17, P20 to P27 — RST, MOD0, MOD1, VILS Open-drain output pin application voltage VD P20 to P27, P31, P32, P40 to P47, P50 to P57 “H” level output voltage VOH1 P00 to P07, P10 to P17 IOH = –2.0 mA 2.4 V VOH2 P30 IOH = –6.0 mA 4.0 — — V IOL = 1.8 mA — 0.4 V P00 to P07, P10 to P17, VOL1 “L” level output voltage P30 to P32, P40 to P47, P50 to P57 VOL2 P21, P26, P27 IOL = 8.0 mA — — 0.4 V VOL3 RST IOL = 4.0 mA — — 0.4 V MOD0, MOD1, P30, P00 to P07, P10 to P17 0.0 V < VI < VCC — ±5 µA Without pull-up resistor P20 to P27, P31, P32, P40 to P47, P50 to P57 0.0 V < VI < 6.0 V — — ±1 µA Without pull-up resistor 25 50 100 kΩ With pull-up resistor Input leakage current ILI1 (Hi-z output leakage current) P20, P22 to P25, ILI2 Pull-up resistance RPULL P00 to P07, P10 to P17, P20 to P27, P40 to P47, VI = 0.0 V P50 to P57, RST Common output impedance RVCOM COM0 to COM3 V1 to V3 = 5.0 V — — 2.5 kΩ Segment output impedance RVSEG V1 to V3 = 5.0 V — — 15 kΩ LCD divided resistance RLCD 300 500 750 Products kΩ without a booster only LCD leakage current ILCDL — — ±1 µA SEG0 to SEG35 — V0 to V3, COM0 to COM3, SEG0 to SEG35 Between VCC and V0 — (Continued) 29 MB89150/150A Series (VCC = +5.0 V, VSS = 0.0 V, TA = –40°C to +85°C) Parameter Pin Symbol VOV3 Booster for LCD driving output voltage VOV2 Reference output voltage for LCD VOV1 driving V3 V2 V1 Condition V1 = 1.5 V IIN = 0 µA Value Typ. Max. 4.3 4.5 4.7 V 2.9 3.0 3.1 V 1.3 1.5 1.7 V VCC = 5.0 V tinst*3 = 0.95 µs Main clock operation VCC = 3.0 V tinst*3 = 15.2 µs Main clock operation 3.0 4.5 — 3.8 6.0 mA to 105/201 to 205 ICCL VCC VCC = 3.0 V tinst*3 = 61 µs Subclock operation MB89P155-101 — 0.25 0.4 MB89151/A, 152/A,153/A, mA 154/A, 155/A, MB89PV150101 to 105 — 0.85 1.4 mA to 105/201 to 205 MB89P155-101 — 0.05 0.1 MB89151/A, 152/A, 153/A, mA 154/A, 155/A, MB89PV150101 to 105 — 0.65 1.1 mA to 105/201 to 205 — 0.8 1.2 mA — 0.2 0.3 mA — 25 50 µA FCL = 32.768 kHz, Power supply current*2 Products with a booster only — FCH = 4.2 MHz, ICC2 Remarks MB89151/A, 152/A, 153/A, mA 154/A, 155/A, MB89PV150101 to 105 FCH = 4.2 MHz, ICC1 Unit Min. MB89P155-101 FCH = 4.2 MHz, ICCS1 VCC = 5.0 V tinst*3 = 0.95 µs Main clock sleep mode FCH = 4.2 MHz, ICCS2 VCC = 3.0 V tinst*3 = 15.2 µs Main clock sleep mode FCL = 32.768 kHz, ICCSL VCC = 3.0 V tinst*3 = 61 µs Subclock sleep mode (Continued) 30 MB89150/150A Series (Continued) (VCC = +5.0 V, VSS = 0.0 V, TA = –40°C to +85°C) Parameter Pin Symbol Condition Value Min. Typ. Max. VCC = 3.0 V Watch mode Remarks — 10 15 MB89151/2/3/4/5, MB89P155-101 µA to 105, MB89PV150-101 to 105 — 250 400 µA MB89P155-201 FCL = 32.768 kHz, ICCT Unit FCL = 32.768 kHz, Power supply current*2 ICCT2 VCC VCC = 3.0 V • Watch mode • During reference voltage generator and booster operation to 205 — ICCH Input capacitance CIN TA = +25°C, VCC = 5.0 V Stop mode Other than VCC, VSS f = 1 MHz MB89151A/2A/ 3A/4A/5A, 0.1 1 µA MB89151/2/3/4/5 — 0.1 10 MB89PV150-101 to 105, µA MB89P155-101 to 105 — 10 pF *1: P31 and P32 are applicable only for products of the MB89150 series (without the “A” suffix). P40 to P47 and P50 to P57 are applicable when selected as ports. *2: The power supply current is measured at the external clock, open output pins, and the external LCD dividing resistor (or external input for the reference voltage). In the case of the MB89PV150, the current consumed by the connected EPROM and ICE is not included. *3: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.” Note: For pins which serves as the segment (SEG20 to SEG35) and ports (P40 to P47, P50 to P57), see the port parameter when these pins are used as ports and the segment parameter when they are used as segments. P31 and P32 are applicable only for products without a booster (applicable as external capacitor connection pins for products with a booster). 31 MB89150/150A Series 4. AC Characteristics (1) Reset Timing (VSS = 0.0 V, TA = –40°C to +85°C) Symbol Parameter RST “L” pulse width Value Condition tZLZH — Min. Max. 48 tHCYL — Unit Remarks ns tZLZH RST 0.2 VCC (2) Power-on Reset (VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Power supply rising time tR Power supply cut-off time tOFF Condition — Value Unit Remarks Min. Max. — 50 ms Power-on reset function only 1 — ms Due to repeated operations Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended. tR tOFF 2.0 V VCC 32 0.2 V 0.2 V 0.2 V MB89150/150A Series (3) Clock Timing (VSS = 0.0 V, TA = –40°C to +85°C) Symbol Parameter Clock frequency Clock cycle time Input clock pulse width Input clock pulse rising/falling time Value Pin Min. Typ. Max. Unit Remarks FCH X0, X1 1 — 4.2 MHz Main clock FCL X0A, X1A — 32.768 — kHz Subclock tHCYL X0, X1 238 — 1000 ns Main clock tLCYL X0A, X1A — 30.5 — µs Subclock PWH PWL X0 20 — — ns PWHL PWLL X0A — 15.2 — µs tCR tCF X0, X0A — — 10 ns External clock X0 and X1 Timing and Conditions tHCYL 0.8 VCC 0.2 VCC X0 PWL PWH tCF tCR Main Clock Conditions When a crystal or ceramic resonator is used X0 X1 When an external clock is used X0 X1 When the CR oscillation option is used X0 X1 FCH Open FCH FCH C1 C2 R C 33 MB89150/150A Series X0A and X1A Timing and Conditions tLCYL 0.8 VCC 0.2 VCC X0A PWLL PWHL tCF tCR Subclock Conditions When a crystal or ceramic resonator is used X0A X1A When an external clock is used X0A X1A R FCL When the single clock option is used X0A Open X1A Open FCL C1 C2 (4) Instruction Cycle Parameter Symbol Instruction cycle tinst (minimum execution time) 34 Value Unit Remarks 4/FCH, 8/FCH, 16/FCH, 64/FCH µs (4/FCH) tinst = 0.95 µs when operating at FCH = 4.2 MHz 2/FCL µs tinst = 61.036 µs when operating at FCL = 32.768 kHz MB89150/150A Series (5) Serial I/O Timing (VCC = +5.0 V±10%, VSS= 0.0 V, TA = –40°C to +85°C) Parameter Symbol Pin Condition Serial clock cycle time tSCYC SCK SCK ↓ → SO time tSLOV SCK, SO Valid SI → SCK ↑ tIVSH SI, SCK SCK ↑ → valid SI hold time tSHIX SCK, SI Serial clock “H” pulse width tSHSL SCK Serial clock “L” pulse width tSLSH SCK Internal shift clock mode External shift clock mode Value Unit Min. Max. 2 tinst* — µs –200 200 ns 0.5 tinst* — µs 0.5 tinst* — µs 1 tinst* — µs 1 tinst* — µs 0 200 ns SCK ↓ → SO time tSLOV SCK, SO Valid SI → SCK ↑ tIVSH SI, SCK 0.5 tinst* — µs SCK ↑ → valid SI hold time tSHIX SCK, SI 0.5 tinst* — µs Remarks * : For information on tinst, see “(4) Instruction Cycle.” Internal Shift Clock Mode tSCYC SCK 2.4 V 0.8 V 0.8 V tSLOV 2.4 V SO 0.8 V tIVSH SI tSHIX 0.8 VCC 0.8 VCC 0.2 VCC 0.2 VCC External Shift Clock Mode tSLSH SCK SO tSHSL 0.8 VCC 0.2 VCC tSLOV 2.4 V 0.8 V tIVSH SI 0.8 VCC 0.2 VCC tSHIX 0.8 VCC 0.8 VCC 0.2 VCC 0.2 VCC 35 MB89150/150A Series (6) Peripheral Input Timing (VCC = +5.0 V±10%, VSS = 0.0 V, TA = –40°C to +85°C) Symbol Parameter Peripheral input “H” pulse width 1 tILIH1 Peripheral input “L” pulse width 1 tIHIL1 Peripheral input “H” pulse width 2 tILIH2 Peripheral input “L” pulse width 2 tIHIL2 Value Pin INT10 to INT13, EC INT20 to INT27 Max. 1 tinst* — µs 1 tinst* — µs 2 tinst* — µs 2 tinst* — µs * : For information on tinst, see “(4) Instruction Cycle.” tIHIL1 INT10 to 13, EC tILIH1 0.8 VCC 0.2 VCC 36 tILIH2 0.8 VCC 0.2 VCC 0.8 VCC 0.2 VCC tIHIL2 INT20 to 27 0.2 VCC Unit Min. 0.8 VCC Remarks MB89150/150A Series ■ EXAMPLE CHARACTERISTICS (1) “L” Level Output Voltage VOL1 vs. IOL VOL2 vs. IOL VCC = 2.5 V VCC = 2.0 V VCC = 3.0 V VOL1 (V) 0.6 VCC = 4.0 V TA = +25°C 0.5 VCC = 5.0 V VCC = 6.0 V 0.4 VOL2 (V) VCC = 2.0 V 1.0 TA = +25°C 0.9 VCC = 2.5 V VCC = 3.0 V 0.8 0.7 VCC = 4.0 V 0.6 VCC = 5.0 V VCC = 6.0 V 0.5 0.3 0.4 0.2 0.3 0.2 0.1 0.1 0 0 1 2 3 4 5 6 7 8 9 10 IOL (mA) 0 0 2 4 6 8 10 12 14 16 18 20 IOL (mA) (2) “H” Level Output Voltage VCC – VOH2 vs. IOH VCC – VOH1 vs. IOH VCC – VOH1 (V) VCC = 2.0 V VCC = 2.5 V VCC = 3.0 V 1.0 TA = +25°C 0.9 0.8 0.7 0.6 VCC – VOH2 (V) VCC = 2.0 V VCC = 2.5 V VCC = 3.0 V 1.0 TA = +25°C 0.9 VCC = 4.0 V 0.8 VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V 0.7 VCC = 5.0 V VCC = 6.0 V 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 –1 –2 –3 –4 –5 IOH (mA) 0 0 –1 –2 –3 –4 –5 –6 –7 –8 –9 –10 IOH (mA) (Continued) 37 MB89150/150A Series (3) “H” Level Input Voltage/“L” level Input Voltage (CMOS input) (Hysteresis input) VIN vs. VCC V IN (V) 5.0 TA = +25°C 4.5 VIN vs. VCC V IN (V) 5.0 TA = +25°C 4.5 4.0 4.0 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0 VIHS VILS 0 1 2 3 4 5 6 7 VCC (V) 1 2 3 4 5 6 7 VCC (V) VIHS: Threshold when input voltage in hysteresis characteristics is set to “H” level VILS: Threshold when input voltage in hysteresis characteristics is set to “L” level (4) Power Supply Current (External Clock) ICC1 vs. VCC (Mask ROM product) ICC2 vs. VCC (Mask ROM product) ICC1 (mA) 5.0 TA = +25°C 4.5 ICC2 (mA) 1.0 TA = +25°C 0.9 0.8 4.0 FCH = 4.2 MHz 3.5 3.0 FCH = 3 MHz FCH = 3 MHz 0.6 2.5 0.5 2.0 0.4 FCH = 1 MHz 0.3 1.5 FCH = 1 MHz 1.0 0.2 0.1 0.5 0 FCH = 4.2 MHz 0.7 1 2 3 4 5 6 7 VCC (V) 0 1 2 3 4 5 6 7 VCC (V) (Continued) 38 MB89150/150A Series ICCS1 (mA) 1.2 TA = +25°C 1.1 ICCS1 vs. VCC ICCS2 vs. VCC FCH = 4.2 MHz 1.0 ICCS2 (mA) 1.0 TA = +25°C 0.9 0.8 0.9 FCH = 3 MHz 0.8 0.7 0.7 0.6 0.6 0.5 FCH = 4.2 MHz FCH = 3 MHz 0.5 FCH = 1 MHz 0.4 FCH = 1 MHz 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 VCC (V) 7 VCC (V) ICCL vs. VCC (Mask ROM product) ICCT vs. VCC ICCT (µA) 30 TA = +25°C ICCL (µA) 200 TA = +25°C 180 25 160 140 FCL = 32.768 kHz FCL = 32.768 kHz 20 120 100 15 80 10 60 40 5 20 0 1 2 3 4 5 6 7 VCC (V) 0 1 2 3 4 5 6 7 VCC (V) (Continued) 39 MB89150/150A Series (Continued) ICCSL vs. VCC ICCSL (µA) ICCT2 vs. VCC ICCT2 (µA) 200 1,000 TA = +25°C TA = +25°C 180 900 160 800 140 700 120 600 100 500 FCL = 32.768 kHz FCL = 32.768 kHz 80 400 60 300 40 200 20 100 0 1 2 3 4 5 6 0 7 1 2 3 4 VCC (V) RPULL (kΩ) 1,000 500 100 TA = +85°C TA = +25°C 50 TA = –40°C 10 40 2 6 7 VCC (V) (5) Pull-up Resistance 1 5 3 4 5 6 7 VCC (V) MB89150/150A Series ■ INSTRUCTIONS Execution instructions can be divided into the following four groups: • • • • Transfer Arithmetic operation Branch Others Table 1 lists symbols used for notation of instructions. Table 1 Instruction Symbols Symbol Meaning dir Direct address (8 bits) off Offset (8 bits) ext Extended address (16 bits) #vct Vector table number (3 bits) #d8 Immediate data (8 bits) #d16 Immediate data (16 bits) dir: b Bit direct address (8:3 bits) rel Branch relative address (8 bits) @ Register indirect (Example: @A, @IX, @EP) A Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.) AH Upper 8 bits of accumulator A (8 bits) AL Lower 8 bits of accumulator A (8 bits) T Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.) TH Upper 8 bits of temporary accumulator T (8 bits) TL Lower 8 bits of temporary accumulator T (8 bits) IX Index register IX (16 bits) (Continued) 41 MB89150/150A Series (Continued) Symbol Meaning EP Extra pointer EP (16 bits) PC Program counter PC (16 bits) SP Stack pointer SP (16 bits) PS Program status PS (16 bits) dr Accumulator A or index register IX (16 bits) CCR Condition code register CCR (8 bits) RP Register bank pointer RP (5 bits) Ri General-purpose register Ri (8 bits, i = 0 to 7) × Indicates that the very × is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.) (×) Indicates that the contents of × is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) (( × )) The address indicated by the contents of × is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) Columns indicate the following: Mnemonic: Assembler notation of an instruction ~: Number of instructions #: Number of bytes Operation: Operation of an instruction TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following: • “–” indicates no change. • dH is the 8 upper bits of operation description data. • AL and AH must become the contents of AL and AH immediately before the instruction is executed. • 00 becomes 00. N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag. OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule: Example: 48 to 4F ← This indicates 48, 49, ... 4F. 42 MB89150/150A Series Table 2 Transfer Instructions (48 instructions) Mnemonic ~ # Operation TL TH AH NZVC OP code MOV dir,A MOV @IX +off,A MOV ext,A MOV @EP,A MOV Ri,A MOV A,#d8 MOV A,dir MOV A,@IX +off MOV A,ext MOV A,@A MOV A,@EP MOV A,Ri MOV dir,#d8 MOV @IX +off,#d8 MOV @EP,#d8 MOV Ri,#d8 MOVW dir,A MOVW @IX +off,A 3 4 4 3 3 2 3 4 4 3 3 3 4 5 4 4 4 5 2 2 3 1 1 2 2 2 3 1 1 1 3 3 2 2 2 2 – – – – – AL AL AL AL AL AL AL – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –––– –––– –––– –––– –––– ++–– ++–– ++–– ++–– ++–– ++–– ++–– –––– –––– –––– –––– –––– –––– 45 46 61 47 48 to 4F 04 05 06 60 92 07 08 to 0F 85 86 87 88 to 8F D5 D6 MOVW ext,A MOVW @EP,A MOVW EP,A MOVW A,#d16 MOVW A,dir MOVW A,@IX +off 5 4 2 3 4 5 3 1 1 3 2 2 – – – AL AL AL – – – AH AH AH – – – dH dH dH –––– –––– –––– ++–– ++–– ++–– D4 D7 E3 E4 C5 C6 MOVW A,ext MOVW A,@A MOVW A,@EP MOVW A,EP MOVW EP,#d16 MOVW IX,A MOVW A,IX MOVW SP,A MOVW A,SP MOV @A,T MOVW @A,T MOVW IX,#d16 MOVW A,PS MOVW PS,A MOVW SP,#d16 SWAP SETB dir: b CLRB dir: b XCH A,T XCHW A,T XCHW A,EP XCHW A,IX XCHW A,SP MOVW A,PC 5 4 4 2 3 2 2 2 2 3 4 3 2 2 3 2 4 4 2 3 3 3 3 2 3 1 1 1 3 1 1 1 1 1 1 3 1 1 3 1 2 2 1 1 1 1 1 1 (dir) ← (A) ( (IX) +off ) ← (A) (ext) ← (A) ( (EP) ) ← (A) (Ri) ← (A) (A) ← d8 (A) ← (dir) (A) ← ( (IX) +off) (A) ← (ext) (A) ← ( (A) ) (A) ← ( (EP) ) (A) ← (Ri) (dir) ← d8 ( (IX) +off ) ← d8 ( (EP) ) ← d8 (Ri) ← d8 (dir) ← (AH),(dir + 1) ← (AL) ( (IX) +off) ← (AH), ( (IX) +off + 1) ← (AL) (ext) ← (AH), (ext + 1) ← (AL) ( (EP) ) ← (AH),( (EP) + 1) ← (AL) (EP) ← (A) (A) ← d16 (AH) ← (dir), (AL) ← (dir + 1) (AH) ← ( (IX) +off), (AL) ← ( (IX) +off + 1) (AH) ← (ext), (AL) ← (ext + 1) (AH) ← ( (A) ), (AL) ← ( (A) ) + 1) (AH) ← ( (EP) ), (AL) ← ( (EP) + 1) (A) ← (EP) (EP) ← d16 (IX) ← (A) (A) ← (IX) (SP) ← (A) (A) ← (SP) ( (A) ) ← (T) ( (A) ) ← (TH),( (A) + 1) ← (TL) (IX) ← d16 (A) ← (PS) (PS) ← (A) (SP) ← d16 (AH) ↔ (AL) (dir): b ← 1 (dir): b ← 0 (AL) ↔ (TL) (A) ↔ (T) (A) ↔ (EP) (A) ↔ (IX) (A) ↔ (SP) (A) ← (PC) AL AL AL – – – – – – – – – – – – – – – AL AL – – – – AH AH AH – – – – – – – – – – – – – – – – AH – – – – dH dH dH dH – – dH – dH – – – dH – – AL – – – dH dH dH dH dH ++–– ++–– ++–– –––– –––– –––– –––– –––– –––– –––– –––– –––– –––– ++++ –––– –––– –––– –––– –––– –––– –––– –––– –––– –––– C4 93 C7 F3 E7 E2 F2 E1 F1 82 83 E6 70 71 E5 10 A8 to AF A0 to A7 42 43 F7 F6 F5 F0 Notes: • During byte transfer to A, T ← A is restricted to low bytes. • Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F2MC-8 family) 43 MB89150/150A Series Table 3 Mnemonic ~ # ADDC A,Ri ADDC A,#d8 ADDC A,dir ADDC A,@IX +off ADDC A,@EP ADDCW A ADDC A SUBC A,Ri SUBC A,#d8 SUBC A,dir SUBC A,@IX +off SUBC A,@EP SUBCW A SUBC A INC Ri INCW EP INCW IX INCW A DEC Ri DECW EP DECW IX DECW A MULU A DIVU A ANDW A ORW A XORW A CMP A CMPW A RORC A 3 2 3 4 3 3 2 3 2 3 4 3 3 2 4 3 3 3 4 3 3 3 19 21 3 3 3 2 3 2 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ROLC A 2 1 CMP A,#d8 CMP A,dir CMP A,@EP CMP A,@IX +off CMP A,Ri DAA DAS XOR A XOR A,#d8 XOR A,dir XOR A,@EP XOR A,@IX +off XOR A,Ri AND A AND A,#d8 AND A,dir 2 3 3 4 3 2 2 2 2 3 3 4 3 2 2 3 2 2 1 2 1 1 1 1 2 2 1 2 1 1 2 2 Arithmetic Operation Instructions (62 instructions) Operation TL TH AH NZVC OP code (A) ← (A) + (Ri) + C (A) ← (A) + d8 + C (A) ← (A) + (dir) + C (A) ← (A) + ( (IX) +off) + C (A) ← (A) + ( (EP) ) + C (A) ← (A) + (T) + C (AL) ← (AL) + (TL) + C (A) ← (A) − (Ri) − C (A) ← (A) − d8 − C (A) ← (A) − (dir) − C (A) ← (A) − ( (IX) +off) − C (A) ← (A) − ( (EP) ) − C (A) ← (T) − (A) − C (AL) ← (TL) − (AL) − C (Ri) ← (Ri) + 1 (EP) ← (EP) + 1 (IX) ← (IX) + 1 (A) ← (A) + 1 (Ri) ← (Ri) − 1 (EP) ← (EP) − 1 (IX) ← (IX) − 1 (A) ← (A) − 1 (A) ← (AL) × (TL) (A) ← (T) / (AL),MOD → (T) (A) ← (A) ∧ (T) (A) ← (A) ∨ (T) (A) ← (A) ∀ (T) (TL) − (AL) (T) − (A) → C→A – – – – – – – – – – – – – – – – – – – – – – – dL – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 00 – – – – – – – – – – – dH – – – – – – dH – – – – dH – – – dH dH 00 dH dH dH – – – ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ +++– –––– –––– ++–– +++– –––– –––– ++–– –––– –––– ++R– ++R– ++R– ++++ ++++ ++–+ 28 to 2F 24 25 26 27 23 22 38 to 3F 34 35 36 37 33 32 C8 to CF C3 C2 C0 D8 to DF D3 D2 D0 01 11 63 73 53 12 13 03 C ← A← – – – ++–+ 02 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– 14 15 17 16 18 to 1F 84 94 52 54 55 57 56 58 to 5F 62 64 65 (A) − d8 (A) − (dir) (A) − ( (EP) ) (A) − ( (IX) +off) (A) − (Ri) Decimal adjust for addition Decimal adjust for subtraction (A) ← (AL) ∀ (TL) (A) ← (AL) ∀ d8 (A) ← (AL) ∀ (dir) (A) ← (AL) ∀ ( (EP) ) (A) ← (AL) ∀ ( (IX) +off) (A) ← (AL) ∀ (Ri) (A) ← (AL) ∧ (TL) (A) ← (AL) ∧ d8 (A) ← (AL) ∧ (dir) (Continued) 44 MB89150/150A Series (Continued) Mnemonic ~ # AND A,@EP AND A,@IX +off AND A,Ri OR A OR A,#d8 OR A,dir OR A,@EP OR A,@IX +off OR A,Ri CMP dir,#d8 CMP @EP,#d8 CMP @IX +off,#d8 CMP Ri,#d8 INCW SP DECW SP 3 4 3 2 2 3 3 4 3 5 4 5 4 3 3 1 2 1 1 2 2 1 2 1 3 2 3 2 1 1 Operation (A) ← (AL) ∧ ( (EP) ) (A) ← (AL) ∧ ( (IX) +off) (A) ← (AL) ∧ (Ri) (A) ← (AL) ∨ (TL) (A) ← (AL) ∨ d8 (A) ← (AL) ∨ (dir) (A) ← (AL) ∨ ( (EP) ) (A) ← (AL) ∨ ( (IX) +off) (A) ← (AL) ∨ (Ri) (dir) – d8 ( (EP) ) – d8 ( (IX) + off) – d8 (Ri) – d8 (SP) ← (SP) + 1 (SP) ← (SP) – 1 Table 4 Mnemonic BZ/BEQ rel BNZ/BNE rel BC/BLO rel BNC/BHS rel BN rel BP rel BLT rel BGE rel BBC dir: b,rel BBS dir: b,rel JMP @A JMP ext CALLV #vct CALL ext XCHW A,PC RET RETI ~ # 3 3 3 3 3 3 3 3 5 5 2 3 6 6 3 4 6 2 2 2 2 2 2 2 2 3 3 1 3 1 3 1 1 1 Mnemonic PUSHW A POPW A PUSHW IX POPW IX NOP CLRC SETC CLRI SETI ~ # 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 TH AH NZVC OP code – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++++ ++++ ++++ ++++ –––– –––– 67 66 68 to 6F 72 74 75 77 76 78 to 7F 95 97 96 98 to 9F C1 D1 Branch Instructions (17 instructions) Operation If Z = 1 then PC ← PC + rel If Z = 0 then PC ← PC + rel If C = 1 then PC ← PC + rel If C = 0 then PC ← PC + rel If N = 1 then PC ← PC + rel If N = 0 then PC ← PC + rel If V ∀ N = 1 then PC ← PC + rel If V ∀ N = 0 then PC ← PC + reI If (dir: b) = 0 then PC ← PC + rel If (dir: b) = 1 then PC ← PC + rel (PC) ← (A) (PC) ← ext Vector call Subroutine call (PC) ← (A),(A) ← (PC) + 1 Return from subrountine Return form interrupt Table 5 TL TL TH AH NZVC OP code – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – dH – – –––– –––– –––– –––– –––– –––– –––– –––– –+–– –+–– –––– –––– –––– –––– –––– –––– Restore FD FC F9 F8 FB FA FF FE B0 to B7 B8 to BF E0 21 E8 to EF 31 F4 20 30 Other Instructions (9 instructions) Operation TL TH AH NZVC OP code – – – – – – – – – – – – – – – – – – – dH – – – – – – – –––– –––– –––– –––– –––– –––R –––S –––– –––– 40 50 41 51 00 81 91 80 90 45 L 46 F A ADDC ADDC A SUBC SUBC A MOV A XOR AND OR SETC CLRB BBC INCW DECW MOVW MOVW dir: 1 dir: 1,rel SP SP SP,A A,SP MOV CMP DAS MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BNC A,R0 A,R0 A,R0 A,R0 R0,A A,R0 A,R0 A,R0 R0,#d8 R0,#d8 dir: 0 dir: 0,rel R0 R0 #0 rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BC A,R1 A,R1 A,R1 A,R1 R1,A A,R1 A,R1 A,R1 R1,#d8 R1,#d8 dir: 1 dir: 1,rel R1 R1 #1 MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BP A,R2 A,R2 A,R2 A,R2 R2,A A,R2 A,R2 A,R2 R2,#d8 R2,#d8 dir: 2 dir: 2,rel R2 R2 #2 MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BN A,R3 A,R3 A,R3 A,R3 R3,A A,R3 A,R3 A,R3 R3,#d8 R3,#d8 dir: 3 dir: 3,rel R3 R3 #3 MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BNZ A,R4 A,R4 A,R4 A,R4 R4,A A,R4 A,R4 A,R4 R4,#d8 R4,#d8 dir: 4 dir: 4,rel R4 R4 #4 rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BZ A,R5 A,R5 A,R5 A,R5 R5,A A,R5 A,R5 A,R5 R5,#d8 R5,#d8 dir: 5 dir: 5,rel R5 R5 #5 MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BGE A,R6 A,R6 A,R6 A,R6 R6,A A,R6 A,R6 A,R6 R6,#d8 R6,#d8 dir: 6 dir: 6,rel R6 R6 #6 rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BLT A,R7 A,R7 A,R7 A,R7 R7,A A,R7 A,R7 A,R7 R7,#d8 R7,#d8 dir: 7 dir: 7,rel R7 R7 #7 rel 8 9 A B C D E F rel rel rel rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP CLRB BBC MOVW MOVW MOVW XCHW A,@EP A,@EP A,@EP A,@EP @EP,A A,@EP A,@EP A,@EP @EP,#d8 @EP,#d8 dir: 7 dir: 7,rel A,@EP @EP,A EP,#d16 A,EP 7 CLRB BBC MOVW MOVW MOVW XCHW dir: 6 dir: 6,rel A,@IX +d @IX +d,A IX,#d16 A,IX CLRB BBC MOVW MOVW MOVW XCHW dir: 4 dir: 4,rel A,ext ext,A A,#d16 A,PC MOV MOV CLRB BBC INCW DECW MOVW MOVW @A,T A,@A dir: 2 dir: 2,rel IX IX IX,A A,IX XOR AND OR DAA A,#d8 A,#d8 A,#d8 XCH XOR AND OR A, T A A JMP CALL PUSHW POPW MOV MOVW CLRC addr16 addr16 IX IX ext,A PS,A A,@IX +d A,@IX +d A,@IX +d A,@IX +d @IX +d,A A@,IX +d A,@IX +d A,@IX +d @IX +d,#d8 @IX +d,#d8 CMP CMP A MOV E 6 D MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP CLRB BBC MOVW MOVW MOVW XCHW A,dir A,dir A,dir A,dir dir,A A,dir A,dir A,dir dir,#d8 dir,#d8 dir: 5 dir: 5,rel A,dir dir,A SP,#d16 A,SP C 5 B CLRB BBC INCW DECW JMP MOVW dir: 0 dir: 0,rel A A @A A,PC A MOV CMP ADDC SUBC A,#d8 A,#d8 A,#d8 A,#d8 A DIVU SETI 9 4 8 RORC CMPW ADDCW SUBCW XCHW XORW ANDW ORW MOVW MOVW CLRB BBC INCW DECW MOVW MOVW A A A A A, T A A A @A,T A,@A dir: 3 dir: 3,rel EP EP EP,A A,EP 7 3 6 ROLC 5 PUSHW POPW MOV MOVW CLRI A A A,ext A,PS 4 2 A RETI 3 MULU RET 2 1 SWAP 1 NOP 0 0 H MB89150/150A Series ■ INSTRUCTION MAP MB89150/150A Series ■ MASK OPTIONS Part number MB89151/1A, 2/2A, 3/3A, 4/4A, 5/5A MB89P155 MB89PV150 Specifying procedure Specify when ordering masking Set with EPROM programmer Setting not possible No. 1 Pull-up resistors P00 to P07, P10 to P17 Selectable per pin 2 Pull-up resistors P40 to P47, P50 to P57 Selectable per pin Fixed to without a (Only when segment pull-up resistor output is not selected.) 3 Pull-up resistors P20 to P27 Selectable by pin Fixed to without a pull-up resistor 4 Power-on reset With power-on reset Without power-on reset Selectable Selectable Selectable Selectable Selection of oscillation stabilization time 5 • The initial value of the oscillation stabilization time for the main clock can be set by selecting the values of the WTM1 and WTM0 bits on the right. WTM1 WTM0 0 0 1 1 0: 1: 0: 1: Can be set per pin WTM1WTM0 22/FCH 212/FCH 216/FCH 218/FCH 0 0 1 1 0: 1: 0: 1: Fixed to without a pull-up resistor Fixed to with power-on reset 22/FCH Fixed to oscillation stabilization time of 212/FCH 16 2 /FCH 16 2 /FCH 18 2 /FCH 6 Main clock oscillation type Crystal or ceramic resonator CR Selectable Fixed to crystal or ceramic only Fixed to crystal or ceramic 7 Reset pin output With reset output Without reset output Selectable Selectable Fixed to with reset output 8 Clock mode selection Dual-clock mode Single-clock mode Selectable Selectable Fixed to dual-clock mode Selectable Selection of the number of segments. -101/201: 36 segments -102/202: 32 segments -103/203: 28 segments -104/204: 24 segments -105/205: 20 segments -101: 36 segments -102: 32 segments -103: 28 segments -104: 24 segments -105: 20 segments 9 Segment output selection 36: No ports selection 32: Selection of P57 to P54 28: Selection of P57 to P50 24: Selection of P57 to P50, and P47 to P44. 20: Selection of P57 to P50, and P47 to P40. 10 Selection of a built-in booster Without booster: -101 to 105 With booster: MB89151A/2A/3A/4A/5A -201 to 205 Without booster: MB89151/2/3/4/5 With booster: Fixed to without booster (-100 to 105 only) 47 MB89150/150A Series • Versions Version Mass production product Features One-time PROM product MB8915151A 152A 153A 154A 155A MB89P155-201 -202 -203 -204 -205 MB8915151 152 153 154 155 MB89P155-101 -102 -103 -104 -105 Piggyback/evaluation product Number of segment pins Booster — 36 32 28 24 20 Yes 36 32 28 24 20 No MB89PV150-101 -102 -103 -104 -105 ■ ORDERING INFORMATION Part number MB89151PF MB89152PF MB89153PF MB89154PF MB89155PF MB89P155PF-101 MB89P155PF-102 MB89P155PF-103 MB89P155PF-104 MB89P155PF-105 MB89151APF MB89152APF MB89153APF MB89154APF MB89155APF MB89P155PF-201 MB89P155PF-202 MB89P155PF-203 MB89P155PF-204 MB89P155PF-205 Package Remarks Without booster 80-pin Plastic QFP (FPT-80P-M06) With booster (Continued) 48 MB89150/150A Series (Continued) Part number MB89151PFM MB89152PFM MB89153PFM MB89154PFM MB89155PFM MB89P155PFM-101 MB89P155PFM-102 MB89P155PFM-103 MB89P155PFM-104 MB89P155PFM-105 MB89151APFM MB89152APFM MB89153APFM MB89154APFM MB89155APFM MB89P155PFM-201 MB89P155PFM-202 MB89P155PFM-203 MB89P155PFM-204 MB89P155PFM-205 MB89151PFV MB89152PFV MB89153PFV MB89154PFV MB89155PFV MB89P155PFV-101 MB89P155PFV-102 MB89P155PFV-103 MB89P155PFV-104 MB89P155PFV-105 MB89151APFV MB89152APFV MB89153APFV MB89154APFV MB89155APFV MB89P155PFV-201 MB89P155PFV-202 MB89P155PFV-203 MB89P155PFV-204 MB89P155PFV-205 MB89PV150CF-101 MB89PV150CF-102 MB89PV150CF-103 MB89PV150CF-104 MB89PV150CF-105 Package Remarks Without booster 80-pin Plastic LQFP (FPT-80P-M11) With booster Without booster 80-pin Plastic LQFP (FPT-80P-M05) With booster 80-pin Ceramic MQFP (MQP-80C-P01) Without booster 49 MB89150/150A Series ■ PACKAGE DIMENSIONS 80-pin Plastic QFP (FPT-80P-M06) 23.90±0.40(.941±.016) 20.00±0.20(.787±.008) 64 3.35(.132)MAX 0.05(.002)MIN (STAND OFF) 41 65 40 14.00±0.20 (.551±.008) 12.00(.472) REF 17.90±0.40 (.705±.016) 16.30±0.40 (.642±.016) INDEX 80 25 "A" LEAD No. 1 24 0.35±0.10 (.014±.004) 0.80(.0315)TYP 0.16(.006) 0.15±0.05(.006±.002) M Details of "A" part Details of "B" part 0.25(.010) "B" 0.10(.004) 0.30(.012) 0.18(.007)MAX 18.40(.724)REF 22.30±0.40(.878±.016) C 0 10° 0.80±0.20 (.031±.008) 0.58(.023)MAX 1994 FUJITSU LIMITED F80010S-3C-2 Dimensions in mm (inches) 80-pin Plastic LQFP (FPT-80P-M11) +0.20 16.00±0.20(.630±.008)SQ 14.00±0.10(.551±.004)SQ 60 1.50 −0.10 +.008 .059 −.004 41 61 (Mounting height) 40 12.35 (.486) REF 15.00 (.591) NOM 1 PIN INDEX 80 LEAD No. 21 1 0.65(.0256)TYP 0.30±0.10 (.012±.004) 0.13(.005) 0.10(.004) C 50 1995 FUJITSU LIMITED F80016S-1C-3 Details of "A" part "A" 20 M 0.127 .005 0.10±0.10 (STAND OFF) (.004±.004) +0.05 −0.02 +.002 −.001 0 10˚ 0.50±0.20 (.020±.008) Dimensions in mm (inches) MB89150/150A Series 80-pin Plastic LQFP (FPT-80P-M05) +0.20 14.00±0.20(.551±.008)SQ 1.50 −0.10 +.008 .059 −.004 12.00±0.10(.472±.004)SQ 60 (Mounting height) 41 61 40 9.50 (.374) REF 13.00 (.512) NOM INDEX 80 21 LEAD No. 20 1 Details of "A" part "A" +0.08 0.18 −0.03 +.003 .007 −.001 0.50±0.08 (.0197±.0031) +0.05 0.127 −0.02 +.002 .005 −.001 0.10±0.10 (STAND OFF) (.004±.004) 0.50±0.20(.020±.008) 0.10(.004) 0 C Dimensions in mm (inches) 1995 FUJITSU LIMITED F80008S-2C-5 80-pin Ceramic MQFP (MQP-80C-P01) 10˚ 18.70(.736)TYP 12.00(.472)TYP INDEX AREA 16.30±0.33 (.642±.013) 15.58±0.20 (.613±.008) 1.50(.059)TYP 1.00(.040)TYP 4.50(.177) TYP 1.27±0.13 (.050±.005) 22.30±0.33 (.878±.013) 24.70(.972) TYP 0.30(.012) TYP 0.80±0.25 (.0315±.010) 0.80±0.25 (.0315±.010) +0.40 1.20 –0.20 +.016 .047 –.008 INDEX AREA 18.12±0.20 12.02(.473) (.713±.008) TYP 10.16(.400) 14.22(.560) TYP TYP 18.40(.724) REF INDEX 1.27±0.13 (.050±.005) 6.00(.236) TYP 0.30(.012)TYP 7.62(.300)TYP 9.48(.373)TYP 11.68(.460)TYP 0.40±0.10 (.016±.004) 1.50(.059) TYP 1.00(.040) TYP 0.40±0.10 (.016±.004) +0.40 1.20 –0.20 +.016 .047 –.008 0.15±0.05 8.70(.343) (.006±.002) MAX C 1994 FUJITSU LIMITED M80001SC-4-2 Dimensions in mm (inches) 51 MB89150/150A Series FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: (044) 754-3763 Fax: (044) 754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: (800) 866-8608 Fax: (408) 922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 http://www.fujitsu-ede.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220 http://www.fmap.com.sg/ F9804 FUJITSU LIMITED Printed in Japan 52 All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.