Order this document by MC34181/D "( "($ ( & !(& #$&"! !#'& #$% Quality bipolar fabrication with innovative design concepts are employed for the MC33181/2/4, MC34181/2/4 series of monolithic operational amplifiers. This JFET input series of operational amplifiers operates at 210 µA per amplifier and offers 4.0 MHz of gain bandwidth product and 10 V/µs slew rate. Precision matching and an innovative trim technique of the single and dual versions provide low input offset voltages. With a JFET input stage, this series exhibits high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response. The MC33181/2/4, MC34181/2/4 series of devices are specified over the commercial or industrial/vehicular temperature ranges. The complete series of single, dual and quad operational amplifiers are available in the plastic DIP as well as the SOIC surface mount packages. • Low Supply Current: 210 µA (Per Amplifier) • • • • • • • • • • • 8 8 1 1 P SUFFIX PLASTIC PACKAGE CASE 626 D SUFFIX PLASTIC PACKAGE CASE 751 (SO–8) PIN CONNECTIONS Offset Null Inputs VEE 1 8 NC 2 – 7 3 + 6 VCC Output 5 Offset Null 4 (Single, Top View) Wide Supply Operating Range: ±1.5 V to ±18 V Output 1 Wide Bandwidth: 4.0 MHz Inputs 1 High Slew Rate: 10 V/µs 1 Low Input Offset Voltage: 2.0 mV – + 3 VEE Large Output Voltage Swing: –14 V to +14 V (with ±15 V Supplies) VCC Output 2 8 1 2 7 2 6 – + 4 Inputs 2 5 (Dual, Top View) Large Capacitance Drive Capability: 0 pF to 500 pF Low Total Harmonic Distortion: 0.04% Excellent Phase Margin: 67° 14 Excellent Gain Margin: 6.7 dB 14 1 1 Output Short Circuit Protection Offered in New TSSOP Package Including the Standard SOIC and DIP Packages P SUFFIX PLASTIC PACKAGE CASE 646 D SUFFIX PLASTIC PACKAGE CASE 751A (SO–14) 14 ORDERING INFORMATION 1 Op Amp Function Single Dual Device Operating Temperature Range Package MC34181P MC34181D TA = 0° to +70°C Plastic DIP SO–8 MC33181P MC33181D TA = –40° to +85°C Plastic DIP SO–8 MC34182P MC34182D TA = 0° to +70°C Plastic DIP SO–8 TA = –40° to +85°C Plastic DIP SO–8 MC34184P MC34184D MC34184DTB TA = 0° to +70°C Plastic DIP SO–14 TSSOP–14 MC33184P MC33184D MC33184DTB TA = –40° to +85°C DTB SUFFIX PLASTIC PACKAGE CASE 948G (TSSOP–14) PIN CONNECTIONS Output 1 Inputs 1 MC33182P MC33182D Quad Plastic DIP SO–14 TSSOP–14 2 3 VCC 5 6 1 4 –– + 13 + – 2 3 + – Output 4 Inputs 4 12 11 7 10 VEE Inputs 3 9 8 Output 3 (Quad, Top View) Motorola, Inc. 1996 MOTOROLA ANALOG IC DEVICE DATA – + 4 Inputs 2 Output 2 14 1 Rev 1 1 MC34181,2,4 MC33181,2,4 MAXIMUM RATINGS Rating Symbol Value Unit VS +36 V VIDR Note 1 V Input Voltage Range VIR Note 1 V Output Short Circuit Duration (Note 2) tSC Indefinite sec Operating Junction Temperature TJ +150 °C Tstg –60 to +150 °C Supply Voltage (from VCC to VEE) Input Differential Voltage Range Storage Temperature Range NOTES: 1. Either or both input voltages should not exceed the magnitude of VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 1). Representative Schematic Diagram (Each Amplifier) VCC Internal Bias Network Q8 Q9 Q7 Neg Pos J1 J2 D1 C1 D3 + R6 D2 Q1 R7 Q4 Q2 C2 Q3 R1 VO R2 Q5 Q6 I3 I4 R4 R3 R5 VEE 1 5 Null Offsets MC3X181 (Single) Only – + 5 1 VEE 25 kΩ MC3X181 Input Offset Voltage Null CIrcuit 2 MOTOROLA ANALOG IC DEVICE DATA MC34181,2,4 MC33181,2,4 DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Characteristics Input Offset Voltage (RS = 50 Ω, VO = 0 V) Single TA = +25°C TA = 0° to +70°C (MC34181) TA = –40° to +85°C (MC33181) Dual TA = +25°C TA = 0° to +70°C (MC34182) TA = –40° to +85°C (MC33182) Quad TA = +25°C TA = 0° to +70°C (MC34184) TA = –40° to +85°C (MC33184) Average Temperature Coefficient of VIO (RS = 50 Ω, VO = 0V) Symbol Min Typ Max VIO ∆VIO/∆T Input Offset Current (VCM = 0 V, VO = 0V) TA = +25°C TA = 0° to +70°C TA = –40° to +85°C IIO Input Bias Current (VCM = 0 V, VO = 0V) TA = +25°C TA = 0° to +70°C TA = –40° to +85°C IIB Input Common Mode Voltage Range VICR Large Signal Voltage Gain (RL = 10 kΩ, VO = ±10 V) TA = +25°C TA = Tlow to Thigh AVOL Output Voltage Swing (VID = 1.0 V, RL = 10 kΩ) TA = +25°C Unit mV — — — 0.5 — — 2.0 3.0 3.5 — — — 1.0 — — 3.0 4.0 4.5 — — — 4.0 — — 10 11 11.5 — 10 — — — — 0.001 — — 0.05 1.0 2.0 — — — 0.003 — — 0.1 2.0 4.0 µV/°C nA nA (VEE +4.0 V) to (VCC –2.0 V) V V/mV 25 15 60 — — — VO+ VO– +13.5 — +14 –14 — –13.5 V Common Mode Rejection (RS = 50 Ω, VCM = VICR, VO = 0 V) CMR 70 86 — dB Power Supply Rejection (RS = 50 Ω, VCM = 0 V, VO = 0 V) PSR 70 84 — dB Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source Sink ISC 3.0 8.0 8.0 11 — — Power Supply Current (No Load, VO = 0 V) Single TA = +25°C TA = Tlow to Thigh Dual TA = +25°C TA = Tlow to Thigh Quad TA = +25°C TA = Tlow to Thigh MOTOROLA ANALOG IC DEVICE DATA mA µA ID — — 210 — 250 250 — — 420 — 500 500 — — 840 — 1000 1000 3 MC34181,2,4 MC33181,2,4 AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Symbol Characteristics Slew Rate (Vin = –10 V to +10 V, RL = 10 kΩ, CL = 100 pF) AV = +1.0 AV = –1.0 Min Typ Max SR Settling Time (AV = –1.0, RL = 10 kΩ, VO = 0 V to +10 V Step) To Within 0.10% To Within 0.01% Unit V/µs 7.0 — 10 10 — — — — 1.1 1.5 — — µs ts Gain Bandwidth Product (f = 100 kHz) GBW 3.0 4.0 — MHz Power Bandwidth (AV = +1.0, RL = 10 kΩ, VO = 20 Vpp, THD = 5.0%) BWp — 120 — kHz — — 67 34 — — — — 6.7 3.4 — — Phase Margin (–10 V < VO < +10 V) RL = 10 kΩ RL = 10 kΩ, CL = 100 pF fm Gain Margin (–10 V < VO < +10 V) RL = 10 kΩ RL = 10 kΩ, CL = 100 pF Am Equivalent Input Noise Voltage RS = 100 Ω, f = 1.0 kHz en — 38 — nV/ √ Hz Equivalent Input Noise Current f = 1.0 kHz in — 0.01 — pA/ √ Hz Differential Input Capacitance Ci — 3.0 — pF Differential Input Resistance Ri — 1012 — W THD — 0.04 — % — — 120 — dB |Zo| — 200 — Ω Total Harmonic Distortion AV = 10, RL = 10 kΩ, 2.0 Vpp < VO < 20 Vpp, f = 1.0 kHz Channel Separation (RL = 10 kΩ, –10 V < VO < +10 V, 0 Hz < f < 10 kHz) Open Loop Output Impedance (f = 1.0 MHz) 2400 2000 1600 8/14 Pin Plastic TSSOP–14 SO–14 1200 4 800 SO–8 400 0 –55 –40 –20 0 20 40 60 80 100 120 140 160 TA, AMBIENT TEMPERATURE (°C) dB Figure 2. Input Common Mode Voltage Range versus Temperature V ICR, INPUT COMMON MODE VOLTAGE RANGE (V) P D , MAXIMUM POWER DISSIPATION (mW) Figure 1. Maximum Power Dissipation versus Temperature for Package Variations Degrees 0 –1.0 VCC = +3.0 V to +15 V VEE = –3.0 V to –15 V ∆VIO = 5.0 mV VCC (VCM to VCC) –2.0 3.0 2.0 1.0 VEE 0 –55 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 MOTOROLA ANALOG IC DEVICE DATA MC34181,2,4 MC33181,2,4 Figure 3. Input Bias Current versus Temperature Figure 4. Input Bias Current versus Input Common Mode Voltage 20 VCC = +15 V VEE = –15 V VCM = 0 V 100 I IB , INPUT BIAS CURRENT (nA) I IB , INPUT BIAS CURRENT (nA) 1000 10 1.0 0.1 0.01 0.001 –55 –25 0 25 50 75 100 V sat , OUTPUT SATURATION VOLTAGE (V) 10 4.0 6.0 8.0 10 12 14 16 5.0 10 0 VCC –1.0 VCC = +15 V VEE = –15 V TA = +25°C –2.0 –3.0 Source +3.0 +2.0 Sink +1.0 0 VEE 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 VCC, |VEE|, SUPPLY VOLTAGE (V) IL, LOAD CURRENT (mA) Figure 7. Output Saturation Voltage versus Load Resistance to Ground Figure 8. Output Saturation Voltage versus Load Resistance to VCC 0 V sat , OUTPUT SATURATION VOLTAGE (V) VO, OUTPUT VOLTAGE SWING (V) V sat , OUTPUT SATURATION VOLTAGE (V) 0 Figure 6. Output Saturation Voltage versus Load Current RL = 10 k VCC VCC = +15 V VEE = –15 V TA = +25°C –2.0 –3.0 3.0 2.0 1.0 0 1.0 k –5.0 Figure 5. Output Voltage Swing versus Supply Voltage 20 –1.0 5 VICR, INPUT COMMON MODE VOLTAGE (V) 30 2.0 10 TA, AMBIENT TEMPERATURE (°C) RL Connected to Ground TA = 25°C 0 15 0 –10 125 40 0 VCC = +15 V VEE = –15 V TA = 25°C VEE 10 k 100 k RL, LOAD RESISTANCE TO GROUND (Ω) MOTOROLA ANALOG IC DEVICE DATA 1.0 M 10 0 VCC –1.0 –2.0 –3.0 3.0 VCC = +15 V VEE = –15 V TA = +25°C 2.0 1.0 0 1.0 k VEE 10 k 100 k 1.0 M RL, LOAD RESISTANCE (Ω) 5 MC34181,2,4 MC33181,2,4 Figure 10. Output Impedance versus Frequency 30 Sink 10 Source 0 –55 –25 0 25 50 75 100 200 VCC = +15 V VEE = –15 V VCM = 0 V VO = 0 V ∆IO = 10 µA TA = 25°C AV = 1000 100 0 100 1.0 k 100 k 1.0 M Figure 11. Output Voltage Swing versus Frequency Figure 12. Output Distortion versus Frequency 12 6 10 k 109 k 1.0 THD, TOTAL HARMONIC DISTORTION (%) VCC = +15 V VEE = –15 V RL = 10 kΩ THD = 1.0% TA = 25°C 0 1.0 k 0.8 0.6 VCC = +15 V VEE = –15 V VO = 2.0 Vpp RL = 10 kΩ TA = 25°C AV = 1000 0.4 100 0.2 10 1.0 0 10 1.0 M 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) f, FREQUENCY (Hz) Figure 13. Open Loop Voltage Gain versus Temperature Figure 14. Open Loop Voltage Gain and Phase versus Frequency 70 100 A VOL, OPEN LOOP VOLTAGE GAIN (dB) A VOL, OPEN LOOP VOLTAGE GAIN (V/mV) 10 k f, FREQUENCY (Hz) 18 60 50 40 VCC = +15 V VEE = –15 V RL = 10 kΩ f ≤ 10 Hz TA = 25°C 30 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 6 1.0 TA, AMBIENT TEMPERATURE (°C) 24 20 –55 10 100 125 30 VO , OUTPUT VOLTAGE SWING (V p–p ) 300 100 125 80 VCC = +15 V VEE = –15 V VO = 0 V RL = 10 kΩ TA = 25°C Gain 60 Phase 0 45 φ , EXCESS PHASE (DEGREES) 20 VCC = +15 V VEE = –15 V RL ≤ 0.1 Ω VID = 1.0 V |Z O |, OUTPUT IMPEDANCE ( Ω ) I SC , OUTPUT SHORT CIRCUIT CURRENT (mA) Figure 9. Output Short Circuit Current versus Temperature 40 90 20 135 0 1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M 180 100 M f, FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA Figure 15. Normalized Gain Bandwidth Product versus Temperature Figure 16. Output Voltage Overshoot versus Load Capacitance 1.3 V OS , OUTPUT VOLTAGE OVERSHOOT (%) GBW, GAIN BANDWIDTH PRODUCT (NORMALIZED) MC34181,2,4 MC33181,2,4 VCC = +15 V VEE = –15 V RL = 10 kΩ 1.2 1.1 1.0 0.9 0.8 0.7 –55 –25 0 25 50 75 100 125 60 40 20 0 10 100 1.0 k CL, LOAD CAPACITANCE (pF) Figure 17. Phase Margin versus Load Capacitance Figure 18. Gain Margin versus Load Capacitance 10 VCC = +15 V VEE = –15 V RL = 10 kΩ to ∞ –10 V < VO < +10 V TA = 25°C 60 50 A m, GAIN MARGIN (dB) , PHASE MARGIN (DEGREES) m φ 80 VCC = +15 V VEE = –15 V RL = 10 kΩ ∆VO = 100 mVpp –10 V < VO < +10 V AV = +1.0 TA = 25°C TA, AMBIENT TEMPERATURE (°C) 70 40 30 20 10 0 10 100 8.0 6.0 4.0 2.0 100 1.0 k CL, LOAD CAPACITANCE (pF) CL, LOAD CAPACITANCE (pF) Figure 19. Phase Margin versus Temperature Figure 20. Gain Margin versus Temperature 10 CL = 10 pF 9.0 A m, GAIN MARGIN (dB) 60 50 40 CL = 100 pF 30 VCC = +15 V VEE = –15 V RL = 10 kΩ to ∞ –10 V < VO < +10 V 20 10 –55 VCC = +15 V VEE = –15 V RL = 10 kΩ to ∞ –10 V < VO < +10 V TA = 25°C 0 10 1.0 k 70 φ m , PHASE MARGIN (DEGREES) 100 –25 0 25 50 8.0 CL = 10 pF 7.0 6.0 5.0 CL = 100 pF 4.0 3.0 VCC = +15 V VEE = –15 V RL = 10 kΩ to ∞ –10 V < VO < +10 V 2.0 1.0 75 TA, AMBIENT TEMPERATURE (°C) MOTOROLA ANALOG IC DEVICE DATA 100 125 0 –55 –25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) 7 MC34181,2,4 MC33181,2,4 Figure 21. Normalized Slew Rate versus Temperature Figure 22. Common Mode Rejection versus Frequency CMR, COMMON MODE REJECTION (dB) 1.0 0.9 0.8 0.7 0.6 0.5 –55 VCC = +15 V VEE = –15 V AV = +1.0 RL = 10 kΩ CL = 100 pF Vin = –10 V to +10 V –25 0 25 50 75 100 PSR, POWER SUPPLY REJECTION (dB) en , INPUT NOISE VOLTAGE ( nV/ √ Hz ) PSR, POWER SUPPLY REJECTION (dB) VCC = +15 V VEE = –15 V VCM = 0 V TA = 25°C 20 0 10 100 1.0 k 10 k X ADM 60 40 20 1.0 k 10 k 100 k 1.0 M 110 Positive Supply 100 ∆VCC, ∆VEE = 3.0 V f ≤ 10 Hz 90 Negative Supply 80 –55 100 k –25 0 25 50 75 100 TA < AMBIENT TEMPERATURE (°C) Figure 25. Power Supply Rejection versus Frequency Figure 26. Normalized Supply Current versus Supply Voltage +PSR = 20Log ∆VO/ADM ∆VCC –PSR = 20Log ∆VO/ADM ∆VEE +PSR (∆VCC = ±1.5 V) 100 –PSR (∆VEE = ±1.5 V) 60 VCC = +15 V VEE = –15 V TA = 25°C – ADM + ∆VCC ∆VO ∆VEE 1.0 k 10 k f, FREQUENCY (Hz) 8 ∆VO f, FREQUENCY (Hz) 140 0 100 ∆VCM Figure 24. Power Supply Rejection versus Temperature 40 20 CMR = 20 Log 80 ∆VO Figure 23. Input Noise Voltage versus Frequency 60 40 100 – ADM + ∆VCM f, FREQUENCY (Hz) 80 80 VCC = +15 V VEE = –15 V ∆VCM = 3.0 V TA = 25°C 120 TA, AMBIENT TEMPERATURE (°C) 100 120 140 0 100 125 100 k 1.0 M |IEE |, I CC , SUPPLY CURRENT (NORMALIZED) SR, SLEW RATE (NORMALIZED) 1.1 125 1.2 1.1 TA = 25°C 1.0 125°C –55°C 0.9 VCC = +15 V VEE = –15 V TA = 25°C RL = ∞ VO = 0V 0.8 0.7 0 5.0 10 15 20 VCC, |VEE|, SUPPLY VOLTAGE (V) MOTOROLA ANALOG IC DEVICE DATA MC34181,2,4 MC33181,2,4 Figure 27. Channel Separation versus Frequency Figure 28. Transient Response 120 100 80 60 40 20 VCC = +15 V VEE = –15 V TA = +25°C 0 10 k VCC = +15 V VEE = –15 V RL = 10 kΩ AV = +1.0 TA = 25°C V O , OUTPUT VOLTAGE (5.0 V/DIV) CHANNEL SEPARATION (dB) 140 100 k 1.0 M 10 M t, TIME (2.0 µs/DIV) f, FREQUENCY (Hz) Figure 29. Small Signal Transient Reponse V O , OUTPUT VOLTAGE (20 mV/DIV) VCC = +15 V VEE = –15 V RL = 10 kΩ AV = +1.0 TA = 25°C t, TIME (0.5 µs/DIV) MOTOROLA ANALOG IC DEVICE DATA 9 MC34181,2,4 MC33181,2,4 OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 626–05 ISSUE K 8 5 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. –B– 1 4 F DIM A B C D F G H J K L M N –A– NOTE 2 L C J –T– N SEATING PLANE D M K MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC ––– 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC ––– 10_ 0.030 0.040 G H 0.13 (0.005) M T A M B M D SUFFIX PLASTIC PACKAGE CASE 751–05 (SO–8) ISSUE R D A NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. C 8 5 0.25 H E M B M 1 4 h B e X 45 _ q A C SEATING PLANE L 0.10 A1 B 0.25 10 M C B S A S DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.18 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ MOTOROLA ANALOG IC DEVICE DATA MC34181,2,4 MC33181,2,4 OUTLINE DIMENSIONS – continued P SUFFIX PLASTIC PACKAGE CASE 646–06 ISSUE L 14 NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. 8 B 1 7 A F DIM A B C D F G H J K L M N L C J N H G D SEATING PLANE K M INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0_ 10_ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0_ 10_ 0.39 1.01 D SUFFIX PLASTIC PACKAGE CASE 751A–03 (SO–14) ISSUE F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. –A– 14 8 –B– 1 P 7 PL 0.25 (0.010) 7 G M F –T– 0.25 (0.010) M K D 14 PL M T B S MOTOROLA ANALOG IC DEVICE DATA M R X 45 _ C SEATING PLANE B A S J DIM A B C D F G J K M P R MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 11 MC34181,2,4 MC33181,2,4 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 MFAX: [email protected] – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 12 ◊ *MC34181/D* MC34181/D MOTOROLA ANALOG IC DEVICE DATA