Freescale MC9S12DJ128VPV Device user guide Datasheet

MC9S12DT128
Device User Guide
Covers MC9S12DT128E, MC9S12DG128E,
MC9S12DJ128E, MC9S12DG128, MC9S12DJ128,
MC9S12DB128, MC9S12A128, SC515846, SC515847,
SC515848, SC515849, SC101161DT, SC101161DG,
SC101161DJ, SC102202, SC102203, SC102204,
SC102205
HCS12
Microcontrollers
9S12DT128DGV2/D
V02.17
03 Jun 2010
freescale.com
Device User Guide — 9S12DT128DGV2/D V02.17
Revision History
Version Revision Effective
Number
Date
Date
Author
Description of Changes
V01.00
18 Jun
2001
18 June
2001
Initial version (parent doc v2.03 dug for dp256).
V01.01
23 July
2001
23 July
2001
Updated version after review
V01.02
23 Sep
2001
23 Sep
2001
Changed Partname, added pierce mode, updated electrical
characteristics
some minor corrections
V01.03
12 Oct
2001
12 Oct
2001
Replaced Star12 by HCS12
V01.04
27 Feb
2002
27 Feb
2002
Updated electrical spec after MC-Qualification (IOL/IOH), Data for
Pierce, NVM reliability
New document numbering. Corrected Typos
V01.05
4 Mar
2002
4 Mar
2002
Increased VDD to 2.35V, removed min. oscillator startup
Removed Document order number except from Cover Sheet
22 July
2002
Added:
Pull-up columns to signal table,
example for PLL Filter calculation,
Thermal values for junction to board and package,
BGND pin pull-up
Part Order Information
Global Register Table
Chip Configuration Summary
Modified:
Reduced Wait and Run IDD values
Mode of Operation chapter
changed leakage current for ADC inputs down to +-1uA
Corrected:
Interrupt vector table enable register inconsistencies
PCB layout for 80QFP VREGEN position
V01.06
8 July
2002
V02.00
11 Jan
2002
11 Jan
2002
NEW MASKSET
Changed part number from DTB128 to DT128
Functional Changes:
ROMCTL changes in Emulation Mode
80 Pin Byteflight package Option available
Flash with 2 Bit Backdoor Key Enable
Additional CAN0 routing to PJ7,6
Improved BDM with sync and acknowledge capabilities
New Part ID number
Improvements:
Significantly improved NVM reliability data
Corrections:
Interrupt vector Table
V02.01
01 Feb
2002
01 Feb
2002
Updated Block User Guide versions in preface
Updated Appendix A Electrical Characteristics
2
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Version Revision Effective
Number
Date
Date
V02.02
V02.03
08 Mar
2002
14 Mar
2002
Author
Description of Changes
08 Mar
2002
Changed XCLKS to PE7 in Table 2-2
Updated device part numbers in Figure 2-1
Updated BDM clock in Figure 3-1
Removed SIM description in overview & nUPOSC spec in Table A-15
Updated electrical spec of VDD & VDDPLL (Table A-4), IOL/IOH
(Table A-6), CINS (Table A-9), CIN (Table A-6 & A-15),
Updated interrupt pulse timing variables in Table A-6
Updated device part numbers in Figure 2-1
Added document numbers on cover page and Table 0-2
14 Mar
2002
Cleaned up Fig. 1-1, 2-1
Updated Section 1.5 descriptions
Corrected PE assignment in Table 2-2, Fig. 2-5,6,7.
Corrected NVM sizes in Sections 16, 17
Added IREF spec for 1ATD in Table A-8
Added Blank Check in A.3.1.5 and Table A-11
Updated CRG spec in Table A-15
V02.04
16 Aug
2002
16 Aug
2002
Added:
Pull-up columns to signal table,
Example for PLL Filter calculation,
Thermal values for junction to board and package,
BGND pin pull-up
Part Order Information
Global Register Table
Chip Configuration Summary
Device specific info on CRG
Modified:
Reduced Wait and Run IDD values
Mode of Operation chapter
Changed leakage current for ADC inputs down to +-1uA
Minor modification of PLL frequency/ voltage gain values
Corrected:
Pin names/functions on 80 pin packages
Interrupt vector table enable register inconsistencies
PCB layout for 80QFP VREGEN position
V02.05
12 Sep
2002
12 Sep
2002
Corrected:
Register address mismatches in 1.5.1
06 Nov
2002
Removed document order no. from Revision History pages
Renamed "Preface" section to "Derivative Differences and
Document references". Added details for derivatives missing
CAN0/1/4, BDLC, IIC and/or Byteflight
Added 2L40K mask set in section 1.6
Added OSC User Guide in Preface, “Document References”
Added oscillator clock connection to BDM in S12_CORE in fig 3-1
Corrected several register and bit names in “Local Enable” column
of Table 5.1 Interrupt Vector Locations
Section HCS12 Core Block Description: mentioned alternate clock
of BDM to be equivalent to oscillator clock
Added new section: “Oscillator (OSC) Block Description”
Corrected in footnote of Table "PLL Characteristics": fOSC = 4MHz
V02.06
06 Nov
2002
Freescale Semiconductor
3
Device User Guide — 9S12DT128DGV2/D V02.17
Version Revision Effective
Number
Date
Date
Author
Description of Changes
V02.07
29 Jan
2003
29 Jan
2003
Added 3L40K mask set in section 1.6
Corrected register entries in section 1.5.1 “Detailed Memory Map”
Updated description for ROMCTL in section 2.3.31
Updated section 4.3.3 “Unsecuring the Microcontroller”
Corrected and updated device-specific information for OSC
(section 8.1) & Byteflight (section 15.1)
Updated footnote in Table A-4 “Operating Conditions”
Changed reference of VDDM to VDDR in section A.1.8
Removed footnote on input leakage current in Table A-6 “5V I/O
Characteristics”
V02.08
26 Feb
2003
26 Feb
2003
Added part numbers MC9S12DT128E, MC9S12DG128E, and
MC9S12DJ128E in “Preface” and related part number references
Removed mask sets 0L40K and 2L40K from Table 1-3
15 Oct
2003
Replaced references to HCS12 Core Guide by the individual
HCS12 Block guides in Table 0-2, section 1.5.1, and section 6;
updated Fig.3-1 “Clock Connections” to show the individual HCS12
blocks
Corrected PIM module name and document order number in Table
0-2 “Document References”
Corrected ECT pulse accumulators description in section 1.2
“Features”
Corrected KWP5 pin name in Fig 2-1 112LQFP pin assignments
Corrected pull resistor CTRL/reset states for PE7 and PE4-PE0 in
Table 2.1 “Signal Properties”
Mentioned “S12LRAE” bootloader in Flash section 17
Corrected footnote on clamp of TEST pin under Table A-1
“Absolute Maximum Ratings”
Corrected minimum bus frequency to 0.25MHz in Table A-4
“Operating Conditions”
Replaced “burst programming” by “row programming” in A.3 “NVM,
Flash and EEPROM”
Corrected blank check time for EEPROM in Table A-11 “NVM
Timing Characteristics”
Corrected operating frequency in Table A-18 “SPI Master/Slave
Mode Timing Characteristics
6 Feb
2004
Added A128 information in “Derivative Differences”, 2.1 “Device
Pinout”, 2.2 “Signal Properties Summary”, Fig 23-2 & Fig 23-4
Added lead-free package option (PVE) in Table 0-2 “Derivative
Differences for MC9S12DB128” and Fig 0-1 “Order Partnumber
Example”
Added an “AEC qualified” row in the “Derivative Differences” tables
0-1 & 0-2.
3 May
2004
Added part numbers SC515846, SC515847, SC515848, and
SC515849 in “Derivative Differences” tables 0-1 & 0-2, section 2,
and section 23.
Corrected and added maskset 4L40K in tables 0-1 & 0-2 and
section 1.6.
Corrected BDLC module availability in DB128 80QFP part in
“Derivative Differences” table 0-2.
V02.09
V02.10
V02.11
4
15 Oct
2003
6 Feb
2004
3 May
2004
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Version Revision Effective
Number
Date
Date
Author
Description of Changes
V02.12
06 Dec
2004
06 Dec
2004
Added maskset 0L94R
Added items VIH,EXTAL, VIL,EXTAL, & VHYS,EXTAL in table A-15
“Oscillator characteristics”
Removed item “Oscillator” from table A-4 “Operating Conditions” as
it is already covered in table “Oscillator Characteristics”
V02.13
04 Mar
2005
04 Mar
2005
Amended feature list of A128 in Table 0-1 “Derivative Differences”
V02.14
28 Apr
2005
28 Apr
2005
Updated cover page
Added part numbers SC101161DT, SC101161DG, SC101161DJ,
SC102202, SC102203, SC102204, & SC102205
Added masksets 5L40K &1L59W
Changed TJavg to 85°C in table A-12 “NVM Reliability” & added
footnote concerning data retention
V02.15
05 Oct
2005
05 Oct
2005
Updated “NVM Reliability” table A-12 format with added data.
Added figure A-2 “Typical Endurance vs Temperature”
V02.16
12 Apr
2008
12 Apr
2008
Added maskset 2L94R
V02.17
3 Jun
2010
3 Jun
2010
Added maskset 1L59W for MC9S12A128
Freescale Semiconductor
5
Device User Guide — 9S12DT128DGV2/D V02.17
6
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Table of Contents
Section 1 Introduction
1.1
1.2
1.3
1.4
1.5
1.5.1
1.6
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Section 2 Signal Description
2.1
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2
Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.3
Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.1
EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.2
RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.3
TEST — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.4
XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.5
BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . 64
2.3.6
PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15] . . . . . . . . . . . . . . . . . . . . . 65
2.3.7
PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]. . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.8
PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7] . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.9
PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]. . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . 65
2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . 65
2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.3.13 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.14 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.15 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.16 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.17 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.18 PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.19 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3.20 PH7 / KWH7 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Freescale Semiconductor
7
Device User Guide — 9S12DT128DGV2/D V02.17
2.3.21
2.3.22
2.3.23
2.3.24
2.3.25
2.3.26
2.3.27
2.3.28
2.3.29
2.3.30
2.3.31
2.3.32
2.3.33
2.3.34
2.3.35
2.3.36
2.3.37
2.3.38
2.3.39
2.3.40
2.3.41
2.3.42
2.3.43
2.3.44
2.3.45
2.3.46
2.3.47
2.3.48
2.3.49
2.3.50
2.3.51
2.3.52
2.3.53
2.3.54
2.3.55
2.3.56
8
PH6 / KWH6 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
PH5 / KWH5 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
PH4 / KWH4 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
PH3 / KWH3 / SS1 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
PH2 / KWH2 / SCK1 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
PH0 / KWH0 / MISO1 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
PJ7 / KWJ7 / TXCAN4 / SCL / TXCAN0 — PORT J I/O Pin 7. . . . . . . . . . . . . . . 68
PJ6 / KWJ6 / RXCAN4 / SDA / RXCAN0 — PORT J I/O Pin 6 . . . . . . . . . . . . . . 69
PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
PK7 / ECS / ROMCTL — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . 69
PM7 / BF_PSLM / TXCAN4 — Port M I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . 69
PM6 / BF_PERR / RXCAN4 — Port M I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . 69
PM5 / BF_PROK / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . 69
PM4 / BF_PSYN / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4. . . . . . . . . . 70
PM3 / TX_BF / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . 70
PM2 / RX_BF / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2. . . . . . . . . . . . 70
PM1 / TXCAN0 / TXB — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
PM0 / RXCAN0 / RXB — Port M I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
PP7 / KWP7 / PWM7 — Port P I/O Pin 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
PP6 / KWP6 / PWM6 — Port P I/O Pin 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
PP5 / KWP5 / PWM5 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
PP4 / KWP4 / PWM4 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 71
PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . 71
PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . 71
PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . 71
PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
2.3.57 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.1
VDDX,VSSX — Power & Ground Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . 73
2.4.2
VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4.3
VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins . . . . . . . . . . . . 73
2.4.4
VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . 74
2.4.5
VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.6
VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.7
VREGEN — On Chip Voltage Regulator Enable . . . . . . . . . . . . . . . . . . . . . . . . . 74
Section 3 System Clock Description
3.1
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Section 4 Modes of Operation
4.1
4.2
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Section 5 Resets and Interrupts
5.1
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2
Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.1
Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3
Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Section 6 HCS12 Core Block Description
6.1
CPU Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Freescale Semiconductor
9
Device User Guide — 9S12DT128DGV2/D V02.17
6.1.1
6.2
6.2.1
6.3
6.3.1
6.4
6.5
6.5.1
6.6
Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
HCS12 Module Mapping Control (MMC) Block Description . . . . . . . . . . . . . . . . . . . 85
Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
HCS12 Multiplexed External Bus Interface (MEBI) Block Description . . . . . . . . . . . 85
Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
HCS12 Interrupt (INT) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
HCS12 Background Debug Module (BDM) Block Description . . . . . . . . . . . . . . . . . 86
Device-specific information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
HCS12 Breakpoint (BKP) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Section 7 Clock and Reset Generator (CRG) Block Description
7.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Section 8 Oscillator (OSC) Block Description
8.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Section 9 Enhanced Capture Timer (ECT) Block Description
Section 10 Analog to Digital Converter (ATD) Block Description
Section 11 Inter-IC Bus (IIC) Block Description
Section 12 Serial Communications Interface (SCI) Block Description
Section 13 Serial Peripheral Interface (SPI) Block Description
Section 14 J1850 (BDLC) Block Description
Section 15 Byteflight (BF) Block Description
15.1
Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Section 16 Pulse Width Modulator (PWM) Block Description
Section 17 Flash EEPROM 128K Block Description
Section 18 EEPROM 2K Block Description
Section 19 RAM Block Description
10
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Section 20 MSCAN Block Description
Section 21 Port Integration Module (PIM) Block Description
Section 22 Voltage Regulator (VREG) Block Description
Section 23 Printed Circuit Board Layout Proposal
Appendix A Electrical Characteristics
A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.1.1
Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.1.2
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.1.3
Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.1.4
Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.1.5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.1.6
ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.1.7
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.1.8
Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 101
A.1.9
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2.1
ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2.2
Factors influencing accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2.3
ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.3 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.3.1
NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.3.2
NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.4 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.5 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.5.1
Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
A.5.2
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.5.3
Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.6 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.7 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.7.1
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.7.2
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Freescale Semiconductor
11
Device User Guide — 9S12DT128DGV2/D V02.17
A.8 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.8.1
General Multiplexed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Appendix B Package Information
B.1
B.2
B.3
12
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
List of Figures
Figure 0-1 Order Partnumber Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 1-1 MC9S12DT128 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 1-2 MC9S12DT128 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 2-1 Pin assignments 112 LQFP for MC9S12DT128E, MC9S12DT128,
MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12DB128
MC9S12A128, SC515846, SC515847, SC515848, SC515849, SC101161DT, SC101161DG,
SC101161DJ, SC102202, SC102203, SC102204, and SC102205 . . . . . . . . . . . . . . . . . . 58
Figure 2-2 Pin Assignments in 80 QFP for MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204 Bondout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 2-3 Pin Assignments in 80 QFP for MC9S12DB128, SC515846, and SC102202 Bondout
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 2-4 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 2-5 Colpitts Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 2-6 Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 2-7 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 3-1 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 23-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator . . . . . . . . . . . . 91
Figure 23-2 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204) Colpitts Oscillator . . . . . . . . . . . . . . . . . . . . . . 92
Figure 23-3 Recommended PCB Layout for 112LQFP Pierce Oscillator . . . . . . . . . . . . . 93
Figure 23-4 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204) Pierce Oscillator . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 23-5 Recommended PCB Layout for 80QFP (MC9S12DB128, SC515846, and
SC102202) Pierce Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure A-1 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Figure A-2 Typical Endurance vs Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure A-3 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure A-4 Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure A-5 Maximum bus clock jitter approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure A-6 SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure A-7 SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure A-8 SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure A-9 SPI Slave Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Freescale Semiconductor
13
Device User Guide — 9S12DT128DGV2/D V02.17
Figure A-10 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Figure 23-6 112-pin LQFP mechanical dimensions (case no. 987) . . . . . . . . . . . . . . . . 138
14
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
List of Tables
Table 0-1 Derivative Differences1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 0-2 Derivative Differences for MC9S12DB1281. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 0-3 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 1-1 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
$0000 - $000FMEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) ................... 32
$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control) ................................. 32
$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt) .............................................................. 33
$0017 - $0017MMC map 2 of 4 (HCS12 Module Mapping Control) .................................. 33
$0018 - $0019Reserved ..................................................................................................... 33
$001A - $001B Device ID Register ((Table 1-3)) ............................................................... 33
$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, (Table 1-4)) ............ 33
$001E - $001EMEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) .................. 33
$001F - $001FINT map 2 of 2 (HCS12 Interrupt) ............................................................... 34
$0020 - $0027 Reserved .................................................................................................... 34
$0028 - $002F BKP (HCS12 Breakpoint) ........................................................................... 34
$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control) ................................. 34
$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) .................. 34
$0034 - $003F CRG (Clock and Reset Generator) ............................................................ 35
$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels) ................................... 35
$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel) ................................ 38
$00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel) ........................................ 39
$00C8 - $00CF SCI0 (Asynchronous Serial Interface) ...................................................... 41
$00D0 - $00D7 SCI1 (Asynchronous Serial Interface) ....................................................... 41
$00D8 - $00DF SPI0 (Serial Peripheral Interface) ............................................................. 42
$00E0 - $00E7 IIC (Inter IC Bus) ....................................................................................... 42
$00E8 - $00EF BDLC (Byte Level Data Link Controller J1850) ......................................... 43
$00F0 - $00F7 SPI1 (Serial Peripheral Interface) .............................................................. 43
$00F8 - $00FF Reserved ................................................................................................... 43
$0100 - $010F Flash Control Register (fts128k2) .............................................................. 44
$0110 - $011B EEPROM Control Register (eets2k) .......................................................... 44
$011C - $011F Reserved for RAM Control Register .......................................................... 45
$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel) ................................ 45
$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN) ................................................ 46
Freescale Semiconductor
15
Device User Guide — 9S12DT128DGV2/D V02.17
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . 47
$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN) ................................................ 48
$01C0 - $01FF Reserved ................................................................................................... 49
$0200 - $023F Reserved .................................................................................................... 49
$0240 - $027F PIM (Port Integration Module) .................................................................... 50
$0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN) ................................................ 52
$02C0 - $02FF Reserved ................................................................................................... 53
$0300 - $035F Byteflight .................................................................................................... 53
$0360 - $03FF Reserved ................................................................................................... 55
Table 1-3 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 1-4 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 2-1 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 2-2 MC9S12DT128 Power and Ground Connection Summary . . . . . . . . . . . . . . . 72
Table 4-1 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 4-2 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 4-3 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 5-1 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 23-1 Suggested External Component Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table A-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table A-2 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Table A-3 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 100
Table A-4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table A-5 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table A-6 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table A-7 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table A-8 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table A-9 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table A-10 ATD Conversion Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table A-11 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table A-12 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table A-13 Voltage Regulator Recommended Load Capacitances . . . . . . . . . . . . . . . . . 117
Table A-14 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table A-15 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table A-16 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table A-17 MSCAN Wake-up Pulse Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table A-18 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
16
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Table A-19 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table A-20 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Freescale Semiconductor
17
Device User Guide — 9S12DT128DGV2/D V02.17
18
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Derivative Differences and Document References
Derivative Differences
(Table 0-1) and (Table 0-2) show the availability of peripheral modules on the various derivatives. For
details about the compatibility within the MC9S12D-Family refer also to engineering bulletin EB386.
Table 0-1 Derivative Differences1
Modules
# of CANs
CAN4
CAN1
CAN0
J1850/BDLC
IIC
Byteflight
MC9S12DT128E3 MC9S12DG128E3
MC9S12DT128
MC9S12DG128
SC5158494
SC5158474
5
SC101161DT
SC101161DG5
6
SC102205
SC1022036
3
2
✓
✓
✓
✕
✓
✓
✕
✕
✓
✓
✕
✕
Package
112 LQFP
Package Code
PV
MC9S12DJ128E3
MC9S12DJ128
SC5158484
SC101161DJ5
SC1022046
2
✓
✕
✓
✓
✓
✕
0
✕
✕
✕
✕
✓
✕
112 LQFP/80 QFP2 112 LQFP/80 QFP2 112 LQFP/80 QFP2
PV/FU
PV/FU
PV/FU
1L40K3, 3L40K,
0L94R, 4L40K4,
Mask set
1L59W5, 5L40K6,
2L94R
Temp Options
M, V, C
AEC qualified
Yes
1L40K3, 3L40K,
0L94R, 4L40K4,
1L59W5, 5L40K6,
2L94R
M, V, C
Yes
1L40K3, 3L40K,
0L94R, 4L40K4,
1L59W5, 5L40K6,
2L94R
M, V, C
Yes
An errata exists
contact Sales Office
An errata exists
contact Sales Office
An errata exists
contact Sales Office
Notes
MC9S12A128
3L40K, 0L94R,
2L94R, 1L59W
C
No
An errata exists
contact Sales Office
Table 0-2 Derivative Differences for MC9S12DB1281
# of CANs
CAN4
CAN1
CAN0
J1850/BDLC
IIC
Byteflight
MC9S12DB128
SC5158464
SC1022026
2
✓
✕
✓
✕
✕
✓
MC9S12DB128
SC5158464
SC1022026
0
✕
✕
✕
✕
✕
✓
Package
112 LQFP
80 QFP2
Modules
Freescale Semiconductor
19
Device User Guide — 9S12DT128DGV2/D V02.17
Modules
Package Code
Mask set
Temp Options
AEC qualified
Notes
MC9S12DB128
SC5158464
SC1022026
PV/PVE
3L40K, 0L94R,
4L40K4, 5L40K6,
2L94R
M, V, C/M, V
Yes
3L40K, 0L94R,
4L40K4, 5L40K6,
2L94R
M, V, C
Yes
An errata exists
contact Sales Office
An errata exists
contact Sales Office
MC9S12DB128
SC5158464
SC1022026
FU
NOTE:
1. ✓: Available for this device, ✕: Not available for this device.
2. 80 Pin bond-out for MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847,
SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204 is the same; MC9S12DB128, SC515846, and
SC102202 have a different bond-out.
3. Part numbers MC9S12DT128E, MC9S12DG128E, and MC9S12DJ128E are associated with the mask set 1L40K.
4. Part numbers SC515846, SC515847, SC515848, and SC515849 are associated with the mask set 4L40K.
5. Part numbers SC101161DT, SC101161DG, SC101161DJ are associated with the mask set 1L59W.
6. Part numbers SC102202, SC102203, SC102204, and SC102205 are associated with the mask set 5L40K which is not for
volume production.
The following figure provides an ordering number example for the MC9S12D128 devices.
MC9S12 DJ128 C FU
Package Option
Temperature Option
Device Title
Controller Family
Temperature Options
C = -40˚C to 85˚C
V = -40˚C to 105˚C
M = -40˚C to 125˚C
Package Options
FU = 80QFP
PV = 112LQFP
PVE = lead-free 112LQFP
Figure 0-1 Order Partnumber Example
The following items should be considered when using a derivative.
•
20
Registers
–
Do not write or read CAN0 registers (after reset: address range $0140 - $017F), if using a
derivative without CAN0 (see (Table 0-1) and (Table 0-2)).
–
Do not write or read CAN1 registers (after reset: address range $0180 - $01BF), if using a
derivative without CAN1 (see (Table 0-1) and (Table 0-2)).
–
Do not write or read CAN4 registers (after reset: address range $0280 - $02BF), if using a
derivative without CAN4 (see (Table 0-1) and (Table 0-2)).
–
Do not write or read BDLC registers (after reset: address range $00E8 - $00EF), if using a
derivative without BDLC (see (Table 0-1) and (Table 0-2)).
–
Do not write or read IIC registers (after reset: address range $00E0 - $00E7), if using a
derivative without IIC (see (Table 0-1) and (Table 0-2)).
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
–
•
•
•
Do not write or read Byteflight registers (after reset: address range $0300 - $035F), if using a
derivative without Byteflight registers (see (Table 0-1) and (Table 0-2)).
Interrupts
–
Fill the four CAN0 interrupt vectors ($FFB0 - $FFB7) according to your coding policies for
unused interrupts, if using a derivative without CAN0 (see (Table 0-1) and (Table 0-2)).
–
Fill the four CAN1 interrupt vectors ($FFA8 - $FFAF) according to your coding policies for
unused interrupts, if using a derivative without CAN1 (see (Table 0-1) and (Table 0-2)).
–
Fill the four CAN4 interrupt vectors ($FF90 - $FF97) according to your coding policies for
unused interrupts, if using a derivative without CAN4 (see (Table 0-1) and (Table 0-2)).
–
Fill the BDLC interrupt vector ($FFC2, $FFC3) according to your coding policies for unused
interrupts, if using a derivative without BDLC (see (Table 0-1) and (Table 0-2)).
–
Fill the IIC interrupt vector ($FFC0, $FFC1) according to your coding policies for unused
interrupts, if using a derivative without IIC (see (Table 0-1) and (Table 0-2)).
–
Fill the four Byteflight interrupt vectors ($FFA0 - $FFA7) according to your coding policies for
unused interrupts, if using a derivative without Byteflight (see (Table 0-1) and (Table 0-2)).
Ports
–
The CAN0 pin functionality (TXCAN0, RXCAN0) is not available on port PJ7, PJ6, PM5,
PM4, PM3, PM2, PM1 and PM0, if using a derivative without CAN0 (see (Table 0-1) and
(Table 0-2)).
–
The CAN1 pin functionality (TXCAN1, RXCAN1) is not available on port PM3 and PM2, if
using a derivative without CAN1 (see (Table 0-1) and (Table 0-2)).
–
The CAN4 pin functionality (TXCAN4, RXCAN4) is not available on port PJ7, PJ6, PM7,
PM6, PM5 and PM4, if using a derivative without CAN4 (see (Table 0-1) and (Table 0-2)).
–
The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a
derivative without BDLC (see (Table 0-1) and (Table 0-2)).
–
The IIC pin functionality (SCL, SCA) is not available on port PJ7 and PJ6, if using a derivative
without IIC (see (Table 0-1) and (Table 0-2)).
–
The Byteflight pin functionality (BF_PSLM, BF_PERR, BF_PROK, BF_PSYN, TX_BF,
RX_BF) is not available on port PM7, PM6, PM5, PM4, PM3 and PM2, if using a derivative
without Byteflight (see (Table 0-1) and (Table 0-2)).
–
Do not write MODRR1 and MODRR0 Bit of Module Routing Register (PIM_9DTB128 Block
User Guide), if using a derivative without CAN0 (see (Table 0-1) and (Table 0-2)).
–
Do not write MODRR3 and MODRR2 Bit of Module Routing Register (PIM_9DTB128 Block
User Guide), if using a derivative without CAN4 (see (Table 0-1) and (Table 0-2)).
Pins not available in 80 pin QFP package for MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204
Freescale Semiconductor
21
Device User Guide — 9S12DT128DGV2/D V02.17
•
22
–
Port H
In order to avoid floating nodes the ports should be either configured as outputs by setting the
data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing
a $FF to the pull enable register (PERH at Base+$0264).
–
Port J[1:0]
Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must
be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at
Base+$026C.
–
Port K
Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at
Base+$000C. Therefore care must be taken not to clear this bit.
–
Port M[7:6]
PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
–
Port P6
PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.
–
Port S[7:4]
PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
–
PAD[15:8] (ATD1 channels)
Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1
registers!
Pins not available in 80 pin QFP package for MC9S12DB128, SC515846, and SC102202
–
Port H
In order to avoid floating nodes the ports should be either configured as outputs by setting the
data direction register (DDRH at Base+$0262) to $FF, or enabling the pull resistors by writing
a $FF to the pull enable register (PERH at Base+$0264).
–
Port J[7:6, 1:0]
Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must
be taken not to disable the pull enables on PJ[7:6, 1:0] by clearing the bits PERJ7, PERJ6,
PERJ1 and PERJ0 at Base+$026C.
–
Port K
Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at
Base+$000C. Therefore care must be taken not to clear this bit.
–
Port M[1:0]
PM1:0 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
–
Port P6
PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
–
Port S[3:2]
PS3:2 must be configured as outputs or their pull resistors must be enabled to avoid floating
inputs.
–
PAD[15:8] (ATD1 channels)
Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1
registers!
Document References
The Device User Guide provides information about the MC9S12DT128 device made up of standard
HCS12 blocks and the HCS12 processor core.
This document is part of the customer documentation. A complete set of device manuals also includes all
the individual Block User Guides of the implemented modules. In a effort to reduce redundancy all module
specific information is located only in the respective Block User Guide. If applicable, special
implementation details of the module are given in the block description sections of this document.
See Table 0-3 for names and versions of the referenced documents throughout the Device User Guide.
Table 0-3 Document References
User Guide
Version
Document Order Number
HCS12 CPU Reference Manual
V02
S12CPUV2/D
HCS12 Module Mapping Control (MMC) Block Guide
V04
S12MMCV4/D
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide
V03
S12MEBIV3/D
HCS12 Interrupt (INT) Block Guide
V01
S12INTV1/D
HCS12 Background Debug Module (BDM) Block Guide
V04
S12BDMV4/D
HCS12 Breakpoint (BKP) Block Guide
V01
S12BKPV1/D
Clock and Reset Generator (CRG) Block User Guide
V04
S12CRGV4/D
Oscillator (OSC) Block User Guide
V02
S12OSCV2/D
Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide
V01
S12ECT16B8CV1/D
Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide
V02
S12ATD10B8CV2/D
Inter IC Bus (IIC) Block User Guide
V02
S12IICV2/D
Asynchronous Serial Interface (SCI) Block User Guide
V02
S12SCIV2/D
Serial Peripheral Interface (SPI) Block User Guide
V02
S12SPIV2/D
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide
V01
S12PWM8B8CV1/D
128K Byte Flash (FTS128K) Block User Guide
V02
S12FTS128KV2/D
2K Byte EEPROM (EETS2K) Block User Guide
V01
S12EETS2KV1/D
Byte Level Data Link Controller -J1850 (BDLC) Block User Guide
V01
S12BDLCV1/D
Motorola Scalable CAN (MSCAN) Block User Guide
V02
S12MSCANV2/D
Voltage Regulator (VREG) Block User Guide
V01
S12VREGV1/D
Port Integration Module (PIM_9DTB128) Block User Guide
V02
S12DTB128PIMV2/D
Byteflight (BF) Block User Guide
V01
S12BFV1/D
Freescale Semiconductor
23
Device User Guide — 9S12DT128DGV2/D V02.17
24
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Section 1 Introduction
1.1 Overview
The MC9S12DT128 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip
peripherals including a 16-bit central processing unit (HCS12 CPU), 128K bytes of Flash EEPROM, 8K
bytes of RAM, 2K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), two
serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit
analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link
Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital
I/O lines with interrupt and wakeup capability, three CAN 2.0 A, B software compatible modules
(MSCAN12), a Byteflight module and an Inter-IC Bus. The MC9S12DT128 has full 16-bit data paths
throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory
can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and
performance to be adjusted to suit operational requirements.
1.2 Features
•
HCS12 Core
–
16-bit HCS12 CPU
i. Upward compatible with M68HC11 instruction set
ii. Interrupt stacking and programmer’s model identical to M68HC11
iii. 20-bit ALU
iv. Instruction queue
v. Enhanced indexed addressing
•
•
–
MEBI (Multiplexed External Bus Interface)
–
MMC (Module Mapping Control)
–
INT (Interrupt control)
–
BKP (Breakpoints)
–
BDM (Background Debug Module)
CRG (Clock and Reset Generator)
–
Choice of low current Colpitts oscillator or standard Pierce Oscillator
–
PLL
–
COP watchdog
–
real time interrupt
–
clock monitor
8-bit and 4-bit ports with interrupt functionality
Freescale Semiconductor
25
Device User Guide — 9S12DT128DGV2/D V02.17
•
•
•
•
•
•
•
26
–
Digital filtering
–
Programmable rising or falling edge trigger
Memory
–
128K Flash EEPROM
–
2K byte EEPROM
–
8K byte RAM
Two 8-channel Analog-to-Digital Converters
–
10-bit resolution
–
External conversion trigger capability
Three 1M bit per second, CAN 2.0 A, B software compatible modules
–
Five receive and three transmit buffers
–
Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
–
Four separate interrupt channels for Rx, Tx, error and wake-up
–
Low-pass filter wake-up function
–
Loop-back for self test operation
Enhanced Capture Timer
–
16-bit main counter with 7-bit prescaler
–
8 programmable input capture or output compare channels
–
Four 8-bit or two 16-bit pulse accumulators
8 PWM channels
–
Programmable period and duty cycle
–
8-bit 8-channel or 16-bit 4-channel
–
Separate control for each pulse width and duty cycle
–
Center-aligned or left-aligned outputs
–
Programmable clock select logic with a wide range of frequencies
–
Fast emergency shutdown input
–
Usable as interrupt inputs
Serial interfaces
–
Two asynchronous Serial Communications Interfaces (SCI)
–
Two Synchronous Serial Peripheral Interface (SPI)
–
Byteflight
Byte Data Link Controller (BDLC)
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
•
SAE J1850 Class B Data Communications Network Interface
–
•
•
Compatible and ISO Compatible for Low-Speed (<125 Kbps) Serial Data Communications in
Automotive Applications
Inter-IC Bus (IIC)
–
Compatible with I2C Bus standard
–
Multi-master operation
–
Software programmable for one of 256 different serial clock frequencies
112-Pin LQFP and 80-Pin QFP package options
–
I/O lines with 5V input and drive capability
–
5V A/D converter inputs
–
Operation at 50MHz equivalent to 25MHz Bus Speed
–
Development support
–
Single-wire background debug™ mode
–
On-chip hardware breakpoints
1.3 Modes of Operation
User modes
•
•
Normal and Emulation Operating Modes
–
Normal Single-Chip Mode
–
Normal Expanded Wide Mode
–
Normal Expanded Narrow Mode
–
Emulation Expanded Wide Mode
–
Emulation Expanded Narrow Mode
Special Operating Modes
–
Special Single-Chip Mode with active Background Debug Mode
–
Special Test Mode (Freescale use only)
–
Special Peripheral Mode (Freescale use only)
Low power modes
•
Stop Mode
•
Pseudo Stop Mode
•
Wait Mode
Freescale Semiconductor
27
Device User Guide — 9S12DT128DGV2/D V02.17
1.4 Block Diagram
Figure 1-1 shows a block diagram of the MC9S12DT128 device.
28
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 1-1 MC9S12DT128 Block Diagram
Multiplexed
Narrow Bus
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
ADDR7
ADDR6
ADDR5
ADDR4
ADDR3
ADDR2
ADDR1
ADDR0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
PTB
DATA15 ADDR15 PA7
DATA14 ADDR14 PA6
DATA13 ADDR13 PA5
DATA12 ADDR12 PA4
DATA11 ADDR11 PA3
DATA10 ADDR10 PA2
DATA9
ADDR9 PA1
DATA8
ADDR8 PA0
DDRB
PTA
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
Multiplexed
Wide Bus
DDRA
Internal Logic 2.5V
VDD1,2
VSS1,2
PLL 2.5V
VDDPLL
VSSPLL
RxB
TxB
RxCAN
CAN0
TxCAN
RxCAN
CAN1
TxCAN
RX_BF
BYTEFLIGHT TX_BF
BF_PSYN
BF_PROK
BF_PERR
BF_PSLM
CAN0,4
IIC
I/O Driver 5V
A/D Converter 5V &
Voltage Regulator Reference
VDDA
VSSA
VDDR
VSSR
RxCAN
TxCAN
SDA
SCL
PWM0
PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
PWM7
VDDX
VSSX
Voltage Regulator 5V & I/O
Freescale Semiconductor
BDLC
(J1850)
MISO
MOSI
SCK
SPI1 SS
KWJ0
KWJ1
KWJ6
KWJ7
KWP0
KWP1
KWP2
KWP3
KWP4
KWP5
KWP6
KWP7
KWH0
KWH1
KWH2
KWH3
KWH4
KWH5
KWH6
KWH7
DDRK
DDRT
PS0
PS1
PS2
PS3
PS4
PS5
PS6
PS7
PM0
PM1
PM2
PM3
PM4
PM5
PM6
PM7
PJ0
PJ1
PJ6
PJ7
PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7
PH0
PH1
XADDR14
XADDR15
XADDR16
XADDR17
XADDR18
XADDR19
ECS ROMCTL
Signals shown in Bold are not available in any of the two the 80 Pin Package Options
Signals shown in Bold-Italics are not available in the 80 Pin Package Option for DG and DJ128
Signals shown in Italics are not available in the 80 Pin Package Option for B128
SPI0
AD1
MISO
MOSI
SCK
SS
Multiplexed Address/Data Bus
PTK
SCI1
PTT
RXD
TXD
RXD
TXD
SCI0
TEST
PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7
PTS
Enhanced Capture
Timer
DDRS
XIRQ
IRQ
System
R/W
Integration
LSTRB
Module
ECLK
(SIM)
MODA
MODB
NOACC/XCLKS
IOC0
IOC1
IOC2
IOC3
IOC4
IOC5
IOC6
IOC7
PK0
PK1
PK2
PK3
PK4
PK5
PK7
PTM
Periodic Interrupt
COP Watchdog
Clock Monitor
Breakpoints
DDRM
PTE
PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7
Clock and
Reset
Generation
Module
PIX0
PIX1
PIX2
PIX3
PIX4
PIX5
ROMCTL ECS
PAD08
PAD09
PAD10
PAD11
PAD12
PAD13
PAD14
PAD15
PTJ
PLL
PPAGE
DDRJ
XFC
VDDPLL
VSSPLL
EXTAL
XTAL
RESET
CPU
VRH
VRL
VDDA
VSSA
PTP
Single-wire Background
Debug Module
DDRE
BKGD
Voltage Regulator
DDRP
VDDR
VSSR
VREGEN
VDD1,2
VSS1,2
VRH
VRL
VDDA
VSSA
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
PAD00
PAD01
PAD02
PAD03
PAD04
PAD05
PAD06
PAD07
AD0
AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7
2K Byte EEPROM
ATD1
PH2
PTH
8K Byte RAM
VRH
VRL
VDDA
VSSA
DDRH
ATD0
Module to Port Routing
128K Byte Flash EEPROM
PH3
PH4
PH5
PH6
PH7
29
Device User Guide — 9S12DT128DGV2/D V02.17
1.5 Device Memory Map
(Table 1-1) and (Figure 1-2) show the device memory map of the MC9S12DT128 after reset. Note that
after reset the EEPROM ($0000 – $07FF) is hidden by the register space ($0000 - $03FF) and the RAM
($0000 - $1FFF). The bottom 1K Bytes of RAM ($0000 - $03FF) are hidden by the register space.
Table 1-1 Device Memory Map
Address
Module
$0000 – $0017
CORE (Ports A, B, E, Modes, Inits, Test)
$0018 – $0019
Reserved
2
$001A – $001B Device ID register (PARTID)
2
$001C – $001F CORE (MEMSIZ, IRQ, HPRIO)
4
$0020 – $0027
8
Reserved
$0028 – $002F CORE (Background Debug Module)
$0030 – $0033
CORE (PPAGE, Port K)
24
8
4
$0034 – $003F Clock and Reset Generator (PLL, RTI, COP)
12
$0040 – $007F Enhanced Capture Timer 16-bit 8 channels
64
$0080 – $009F Analog to Digital Converter 10-bit 8 channels (ATD0)
32
$00A0 – $00C7 Pulse Width Modulator 8-bit 8 channels (PWM)
40
$00C8 – $00CF Serial Communications Interface (SCI0)
8
$00D0 – $00D7 Serial Communications Interface (SCI1)
8
$00D8 – $00DF Serial Peripheral Interface (SPI0)
8
$00E0 – $00E7 Inter IC Bus
8
$00E8 – $00EF Byte Level Data Link Controller (BDLC)
8
$00F0 – $00F7 Serial Peripheral Interface (SPI1)
8
$00F8 – $00FF Reserved
8
$0100 – $010F Flash Control Register
16
$0110 – $011B EEPROM Control Register
12
$011C – $011F Reserved
4
$0120 – $013F Analog to Digital Converter 10-bit 8 channels (ATD1)
32
$0140 – $017F Motorola Scalable CAN (CAN0)
64
$0180 – $01BF Motorola Scalable CAN (CAN1)
64
$01C0 – $01FF Reserved
64
$0200 – $023F Reserved
64
$0240 – $027F Port Integration Module (PIM)
64
$0280 – $02BF Motorola Scalable CAN (CAN4)
64
$02C0 – $02FF Reserved
64
$0300 – $035F Byteflight (BF)
96
$0360 – $03FF Reserved
30
Size
(Bytes)
160
$0000 – $07FF EEPROM array
2048
$0000 – $1FFF RAM array
8192
Fixed Flash EEPROM array
$4000 – $7FFF
incl. 0.5K, 1K, 2K or 4K Protected Sector at start
16384
$8000 – $BFFF Flash EEPROM Page Window
16384
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Table 1-1 Device Memory Map
Address
Size
(Bytes)
Module
Fixed Flash EEPROM array
$C000 – $FFFF incl. 0.5K, 1K, 2K or 4K Protected Sector at end
and 256 bytes of Vector Space at $FF80 – $FFFF
16384
Figure 1-2 MC9S12DT128 Memory Map
$0000
$0400
$0800
$1000
$2000
$0000
1K Register Space
$03FF
Mappable to any 2K Boundary
$0800
2K Bytes EEPROM
$0FFF
Mappable to any 2K Boundary
$2000
8K Bytes RAM
$3FFF
Mappable to any 8K Boundary
$4000
0.5K, 1K, 2K or 4K Protected Sector
$4000
$7FFF
16K Fixed Flash EEPROM
$8000
$8000
16K Page Window
eight * 16K Flash EEPROM Pages
EXT
$BFFF
$C000
$C000
16K Fixed Flash EEPROM
$FFFF
2K, 4K, 8K or 16K Protected Boot Sector
$FF00
$FF00
$FFFF
VECTORS
VECTORS
VECTORS
NORMAL
SINGLE CHIP
EXPANDED
SPECIAL
SINGLE CHIP
$FFFF
BDM
(If Active)
The address does not show the map after reset, but a useful map. After reset the map is:
$0000 – $03FF: Register Space
$0000 – $1FFF: 8K RAM
$0000 – $07FF: 2K EEPROM (not visible)
Freescale Semiconductor
31
Device User Guide — 9S12DT128DGV2/D V02.17
1.5.1 Detailed Register Map
$0000 - $000F
Address
Name
$0000
PORTA
$0001
PORTB
$0002
DDRA
$0003
DDRB
$0004
Reserved
$0005
Reserved
$0006
Reserved
$0007
Reserved
$0008
PORTE
$0009
DDRE
$000A
PEAR
$000B
MODE
$000C
PUCR
$000D
RDRIV
$000E
EBICTL
$000F
Reserved
$0010 - $0014
Address
32
Name
$0010
INITRM
$0011
INITRG
$0012
INITEE
$0013
MISC
$0014
Reserved
MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)
Bit 7
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
NOACCE
Write:
Read:
MODC
Write:
Read:
PUPKE
Write:
Read:
RDPK
Write:
Read:
0
Write:
Read:
0
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5
4
3
2
Bit 1
Bit 0
6
5
4
3
Bit 2
0
0
PIPOE
NECLK
LSTRE
RDWE
0
0
EMK
EME
PUPBE
PUPAE
RDPB
RDPA
0
MODB
MODA
0
0
0
0
0
0
0
0
0
IVIS
0
0
0
0
0
0
0
0
0
0
0
0
0
PUPEE
RDPE
ESTR
0
MMC map 1 of 4 (HCS12 Module Mapping Control)
Bit 7
Read:
RAM15
Write:
Read:
0
Write:
Read:
EE15
Write:
Read:
0
Write:
Read:
0
Write:
Bit 6
Bit 5
Bit 4
Bit 3
RAM14
RAM13
RAM12
RAM11
REG14
REG13
REG12
REG11
EE14
EE13
EE12
EE11
0
0
0
0
0
0
Bit 2
0
Bit 1
0
0
0
0
0
Bit 0
RAMHAL
0
EEON
EXSTR1 EXSTR0 ROMHM ROMON
0
0
0
0
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$0015 - $0016
Address
INT map 1 of 2 (HCS12 Interrupt)
Name
$0015
ITCR
$0016
ITEST
Read:
Write:
Read:
Write:
$0017 - $0017
Address
$0017
Name
MTST1
Test Only
Read:
Write:
Read:
Write:
$001A - $001B
Address
PARTIDH
$001B
PARTIDL
INTE
INTC
INTA
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
WRINT
ADR3
ADR2
ADR1
ADR0
INT8
INT6
INT4
INT2
INT0
Bit 7
Bit 7
Bit 6
6
Bit 5
5
Bit 4
4
Bit 3
3
Bit 2
2
Bit 1
1
Bit 0
Bit 0
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Device ID Register ((Table 1-3))
Name
$001A
Bit 5
0
Reserved
Name
Reserved
Bit 6
0
MMC map 2 of 4 (HCS12 Module Mapping Control)
$0018 - $0019
Address
$0018 $0019
Bit 7
0
Read:
Write:
Read:
Write:
$001C - $001D
Bit 7
ID15
Bit 6
ID14
Bit 5
ID13
Bit 4
ID12
Bit 3
ID11
Bit 2
ID10
Bit 1
ID9
Bit 0
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
MMC map 3 of 4 (HCS12 Module Mapping Control, (Table
1-4))
Address
Name
$001C
MEMSIZ0
$001D
MEMSIZ1
Bit 7
Bit 6
Bit 5
Bit 4
Read: reg_sw0
0
eep_sw1 eep_sw0
Write:
Read: rom_sw1 rom_sw0
0
0
Write:
$001E - $001E
Address
$001E
Freescale Semiconductor
0
Bit 2
Bit 1
Bit 0
ram_sw2 ram_sw1 ram_sw0
0
pag_sw1 pag_sw0
MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)
Name
INTCR
Bit 3
0
Read:
Write:
Bit 7
Bit 6
IRQE
IRQEN
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
33
Device User Guide — 9S12DT128DGV2/D V02.17
$001F - $001F
Address
$001F
INT map 2 of 2 (HCS12 Interrupt)
Name
HPRIO
Read:
Write:
$0020 - $0027
Address
$0020 $0027
Read:
Write:
$0028 - $002F
Address
Name
$0028
BKPCT0
$0029
BKPCT1
$002A
BKP0X
$002B
BKP0H
$002C
BKP0L
$002D
BKP1X
$002E
BKP1H
$002F
BKP1L
PPAGE
$0031
Reserved
Read:
Write:
Read:
Write:
34
PORTK
$0033
DDRK
Bit 2
Bit 1
PSEL7
PSEL6
PSEL5
PSEL4
PSEL3
PSEL2
PSEL1
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 7
0
Bit 6
0
Bit 0
0
Bit 7
0
Bit 6
0
0
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PIX5
PIX4
PIX3
PIX2
PIX1
PIX0
0
0
0
0
0
0
MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)
Name
$0032
Bit 3
MMC map 4 of 4 (HCS12 Module Mapping Control)
$0032 - $0033
Address
Bit 4
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
0
0
0
0
BKEN
BKFULL BKBDM BKTAG
Write:
Read:
BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW
Write:
Read:
0
0
BK0V5
BK0V4
BK0V3
BK0V2
BK0V1
BK0V0
Write:
Read:
Bit 15
14
13
12
11
10
9
Bit 8
Write:
Read:
Bit 7
6
5
4
3
2
1
Bit 0
Write:
Read:
0
0
BK1V5
BK1V4
BK1V3
BK1V2
BK1V1
BK1V0
Write:
Read:
Bit 15
14
13
12
11
10
9
Bit 8
Write:
Read:
Bit 7
6
5
4
3
2
1
Bit 0
Write:
Name
$0030
Bit 5
BKP (HCS12 Breakpoint)
$0030 - $0031
Address
Bit 6
Reserved
Name
Reserved
Bit 7
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$0034 - $003F
Address
Name
$0034
SYNR
$0035
REFDV
$0036
CTFLG
TEST ONLY
$0037
CRGFLG
$0038
CRGINT
$0039
CLKSEL
$003A
PLLCTL
$003B
RTICTL
$003C
COPCTL
$003D
$003E
$003F
FORBYP
TEST ONLY
CTCTL
TEST ONLY
ARMCOP
$0040 - $007F
Address
Name
$0040
TIOS
$0041
CFORC
$0042
OC7M
$0043
OC7D
$0044
TCNT (hi)
$0045
TCNT (lo)
$0046
TSCR1
$0047
TTOV
$0048
TCTL1
$0049
TCTL2
Freescale Semiconductor
CRG (Clock and Reset Generator)
Bit 7
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
RTIF
Write:
Read:
RTIE
Write:
Read:
PLLSEL
Write:
Read:
CME
Write:
Read:
0
Write:
Read:
WCOP
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Bit 7
Bit 6
0
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SYN5
SYN4
SYN3
SYN2
SYN1
SYN0
0
0
0
0
0
0
PORF
0
PSTP
0
0
LOCKIF
LOCKIE
SYSWAI ROAWAI
REFDV3 REFDV2 REFDV1 REFDV0
0
0
LOCK
TRACK
0
0
PLLWAI
CWAI
RTIWAI
COPWAI
PRE
PCE
SCME
RTR2
RTR1
RTR0
CR2
CR1
CR0
0
0
SCMIF
SCMIE
0
SCM
0
PLLON
AUTO
ACQ
RTR6
RTR5
RTR4
RTR3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0
RSBCK
ECT (Enhanced Capture Timer 16 Bit 8 Channels)
Bit 7
Read:
IOS7
Write:
Read:
0
Write: FOC7
Read:
OC7M7
Write:
Read:
OC7D7
Write:
Read: Bit 15
Write:
Read:
Bit 7
Write:
Read:
TEN
Write:
Read:
TOV7
Write:
Read:
OM7
Write:
Read:
OM3
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
IOS6
IOS5
IOS4
IOS3
IOS2
IOS1
IOS0
0
FOC6
0
FOC5
0
FOC4
0
FOC3
0
FOC2
0
FOC1
0
FOC0
OC7M6
OC7M5
OC7M4
OC7M3
OC7M2
OC7M1
OC7M0
OC7D6
OC7D5
OC7D4
OC7D3
OC7D2
OC7D1
OC7D0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
TSWAI
TSFRZ
TFFCA
0
0
0
0
TOV6
TOV5
TOV4
TOV3
TOV2
TOV1
TOV0
OL7
OM6
OL6
OM5
OL5
OM4
OL4
OL3
OM2
OL2
OM1
OL1
OM0
OL0
35
Device User Guide — 9S12DT128DGV2/D V02.17
$0040 - $007F
36
Address
Name
$004A
TCTL3
$004B
TCTL4
$004C
TIE
$004D
TSCR2
$004E
TFLG1
$004F
TFLG2
$0050
TC0 (hi)
$0051
TC0 (lo)
$0052
TC1 (hi)
$0053
TC1 (lo)
$0054
TC2 (hi)
$0055
TC2 (lo)
$0056
TC3 (hi)
$0057
TC3 (lo)
$0058
TC4 (hi)
$0059
TC4 (lo)
$005A
TC5 (hi)
$005B
TC5 (lo)
$005C
TC6 (hi)
$005D
TC6 (lo)
$005E
TC7 (hi)
$005F
TC7 (lo)
$0060
PACTL
$0061
PAFLG
$0062
PACN3 (hi)
ECT (Enhanced Capture Timer 16 Bit 8 Channels)
Bit 7
Read:
EDG7B
Write:
Read:
EDG3B
Write:
Read:
C7I
Write:
Read:
TOI
Write:
Read:
C7F
Write:
Read:
TOF
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read:
0
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
EDG7A
EDG6B
EDG6A
EDG5B
EDG5A
EDG4B
EDG4A
EDG3A
EDG2B
EDG2A
EDG1B
EDG1A
EDG0B
EDG0A
C6I
C5I
C4I
C3I
C2I
C1I
C0I
0
0
0
TCRE
PR2
PR1
PR0
C6F
C5F
C4F
C3F
C2F
C1F
C0F
0
0
0
0
0
0
0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
PAEN
PAMOD
PEDGE
CLK1
CLK0
PAOVI
PAI
0
0
0
0
0
PAOVF
PAIF
6
5
4
3
2
1
Bit 0
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$0040 - $007F
Address
Name
$0063
PACN2 (lo)
$0064
PACN1 (hi)
$0065
PACN0 (lo)
$0066
MCCTL
$0067
MCFLG
$0068
ICPAR
$0069
DLYCT
$006A
ICOVW
$006B
ICSYS
$006C
Reserved
$006D
TIMTST
Test Only
$006E
Reserved
$006F
Reserved
$0070
PBCTL
$0071
PBFLG
$0072
PA3H
$0073
PA2H
$0074
PA1H
$0075
PA0H
$0076
MCCNT (hi)
$0077
MCCNT (lo)
$0078
TC0H (hi)
$0079
TC0H (lo)
$007A
TC1H (hi)
$007B
TC1H (lo)
Freescale Semiconductor
ECT (Enhanced Capture Timer 16 Bit 8 Channels)
Bit 7
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
MCZI
Write:
Read:
MCZF
Write:
Read:
0
Write:
Read:
0
Write:
Read:
NOVW7
Write:
Read:
SH37
Write:
Read:
Write:
Read:
0
Write:
Read:
Write:
Read:
Write:
Read:
0
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
Bit 15
Write:
Read:
Bit 7
Write:
Read: Bit 15
Write:
Read:
Bit 7
Write:
Read: Bit 15
Write:
Read:
Bit 7
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
MODMC
RDMCL
MCPR1
MCPR0
0
0
FLMC
POLF3
MCEN
0
0
ICLAT
0
POLF2
POLF1
POLF0
0
0
0
PA3EN
PA2EN
PA1EN
PA0EN
0
0
0
0
0
DLY1
DLY0
NOVW6
NOVW5
NOVW4
NOVW3
NOVW2
NOVW1
NOVW0
SH26
SH15
SH04
TFMOD
PACMX
BUFEN
LATQ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
14
13
12
11
10
9
Bit 8
6
5
4
3
2
1
Bit 0
PBEN
TCBYP
PBOVI
PBOVF
0
0
0
37
Device User Guide — 9S12DT128DGV2/D V02.17
$0040 - $007F
Address
Name
$007C
TC2H (hi)
$007D
TC2H (lo)
$007E
TC3H (hi)
$007F
TC3H (lo)
$0080 - $009F
Address
38
ECT (Enhanced Capture Timer 16 Bit 8 Channels)
Name
$0080
ATD0CTL0
$0081
ATD0CTL1
$0082
ATD0CTL2
$0083
ATD0CTL3
$0084
ATD0CTL4
$0085
ATD0CTL5
$0086
ATD0STAT0
$0087
Reserved
$0088
ATD0TEST0
$0089
ATD0TEST1
$008A
Reserved
$008B
ATD0STAT1
$008C
Reserved
$008D
ATD0DIEN
$008E
Reserved
$008F
PORTAD0
$0090
ATD0DR0H
$0091
ATD0DR0L
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 15
Bit 6
14
Bit 5
13
Bit 4
12
Bit 3
11
Bit 2
10
Bit 1
9
Bit 0
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
ATD0 (Analog to Digital Converter 10 Bit 8 Channel)
Bit 7
Read:
0
Write:
Read:
0
Write:
Read:
ADPU
Write:
Read:
0
Write:
Read:
SRES8
Write:
Read:
DJM
Write:
Read:
SCF
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read: CCF7
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Read:
0
Write:
Read:
Bit7
Write:
Read: Bit15
Write:
Read:
Bit7
Write:
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
AFFC
AWAI
ETRIG
ASCIE
S8C
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
SMP1
SMP0
PRS4
PRS3
PRS2
PRS1
PRS0
DSGN
SCAN
MULT
CC
CB
CA
ETORF
FIFOR
0
CC2
CC1
CC0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CCF6
CCF5
CCF4
CCF3
CCF2
CCF1
CCF0
0
0
0
0
0
0
0
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
6
5
4
3
2
1
BIT 0
14
13
12
11
10
9
Bit8
Bit6
0
0
0
0
0
0
0
ETRIGLE ETRIGP
0
ASCIF
SC
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$0080 - $009F
Address
Name
$0092
ATD0DR1H
$0093
ATD0DR1L
$0094
ATD0DR2H
$0095
ATD0DR2L
$0096
ATD0DR3H
$0097
ATD0DR3L
$0098
ATD0DR4H
$0099
ATD0DR4L
$009A
ATD0DR5H
$009B
ATD0DR5L
$009C
ATD0DR6H
$009D
ATD0DR6L
$009E
ATD0DR7H
$009F
ATD0DR7L
$00A0 - $00C7
Address
Name
$00A0
PWME
$00A1
PWMPOL
$00A2
PWMCLK
$00A3
PWMPRCLK
$00A4
PWMCAE
$00A5
PWMCTL
$00A6
$00A7
$00A8
ATD0 (Analog to Digital Converter 10 Bit 8 Channel)
PWMTST
Test Only
PWMPRSC
Test Only
PWMSCLA
Freescale Semiconductor
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit15
Bit 6
14
Bit 5
13
Bit 4
12
Bit 3
11
Bit 2
10
Bit 1
9
Bit 0
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
PWM (Pulse Width Modulator 8 Bit 8 Channel)
Bit 7
Read:
PWME7
Write:
Read:
PPOL7
Write:
Read:
PCLK7
Write:
Read:
0
Write:
Read:
CAE7
Write:
Read:
CON67
Write:
Read:
0
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PWME6
PWME5
PWME4
PWME3
PWME2
PWME1
PWME0
PPOL6
PPOL5
PPOL4
PPOL3
PPOL2
PPOL1
PPOL0
PCLK6
PCLK5
PCLK4
PCLK3
PCLK2
PCLK1
PCLK0
PCKB2
PCKB1
PCKB0
PCKA2
PCKA1
PCKA0
CAE6
CAE5
CAE4
CAE3
CAE2
CAE1
CAE0
CON45
CON23
CON01
PSWAI
PFRZ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5
4
3
2
1
Bit 0
0
39
Device User Guide — 9S12DT128DGV2/D V02.17
$00A0 - $00C7
Address
$00A9
$00AA
$00AB
$00AC
$00AD
$00AE
$00AF
$00B0
$00B1
$00B2
$00B3
$00B4
$00B5
$00B6
$00B7
$00B8
$00B9
$00BA
$00BB
$00BC
$00BD
$00BE
$00BF
$00C0
$00C1
40
Name
Read:
PWMSCLB
Write:
PWMSCNTA Read:
Test Only
Write:
PWMSCNTB Read:
Test Only
Write:
Read:
PWMCNT0
Write:
Read:
PWMCNT1
Write:
Read:
PWMCNT2
Write:
Read:
PWMCNT3
Write:
Read:
PWMCNT4
Write:
Read:
PWMCNT5
Write:
Read:
PWMCNT6
Write:
Read:
PWMCNT7
Write:
Read:
PWMPER0
Write:
Read:
PWMPER1
Write:
Read:
PWMPER2
Write:
Read:
PWMPER3
Write:
Read:
PWMPER4
Write:
Read:
PWMPER5
Write:
Read:
PWMPER6
Write:
Read:
PWMPER7
Write:
Read:
PWMDTY0
Write:
Read:
PWMDTY1
Write:
Read:
PWMDTY2
Write:
Read:
PWMDTY3
Write:
Read:
PWMDTY4
Write:
Read:
PWMDTY5
Write:
PWM (Pulse Width Modulator 8 Bit 8 Channel)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 7
0
Bit 7
0
Bit 7
0
Bit 7
0
Bit 7
0
Bit 7
0
Bit 7
0
Bit 7
0
6
0
6
0
6
0
6
0
6
0
6
0
6
0
6
0
5
0
5
0
5
0
5
0
5
0
5
0
5
0
5
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
2
0
2
0
2
0
2
0
2
0
2
0
2
0
2
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 0
0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$00A0 - $00C7
Address
Name
$00C2
PWMDTY6
$00C3
PWMDTY7
$00C4
PWMSDN
$00C5
Reserved
$00C6
Reserved
$00C7
Reserved
$00C8 - $00CF
Address
Name
$00C8
SCI0BDH
$00C9
SCI0BDL
$00CA
SCI0CR1
$00CB
SCI0CR2
$00CC
SCI0SR1
$00CD
SCI0SR2
$00CE
SCI0DRH
$00CF
SCI0DRL
$00D0 - $00D7
Address
Name
$00D0
SCI1BDH
$00D1
SCI1BDL
$00D2
SCI1CR1
$00D3
SCI1CR2
$00D4
SCI1SR1
Freescale Semiconductor
PWM (Pulse Width Modulator 8 Bit 8 Channel)
Bit 7
Read:
Bit 7
Write:
Read:
Bit 7
Write:
Read:
PWMIF
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
6
5
4
3
2
1
Bit 0
6
5
4
3
2
1
Bit 0
0
PWM7IN
PWMIE
PWMRSTRT PWMLVL
PWM7INL PWM7ENA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SCI0 (Asynchronous Serial Interface)
Bit 7
Bit 6
Read:
0
0
Write:
Read:
SBR7
SBR6
Write:
Read:
LOOPS SCISWAI
Write:
Read:
TIE
TCIE
Write:
Read: TDRE
TC
Write:
Read:
0
0
Write:
Read:
R8
T8
Write:
Read:
R7
R6
Write:
T7
T6
Bit 5
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
RSRC
M
WAKE
ILT
PE
PT
RIE
ILIE
TE
RE
RWU
SBK
RDRF
IDLE
OR
NF
FE
PF
0
0
0
BRK13
TXDIR
0
0
0
0
0
0
R5
T5
R4
T4
R3
T3
R2
T2
R1
T1
R0
T0
RAF
SCI1 (Asynchronous Serial Interface)
Bit 7
Bit 6
Read:
0
0
Write:
Read:
SBR7
SBR6
Write:
Read:
LOOPS SCISWAI
Write:
Read:
TIE
TCIE
Write:
Read: TDRE
TC
Write:
Bit 5
0
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SBR12
SBR11
SBR10
SBR9
SBR8
SBR5
SBR4
SBR3
SBR2
SBR1
SBR0
RSRC
M
WAKE
ILT
PE
PT
RIE
ILIE
TE
RE
RWU
SBK
RDRF
IDLE
OR
NF
FE
PF
41
Device User Guide — 9S12DT128DGV2/D V02.17
$00D0 - $00D7
Address
SCI1 (Asynchronous Serial Interface)
Name
$00D5
SCI1SR2
$00D6
SCI1DRH
$00D7
SCI1DRL
Read:
Write:
Read:
Write:
Read:
Write:
$00D8 - $00DF
Address
SPI0CR1
$00D9
SPI0CR2
$00DA
SPI0BR
$00DB
SPI0SR
$00DC
Reserved
$00DD
SPI0DR
$00DE
Reserved
$00DF
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$00E0 - $00E7
Address
42
IBAD
$00E1
IBFD
$00E2
IBCR
$00E3
IBSR
$00E4
IBDR
$00E5
Reserved
$00E6
Reserved
$00E7
Reserved
R7
T7
T8
R6
T6
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
Bit 1
0
0
R5
T5
R4
T4
Bit 0
RAF
BRK13
TXDIR
0
0
0
0
R3
T3
R2
T2
R1
T1
R0
T0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
SPISWAI
SPC0
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
SPIF
0
SPTEF
MODF
0
0
0
0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
Bit0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MODFEN BIDIROE
0
0
IIC (Inter IC Bus)
Name
$00E0
R8
Bit 6
0
SPI0 (Serial Peripheral Interface)
Name
$00D8
Bit 7
0
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
ADR7
ADR6
ADR5
ADR4
ADR3
ADR2
ADR1
0
IBC7
IBC6
IBC5
IBC4
IBC3
IBC2
IBC1
IBC0
IBEN
IBIE
MS/SL
TX/RX
TXAK
0
TCF
IAAS
IBB
0
0
RSTA
SRW
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IBAL
IBIF
IBSWAI
RXAK
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$00E8 - $00EF
Address
Name
$00E8
DLCBCR1
$00E9
DLCBSVR
$00EA
DLCBCR2
$00EB
DLCBDR
$00EC
DLCBARD
$00ED
DLCBRSR
$00EE
DLCSCR
$00EF
DLCBSTAT
BDLC (Byte Level Data Link Controller J1850)
Bit 7
Read:
IMSG
Write:
Read:
0
Write:
Read:
SMRST
Write:
Read:
D7
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
$00F0 - $00F7
Address
SPI1CR1
$00F1
SPI1CR2
$00F2
SPI1BR
$00F3
SPI1SR
$00F4
Reserved
$00F5
SPI1DR
$00F6
Reserved
$00F7
Reserved
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$00F8 - $00FF
Address
$00F8 $00FF
Freescale Semiconductor
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
Bit 0
IE
WCM
0
I3
I2
I1
I0
0
0
DLOOP
RX4XE
NBFS
TEOD
TSIFR
TMIFR1
TMIFR0
D6
D5
D4
D3
D2
D1
D0
0
0
BO3
BO2
BO1
BO0
R5
R4
R3
R2
R1
R0
0
0
0
0
0
0
0
IDLE
CLKS
RXPOL
0
0
0
0
0
BDLCE
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
SPIE
SPE
SPTIE
MSTR
CPOL
CPHA
SSOE
LSBFE
0
0
0
SPISWAI
SPC0
SPPR2
SPPR1
SPPR0
SPR2
SPR1
SPR0
SPIF
0
SPTEF
MODF
0
0
0
0
0
0
0
0
0
0
0
0
Bit7
6
5
4
3
2
1
Bit0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
MODFEN BIDIROE
0
0
Reserved
Name
Reserved
Bit 5
0
SPI1 (Serial Peripheral Interface)
Name
$00F0
Bit 6
Read:
Write:
Bit 7
0
43
Device User Guide — 9S12DT128DGV2/D V02.17
$0100 - $010F
Address
Name
$0100
FCLKDIV
$0101
FSEC
$0102
FTSTMOD
$0103
FCNFG
$0104
FPROT
$0105
FSTAT
$0106
FCMD
$0107
Reserved for
Factory Test
$0108
FADDRHI
$0109
FADDRLO
$010A
FDATAHI
$010B
FDATALO
$010C $010F
Reserved
$0110 - $011B
Address
44
Name
$0110
ECLKDIV
$0111
Reserved
$0112
Reserved for
Factory Test
$0113
ECNFG
$0114
EPROT
$0115
ESTAT
$0116
ECMD
$0117
Reserved for
Factory Test
$0118
EADDRHI
Flash Control Register (fts128k2)
Bit 7
Bit 6
Bit 5
Bit 4
Read: FDIVLD
PRDIV8
FDIV5
FDIV4
Write:
Read: KEYEN1 KEYEN0
NV5
NV4
Write:
Read:
0
0
0
WRALL
Write:
Read:
0
CBEIE
CCIE
KEYACC
Write:
Read:
FPOPEN
NV6
FPHDIS FPHS1
Write:
Read:
CCIF
CBEIF
PVIOL ACCERR
Write:
Read:
0
0
CMDB6 CMDB5
Write:
Read:
0
0
0
0
Write:
Read:
0
Bit 14
13
12
Write:
Read:
Bit 7
6
5
4
Write:
Read:
Bit 15
14
13
12
Write:
Read:
Bit 7
6
5
4
Write:
Read:
0
0
0
0
Write:
Bit 3
Bit 2
Bit 1
Bit 0
FDIV3
FDIV2
FDIV1
FDIV0
NV3
NV2
SEC1
SEC0
0
0
0
0
0
FPHS0
FPLDIS
0
0
BLANK
CMDB2
0
BKSEL1
BKSEL0
FPLS1
FPLS0
0
0
0
CMDB0
0
0
0
0
11
10
9
Bit 8
3
2
1
Bit 0
11
10
9
Bit 8
3
2
1
Bit 0
0
0
0
0
EEPROM Control Register (eets2k)
Bit 7
Bit 6
Read: EDIVLD
PRDIV8
Write:
Read:
0
0
Write:
Read:
0
0
Write:
Read:
CBEIE
CCIE
Write:
Read:
NV6
EPOPEN
Write:
Read:
CCIF
CBEIF
Write:
Read:
0
CMDB6
Write:
Read:
0
0
Write:
Read:
0
0
Write:
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
EDIV5
EDIV4
EDIV3
EDIV2
EDIV1
EDIV0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NV5
NV4
EPDIS
EP2
EP1
EP0
PVIOL
ACCERR
0
0
0
BLANK
0
0
0
0
0
0
0
0
0
0
CMDB5
CMDB2
0
CMDB0
0
0
Bit 9
Bit 8
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$0110 - $011B
Address
EEPROM Control Register (eets2k)
Name
$0119
EADDRLO
$011A
EDATAHI
$011B
EDATALO
Read:
Write:
Read:
Write:
Read:
Write:
$011C - $011F
Address
$011C $011F
$0120 - $013F
Address
Name
$0120
ATD1CTL0
$0121
ATD1CTL1
$0122
ATD1CTL2
$0123
ATD1CTL3
$0124
ATD1CTL4
$0125
ATD1CTL5
$0126
ATD1STAT0
$0127
Reserved
$0128
ATD1TEST0
$0129
ATD1TEST1
$012A
Reserved
$012B
ATD1STAT1
$012C
Reserved
$012D
ATD1DIEN
$012E
Reserved
$012F
PORTAD1
Freescale Semiconductor
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Bit 7
6
5
4
3
2
1
Bit 0
Bit 2
0
Bit 1
0
Bit 0
0
Reserved for RAM Control Register
Name
Reserved
Bit 7
Read:
Write:
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
ATD1 (Analog to Digital Converter 10 Bit 8 Channel)
Bit 7
Read:
0
Write:
Read:
0
Write:
Read:
ADPU
Write:
Read:
0
Write:
Read:
SRES8
Write:
Read:
DJM
Write:
Read:
SCF
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read:
0
Write:
Read: CCF7
Write:
Read:
0
Write:
Read:
Bit 7
Write:
Read:
0
Write:
Read:
Bit7
Write:
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
0
0
0
0
0
0
0
AFFC
AWAI
ETRIG
ASCIE
S8C
S4C
S2C
S1C
FIFO
FRZ1
FRZ0
SMP1
SMP0
PRS4
PRS3
PRS2
PRS1
PRS0
DSGN
SCAN
MULT
CC
CB
CA
0
ETORF
FIFOR
0
CC2
CC1
CC0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CCF6
CCF5
CCF4
CCF3
CCF2
CCF1
CCF0
0
0
0
0
0
0
0
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
6
5
4
3
2
1
BIT 0
ETRIGLE ETRIGP
0
0
0
ASCIF
SC
45
Device User Guide — 9S12DT128DGV2/D V02.17
$0120 - $013F
Address
Name
$0130
ATD1DR0H
$0131
ATD1DR0L
$0132
ATD1DR1H
$0133
ATD1DR1L
$0134
ATD1DR2H
$0135
ATD1DR2L
$0136
ATD1DR3H
$0137
ATD1DR3L
$0138
ATD1DR4H
$0139
ATD1DR4L
$013A
ATD1DR5H
$013B
ATD1DR5L
$013C
ATD1DR6H
$013D
ATD1DR6L
$013E
ATD1DR7H
$013F
ATD1DR7L
$0140 - $017F
Address
46
ATD1 (Analog to Digital Converter 10 Bit 8 Channel)
Name
$0140
CAN0CTL0
$0141
CAN0CTL1
$0142
CAN0BTR0
$0143
CAN0BTR1
$0144
CAN0RFLG
$0145
CAN0RIER
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit15
Bit 6
14
Bit 5
13
Bit 4
12
Bit 3
11
Bit 2
10
Bit 1
9
Bit 0
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
Bit15
14
13
12
11
10
9
Bit8
Bit7
Bit6
0
0
0
0
0
0
CAN0 (Motorola Scalable CAN - MSCAN)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
RXACT
SYNCH
RXFRM
CSWAI
TIME
WUPE
SLPRQ INITRQ
Write:
Read:
0
SLPAK
INITAK
CANE CLKSRC LOOPB LISTEN
WUPM
Write:
Read:
SJW1
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
Write:
Read:
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:
Read:
RSTAT1 RSTAT0 TSTAT1 TSTAT0
WUPIF
CSCIF
OVRIF
RXF
Write:
Read:
WUPIE
CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE
RXFIE
Write:
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$0140 - $017F
Address
Name
$0146
CAN0TFLG
$0147
CAN0TIER
$0148
CAN0TARQ
$0149
CAN0TAAK
$014A
CAN0TBSEL
$014B
CAN0IDAC
$014C
Reserved
$014D
Reserved
$014E
CAN0RXERR
$014F
CAN0TXERR
$0150 $0153
$0154 $0157
$0158 $015B
$015C $015F
$0160 $016F
$0170 $017F
CAN0IDAR0 CAN0IDAR3
CAN0IDMR0 CAN0IDMR3
CAN0IDAR4 CAN0IDAR7
CAN0IDMR4 CAN0IDMR7
CAN0RXFG
CAN0TXFG
CAN0 (Motorola Scalable CAN - MSCAN)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Read:
0
0
0
0
0
TXE2
TXE1
Write:
Read:
0
0
0
0
0
TXEIE2 TXEIE1
Write:
Read:
0
0
0
0
0
ABTRQ2 ABTRQ1
Write:
Read:
0
0
0
0
0
ABTAK2 ABTAK1
Write:
Read:
0
0
0
0
0
TX2
TX1
Write:
Read:
0
0
0
IDHIT2
IDHIT1
IDAM1
IDAM0
Write:
Read:
0
0
0
0
0
0
0
Write:
Read:
0
0
0
0
0
0
0
Write:
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1
Write:
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
Write:
Read:
FOREGROUND RECEIVE BUFFER see (Table 1-2)
Write:
Read:
FOREGROUND TRANSMIT BUFFER see (Table 1-2)
Write:
Bit 0
TXE0
TXEIE0
ABTRQ0
ABTAK0
TX0
IDHIT0
0
0
RXERR0
TXERR0
AC0
AM0
AC0
AM0
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address
$xxx0
$xxx1
$xxx2
$xxx3
$xxx4$xxxB
Name
Extended ID
Standard ID
CANxRIDR0
Extended ID
Standard ID
CANxRIDR1
Extended ID
Standard ID
CANxRIDR2
Extended ID
Standard ID
CANxRIDR3
CANxRDSR0 CANxRDSR7
Freescale Semiconductor
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Read:
Write:
Read:
Write:
Bit 7
ID28
ID10
Bit 6
ID27
ID9
Bit 5
ID26
ID8
Bit 4
ID25
ID7
Bit 3
ID24
ID6
Bit 2
ID23
ID5
Bit 1
ID22
ID4
Bit 0
ID21
ID3
ID20
ID2
ID19
ID1
ID18
ID0
SRR=1
RTR
IDE=1
IDE=0
ID17
ID16
ID15
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
47
Device User Guide — 9S12DT128DGV2/D V02.17
Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout
Address
Name
$xxxC
CANRxDLR
$xxxD
Reserved
$xxxE
CANxRTSRH
$xxxF
CANxRTSRL
$xx10
$xx11
$xx12
$xx13
Extended ID
CANxTIDR0
Standard ID
Extended ID
CANxTIDR1
Standard ID
Extended ID
CANxTIDR2
Standard ID
Extended ID
CANxTIDR3
Standard ID
$xx14$xx1B
CANxTDSR0 CANxTDSR7
$xx1C
CANxTDLR
$xx1D
CONxTTBPR
$xx1E
CANxTTSRH
$xx1F
CANxTTSRL
$0180 - $01BF
Address
48
Name
$0180
CAN1CTL0
$0181
CAN1CTL1
$0182
CAN1BTR0
$0183
CAN1BTR1
$0184
CAN1RFLG
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
DLC3
Bit 2
DLC2
Bit 1
DLC1
Bit 0
DLC0
TSR15
TSR14
TSR13
TSR12
TSR11
TSR10
TSR9
TSR8
TSR7
TSR6
TSR5
TSR4
TSR3
TSR2
TSR1
TSR0
ID28
ID27
ID26
ID25
ID24
ID23
ID22
ID21
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID20
ID19
ID18
SRR=1
IDE=1
ID17
ID16
ID15
ID2
ID1
ID0
RTR
IDE=0
ID14
ID13
ID12
ID11
ID10
ID9
ID8
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
RTR
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DLC3
DLC2
DLC1
DLC0
PRIO7
PRIO6
PRIO5
PRIO4
PRIO3
PRIO2
PRIO1
PRIO0
TSR15
TSR14
TSR13
TSR12
TSR11
TSR10
TSR9
TSR8
TSR7
TSR6
TSR5
TSR4
TSR3
TSR2
TSR1
TSR0
CAN1 (Motorola Scalable CAN - MSCAN)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
RXACT
SYNCH
RXFRM
CSWAI
TIME
WUPE
SLPRQ INITRQ
Write:
Read:
0
SLPAK
INITAK
CANE CLKSRC LOOPB LISTEN
WUPM
Write:
Read:
SJW1
SJW0
BRP5
BRP4
BRP3
BRP2
BRP1
BRP0
Write:
Read:
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:
Read:
RSTAT1 RSTAT0 TSTAT1 TSTAT0
WUPIF
CSCIF
OVRIF
RXF
Write:
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$0180 - $01BF
Address
Name
$0185
CAN1RIER
$0186
CAN1TFLG
$0187
CAN1TIER
$0188
CAN1TARQ
$0189
CAN1TAAK
$018A
CAN1TBSEL
$018B
CAN1IDAC
$018C
Reserved
$018D
Reserved
$018E
CAN1RXERR
$018F
CAN1TXERR
$0190 $0193
$0194 $0197
$0198 $019B
$019C $019F
$01A0 $01AF
$01B0 $01BF
CAN1IDAR0 CAN1IDAR3
CAN1IDMR0 CAN1IDMR3
CAN1IDAR4 CAN1IDAR7
CAN1IDMR4 CAN1IDMR7
CAN0RXFG
CAN0TXFG
CAN1 (Motorola Scalable CAN - MSCAN)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Read:
WUPIE
CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE
Write:
Read:
0
0
0
0
0
TXE2
TXE1
Write:
Read:
0
0
0
0
0
TXEIE2 TXEIE1
Write:
Read:
0
0
0
0
0
ABTRQ2 ABTRQ1
Write:
Read:
0
0
0
0
0
ABTAK2 ABTAK1
Write:
Read:
0
0
0
0
0
TX2
TX1
Write:
Read:
0
0
0
IDHIT2
IDHIT1
IDAM1
IDAM0
Write:
Read:
0
0
0
0
0
0
0
Write:
Read:
0
0
0
0
0
0
0
Write:
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1
Write:
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
Write:
Read:
AC7
AC6
AC5
AC4
AC3
AC2
AC1
Write:
Read:
AM7
AM6
AM5
AM4
AM3
AM2
AM1
Write:
Read:
FOREGROUND RECEIVE BUFFER see (Table 1-2)
Write:
Read:
FOREGROUND TRANSMIT BUFFER see (Table 1-2)
Write:
$01C0 - $01FF
Address
$01C0 $01FF
Read:
Write:
$0200 - $023F
Address
$020C $023F
Freescale Semiconductor
TXE0
TXEIE0
ABTRQ0
ABTAK0
TX0
IDHIT0
0
0
RXERR0
TXERR0
AC0
AM0
AC0
AM0
Bit 7
0
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Reserved
Name
Reserved
RXFIE
Reserved
Name
Reserved
Bit 0
Read:
Write:
Bit 7
0
Bit 6
0
49
Device User Guide — 9S12DT128DGV2/D V02.17
$0240 - $027F
Address
50
PIM (Port Integration Module)
Name
$0240
PTT
$0241
PTIT
$0242
DDRT
$0243
RDRT
$0244
PERT
$0245
PPST
$0246
Reserved
$0247
Reserved
$0248
PTS
$0249
PTIS
$024A
DDRS
$024B
RDRS
$024C
PERS
$024D
PPSS
$024E
WOMS
$024F
Reserved
$0250
PTM
$0251
PTIM
$0252
DDRM
$0253
RDRM
$0254
PERM
$0255
PPSM
$0256
WOMM
$0257
MODRR
$0258
PTP
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PTT7
PTT6
PTT5
PTT4
PTT3
PTT2
PTT1
PTT0
PTIT7
PTIT6
PTIT5
PTIT4
PTIT3
PTIT2
PTIT1
PTIT0
DDRT7
DDRT7
DDRT5
DDRT4
DDRT3
DDRT2
DDRT1
DDRT0
RDRT7
RDRT6
RDRT5
RDRT4
RDRT3
RDRT2
RDRT1
RDRT0
PERT7
PERT6
PERT5
PERT4
PERT3
PERT2
PERT1
PERT0
PPST7
PPST6
PPST5
PPST4
PPST3
PPST2
PPST1
PPST0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PTS7
PTS6
PTS5
PTS4
PTS3
PTS2
PTS1
PTS0
PTIS7
PTIS6
PTIS5
PTIS4
PTIS3
PTIS2
PTIS1
PTIS0
DDRS7
DDRS7
DDRS5
DDRS4
DDRS3
DDRS2
DDRS1
DDRS0
RDRS7
RDRS6
RDRS5
RDRS4
RDRS3
RDRS2
RDRS1
RDRS0
PERS7
PERS6
PERS5
PERS4
PERS3
PERS2
PERS1
PERS0
PPSS7
PPSS6
PPSS5
PPSS4
PPSS3
PPSS2
PPSS1
PPSS0
WOMS7
WOMS6
WOMS5
WOMS4
WOMS3
WOMS2
WOMS1
WOMS0
0
0
0
0
0
0
0
0
PTM7
PTM6
PTM5
PTM4
PTM3
PTM2
PTM1
PTM0
PTIM7
PTIM6
PTIM5
PTIM4
PTIM3
PTIM2
PTIM1
PTIM0
DDRM7
DDRM7
DDRM5
DDRM4
DDRM3
DDRM2
DDRM1
DDRM0
RDRM7
RDRM6
RDRM5
RDRM4
RDRM3
RDRM2
RDRM1
RDRM0
PERM7
PERM6
PERM5
PERM4
PERM3
PERM2
PERM1
PERM0
PPSM7
PPSM6
PPSM5
PPSM4
PPSM3
PPSM2
PPSM1
PPSM0
WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0
0
0
PTP7
PTP6
MODRR5 MODRR4 MODRR3 MODRR2 MODRR1 MODRR0
PTP5
PTP4
PTP3
PTP2
PTP1
PTP0
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$0240 - $027F
Address
PIM (Port Integration Module)
Name
$0259
PTIP
$025A
DDRP
$025B
RDRP
$025C
PERP
$025D
PPSP
$025E
PIEP
$025F
PIFP
$0260
PTH
$0261
PTIH
$0262
DDRH
$0263
RDRH
$0264
PERH
$0265
PPSH
$0266
PIEH
$0267
PIFH
$0268
PTJ
$0269
PTIJ
$026A
DDRJ
$026B
RDRJ
$026C
PERJ
$026D
PPSJ
$026E
PIEJ
$026F
PIFJ
$0270 $027F
Reserved
Freescale Semiconductor
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Bit 7
PTIP7
Bit 6
PTIP6
Bit 5
PTIP5
Bit 4
PTIP4
Bit 3
PTIP3
Bit 2
PTIP2
Bit 1
PTIP1
Bit 0
PTIP0
DDRP7
DDRP7
DDRP5
DDRP4
DDRP3
DDRP2
DDRP1
DDRP0
RDRP7
RDRP6
RDRP5
RDRP4
RDRP3
RDRP2
RDRP1
RDRP0
PERP7
PERP6
PERP5
PERP4
PERP3
PERP2
PERP1
PERP0
PPSP7
PPSP6
PPSP5
PPSP4
PPSP3
PPSP2
PPSP1
PPSS0
PIEP7
PIEP6
PIEP5
PIEP4
PIEP3
PIEP2
PIEP1
PIEP0
PIFP7
PIFP6
PIFP5
PIFP4
PIFP3
PIFP2
PIFP1
PIFP0
PTH7
PTH6
PTH5
PTH4
PTH3
PTH2
PTH1
PTH0
PTIH7
PTIH6
PTIH5
PTIH4
PTIH3
PTIH2
PTIH1
PTIH0
DDRH7
DDRH7
DDRH5
DDRH4
DDRH3
DDRH2
DDRH1
DDRH0
RDRH7
RDRH6
RDRH5
RDRH4
RDRH3
RDRH2
RDRH1
RDRH0
PERH7
PERH6
PERH5
PERH4
PERH3
PERH2
PERH1
PERH0
PPSH7
PPSH6
PPSH5
PPSH4
PPSH3
PPSH2
PPSH1
PPSH0
PIEH7
PIEH6
PIEH5
PIEH4
PIEH3
PIEH2
PIEH1
PIEH0
PIFH7
PIFH6
PIFH5
PIFH4
PIFH3
PIFH2
PIFH1
PIFH0
PTJ7
PTJ6
0
0
0
0
PTJ1
PTJ0
PTIJ7
PTIJ6
0
0
0
0
PTIJ1
PTIJ0
DDRJ7
DDRJ7
0
0
0
0
DDRJ1
DDRJ0
RDRJ7
RDRJ6
0
0
0
0
RDRJ1
RDRJ0
PERJ7
PERJ6
0
0
0
0
PERJ1
PERJ0
PPSJ7
PPSJ6
0
0
0
0
PPSJ1
PPSJ0
PIEJ7
PIEJ6
0
0
0
0
PIEJ1
PIEJ0
PIFJ7
PIFJ6
0
0
0
0
PIFJ1
PIFJ0
0
0
0
0
0
0
0
0
51
Device User Guide — 9S12DT128DGV2/D V02.17
$0280 - $02BF
Address
52
CAN4 (Motorola Scalable CAN - MSCAN)
Name
Bit 7
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
$0280
CAN4CTL0
$0281
CAN4CTL1
$0282
CAN4BTR0
$0283
CAN4BTR1
$0284
CAN4RFLG
$0285
CAN4RIER
$0286
CAN4TFLG
$0287
CAN4TIER
$0288
CAN4TARQ
$0289
CAN4TAAK
$028A
CAN4TBSEL
$028B
CAN4IDAC
$028C
Reserved
$028D
Reserved
$028E
CAN4RXERR
$028F
CAN4TXERR
$0290 $0293
$0294 $0297
$0298 $029B
$029C $029F
$02A0 $02AF
$02B0 $02BF
CAN0IDAR0 CAN0IDAR3
CAN0IDMR0 CAN0IDMR3
CAN0IDAR4 CAN0IDAR7
CAN0IDMR4 Read:
CAN0IDMR7
Read:
CAN4RXFG
Write:
Read:
CAN4TXFG
Write:
RXFRM
Bit 6
RXACT
Bit 5
CSWAI
Bit 4
SYNCH
CANE
CLKSRC
LOOPB
LISTEN
SJW1
SJW0
BRP5
BRP4
SAMP
Bit 3
Bit 2
Bit 1
Bit 0
TIME
WUPE
SLPRQ
INITRQ
SLPAK
INITAK
BRP1
BRP0
0
BRP3
WUPM
BRP2
TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
RSTAT1
RSTAT0
TSTAT1
WUPIF
CSCIF
WUPIE
CSCIE
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IDAM1
IDAM0
0
0
0
0
0
0
TSTAT0
OVRIF
RXF
OVRIE
RXFIE
TXE2
TXE1
TXE0
TXEIE2
TXEIE1
TXEIE0
RSTATE1 RSTATE0 TSTATE1 TSTATE0
ABTRQ2 ABTRQ1 ABTRQ0
ABTAK2
ABTAK1
ABTAK0
TX2
TX1
TX0
0
IDHIT2
IDHIT1
IDHIT0
0
0
0
0
0
0
0
0
0
0
RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
AC7
AC6
AC5
AC4
AC3
AC2
AC1
AC0
AM7
AM6
AM5
AM4
AM3
AM2
AM1
AM0
FOREGROUND RECEIVE BUFFER see (Table 1-2)
FOREGROUND TRANSMIT BUFFER see (Table 1-2)
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$02C0 - $02FF
Address
$02C0 $02FF
Reserved
Name
Reserved
Read:
Write:
$0300 - $035F
Address
BFMCR
$0301
BFFSIZR
$0302
BFTCR1
$0303
BFTCR2
$0304
BFTCR3
$0305
Reserved
$0306
BFRISR
$0307
BFGISR
$0308
BFRIER
$0309
BFGIER
$030A
BFRIVEC
$030B
BFTIVEC
$030C
BFFIDAC
$030D
BFFIDMR
$030E
BFMVR
$030F
Reserved
$0310
BFPCTLBF
$0311
Reserved
$0312
BFBUFLOCK
$0313
Reserved
$0314
BFFIDRJ
Freescale Semiconductor
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
Bit 5
Bit 4
SLPAK
Bit 3
Bit 2
Bit 1
Bit 0
INITAK
Byteflight
Name
$0300
Bit 7
0
Bit 7
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
Write:
Read:
INITRQ
0
Bit 6
MASTER ALARM
0
0
FSIZ4
SLPRQ WPULSE
FSIZ3
FSIZ2
SSWAI
FSIZ1
FSIZ0
TWX0T7 TWX0T6 TWX0T5 TWX0T4 TWX0T3 TWX0T2 TWX0T1 TWX0T0
TWX0R7 TWX0R6 TWX0R5 TWX0R4 TWX0R3 TWX0R2 TWX0R1 TWX0R0
TWX0D7 TWX0D6 TWX0D5 TWX0D4 TWX0D3 TWX0D2 TWX0D1 TWX0D0
0
0
0
0
0
RCVFIF
RXIF
SYNAIF
SYNNIF
SLMMIF
OVRNIF
ERRIF
SYNEIF
SYNLIF
RCVFIE
RXIE
SYNAIE
SYNNIE
SLMMIE
TXIE
OVRNIE
ERRIE
SYNEIE
SYNLIE
ILLPIE
LOCKIE
WAKEIE
0
0
0
0
RIVEC3
RIVEC2
RIVEC1
RIVEC0
0
0
0
0
TIVEC3
TIVEC2
TIVEC1
TIVEC0
FIDAC7
FIDAC6
FIDAC5
FIDAC4
FIDAC3
FIDAC2
FIDAC1
FIDAC0
FIDMR7
FIDMR6
FIDMR5
FIDMR4
FIDMR3
FIDMR2
FIDMR1
FIDMR0
MVR7
MVR6
MVR5
MVR4
MVR3
MVR2
MVR1
MVR0
0
0
0
0
0
0
0
0
TXIF
PMEREN
0
0
0
ILLPIF
0
PSLMEN PERREN PROKEN PSYNEN
0
0
XSYNIF
OPTDF
LOCKIF
XSYNIE
0
0
BFEN
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FIDRJ6
FIDRJ5
FIDRJ4
FIDRJ3
FIDRJ2
FIDRJ1
FIDRJ0
Write:
Read:
0
Write:
Read:
FIDRJ7
Write:
0
WAKEIF
0
TXBUFL RXBUFL
OCK
OCK
53
Device User Guide — 9S12DT128DGV2/D V02.17
$0300 - $035F
Address
Byteflight
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
FIDRMR FIDRMR FIDRMR FIDRMR FIDRMR FIDRMR FIDRMR FIDRMR
Read:
7
6
5
5
4
3
2
1
$0315
BFFIDRMR
Write:
Read:
0
0
0
0
0
0
0
0
$0316
Reserved
Write:
Read:
0
0
0
0
0
0
0
0
$0317
Reserved
Write:
Read:
0
0
0
0
0
0
0
0
$0318
Reserved
Write:
Read:
0
0
0
0
0
0
0
0
$0319
Reserved
Write:
Read:
0
0
0
0
0
0
0
0
$031A
Reserved
Write:
Read:
0
0
0
0
0
0
0
0
$031B
Reserved
Write:
Read:
0
0
0
0
0
0
0
0
$031C
Reserved
Write:
Read:
0
0
0
0
0
0
0
0
$031D
Reserved
Write:
Read:
0
0
0
0
0
0
0
0
$031E
Reserved
Write:
Read:
0
0
0
0
0
0
0
0
$031F
Reserved
Write:
Read:
$0320
BFTIDENT
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
Write:
Read:
LEN3
LEN2
LEN1
LEN0
$0321
BFTLEN
Write:
$0322 BFTDATA0- Read:
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
$032D
BFTDATA11 Write:
Read:
$032E Reserved
$032F
Write:
Read:
$0330
BFRIDENT
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
Write:
Read:
LEN3
LEN2
LEN1
LEN0
$0331
BFRLEN
Write:
$0332 BFRDATA0- Read:
DATA7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA 0
$033D
BFRDATA11 Write:
Read:
$033EReserved
$033F
Write:
Read:
$0340
BFFIDENT
ID7
ID6
ID5
ID4
ID3
ID2
ID1
ID0
Write:
Read:
LEN3
LEN2
LEN1
LEN0
$0341
BFFLEN
Write:
$0342 BFFDATA0- Read:
DATA 7
DATA6
DATA5
DATA4
DATA3
DATA2
DATA1
DATA0
$034D
BFFDATA11 Write:
Read:
$034E Reserved
$034F
Write:
ABTAK
0
0
$0350 - BFBUFCTL0 - Read:
IFLG
IENA
LOCK
ABTRQ
CFG
$035F
BFBUFCTL15 Write:
54
Name
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
$0360 - $03FF
Address
$0360 $03FF
Reserved
Name
Bit 7
0
Read:
Write:
Reserved
Bit 6
0
Bit 5
0
Bit 4
0
Bit 3
0
Bit 2
0
Bit 1
0
Bit 0
0
1.6 Part ID Assignments
The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after
reset). The read-only value is a unique part ID for each revision of the chip. (Table 1-3) shows the
assigned part ID number.
Table 1-3 Assigned Part ID Numbers
Device
Mask Set Number
MC9S12DT128
MC9S12DT128
MC9S12DT128
MC9S12DT128
MC9S12DT128
MC9S12DT128
MC9S12DT128
1L40K
3L40K
4L40K
0L94R
1L59W
5L40K
2L94R
Part ID1
$0111
$0113
$0114
$0110
$0115
$0115
$0115
NOTES:
1. The coding is as follows:
Bit 15-12: Major family identifier
Bit 11-8: Minor family identifier
Bit 7-4: Major mask set revision number including FAB transfers
Bit 3-0: Minor - non full - mask set revision
The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C
and $001D after reset). Table 1-4 shows the read-only values of these registers. Refer to HCS12 Module
Mapping Control (MMC) Block Guide for further details.
Table 1-4 Memory size registers
Register name
MEMSIZ0
MEMSIZ1
Freescale Semiconductor
Value
$13
$80
55
Device User Guide — 9S12DT128DGV2/D V02.17
56
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Section 2 Signal Description
This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal
properties, and detailed discussion of signals. It is built from the signal description sections of the Block
User Guides of the individual IP blocks on the device.
2.1 Device Pinout
The MC9S12DT128 and its derivatives are available in a 112-pin low profile quad flat pack (LQFP) and
in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal
Descriptions. Figure 2-1, Figure 2-2, and Figure 2-3 show the pin assignments for different packages.
Freescale Semiconductor
57
MC9S12DT128E, MC9S12DT128, MC9S12DG128E,
MC9S12DG128, MC9S12DJ128E, MC9S12DJ128,
MC9S12DB128, MC9S12A128, SC515846, SC515847,
SC515848, SC515849, SC101161DT, SC101161DG,
SC101161DJ, SC102202, SC102203, SC102204,
SC102205
112LQFP
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
VRH
VDDA
PAD15/AN15/ETRIG1
PAD07/AN07/ETRIG0
PAD14/AN14
PAD06/AN06
PAD13/AN13
PAD05/AN05
PAD12/AN12
PAD04/AN04
PAD11/AN11
PAD03/AN03
PAD10/AN10
PAD02/AN02
PAD09/AN09
PAD01/AN01
PAD08/AN08
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
KWH7/PH7
KWH6/PH6
KWH5/PH5
KWH4/PH4
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
SS1/KWH3/PH3
SCK1/KWH2/PH2
MOSI1/KWH1/PH1
MISO1/KWH0/PH0
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
XADDR17/PK3
XADDR16/PK2
XADDR15/PK1
XADDR14/PK0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
XADDR19/PK5
XADDR18/PK4
KWJ1/PJ1
KWJ0/PJ0
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
PP4/KWP4/PWM4
PP5/KWP5/PWM5
PP6/KWP6/PWM6
PP7/KWP7/PWM7
PK7/ECS/ROMCTL
VDDX
VSSX
PM0/RXCAN0/RXB
PM1/TXCAN0/TXB
PM2/RX_BF/RXCAN1/RXCAN0/MISO0
PM3/TX_BF/TXCAN1/TXCAN0/SS0
PM4/BF_PSYN/RXCAN0/RXCAN4/MOSI0
PM5/BF_PROK/TXCAN0/TXCAN4/SCK0
PJ6/KWJ6/RXCAN4/SDA/RXCAN0
PJ7/KWJ7/TXCAN4/SCL/TXCAN0
VREGEN
PS7/SS0
PS6/SCK0
PS5/MOSI0
PS4/MISO0
PS3/TXD1
PS2/RXD1
PS1/TXD0
PS0/RXD0
PM6/BF_PERR/RXCAN4
PM7/BF_PSLM/TXCAN4
VSSA
VRL
Device User Guide — 9S12DT128DGV2/D V02.17
Signals shown in Bold are not available on all the 80 pin package options
Signals shown in Bold-Italics are not available on the MC9S12DJ128E, MC9S12DJ128, MC9S12DG128E, MC9S12DG128, MC9S12A128,
SC515847, SC515848, SC101161DG, SC101161DJ, SC102203, and SC102204 80 pin package options
Signals shown in Italics are not available on the MC9S12DB128, SC515846, and SC102202 80 pin package options
Figure 2-1 Pin assignments 112 LQFP for MC9S12DT128E, MC9S12DT128,
MC9S12DG128E, MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12DB128
MC9S12A128, SC515846, SC515847, SC515848, SC515849, SC101161DT, SC101161DG,
SC101161DJ, SC102202, SC102203, SC102204, and SC102205
58
Freescale Semiconductor
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128,
MC9S12A128, SC515847,
SC515848, SC101161DG,
SC101161DJ, SC102203, SC102204
80 QFP
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
VRH
VDDA
PAD07/AN07/ETRIG0
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PP4/KWP4/PWM4
PP5/KWP5/PWM5
PP7/KWP7/PWM7
VDDX
VSSX
PM0/RXCAN0/RXB
PM1/TXCAN0/TXB
PM2/RXCAN1/RXCAN0/MISO0
PM3/TXCAN1/TXCAN0/SS0
PM4/RXCAN0/RXCAN4/MOSI0
PM5/TXCAN0/TXCAN4/SCK0
PJ6/KWJ6/RXCAN4/SDA/RXCAN0
PJ7/KWJ7/TXCAN4/SCL/TXCAN0
VREGEN
PS3/TXD1
PS2//RXD1
PS1/TXD0
PS0/RXD0
VSSA
VRL
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 2-2 Pin Assignments in 80 QFP for MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204 Bondout
Freescale Semiconductor
59
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
MC9S12DB128, SC515846,
SC102202
80 QFP
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
VRH
VDDA
PAD07/AN07/ETRIG0
PAD06/AN06
PAD05/AN05
PAD04/AN04
PAD03/AN03
PAD02/AN02
PAD01/AN01
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8
ADDR5/DATA5/PB5
ADDR6/DATA6/PB6
ADDR7/DATA7/PB7
XCLKS/NOACC/PE7
MODB/IPIPE1/PE6
MODA/IPIPE0/PE5
ECLK/PE4
VSSR
VDDR
RESET
VDDPLL
XFC
VSSPLL
EXTAL
XTAL
TEST
LSTRB/TAGLO/PE3
R/W/PE2
IRQ/PE1
XIRQ/PE0
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2
MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0
IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3
VDD1
VSS1
IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7
MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PP4/KWP4/PWM4
PP5/KWP5/PWM5
PP7/KWP7/PWM7
VDDX
VSSX
PM2/RX_BF
PM3/TX_BF
PM4/BF_PSYN
PM5/BF_PROK
VREGEN
PS7/SS0
PS6/SCK0
PS5/MOSI0
PS4/MISO0
PS1/TXD0
PS0/RXD0
PM6/BF_PERR
PM7/BF_PSLM
VSSA
VRL
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 2-3 Pin Assignments in 80 QFP for MC9S12DB128, SC515846, and SC102202
Bondout
2.2 Signal Properties Summary
(Table 2-1) summarizes the pin functionality. Signals shown in Bold are not available on all the 80-pin
package options. Signals shown in Bold-Italics are not available on the MC9S12DG128E,
MC9S12DG128, MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848,
SC101161DG, SC101161DJ, SC102203, and SC102204 80-pin package options. Signals shown in Italics
are not available on MC9S12DB128, SC515846, and SC102202 80-pin package options.
60
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Table 2-1 Signal Properties
Pin Name Pin Name Pin Name Pin Name Pin Name Powered
Function 1 Function 2 Function 3 Function 4 Function 5
by
Internal Pull
Resistor
CTRL
Reset
State
EXTAL
—
—
—
—
VDDPLL
NA
NA
XTAL
—
—
—
—
VDDPLL
NA
NA
Description
Oscillator Pins
RESET
—
—
—
—
VDDR
None
None
External Reset
TEST
—
—
—
—
N.A.
None
None
Test Input
VREGEN
—
—
—
—
VDDX
NA
NA
Voltage Regulator
Enable Input
XFC
—
—
—
—
VDDPLL
NA
NA
PLL Loop Filter
BKGD
TAGHI
MODC
—
—
VDDR
Always
Up
Up
Background Debug,
Tag High, Mode Input
PAD[15]
AN1[7]
ETRIG1
—
—
VDDA
None
None
Port AD Input,
Analog Inputs,
External Trigger
Input (ATD1)
PAD[14:8]
AN1[6:0]
—
—
—
VDDA
None
None
Port AD Input,
Analog Inputs
(ATD1)
PAD[7]
AN0[7]
ETRIG0
—
—
VDDA
None
None
Port AD Input, Analog
Inputs, External
Trigger Input (ATD0)
PAD[6:0]
AN0[6:0]
—
—
—
VDDA
None
None
Port AD Input, Analog
Inputs (ATD0)
PA[7:0]
ADDR[15:8]/
DATA[15:8]
—
—
—
VDDR
PUCR/
PUPAE
Port A I/O,
Disabled Multiplexed
Address/Data
PB[7:0]
ADDR[7:0]/
DATA[7:0]
—
—
—
VDDR
PUCR/
PUPBE
Port B I/O,
Disabled Multiplexed
Address/Data
PE7
NOACC
XCLKS
—
—
VDDR
PUCR/
PUPEE
PE6
IPIPE1
MODB
—
—
VDDR
PE5
IPIPE0
MODA
—
—
VDDR
PE4
ECLK
—
—
—
VDDR
PE3
LSTRB
TAGLO
—
—
VDDR
PE2
R/W
—
—
—
VDDR
PE1
IRQ
—
—
—
VDDR
PE0
XIRQ
—
—
—
VDDR
PH7
KWH7
---
—
—
VDDR
Mode
dependant1
While RESET pin
low:
Down
PUCR/
PUPEE
Mode
dependant1
Up
Freescale Semiconductor
PERH/
PPSH
Port E I/O, Access,
Clock Select
Port E I/O, Pipe
Status, Mode Input
Port E I/O, Pipe
Status, Mode Input
Port E I/O, Bus Clock
Output
Port E I/O, Byte
Strobe, Tag Low
Port E I/O, R/W in
expanded modes
Port E Input,
Maskable Interrupt
Port E Input, Non
Maskable Interrupt
Disabled Port H I/O, Interrupt
61
Device User Guide — 9S12DT128DGV2/D V02.17
Pin Name Pin Name Pin Name Pin Name Pin Name Powered
Function 1 Function 2 Function 3 Function 4 Function 5
by
Internal Pull
Resistor
CTRL
Reset
State
Description
PH6
KWH6
---
—
—
VDDR
PERH/
PPSH
Disabled Port H I/O, Interrupt
PH5
KWH5
---
—
—
VDDR
PERH/
PPSH
Disabled Port H I/O, Interrupt
PH4
KWH4
---
—
—
VDDR
PERH/
PPSH
Disabled Port H I/O, Interrupt
PH3
KWH3
SS1
—
—
VDDR
PERH/
PPSH
Disabled
Port H I/O, Interrupt,
SS of SPI1
PH2
KWH2
SCK1
—
—
VDDR
PERH/
PPSH
Disabled
Port H I/O, Interrupt,
SCK of SPI1
PH1
KWH1
MOSI1
—
—
VDDR
PERH/
PPSH
Disabled
Port H I/O, Interrupt,
MOSI of SPI1
PH0
KWH0
MISO1
—
—
VDDR
PERH/
PPSH
Disabled
Port H I/O, Interrupt,
MISO of SPI1
PJ7
KWJ7
TXCAN4
SCL
TXCAN0
VDDX
PERJ/
PPSJ
Up
Port J I/O, Interrupt,
TX of CAN4, SCL of
IIC
PJ6
KWJ6
RXCAN4
SDA
RXCAN0
VDDX
PERJ/
PPSJ
Up
Port J I/O, Interrupt,
RX of CAN4, SDA of
IIC
PJ[1:0]
KWJ[1:0]
—
—
—
VDDX
PERJ/
PPSJ
Up
Port J I/O, Interrupts
PK7
ECS
ROMCTL
—
—
VDDX
PUCR/
PUPKE
Up
Port K I/O,
Emulation Chip
Select, ROM Control
PK[5:0]
XADDR[19:
14]
—
—
—
VDDX
PUCR/
PUPKE
Up
Port K I/O, Extended
Addresses
PM7
BF_PSLM
TXCAN4
—
—
VDDX
Port M I/O, BF slot
PERM/
Disabled mismatch pulse, TX
PPSM
of CAN4
VDDX
Port M I/O, BF illegal
PERM/
pulse/message
Disabled
PPSM
format error pulse,
RX of CAN4
VDDX
PERM/
PPSM
Port M I/O, BF
reception ok pulse,
Disabled
TX of CAN0, CAN4,
SCK of SPI0
PM6
PM5
BF_PERR
BF_PROK
RXCAN4
TXCAN0
—
TXCAN4
—
SCK0
PM4
BF_PSYN
RXCAN0
RXCAN4
MOSI0
VDDX
PERM/
PPSM
Port M I/O, BF sync
pulse (Rx/Tx) OK
Disabled pulse o/p, RX of
CAN0, CAN4, MOSI
of SPI0
PM3
TX_BF
TXCAN1
TXCAN0
SS0
VDDX
PERM/
PPSM
Port M I/O, TX of BF,
Disabled CAN1, CAN0, SS of
SPI0
PM2
RX_BF
RXCAN1
RXCAN0
MISO0
VDDX
PERM/
PPSM
Port M I/O, RX of BF,
Disabled CAN1, CAN0, MISO
of SPI0
62
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Pin Name Pin Name Pin Name Pin Name Pin Name Powered
Function 1 Function 2 Function 3 Function 4 Function 5
by
Internal Pull
Resistor
CTRL
Reset
State
Description
PM1
TXCAN0
TXB
—
—
VDDX
PERM/
PPSM
Disabled
Port M I/O, TX of
CAN0, RX of BDLC
PM0
RXCAN0
RXB
—
—
VDDX
PERM/
PPSM
Disabled
Port M I/O, RX of
CAN0, RX of BDLC
PP7
KWP7
PWM7
—
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt,
Channel 7 of PWM
PP6
KWP6
PWM6
—
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt,
Channel 6 of PWM
PP5
KWP5
PWM5
—
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt,
Channel 5 of PWM
PP4
KWP4
PWM4
—
—
VDDX
PERP/
PPSP
Disabled
Port P I/O, Interrupt,
Channel 4 of PWM
PP3
KWP3
PWM3
SS1
—
VDDX
PERP/
PPSP
Port P I/O, Interrupt,
Disabled Channel 3 of PWM,
SS of SPI1
PP2
KWP2
PWM2
SCK1
—
VDDX
PERP/
PPSP
Port P I/O, Interrupt,
Disabled Channel 2 of PWM,
SCK of SPI1
PP1
KWP1
PWM1
MOSI1
—
VDDX
PERP/
PPSP
Port P I/O, Interrupt,
Disabled Channel 1 of PWM,
MOSI of SPI1
PP0
KWP0
PWM0
MISO1
—
VDDX
PERP/
PPSP
Port P I/O, Interrupt,
Disabled Channel 0 of PWM,
MISO2 of SPI1
PS7
SS0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, SS of
SPI0
PS6
SCK0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, SCK of
SPI0
PS5
MOSI0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, MOSI of
SPI0
PS4
MISO0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, MISO of
SPI0
PS3
TXD1
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, TXD of
SCI1
PS2
RXD1
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, RXD of
SCI1
PS1
TXD0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, TXD of
SCI0
PS0
RXD0
—
—
—
VDDX
PERS/
PPSS
Up
Port S I/O, RXD of
SCI0
PT[7:0]
IOC[7:0]
—
—
—
VDDX
PERT/
PPST
Disabled
Port T I/O, Timer
channels
NOTES:
1. Refer to PEAR register description in HCS12 Multiplexed External Bus Interface (MEBI) Block Guide.
Freescale Semiconductor
63
Device User Guide — 9S12DT128DGV2/D V02.17
2.3 Detailed Signal Descriptions
2.3.1 EXTAL, XTAL — Oscillator Pins
EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived
from the EXTAL input frequency. XTAL is the crystal output.
2.3.2 RESET — External Reset Pin
An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up
state, and an output when an internal MCU function causes a reset.
2.3.3 TEST — Test Pin
This input only pin is reserved for test.
NOTE:
The TEST pin must be tied to VSS in all applications.
2.3.4 XFC — PLL Loop Filter Pin
PLL loop filter. Please ask your Freescale representative for the interactive application note to compute
PLL loop filter elements. Any current leakage on this pin must be avoided.
XFC
R
MCU
CP
CS
VDDPLL
VDDPLL
Figure 2-4 PLL Loop Filter Connections
2.3.5 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin
The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the
instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is
latched to the MODC bit at the rising edge of RESET. This pin has a permanently enabled pull-up device.
64
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
2.3.6 PAD[15] / AN1[7] / ETRIG1 — Port AD Input Pin [15]
PAD15 is a general purpose input pin and analog input of the analog to digital converter ATD1. It can act
as an external trigger input for the ATD1.
2.3.7 PAD[14:8] / AN1[6:0] — Port AD Input Pins [14:8]
PAD14 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD1.
2.3.8 PAD[7] / AN0[7] / ETRIG0 — Port AD Input Pin [7]
PAD7 is a general purpose input pin and analog input of the analog to digital converter ATD0. It can act
as an external trigger input for the ATD0.
2.3.9 PAD[6:0] / AN0[6:0] — Port AD Input Pins [6:0]
PAD6 - PAD8 are general purpose input pins and analog inputs of the analog to digital converter ATD0.
2.3.10 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins
PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.
2.3.11 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins
PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.
2.3.12 PE7 / NOACC / XCLKS — Port E I/O Pin 7
PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal
will assert when the CPU is not using the bus.
The XCLKS is an input signal which controls whether a crystal in combination with the internal Colpitts
(low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this
pin is latched at the rising edge of RESET. If the input is a logic low the EXTAL pin is configured for an
external clock drive. If input is a logic high an oscillator circuit is configured on EXTAL and XTAL. Since
this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is
an oscillator circuit on EXTAL and XTAL.
Freescale Semiconductor
65
Device User Guide — 9S12DT128DGV2/D V02.17
EXTAL
CDC *
C1
MCU
Crystal or
ceramic resonator
XTAL
C2
VSSPLL
* Due to the nature of a translated ground Colpitts oscillator a
DC voltage bias is applied to the crystal
Please contact the crystal manufacturer for crystal DC
bias conditions and recommended capacitor value CDC.
Figure 2-5 Colpitts Oscillator Connections (PE7=1)
EXTAL
C1
MCU
XTAL
Crystal or
ceramic resonator
RB
RS*
C2
VSSPLL
* Rs can be zero (shorted) when used with higher frequency crystals.
Refer to manufacturer’s data.
Figure 2-6 Pierce Oscillator Connections (PE7=0)
EXTAL
MCU
XTAL
CMOS-COMPATIBLE
EXTERNAL OSCILLATOR
(VDDPLL-Level)
not connected
Figure 2-7 External Clock Connections (PE7=0)
66
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
2.3.13 PE6 / MODB / IPIPE1 — Port E I/O Pin 6
PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active
when RESET is low.
2.3.14 PE5 / MODA / IPIPE0 — Port E I/O Pin 5
PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active
when RESET is low.
2.3.15 PE4 / ECLK — Port E I/O Pin 4
PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK.
ECLK can be used as a timing reference.
2.3.16 PE3 / LSTRB / TAGLO — Port E I/O Pin 3
PE3 is a general purpose input or output pin. In MCU expanded modes of operation, LSTRB can be used
for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on,
TAGLO is used to tag the low half of the instruction word being read into the instruction queue.
2.3.17 PE2 / R/W — Port E I/O Pin 2
PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the
read/write output signal for the external bus. It indicates the direction of data on the external bus.
2.3.18 PE1 / IRQ — Port E Input Pin 1
PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.
2.3.19 PE0 / XIRQ — Port E Input Pin 0
PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.
2.3.20 PH7 / KWH7 — Port H I/O Pin 7
PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
Freescale Semiconductor
67
Device User Guide — 9S12DT128DGV2/D V02.17
2.3.21 PH6 / KWH6 — Port H I/O Pin 6
PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.3.22 PH5 / KWH5 — Port H I/O Pin 5
PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.3.23 PH4 / KWH4 — Port H I/O Pin 2
PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode.
2.3.24 PH3 / KWH3 / SS1 — Port H I/O Pin 3
PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral Interface
1 (SPI1).
2.3.25 PH2 / KWH2 / SCK1 — Port H I/O Pin 2
PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface
1 (SPI1).
2.3.26 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1
PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input
pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).
2.3.27 PH0 / KWH0 / MISO1 — Port H I/O Pin 0
PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output
(during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).
2.3.28 PJ7 / KWJ7 / TXCAN4 / SCL / TXCAN0 — PORT J I/O Pin 7
PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable
Controller Area Network controller 0 or 4 (CAN0, CAN4) or the serial clock pin SCL of the IIC module.
68
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
2.3.29 PJ6 / KWJ6 / RXCAN4 / SDA / RXCAN0 — PORT J I/O Pin 6
PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable
Controller Area Network controller 0 or 4 (CAN0, CAN4) or the serial data pin SDA of the IIC module.
2.3.30 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]
PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt
causing the MCU to exit STOP or WAIT mode.
2.3.31 PK7 / ECS / ROMCTL — Port K I/O Pin 7
PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used
as the emulation chip select output (ECS). While configurating MCU expanded modes, this pin is used to
enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the
state of this pin is latched to the ROMON bit. For a complete list of modes refer to 4.2 Chip
Configuration Summary.
2.3.32 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]
PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins
provide the expanded address XADDR[19:14] for the external bus.
2.3.33 PM7 / BF_PSLM / TXCAN4 — Port M I/O Pin 7
PM7 is a general purpose input or output pin. It can be configured as the slot mismatch output pulse pin
of Byteflight. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area
Network controllers 4 (CAN4).
2.3.34 PM6 / BF_PERR / RXCAN4 — Port M I/O Pin 6
PM6 is a general purpose input or output pin. It can be configured as the illegal pulse or message format
error output pulse pin of Byteflight. It can be configured as the receive pin RXCAN of the Motorola
Scalable Controller Area Network controllers 4 (CAN4).
2.3.35 PM5 / BF_PROK / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5
PM5 is a general purpose input or output pin. It can be configured as the reception OK output pulse pin of
Byteflight. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area
Network controllers 0 or 4 (CAN0 or CAN4). It can be configured as the serial clock pin SCK of the Serial
Peripheral Interface 0 (SPI0).
Freescale Semiconductor
69
Device User Guide — 9S12DT128DGV2/D V02.17
2.3.36 PM4 / BF_PSYN / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4
PM4 is a general purpose input or output pin. It can be configured as the correct synchronisation pulse
reception/transmission output pulse pin of Byteflight. It can be configured as the receive pin RXCAN of
the Motorola Scalable Controller Area Network controllers 0 or 4 (CAN0 or CAN4). It can be configured
as the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial
Peripheral Interface 0 (SPI0).
2.3.37 PM3 / TX_BF / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3
PM3 is a general purpose input or output pin. It can be configured as the transmit pinTX_BF of Byteflight.
It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network
controllers 1 or 0 (CAN1 or CAN0). It can be configured as the slave select pin SS of the Serial Peripheral
Interface 0 (SPI0).
2.3.38 PM2 / RX_BF / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2
PM2 is a general purpose input or output pin. It can be configured as the receive pin RX_BF of Byteflight.
It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network
controllers 1 or 0 (CAN1 or CAN0). It can be configured as the master input (during master mode) or slave
output pin (during slave mode) MISO for the Serial Peripheral Interface 0 (SPI0).
2.3.39 PM1 / TXCAN0 / TXB — Port M I/O Pin 1
PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the transmit pin
TXB of the BDLC.
2.3.40 PM0 / RXCAN0 / RXB — Port M I/O Pin 0
PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the receive pin
RXB of the BDLC.
2.3.41 PP7 / KWP7 / PWM7 — Port P I/O Pin 7
PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output.
2.3.42 PP6 / KWP6 / PWM6 — Port P I/O Pin 6
PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output.
70
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
2.3.43 PP5 / KWP5 / PWM5 — Port P I/O Pin 5
PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output.
2.3.44 PP4 / KWP4 / PWM4 — Port P I/O Pin 4
PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output.
2.3.45 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3
PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. It
can be configured as slave select pin SS of the Serial Peripheral Interface 1 (SPI1).
2.3.46 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2
PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. It
can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).
2.3.47 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1
PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. It
can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of
the Serial Peripheral Interface 1 (SPI1).
2.3.48 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0
PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. It
can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of
the Serial Peripheral Interface 1 (SPI1).
2.3.49 PS7 / SS0 — Port S I/O Pin 7
PS7 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial
Peripheral Interface 0 (SPI0).
2.3.50 PS6 / SCK0 — Port S I/O Pin 6
PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial
Peripheral Interface 0 (SPI0).
Freescale Semiconductor
71
Device User Guide — 9S12DT128DGV2/D V02.17
2.3.51 PS5 / MOSI0 — Port S I/O Pin 5
PS5 is a general purpose input or output pin. It can be configured as master output (during master mode)
or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).
2.3.52 PS4 / MISO0 — Port S I/O Pin 4
PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or
slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).
2.3.53 PS3 / TXD1 — Port S I/O Pin 3
PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 1 (SCI1).
2.3.54 PS2 / RXD1 — Port S I/O Pin 2
PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 1 (SCI1).
2.3.55 PS1 / TXD0 — Port S I/O Pin 1
PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 0 (SCI0).
2.3.56 PS0 / RXD0 — Port S I/O Pin 0
PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 0 (SCI0).
2.3.57 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]
PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output
compare pins IOC7-IOC0 of the Enhanced Capture Timer (ECT).
2.4 Power Supply Pins
MC9S12DT128 power and ground pins are described below.
Table 2-2 MC9S12DT128 Power and Ground Connection Summary
72
Pin Number
112-pin QFP
Nominal
Voltage
VDD1, 2
13, 65
2.5V
VSS1, 2
14, 66
0V
Mnemonic
Description
Internal power and ground generated by internal regulator
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Pin Number
112-pin QFP
Nominal
Voltage
VDDR
41
5.0V
VSSR
40
0V
VDDX
107
5.0V
VSSX
106
0V
VDDA
83
5.0V
VSSA
86
0V
VRL
85
0V
VRH
84
5.0V
VDDPLL
43
2.5V
VSSPLL
45
0V
VREGEN
97
5V
Mnemonic
NOTE:
Description
External power and ground, supply to pin drivers and internal
voltage regulator.
External power and ground, supply to pin drivers.
Operating voltage and ground for the analog-to-digital
converters and the reference for the internal voltage regulator,
allows the supply voltage to the A/D to be bypassed
independently.
Reference voltages for the analog-to-digital converter.
Provides operating voltage and ground for the Phased-Locked
Loop. This allows the supply voltage to the PLL to be
bypassed independently. Internal power and ground
generated by internal regulator.
Internal Voltage Regulator enable/disable
All VSS pins must be connected together in the application.
2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers
External power and ground for I/O drivers. Because fast signal transitions place high, short-duration
current demands on the power supply, use bypass capacitors with high-frequency characteristics and place
them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are
loaded.
2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal
Voltage Regulator
External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal
transitions place high, short-duration current demands on the power supply, use bypass capacitors with
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements
depend on how heavily the MCU pins are loaded.
2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins
Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high,
short-duration current demands on the power supply, use bypass capacitors with high-frequency
characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the
internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is
turned off, if VREGEN is tied to ground.
NOTE:
No load allowed except for bypass capacitors.
Freescale Semiconductor
73
Device User Guide — 9S12DT128DGV2/D V02.17
2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG
VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to
digital converter. It also provides the reference for the internal voltage regulator. This allows the supply
voltage to the ATD and the reference voltage to be bypassed independently.
2.4.5 VRH, VRL — ATD Reference Voltage Input Pins
VRH and VRL are the reference voltage input pins for the analog to digital converter.
2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL
Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the
supply voltage to the Oscillator and PLL to be bypassed independently.This 2.5V voltage is generated by
the internal voltage regulator.
NOTE:
No load allowed except for bypass capacitors.
2.4.7 VREGEN — On Chip Voltage Regulator Enable
Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be
supplied externally.
74
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Section 3 System Clock Description
3.1 Overview
The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.
Figure 3-1 shows the clock connections from the CRG to all modules.
Consult the CRG Block User Guide for details on clock generation.
HCS12 CORE
BDM
CPU
MEBI
MMC
INT
BKP
core clock
Flash
RAM
EEPROM
ECT
EXTAL
ATD0, 1
CRG
bus clock
PWM
SCI0, SCI1
oscillator clock
XTAL
SPI0, 1
CAN0, 1, 4
IIC
BDLC
PIM
BF
Figure 3-1 Clock Connections
Freescale Semiconductor
75
Device User Guide — 9S12DT128DGV2/D V02.17
76
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Section 4 Modes of Operation
4.1 Overview
Eight possible modes determine the operating configuration of the MC9S12DT128. Each mode has an
associated default memory map and external bus configuration controlled by a further pin.
Three low power modes exist for the device.
4.2 Chip Configuration Summary
The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during
reset ((Table 4-1)). The MODC, MODB, and MODA bits in the MODE register show the current
operating mode and provide limited mode switching during operation. The states of the MODC, MODB,
and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal
allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is
visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the
ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.
Table 4-1 Mode Selection
BKGD =
MODC
PE6 =
MODB
PE5 =
MODA
PK7 =
ROMCTL
ROMON
Bit
0
0
0
X
1
0
0
1
0
1
1
0
0
1
0
X
0
0
1
1
0
X
1
0
0
1
1
X
1
0
0
1
1
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Mode Description
Special Single Chip, BDM allowed and ACTIVE. BDM is
allowed in all other modes but a serial command is
required to make BDM active.
Emulation Expanded Narrow, BDM allowed
Special Test (Expanded Wide), BDM allowed
Emulation Expanded Wide, BDM allowed
Normal Single Chip, BDM allowed
Normal Expanded Narrow, BDM allowed
Special Peripheral; BDM allowed but bus operations
would cause bus conflicts (must not be used)
Normal Expanded Wide, BDM allowed
For further explanation on the modes refer to the HCS12 Multiplexed External Bus Interface Block Guide.
Table 4-2 Clock Selection Based on PE7
PE7 = XCLKS
Freescale Semiconductor
Description
1
Colpitts Oscillator selected
0
Pierce Oscillator/external clock selected
77
Device User Guide — 9S12DT128DGV2/D V02.17
Table 4-3 Voltage Regulator VREGEN
VREGEN
Description
1
Internal Voltage Regulator enabled
0
Internal Voltage Regulator disabled, VDD1,2 and
VDDPLL must be supplied externally with 2.5V
4.3 Security
The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:
•
Protection of the contents of FLASH,
•
Protection of the contents of EEPROM,
•
Operation in single-chip mode, No BDM possible
•
Operation from external memory with internal FLASH and EEPROM disabled.
The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example
of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters stored in EEPROM.
4.3.1 Securing the Microcontroller
Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by
programming the security bits located in the FLASH module. These non-volatile bits will keep the part
secured through resetting the part and through powering down the part.
The security byte resides in a portion of the Flash array.
Check the Flash Block User Guide for more details on the security configuration.
4.3.2 Operation of the Secured Microcontroller
4.3.2.1 Normal Single Chip Mode
This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.
4.3.2.2 Executing from External Memory
The user may wish to execute from external space with a secured microcontroller. This is accomplished
by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM
operations will be blocked.
78
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
4.3.3 Unsecuring the Microcontroller
In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be
done through an external program in expanded mode or via a .sequence of BDM commands. Unsecuring
is also possible via the Backdoor Key Access. Refer to Flash Block Guide for details.
Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode.
This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program
completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally
done through the BDM, but the user could also change to expanded mode (by writing the mode bits
through the BDM) and jumping to an external program (again through BDM commands). Note that if the
part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be
secured again.
4.4 Low Power Modes
The microcontroller features three main low power modes. Consult the respective Block User Guide for
information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of
information about the clock system is the Clock and Reset Generator User Guide (CRG).
4.4.1 Stop
Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static
mode. Wake up from this mode can be done via reset or external interrupts.
4.4.2 Pseudo Stop
This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running
and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are
turned off. This mode consumes more current than the full STOP mode, but the wake up time from this
mode is significantly shorter.
4.4.3 Wait
This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute
instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active.
For further power consumption the peripherals can individually turn off their local clocks.
4.4.4 Run
Although this is not a low power mode, unused peripheral modules should not be enabled in order to save
power.
Freescale Semiconductor
79
Device User Guide — 9S12DT128DGV2/D V02.17
80
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Section 5 Resets and Interrupts
5.1 Overview
Consult the Exception Processing section of the CPU Reference Manual for information on resets and
interrupts.
5.2 Vectors
5.2.1 Vector Table
(Table 5-1) lists interrupt sources and vectors in default order of priority.
Table 5-1 Interrupt Vector Locations
Interrupt Source
CCR
Mask
Local Enable
HPRIO Value
to Elevate
$FFFE, $FFFF
Reset
None
None
–
$FFFC, $FFFD
Clock Monitor fail reset
None
COPCTL (CME, FCME)
–
$FFFA, $FFFB
COP failure reset
None
COP rate select
–
$FFF8, $FFF9
Unimplemented instruction trap
None
None
–
$FFF6, $FFF7
SWI
None
None
–
$FFF4, $FFF5
XIRQ / BF High Priority Sync Pulse
X-Bit
None / BFRIER (XSYNIE)
–
$FFF2, $FFF3
IRQ
I-Bit
INTCR (IRQEN)
$F2
$FFF0, $FFF1
Real Time Interrupt
I-Bit
CRGINT (RTIE)
$F0
$FFEE, $FFEF
Enhanced Capture Timer channel 0
I-Bit
TIE (C0I)
$EE
$FFEC, $FFED
Enhanced Capture Timer channel 1
I-Bit
TIE (C1I)
$EC
$FFEA, $FFEB
Enhanced Capture Timer channel 2
I-Bit
TIE (C2I)
$EA
$FFE8, $FFE9
Enhanced Capture Timer channel 3
I-Bit
TIE (C3I)
$E8
$FFE6, $FFE7
Enhanced Capture Timer channel 4
I-Bit
TIE (C4I)
$E6
$FFE4, $FFE5
Enhanced Capture Timer channel 5
I-Bit
TIE (C5I)
$E4
$FFE2, $FFE3
Enhanced Capture Timer channel 6
I-Bit
TIE (C6I)
$E2
$FFE0, $FFE1
Enhanced Capture Timer channel 7
I-Bit
TIE (C7I)
$E0
$FFDE, $FFDF
Enhanced Capture Timer overflow
I-Bit
TSCR2 (TOF)
$DE
$FFDC, $FFDD
Pulse accumulator A overflow
I-Bit
PACTL (PAOVI)
$DC
$FFDA, $FFDB
Pulse accumulator input edge
I-Bit
PACTL (PAI)
$DA
$FFD8, $FFD9
SPI0
I-Bit
SPICR1 (SPIE, SPTIE)
$D8
$D6
Vector Address
$FFD6, $FFD7
SCI0
I-Bit
SCICR2
(TIE, TCIE, RIE, ILIE)
$FFD4, $FFD5
SCI1
I-Bit
SCICR2
(TIE, TCIE, RIE, ILIE)
$D4
$FFD2, $FFD3
ATD0
I-Bit
ATDCTL2 (ASCIE)
$D2
$FFD0, $FFD1
ATD1
I-Bit
ATDCTL2 (ASCIE)
$D0
$FFCE, $FFCF
Port J
I-Bit
PIEJ
(PIEJ7, PIEJ6, PIEJ1, PIEJ0)
$CE
$FFCC, $FFCD
Port H
I-Bit
PIEH (PIEH7-0)
$CC
Freescale Semiconductor
81
Device User Guide — 9S12DT128DGV2/D V02.17
$FFCA, $FFCB
Modulus Down Counter underflow
I-Bit
MCCTL (MCZI)
$CA
$FFC8, $FFC9
Pulse Accumulator B Overflow
I-Bit
PBCTL (PBOVI)
$C8
$FFC6, $FFC7
CRG PLL lock
I-Bit
PLLCR (LOCKIE)
$C6
$FFC4, $FFC5
CRG Self Clock Mode
I-Bit
PLLCR (SCMIE)
$C4
$FFC2, $FFC3
BDLC
I-Bit
DLCBCR1 (IE)
$C2
$FFC0, $FFC1
IIC Bus
I-Bit
IBCR (IBIE)
$C0
$FFBE, $FFBF
SPI1
I-Bit
SPICR1 (SPIE, SPTIE)
$BE
EEPROM
I-Bit
ECNFG (CCIE, CBEIE)
$FFB8, $FFB9
FLASH
I-Bit
FCNFG (CCIE, CBEIE)
$B8
$FFB6, $FFB7
CAN0 wake-up
I-Bit
CANRIER (WUPIE)
$B6
$FFB4, $FFB5
CAN0 errors
I-Bit
CANRIER (CSCIE, OVRIE)
$B4
$FFB2, $FFB3
CAN0 receive
I-Bit
CANRIER (RXFIE)
$B2
Reserved
$FFBC, $FFBD
$FFBA, $FFBB
$BA
$FFB0, $FFB1
CAN0 transmit
I-Bit
CANTIER (TXEIE[2:0])
$B0
$FFAE, $FFAF
CAN1 wake-up
I-Bit
CANRIER (WUPIE)
$AE
$FFAC, $FFAD
CAN1 errors
I-Bit
CANRIER (CSCIE, OVRIE)
$AC
$FFAA, $FFAB
CAN1 receive
I-Bit
CANRIER (RXFIE)
$AA
$FFA8, $FFA9
CAN1 transmit
I-Bit
CANTIER (TXEIE[2:0])
$A8
$FFA6, $FFA7
BF Receive FIFO not empty
I-Bit
BFRIER (RCVFIE)
$A6
$FFA4, $FFA5
BF receive
I-Bit
BFBUFCTL[15:0] (IENA)
$A4
$FFA2, $FFA3
BF Synchronization
I-Bit
BFRIER (SYNAIE, SYNNIE)
$A2
I-Bit
BFBUFCTL[15:0] (IENA),
BFGIER (OVRNIE, ERRIE,
SYNEIE, SYNLIE, ILLPIE,
LOCKIE, WAKEIE)
BFRIER (SLMMIE)
$A0
$FFA0, $FFA1
BF general
Reserved
$FF98, $FF9F
$FF96, $FF97
CAN4 wake-up
I-Bit
CANRIER (WUPIE)
$96
$FF94, $FF95
CAN4 errors
I-Bit
CANRIER (CSCIE, OVRIE)
$94
$FF92, $FF93
CAN4 receive
I-Bit
CANRIER (RXFIE)
$92
$FF90, $FF91
CAN4 transmit
I-Bit
CANTIER (TXEIE[2:0])
$90
$FF8E, $FF8F
Port P Interrupt
I-Bit
PIEP (PIEP7-0)
$8E
$FF8C, $FF8D
PWM Emergency Shutdown
I-Bit
PWMSDN (PWMIE)
$8C
$FF80 to
$FF8B
Reserved
5.3 Effects of Reset
When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block User Guides for register reset states.
5.3.1 I/O pins
Refer to the HCS12 Multiplexed External Bus Interface (MEBI) Block Guide for mode dependent pin
configuration of port A, B, E and K out of reset.
Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.
82
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
NOTE:
For devices assembled in 80-pin QFP packages all non-bonded out pins should be
configured as outputs after reset in order to avoid current drawn from floating
inputs. Refer to Table 2-1 for affected pins.
5.3.2 Memory
Refer to Table 1-1 for locations of the memories depending on the operating mode after reset.
The RAM array is not automatically initialized out of reset.
Freescale Semiconductor
83
Device User Guide — 9S12DT128DGV2/D V02.17
84
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Section 6 HCS12 Core Block Description
6.1 CPU Block Description
Consult the CPU Reference Manual for information on the CPU.
6.1.1 Device-specific information
When the CPU Reference Manual refers to cycles this is equivalent to Bus Clock periods. So 1 cycle is
equivalent to 1 Bus Clock period.
6.2 HCS12 Module Mapping Control (MMC) Block Description
Consult the MMC Block Guide for information on the HCS12 Module Mapping Control module.
6.2.1 Device-specific information
•
•
•
INITEE
–
Reset state: $01
–
Bits EE11-EE15 are "Write once in Normal and Emulation modes and write anytime in Special
modes".
PPAGE
–
Reset state: $00
–
Register is "Write anytime in all modes".
MEMSIZ0
–
•
Reset state: $13
MEMSIZ1
–
Reset state: $80
6.3 HCS12 Multiplexed External Bus Interface (MEBI) Block
Description
Consult the MEBI Block Guide for information on HCS12 Multiplexed External Bus Interface module.
6.3.1 Device-specific information
•
PUCR
–
Reset state: $90
Freescale Semiconductor
85
Device User Guide — 9S12DT128DGV2/D V02.17
6.4 HCS12 Interrupt (INT) Block Description
Consult the INT Block Guide for information on the HCS12 Interrupt module.
6.5 HCS12 Background Debug Module (BDM) Block Description
Consult the BDM Block Guide for information on the HCS12 Background Debug module.
6.5.1 Device-specific information
When the BDM Block Guide refers to alternate clock this is equivalent to oscillator clock.
6.6 HCS12 Breakpoint (BKP) Block Description
Consult the BKP Block Guide for information on the HCS12 Breakpoint module.
Section 7 Clock and Reset Generator (CRG) Block
Description
Consult the CRG Block User Guide for information about the Clock and Reset Generator module.
7.1 Device-specific information
The Low Voltage Reset feature of the CRG is not available on this device.
Section 8 Oscillator (OSC) Block Description
Consult the OSC Block User Guide for information about the Oscillator module.
8.1 Device-specific information
The XCLKS input signal is active low (see 2.3.12 PE / NOACC / XCLKS — Port E I/O Pin 7).
Section 9 Enhanced Capture Timer (ECT) Block
Description
86
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer
module.When the ECT_16B8C Block User Guide refers to freeze mode this is equivalent to active BDM
mode.
Section 10 Analog to Digital Converter (ATD) Block
Description
There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12DT128.
Consult the ATD_10B8C Block User Guide for information about each Analog to Digital Converter
module. When the ATD_10B8C Block User Guide refers to freeze mode this is equivalent to active BDM
mode.
Section 11 Inter-IC Bus (IIC) Block Description
Consult the IIC Block User Guide for information about the Inter-IC Bus module.
Section 12 Serial Communications Interface (SCI) Block
Description
There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12DT128
device. Consult the SCI Block User Guide for information about each Serial Communications Interface
module.
Section 13 Serial Peripheral Interface (SPI) Block
Description
There are two Serial Peripheral Interfaces (SPI1 and SPI0) implemented on MC9S12DT128. Consult the
SPI Block User Guide for information about each Serial Peripheral Interface module.
Section 14 J1850 (BDLC) Block Description
Consult the BDLC Block User Guide for information about the J1850 module.
Section 15 Byteflight (BF) Block Description
Consult the BF Block User Guide for information about the 10 Mbps Byteflight module.
Freescale Semiconductor
87
Device User Guide — 9S12DT128DGV2/D V02.17
15.1 Device-specific information
The read-only Module Version Register (BFMVR) contains the current version number of $80.
Section 16 Pulse Width Modulator (PWM) Block
Description
Consult the PWM_8B8C Block User Guide for information about the Pulse Width Modulator module.
When the PWM_8B8C Block User Guide refers to freeze mode this is equivalent to active BDM mode.
Section 17 Flash EEPROM 128K Block Description
Consult the FTS128K Block User Guide for information about the flash module.
Section 18 EEPROM 2K Block Description
Consult the EETS2K Block User Guide for information about the EEPROM module.
Section 19 RAM Block Description
This module supports single-cycle misaligned word accesses without wait states.
Section 20 MSCAN Block Description
There are three MSCAN modules (CAN4, CAN1 and CAN0) implemented on the MC9S12DT128.
Consult the MSCAN Block User Guide for information about the Motorola Scalable CAN Module.
Section 21 Port Integration Module (PIM) Block Description
Consult the PIM_9DTB128 Block User Guide for information about the Port Integration Module.
Section 22 Voltage Regulator (VREG) Block Description
Consult the VREG Block User Guide for information about the dual output linear voltage regulator.
88
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Section 23 Printed Circuit Board Layout Proposal
Table 23-1 Suggested External Component Values
Component
Purpose
Type
Value
C1
VDD1 filter cap
ceramic X7R
100 … 220nF
C2
VDD2 filter cap
ceramic X7R
100 … 220nF
C3
VDDA filter cap
ceramic X7R
100nF
C4
VDDR filter cap
X7R/tantalum
>= 100nF
C5
VDDPLL filter cap
ceramic X7R
100nF
C6
VDDX filter cap
X7R/tantalum
>= 100nF
C7
OSC load cap
C8
OSC load cap
C9 / CS
PLL loop filter cap
C10 / CP
PLL loop filter cap
C11 / CDC
DC cutoff cap
Colpitts mode only, if recommended by
quartz manufacturer
R1 / R
PLL loop filter res
See PLL Specification chapter
See PLL specification chapter
R2 / RB
Pierce mode only
R3 / RS
Q1
Quartz
The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the
MCU itself. The following rules must be observed:
•
Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the
corresponding pins (C1 – C6).
•
Central point of the ground star should be the VSSR pin.
•
Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
•
VSSPLL must be directly connected to VSSR.
•
Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7,
C8, C11 and Q1 as small as possible.
•
Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the
connection area to the MCU.
•
Central power input should be fed in at the VDDA/VSSA pins.
Freescale Semiconductor
89
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 23-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
C1
VSS1
VSS2
C2
VDD2
VSSR
C4
C7
90
C8
C10
C9
R1
C11
C5
VDDR
Q1
VSSPLL
VDDPLL
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 23-2 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204) Colpitts Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
VSS2
C1
C2
VSS1
VDD2
VSSR
C4
C5
VDDR
C7
C8
C11
Q1
C10
C9
R1
Freescale Semiconductor
VSSPLL
VDDPLL
91
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 23-3 Recommended PCB Layout for 112LQFP Pierce Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
C1
VSS1
VSS2
C2
VDD2
VSSR
VSSPLL
C4
R3
C5
VDDR
R2
Q1
C7
C8
C10
C9
VDDPLL
R1
92
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 23-4 Recommended PCB Layout for 80QFP (MC9S12DG128E, MC9S12DG128,
MC9S12DJ128E, MC9S12DJ128, MC9S12A128, SC515847, SC515848, SC101161DG,
SC101161DJ, SC102203, and SC102204) Pierce Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
VSS2
C1
C2
VSS1
VDD2
VSSPLL
VSSR
C4
R3
C5
VDDR
R2
Q1
C7
Freescale Semiconductor
C8
C10
C9
R1
VSSPLL
VDDPLL
93
Device User Guide — 9S12DT128DGV2/D V02.17
Figure 23-5 Recommended PCB Layout for 80QFP (MC9S12DB128, SC515846, and
SC102202) Pierce Oscillator
VREGEN
C6
VDDX
VSSX
VSSA
C3
VDDA
VDD1
VSS2
C1
C2
VSS1
VDD2
VSSPLL
VSSR
C4
R3
C5
VDDR
R2
Q1
C7
94
C8
C10
C9
R1
VSSPLL
VDDPLL
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Appendix A Electrical Characteristics
A.1 General
This introduction is intended to give an overview on several common topics like power supply, current
injection etc.
A.1.1 Parameter Classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding the following classification is used and the parameters are tagged
accordingly in the tables where appropriate.
P:
Those parameters are guaranteed during production testing on each individual device.
C:
Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations. They are regularly verified by production monitors.
T:
Those parameters are achieved by design characterization on a small sample size from typical
devices. All values shown in the typical column are within this category.
D:
Those parameters are derived mainly from simulations.
A.1.2 Power Supply
The MC9S12DT128 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator, PLL
and internal logic.
The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator.
The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage
regulator.
VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the
oscillator and the PLL.
VSS1 and VSS2 are internally connected by metal.
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.
Freescale Semiconductor
97
Device User Guide — 9S12DT128DGV2/D V02.17
NOTE:
In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5
is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR
pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and
VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.
A.1.3 Pins
There are four groups of functional pins.
A.1.3.1 5V I/O pins
Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog
inputs, BKGD pin and the RESET inputs.The internal structure of all those pins is identical, however some
of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down
resistors are disabled permanently.
A.1.3.2 Analog Reference
This class is made up by the two VRH and VRL pins.
A.1.3.3 Oscillator
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied
by VDDPLL.
A.1.3.4 TEST
This pin is used for production testing only.
A.1.3.5 VREGEN
This pin is used to enable the on chip voltage regulator.
A.1.4 Current Injection
Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the
injection current may flow out of VDD5 and could result in external power supply going out of regulation.
Insure external VDD5 load will shunt current greater than maximum injection current. This will be the
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is
very low which would reduce overall power consumption.
98
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.1.5 Absolute Maximum Ratings
Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5).
Table A-1 Absolute Maximum Ratings1
Num
Rating
Symbol
Min
Max
Unit
1
I/O, Regulator and Analog Supply Voltage
VDD5
-0.3
6.0
V
2
Digital Logic Supply Voltage 2
VDD
-0.3
3.0
V
3
PLL Supply Voltage (2)
VDDPLL
-0.3
3.0
V
4
Voltage difference VDDX to VDDR and VDDA
∆VDDX
-0.3
0.3
V
5
Voltage difference VSSX to VSSR and VSSA
∆VSSX
-0.3
0.3
V
6
Digital I/O Input Voltage
VIN
-0.3
6.0
V
7
Analog Reference
VRH, VRL
-0.3
6.0
V
8
XFC, EXTAL, XTAL inputs
VILV
-0.3
3.0
V
9
TEST input
VTEST
-0.3
10.0
V
10
Instantaneous Maximum Current
Single pin limit for all digital I/O pins 3
ID
-25
+25
mA
11
Instantaneous Maximum Current
Single pin limit for XFC, EXTAL, XTAL4
I
DL
-25
+25
mA
12
Instantaneous Maximum Current
Single pin limit for TEST 5
IDT
-0.25
0
mA
13
Storage Temperature Range
T
– 65
155
°C
stg
NOTES:
1. Beyond absolute maximum ratings device might be damaged.
2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
The absolute maximum ratings apply when the device is powered from an external source.
3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.
4. Those pins are internally clamped to VSSPLL and VDDPLL.
5. This pin is clamped low to VSSX, but not clamped high. This pin must be tied low in applications.
A.1.6 ESD Protection and Latch-up Immunity
All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM), the Machine Model (MM) and the Charge Device Model.
Freescale Semiconductor
99
Device User Guide — 9S12DT128DGV2/D V02.17
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
Table A-2 ESD and Latch-up Test Conditions
Model
Human Body
Machine
Description
Symbol
Value
Unit
Series Resistance
R1
1500
Ohm
Storage Capacitance
C
100
pF
Number of Pulse per pin
positive
negative
–
–
3
3
Series Resistance
R1
0
Ohm
Storage Capacitance
C
200
pF
Number of Pulse per pin
positive
negative
–
–
3
3
Minimum input voltage limit
–2.5
V
Maximum input voltage limit
7.5
V
Latch-up
Table A-3 ESD and Latch-Up Protection Characteristics
Num
C
Rating
Symbol
Min
Max
Unit
1
C Human Body Model (HBM)
VHBM
2000
–
V
2
C Machine Model (MM)
VMM
200
–
V
3
C Charge Device Model (CDM)
VCDM
500
–
V
4
Latch-up Current at 125°C
C positive
negative
ILAT
+100
–100
–
mA
5
Latch-up Current at 27°C
C positive
negative
ILAT
+200
–200
–
mA
A.1.7 Operating Conditions
This chapter describes the operating conditions of the device. Unless otherwise noted those conditions
apply to all the following data.
NOTE:
100
Please refer to the temperature rating of the device (C, V, M) with regards to the
ambient temperature TA and the junction temperature TJ. For power dissipation
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
calculations refer to Section A.1.8 Power Dissipation and Thermal
Characteristics.
Table A-4 Operating Conditions
Rating
Symbol
Min
Typ
Max
Unit
I/O, Regulator and Analog Supply Voltage
VDD5
4.5
5
5.25
V
Digital Logic Supply Voltage 1
VDD
2.35
2.5
2.75
V
PLL Supply Voltage 1
VDDPLL
2.25
2.5
2.75
V
Voltage Difference VDDX to VDDR and VDDA
∆VDDX
-0.1
0
0.1
V
Voltage Difference VSSX to VSSR and VSSA
∆VSSX
-0.1
0
0.1
V
fbus
0.252
-
25
MHz
Operating Junction Temperature Range
T
J
-40
-
100
°C
Operating Ambient Temperature Range 3
T
A
-40
27
85
°C
Operating Junction Temperature Range
TJ
-40
-
120
°C
Operating Ambient Temperature Range 3
TA
-40
27
105
°C
Operating Junction Temperature Range
TJ
-40
-
140
°C
Operating Ambient Temperature Range 3
TA
-40
27
125
°C
Bus Frequency
MC9S12DT128C
MC9S12DT128V
MC9S12DT128M
NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The
given operating range applies when this regulator is disabled and the device is powered from an external source.
2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper operation.
3. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation between ambient temperature TA and device junction temperature TJ.
A.1.8 Power Dissipation and Thermal Characteristics
Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be
obtained from:
T J = T A + ( P D • Θ JA )
T J = Junction Temperature, [°C ]
T A = Ambient Temperature, [°C ]
Freescale Semiconductor
101
Device User Guide — 9S12DT128DGV2/D V02.17
P D = Total Chip Power Dissipation, [W]
Θ JA = Package Thermal Resistance, [°C/W]
The total power dissipation can be calculated from:
P D = P INT + P IO
P INT = Chip Internal Power Dissipation, [W]
Two cases with internal voltage regulator enabled and disabled must be considered:
1. Internal Voltage Regulator disabled
P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA
2
P IO =
R DSON ⋅ I IO
i
i
∑
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.
For RDSON is valid:
V OL
R DSON = ------------ ;for outputs driven low
I OL
respectively
V DD5 – V OH
R DSON = ------------------------------------ ;for outputs driven high
I OH
2. Internal voltage regulator enabled
P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA
IDDR is the current shown in (Table A-7) and not the overall current flowing into VDDR, which
additionally contains the current flowing into the external loads with output high.
P IO =
∑ RDSON ⋅ IIOi
2
i
Which is the sum of all output currents on I/O ports associated with VDDX and VDDR.
102
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Table A-5 Thermal Package Characteristics1
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
T Thermal Resistance LQFP112, single sided PCB2
θJA
–
–
54
o
2
T
Thermal Resistance LQFP112, double sided PCB
with 2 internal planes3
θJA
–
–
41
oC/W
3
T Junction to Board LQFP112
θJB
–
–
31
o
C/W
4
T Junction to Case LQFP112
θJC
–
–
11
o
C/W
5
T Junction to Package Top LQFP112
ΨJT
–
–
2
o
C/W
6
T Thermal Resistance QFP 80, single sided PCB
θJA
–
–
51
o
C/W
7
T
θJA
–
–
41
oC/W
8
T Junction to Board QFP80
θJB
–
–
27
oC/W
9
T Junction to Case QFP80
θJC
–
–
14
oC/W
10
T Junction to Package Top QFP80
ΨJT
–
–
3
oC/W
Thermal Resistance QFP 80, double sided PCB with
2 internal planes
C/W
NOTES:
1. The values for thermal resistance are achieved by package simulations
2. PC Board according to EIA/JEDEC Standard 51-3
3. PC Board according to EIA/JEDEC Standard 51-7
A.1.9 I/O Characteristics
This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g.
not all pins feature pull up/down resistances.
Freescale Semiconductor
103
Device User Guide — 9S12DT128DGV2/D V02.17
Table A-6 5V I/O Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
1
2
Rating
Symbol
Min
Typ
Max
IH
0.65*VDD5
–
IH
–
–
VDD5 + 0.3
Unit
P Input High Voltage
V
T Input High Voltage
V
P Input Low Voltage
V
–
–
0.35*VDD5
V
T Input Low Voltage
V
VSS5 – 0.3
–
–
V
IL
IL
V
3
C Input Hysteresis
4
Input Leakage Current (pins in high ohmic input
P mode)
V =V
or VSS5
in
DD5
5
Output High Voltage (pins in output mode)
C Partial Drive IOH = –2.0mA
P Full Drive IOH = –10.0mA
V
6
Output Low Voltage (pins in output mode)
C Partial Drive IOL = +2.0mA
P Full Drive IOL = +10.0mA
7
V
250
HYS
mV
-1.0
–
1.0
µA
VDD5 – 0.8
–
–
V
V
OL
–
–
0.8
V
Internal Pull Up Device Current,
P tested at V Max.
IPUL
–
–
–130
µA
Internal Pull Up Device Current,
C tested at V Min.
IPUH
–10
–
–
µA
Internal Pull Down Device Current,
P tested at V Min.
IPDH
–
–
130
µA
Internal Pull Down Device Current,
C tested at V Max.
IPDL
10
–
–
µA
11
D Input Capacitance
Cin
6
–
pF
12
Injection current1
T Single Pin limit
Total Device Limit. Sum of all injected currents
IICS
IICP
–
2.5
25
mA
13
P Port H, J, P Interrupt Input Pulse filtered 2
tPULSE
3
µs
14
P Port H, J, P Interrupt Input Pulse passed 2
tPULSE
IL
8
IH
9
IH
10
IL
Iin
OH
–2.5
–25
10
µs
NOTES:
1. Refer to Section A.1.4 Current Injection, for more details
2. Parameter only applies in STOP or Pseudo STOP mode.
A.1.10 Supply Currents
This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.
104
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.1.10.1 Measurement Conditions
All measurements are without output loads. Unless otherwise noted the currents are measured in single
chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in
Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.
A.1.10.2 Additional Remarks
In expanded modes the currents flowing in the system are highly dependent on the load at the address, data
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be
given. A very good estimate is to take the single chip currents and add the currents due to the external
loads.
Table A-7 Supply Current Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
Rating
Symbol
Run supply currents
Single Chip, Internal regulator enabled
IDD5
55
IDDW
30
5
1
P
2
P
P
All modules enabled, PLL on
only RTI enabled (1)
C
P
C
C
P
C
P
C
P
Pseudo Stop Current (RTI and COP disabled) 1, 2
-40°C
27°C
70°C
85°C
“C” Temp Option 100°C
105°C
“V” Temp Option 120°C
125°C
“M” Temp Option 140°C
Min
Typ
Max
Unit
mA
Wait Supply current
3
Pseudo Stop Current (RTI and COP enabled)
4
C
C
C
C
C
C
C
IDDPS
370
400
450
550
600
650
800
850
1200
mA
500
1600
µA
2100
5000
(1), (2)
-40°C
27°C
70°C
85°C
105°C
125°C
140°C
IDDPS
570
600
650
750
850
1200
1500
µA
Stop Current (2)
5
C
P
C
C
P
C
P
C
P
Freescale Semiconductor
-40°C
27°C
70°C
85°C
“C” Temp Option 100°C
105°C
“V” Temp Option 120°C
125°C
“M” Temp Option 140°C
IDDS
12
25
100
130
160
200
350
400
600
100
1200
µA
1700
5000
105
Device User Guide — 9S12DT128DGV2/D V02.17
NOTES:
1. PLL off, Oscillator in Colpitts Mode
2. At those low power dissipation levels TJ = TA can be assumed
106
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.2 ATD Characteristics
This section describes the characteristics of the analog to digital converter.
A.2.1 ATD Operating Characteristics
The (Table A-8) shows conditions under which the ATD operates.
The following constraints exist to obtain full-scale, full range results:
VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively
be clipped.
Table A-8 ATD Operating Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
Rating
Symbol
Min
VRL
VRH
VSSA
VDDA/2
Typ
Max
Unit
VDDA/2
VDDA
V
V
5.25
V
Reference Potential
1
D
Low
High
2
C Differential Reference Voltage1
VRH-VRL
4.50
3
D ATD Clock Frequency
fATDCLK
0.5
2.0
MHz
4
D
14
7
28
14
Cycles
µs
5
D
12
6
26
13
Cycles
µs
6
D Stop Recovery Time (VDDA=5.0 Volts)
tSR
20
µs
7
P Reference Supply current (Both ATD modules on)
IREF
0.75
mA
8
P Reference Supply current (Only one ATD module on)
IREF
0.375
mA
5.00
ATD 10-Bit Conversion Period
Clock Cycles2 NCONV10
Conv, Time at 2.0MHz ATD Clock fATDCLK TCONV10
ATD 8-Bit Conversion Period
Clock Cycles(2)
Conv, Time at 2.0MHz ATD Clock fATDCLK
NCONV8
TCONV8
NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.50V
2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.
A.2.2 Factors influencing accuracy
Three factors – source resistance, source capacitance and current injection – have an influence on the
accuracy of the ATD.
A.2.2.1 Source Resistance:
Due to the input pin leakage current as specified in (Table A-6) in conjunction with the source resistance
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS
Freescale Semiconductor
107
Device User Guide — 9S12DT128DGV2/D V02.17
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source
resistance is allowed.
A.2.2.2 Source capacitance
When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input
voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS– CINN).
A.2.2.3 Current injection
There are two cases to consider.
1. A current is injected into the channel being converted. The channel being stressed has conversion
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than
VRL unless the current is higher than specified as disruptive conditions.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy
of the conversion depending on the source resistance.
The additional input voltage error on the converted channel can be calculated as VERR = K * RS *
IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted
channel.
Table A-9 ATD Electrical Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
RS
-
-
1
KΩ
10
22
pF
2.5
mA
1
C Max input Source Resistance
2
Total Input Capacitance
T Non Sampling
Sampling
3
C Disruptive Analog Input Current
INA
4
C Coupling Ratio positive current injection
Kp
10-4
A/A
5
C Coupling Ratio negative current injection
Kn
10-2
A/A
108
CINN
CINS
-2.5
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.2.3 ATD accuracy
(Table A-10) specifies the ATD conversion performance excluding any errors due to current injection,
input capacitance and source resistance.
Table A-10 ATD Conversion Performance
Conditions are shown in (Table A-4) unless otherwise noted
VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV
fATDCLK = 2.0MHz
Num C
Rating
Symbol
Min
1
P 10-Bit Resolution
LSB
2
P 10-Bit Differential Nonlinearity
DNL
–1
3
P 10-Bit Integral Nonlinearity
INL
–2.5
4
P 10-Bit Absolute Error1
AE
-3
5
P 8-Bit Resolution
LSB
6
P 8-Bit Differential Nonlinearity
DNL
–0.5
7
P 8-Bit Integral Nonlinearity
INL
–1.0
8
P 8-Bit Absolute Error(1)
AE
-1.5
Typ
Max
5
Unit
mV
1
Counts
±1.5
2.5
Counts
±2.0
3
Counts
20
mV
0.5
Counts
±0.5
1.0
Counts
±1.0
1.5
Counts
NOTES:
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.
For the following definitions see also Figure A-1.
Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.
Vi – Vi – 1
DNL ( i ) = ------------------------ – 1
1LSB
The Integral Non-Linearity (INL) is defined as the sum of all DNLs:
n
INL ( n ) =
∑
i=1
Freescale Semiconductor
Vn – V0
DNL ( i ) = -------------------- – n
1LSB
109
Device User Guide — 9S12DT128DGV2/D V02.17
DNL
10-Bit Absolute Error Boundary
LSB
Vi-1
Vi
$3FF
8-Bit Absolute Error Boundary
$3FE
$3FD
$3FC
$FF
$3FB
$3FA
$3F9
$3F8
$FE
$3F7
$3F6
$3F4
8-Bit Resolution
10-Bit Resolution
$3F5
$FD
$3F3
9
Ideal Transfer Curve
8
2
7
10-Bit Transfer Curve
6
5
4
1
3
8-Bit Transfer Curve
2
1
0
5
10
15
20
25
30
35
40
45
5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120
Vin
mV
Figure A-1 ATD Accuracy Definitions
NOTE:
110
Figure A-1 shows only definitions, for specification values refer to Table A-10.
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.3 NVM, Flash and EEPROM
NOTE:
Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for
both Flash and EEPROM.
A.3.1 NVM timing
The time base for all NVM program or erase operations is derived from the oscillator. A minimum
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules
do not have any means to monitor the frequency and will not prevent program or erase operation at
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency a full program or erase transition is not assured.
The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator
using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within
the limits specified as fNVMOP.
The minimum program and erase times shown in (Table A-11) are calculated for maximum fNVMOP and
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.
A.3.1.1 Single Word Programming
The programming time for single word programming is dependant on the bus frequency as a well as on
the frequency fNVMOP and can be calculated according to the following formula.
1
1
t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP
f bus
A.3.1.2 Row Programming
This applies only to the Flash where up to 32 words in a row can be programmed consecutively by keeping
the command pipeline filled. The time to program a consecutive word can be calculated as:
1
1
t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP
f bus
The time to program a whole row is:
t brpgm = t swpgm + 31 ⋅ t bwpgm
Row programming is more than 2 times faster than single word programming.
A.3.1.3 Sector Erase
Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:
Freescale Semiconductor
111
Device User Guide — 9S12DT128DGV2/D V02.17
1
t era ≈ 4000 ⋅ --------------------f NVMOP
The setup time can be ignored for this operation.
A.3.1.4 Mass Erase
Erasing a NVM block takes:
1
t mass ≈ 20000 ⋅ --------------------f NVMOP
The setup time can be ignored for this operation.
A.3.1.5 Blank Check
The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the
first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup
of the command.
t check ≈ location ⋅ t cyc + 10 ⋅ t cyc
Table A-11 NVM Timing Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
50 1
MHz
1
D External Oscillator Clock
fNVMOSC
0.5
2
D Bus frequency for Programming or Erase Operations
fNVMBUS
1
3
D Operating Frequency
fNVMOP
150
200
kHz
4
P Single Word Programming Time
tswpgm
46 2
74.5 3
µs
5
D Flash Row Programming consecutive word 4
tbwpgm
20.4 (2)
31 (3)
µs
6
D Flash Row Programming Time for 32 Words (4)
tbrpgm
678.4 (2)
1035.5 (3)
µs
7
P Sector Erase Time
tera
20 5
26.7 (3)
ms
8
P Mass Erase Time
tmass
100 (5)
133 (3)
ms
9
D Blank Check Time Flash per block
tcheck
11 6
32778 7
tcyc
10
D Blank Check Time EEPROM per block
tcheck
11 (6)
1034(7)
tcyc
MHz
NOTES:
1. Restrictions for oscillator in crystal mode apply!
2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency
fbus.
3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus.
Refer to formulae in Sections Section A.3.1.1 Single Word Programming- Section A.3.1.4 Mass Erasefor guidance.
4. Row Programming operations are not applicable to EEPROM
5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP.
6. Minimum time, if first word in the array is not blank
7. Maximum time to complete check on an erased block
112
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.3.2 NVM Reliability
The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures.
The failure rates for data retention and program/erase cycling are specified at the operating conditions
noted.
The program/erase cycle count on the sector is incremented every time a sector or mass erase event is
executed.
Freescale Semiconductor
113
Device User Guide — 9S12DT128DGV2/D V02.17
Table A-12 NVM Reliability Characteristics1
Conditions are shown in (Table A-4) unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
15
1002
20
1002
10,000
—
10,000
100,0003
15
1002
20
1002
—
10,000
—
—
100,000
300,0003
Unit
Flash Reliability Characteristics
Data retention after 10,000 program/erase cycles at an
average junction temperature of TJavg ≤ 85°C
1
C
2
Data retention with <100 program/erase cycles at an
C
average junction temperature TJavg ≤ 85°C
3
C
4
Number of program/erase cycles
C
(0°C ≤ TJ ≤ 140°C)
Number of program/erase cycles
(–40°C ≤ TJ ≤ 0°C)
tFLRET
—
Years
nFL
—
—
Cycles
—
EEPROM Reliability Characteristics
Data retention after up to 100,000 program/erase cycles
at an average junction temperature of TJavg ≤ 85°C
5
C
6
Data retention with <100 program/erase cycles at an
C
average junction temperature TJavg ≤ 85°C
7
C
8
Number of program/erase cycles
C
(0°C < TJ ≤ 140°C)
Number of program/erase cycles
(–40°C ≤ TJ ≤ 0°C)
—
tEEPRET
Years
nEEP
Cycles
—
NOTES:
1. TJavg will not exeed 85°C considering a typical temperature profile over the lifetime of a consumer, industrial or automotive
application.
2. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated
to 25°C using the Arrhenius equation. For additional information on how Freescale defines Typical Data Retention, please
refer to Engineering Bulletin EB618.
3. Spec table quotes typical endurance evaluated at 25°C for this product family, typical endurance at various temperature
can be estimated using the graph below. For additional information on how Freescale defines Typical Endurance, please
refer to Engineering Bulletin EB619.
114
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Figure A-2 Typical Endurance vs Temperature
500
Typical Endurance [103 Cycles]
450
400
350
300
250
200
150
100
50
0
-40
-20
0
20
40
60
80
100
120
140
Operating Temperature TJ [°C]
------ Flash
------ EEPROM
Freescale Semiconductor
115
Device User Guide — 9S12DT128DGV2/D V02.17
116
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.4 Voltage Regulator
The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external
DC load is allowed.
Table A-13 Voltage Regulator Recommended Load Capacitances
Rating
Symbol
Min
Typ
Max
Unit
Load Capacitance on VDD1, 2
CLVDD
220
nF
Load Capacitance on VDDPLL
CLVDDfcPLL
220
nF
Freescale Semiconductor
117
Device User Guide — 9S12DT128DGV2/D V02.17
118
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.5 Reset, Oscillator and PLL
This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and
Phase-Locked-Loop (PLL).
A.5.1 Startup
(Table A-14) summarizes several startup characteristics explained in this section. Detailed description of
the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.
Table A-14 Startup Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
2.07
V
1
T POR release level
VPORR
2
T POR assert level
VPORA
0.97
V
3
D Reset input pulse width, minimum input time
PWRSTL
2
tosc
4
D Startup from Reset
nRST
192
5
D Interrupt pulse width, IRQ edge-sensitive mode
PWIRQ
20
6
D Wait recovery startup time
tWRS
196
nosc
ns
14
tcyc
A.5.1.1 POR
The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.
A.5.1.2 SRAM Data Retention
Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset
the PORF bit in the CRG Flags Register has not been set.
A.5.1.3 External Reset
When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an
oscillation before reset.
A.5.1.4 Stop Recovery
Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR
is performed before releasing the clocks to the system.
Freescale Semiconductor
119
Device User Guide — 9S12DT128DGV2/D V02.17
A.5.1.5 Pseudo Stop and Wait Recovery
The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in
both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts
fetching the interrupt vector.
A.5.2 Oscillator
The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce
oscillator/external clock depends on the XCLKS signal which is sampled during reset.By asserting the
XCLKS input during reset this oscillator can be bypassed allowing the input of a square wave. Before
asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start
from either power-on, STOP or oscillator fail. tCQOUT specifies the maximum time before switching to the
internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also
determines the minimum oscillator start-up time tUPOSC. The device also features a clock monitor. A
120
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert
Frequency fCMFA.
Table A-15 Oscillator Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
1a
C Crystal oscillator range (Colpitts)
fOSC
0.5
16
MHz
1b
C Crystal oscillator range (Pierce) 1
fOSC
0.5
40
MHz
2
P Startup Current
iOSC
100
3
C Oscillator start-up time (Colpitts)
tUPOSC
4
D Clock Quality check time-out
tCQOUT
0.45
5
P Clock Monitor Failure Assert Frequency
fCMFA
50
6
P External square wave input frequency 4
fEXT
0.5
7
D External square wave pulse width low
tEXTL
9.5
ns
8
D External square wave pulse width high
tEXTH
9.5
ns
9
D External square wave rise time
tEXTR
1
ns
10
D External square wave fall time
tEXTF
1
ns
11
D Input Capacitance (EXTAL, XTAL pins)
12
C
13
P EXTAL Pin Input High Voltage4
VIH,EXTAL
T EXTAL Pin Input High Voltage4
VIH,EXTAL
VDDPLL + 0.3
V
P EXTAL Pin Input Low Voltage4
VIL,EXTAL
0.25*VDDPLL
V
T EXTAL Pin Input Low Voltage4
VIL,EXTAL
14
15
DC Operating Bias in Colpitts Configuration on
EXTAL Pin
C EXTAL Pin Input Hysteresis4
µA
82
100
1003
ms
2.5
s
200
KHz
50
MHz
CIN
7
pF
VDCBIAS
1.1
V
VHYS,EXTAL
0.75*VDDPLL
V
VSSPLL - 0.3
V
250
mV
NOTES:
1. Depending on the crystal a damping series resistor might be necessary
2. fosc = 4MHz, C = 22pF.
3. Maximum value is for extreme cases using high Q, low frequency crystals
4. XCLKS =0 during reset
A.5.3 Phase Locked Loop
The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)
is also the system clock source in self clock mode.
A.5.3.1 XFC Component Selection
This section describes the selection of the XFC components to achieve a good filter characteristics.
Freescale Semiconductor
121
Device User Guide — 9S12DT128DGV2/D V02.17
Cp
VDDPLL
R
Phase
Cs
fosc
fref
1
refdv+1
∆
fcmp
XFC Pin
VCO
KΦ
KV
fvco
Detector
Loop Divider
1
synr+1
1
2
Figure A-3 Basic PLL functional diagram
The following procedure can be used to calculate the resistance and capacitance values using typical
values for K1, f1 and ich from (Table A-16).
The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used
for fOSC = 4MHz and a 25MHz bus clock.
The VCO Gain at the desired VCO frequency is approximated by:
KV = K1 ⋅ e
( f 1 – f vco )
----------------------K 1 ⋅ 1V
= – 100 ⋅ e
( 60 – 50 )
-----------------------– 100
= -90.48MHz/V
The phase detector relationship is given by:
K Φ = – i ch ⋅ K V
= 316.7Hz/Ω
ich is the current in tracking mode.
The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,
typical values are 50. ζ = 0.9 ensures a good transient response.
2 ⋅ ζ ⋅ f ref
f ref
1
f C < ------------------------------------------ ------ → f C < -------------- ;( ζ = 0.9 )
4 ⋅ 10
2 10

π⋅ ζ+ 1+ζ
fC < 25kHz


122
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
And finally the frequency relationship is defined as
f VCO
n = ------------- = 2 ⋅ ( synr + 1 )
f ref
= 50
With the above values the resistance can be calculated. The example is shown for a loop bandwidth
fC=10KHz:
2 ⋅ π ⋅ n ⋅ fC
R = ----------------------------- = 2*π*50*10kHz/(316.7Hz/Ω)=9.9kΩ =~ 10kΩ
KΦ
The capacitance Cs can now be calculated as:
2
0.516
2⋅ζ
C s = ---------------------- ≈ --------------- ;( ζ = 0.9 ) = 5.19nF =~ 4.7nF
π ⋅ fC ⋅ R fC ⋅ R
The capacitance Cp should be chosen in the range of:
C s ⁄ 20 ≤ C p ≤ C s ⁄ 10
Cp = 470pF
A.5.3.2 Jitter Information
The basic functionality of the PLL is shown in Figure A-3. With each transition of the clock fcmp, the
deviation from the reference clock fref is measured and input voltage to the VCO is adjusted
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-4.
Freescale Semiconductor
123
Device User Guide — 9S12DT128DGV2/D V02.17
1
0
2
3
N-1
N
tmin1
tnom
tmax1
tminN
tmaxN
Figure A-4 Jitter Definitions
The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger
number of clock periods (N).
Defining the jitter as:
t max ( N )
t min ( N ) 

J ( N ) = max  1 – --------------------- , 1 – --------------------- 
N ⋅ t nom
N ⋅ t nom 

For N < 100, the following equation is a good fit for the maximum jitter:
j1
J ( N ) = -------- + j 2
N
J(N)
1
5
10
20
N
Figure A-5 Maximum bus clock jitter approximation
124
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the
effect of the jitter to a large extent.
Table A-16 PLL Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
P Self Clock Mode frequency
fSCM
1
5.5
MHz
2
D VCO locking range
fVCO
8
50
MHz
3
D
|∆trk|
3
4
%1
4
D Lock Detection
|∆Lock|
0
1.5
%(1)
5
D Un-Lock Detection
|∆unl|
0.5
2.5
%(1)
6
D
|∆unt|
6
8
%(1)
7
C PLLON Total Stabilization delay (Auto Mode) 2
tstab
0.5
ms
8
D PLLON Acquisition mode stabilization delay (2)
tacq
0.3
ms
9
D PLLON Tracking mode stabilization delay (2)
tal
0.2
ms
10
D Fitting parameter VCO loop gain
K1
-100
MHz/V
11
D Fitting parameter VCO loop frequency
f1
60
MHz
12
D Charge pump current acquisition mode
| ich |
38.5
µA
13
D Charge pump current tracking mode
| ich |
3.5
µA
14
C Jitter fit parameter 1(2)
j1
1.1
%
15
C Jitter fit parameter 2(2)
j2
0.13
%
Lock Detector transition from Acquisition to Tracking
mode
Lock Detector transition from Tracking to Acquisition
mode
NOTES:
1. % deviation from target frequency
2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs =
10KΩ.
Freescale Semiconductor
125
Device User Guide — 9S12DT128DGV2/D V02.17
126
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.6 MSCAN
Table A-17 MSCAN Wake-up Pulse Characteristics
Conditions are shown in (Table A-4) unless otherwise noted
Num C
Rating
Symbol
1
P MSCAN Wake-up dominant pulse filtered
tWUP
2
P MSCAN Wake-up dominant pulse pass
tWUP
Freescale Semiconductor
Min
5
Typ
Max
Unit
2
µs
µs
127
Device User Guide — 9S12DT128DGV2/D V02.17
128
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.7 SPI
A.7.1 Master Mode
Figure A-6 and Figure A-7 illustrate the master mode timing. Timing values are shown in (Table
A-18).
SS1
(OUTPUT)
2
1
SCK
(CPOL = 0)
(OUTPUT)
4
12
SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
9
MOSI
(OUTPUT)
3
11
4
BIT 6 . . . 1
LSB IN
9
MSB OUT2
BIT 6 . . . 1
10
LSB OUT
1.if configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure A-6 SPI Master Timing (CPHA = 0)
Freescale Semiconductor
129
Device User Guide — 9S12DT128DGV2/D V02.17
SS1
(OUTPUT)
1
2
12
11
11
12
3
SCK
(CPOL = 0)
(OUTPUT)
4
4
SCK
(CPOL = 1)
(OUTPUT)
5
MISO
(INPUT)
6
MSB IN2
BIT 6 . . . 1
LSB IN
10
9
MOSI
(OUTPUT) PORT DATA
MASTER MSB OUT2
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure A-7 SPI Master Timing (CPHA =1)
Table A-18 SPI Master Mode Timing Characteristics1
Conditions are shown in (Table A-4) unless otherwise noted, CLOAD = 200pF on all outputs
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
P Operating Frequency
fop
DC
1/2
fbus
1
P SCK Period tsck = 1./fop
tsck
4
2048
tbus
2
D Enable Lead Time
tlead
1/2
—
tsck
3
D Enable Lag Time
tlag
1/2
4
D Clock (SCK) High or Low Time
twsck
tbus − 30
5
D Data Setup Time (Inputs)
tsu
25
ns
6
D Data Hold Time (Inputs)
thi
0
ns
9
D Data Valid (after SCK Edge)
tv
10
D Data Hold Time (Outputs)
tho
11
D Rise Time Inputs and Outputs
tr
25
ns
12
D Fall Time Inputs and Outputs
tf
25
ns
tsck
1024 tbus
25
0
ns
ns
ns
NOTES:
1. The numbers 7, 8 in the column labeled “Num” are missing. This has been done on purpose to be consistent between the
Master and the Slave timing shown in (Table A-19).
130
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.7.2 Slave Mode
Figure A-8 and Figure A-9 illustrate the slave mode timing. Timing values are shown in (Table A-19).
SS
(INPUT)
1
12
11
11
12
3
SCK
(CPOL = 0)
(INPUT)
4
2
4
SCK
(CPOL = 1)
(INPUT)
8
7
MISO
(OUTPUT)
9
5
MOSI
(INPUT)
BIT 6 . . . 1
MSB OUT
SLAVE
10
10
SLAVE LSB OUT
6
BIT 6 . . . 1
MSB IN
LSB IN
Figure A-8 SPI Slave Timing (CPHA = 0)
SS
(INPUT)
3
1
2
12
11
11
12
SCK
(CPOL = 0)
(INPUT)
4
4
SCK
(CPOL = 1)
(INPUT)
SLAVE
7
MOSI
(INPUT)
8
10
9
MISO
(OUTPUT)
MSB OUT
5
BIT 6 . . . 1
SLAVE LSB OUT
6
MSB IN
BIT 6 . . . 1
LSB IN
Figure A-9 SPI Slave Timing (CPHA =1)
Freescale Semiconductor
131
Device User Guide — 9S12DT128DGV2/D V02.17
Table A-19 SPI Slave Mode Timing Characteristics
Conditions are shown in (Table A-4) unless otherwise noted, CLOAD = 200pF on all outputs
Num C
Rating
Symbol
Min
Typ
Max
Unit
1
P Operating Frequency
fop
DC
1/4
fbus
1
P SCK Period tsck = 1./fop
tsck
4
2048
tbus
2
D Enable Lead Time
tlead
1
tcyc
3
D Enable Lag Time
tlag
1
tcyc
4
D Clock (SCK) High or Low Time
twsck
tcyc − 30
ns
5
D Data Setup Time (Inputs)
tsu
25
ns
6
D Data Hold Time (Inputs)
thi
25
ns
7
D Slave Access Time
ta
1
tcyc
8
D Slave MISO Disable Time
tdis
1
tcyc
9
D Data Valid (after SCK Edge)
tv
25
ns
10
D Data Hold Time (Outputs)
tho
11
D Rise Time Inputs and Outputs
tr
25
ns
12
D Fall Time Inputs and Outputs
tf
25
ns
132
0
ns
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
A.8 External Bus Timing
A timing diagram of the external multiplexed-bus is illustrated in Figure A-10 with the actual timing
values shown on table (Table A-20). All major bus signals are included in the diagram. While both a data
write and data read cycle are shown, only one or the other would occur on a particular bus cycle.
A.8.1 General Multiplexed Bus Timing
The expanded bus timings are highly dependent on the load conditions. The timing parameters shown
assume a balanced load across all outputs.
Freescale Semiconductor
133
Device User Guide — 9S12DT128DGV2/D V02.17
1, 2
3
4
ECLK
PE4
5
9
Addr/Data
(read)
PA, PB
6
16
15
7
data
8
14
13
data
addr
17
11
data
addr
data
12
Addr/Data
(write)
PA, PB
10
19
18
Non-Multiplexed
Addresses
PK5:0
20
21
22
23
ECS
PK7
24
25
26
27
28
29
30
31
32
33
34
R/W
PE2
LSTRB
PE3
NOACC
PE7
35
36
PIPO0
PIPO1, PE6,5
Figure A-10 General External Bus Timing
134
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Table A-20 Expanded Bus Timing Characteristics
Conditions are shown in (Table A-4) unless otherwise noted, CLOAD = 50pF
Num C
Rating
Symbol
Min
Typ
Max
Unit
fo
0
25.0
MHz
tcyc
40
ns
1
P Frequency of operation (E-clock)
2
P Cycle time
3
D Pulse width, E low
PWEL
19
ns
4
D Pulse width, E high1
PWEH
19
ns
5
D Address delay time
tAD
6
D Address valid time to E rise (PWEL–tAD)
tAV
11
ns
7
D Muxed address hold time
tMAH
2
ns
8
D Address hold to data valid
tAHDS
7
ns
9
D Data hold to address
tDHA
2
ns
10
D Read data setup time
tDSR
13
ns
11
D Read data hold time
tDHR
0
ns
12
D Write data delay time
tDDW
13
D Write data hold time
tDHW
2
ns
14
D Write data setup time(1) (PWEH–tDDW)
tDSW
12
ns
15
D Address access time(1) (tcyc–tAD–tDSR)
tACCA
19
ns
16
D E high access time(1) (PWEH–tDSR)
tACCE
6
ns
17
D Non-multiplexed address delay time
tNAD
18
D Non-muxed address valid to E rise (PWEL–tNAD)
tNAV
15
ns
19
D Non-multiplexed address hold time
tNAH
2
ns
20
D Chip select delay time
tCSD
21
D Chip select access time(1) (tcyc–tCSD–tDSR)
tACCS
11
ns
22
D Chip select hold time
tCSH
2
ns
23
D Chip select negated time
tCSN
8
ns
24
D Read/write delay time
tRWD
25
D Read/write valid time to E rise (PWEL–tRWD)
tRWV
14
ns
26
D Read/write hold time
tRWH
2
ns
27
D Low strobe delay time
tLSD
28
D Low strobe valid time to E rise (PWEL–tLSD)
tLSV
14
ns
29
D Low strobe hold time
tLSH
2
ns
30
D NOACC strobe delay time
tNOD
31
D NOACC valid time to E rise (PWEL–tNOD)
tNOV
Freescale Semiconductor
8
7
6
16
7
7
7
14
ns
ns
ns
ns
ns
ns
ns
ns
135
Device User Guide — 9S12DT128DGV2/D V02.17
Table A-20 Expanded Bus Timing Characteristics
Conditions are shown in (Table A-4) unless otherwise noted, CLOAD = 50pF
Num C
Rating
Symbol
Min
32
D NOACC hold time
tNOH
2
33
D IPIPO[1:0] delay time
tP0D
2
34
D IPIPO[1:0] valid time to E rise (PWEL–tP0D)
tP0V
11
35
D IPIPO[1:0] delay time(1) (PWEH-tP1V)
tP1D
2
36
D IPIPO[1:0] valid time to E fall
tP1V
11
Typ
Max
Unit
ns
7
ns
ns
25
ns
ns
NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.
136
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
Appendix B Package Information
B.1 General
This section provides the physical dimensions of the MC9S12DT128 packages.
Freescale Semiconductor
137
Device User Guide — 9S12DT128DGV2/D V02.17
B.2 112-pin LQFP package
0.20 T L-M N
4X
PIN 1
IDENT
0.20 T L-M N
4X 28 TIPS
112
J1
85
4X
P
J1
1
CL
84
VIEW Y
108X
G
X
X=L, M OR N
VIEW Y
B
L
V
M
B1
28
57
29
F
D
56
0.13
N
S1
A
S
C2
VIEW AB
θ2
0.050
0.10 T
112X
SEATING
PLANE
θ3
T
θ
R
R2
R
0.25
R1
GAGE PLANE
(K)
C1
E
(Y)
(Z)
VIEW AB
M
BASE
METAL
T L-M N
SECTION J1-J1
ROTATED 90 ° COUNTERCLOCKWISE
A1
C
AA
J
V1
θ1
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DATUMS L, M AND N TO BE DETERMINED AT
SEATING PLANE, DATUM T.
4. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE, DATUM T.
5. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B INCLUDE MOLD MISMATCH.
6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL NOT CAUSE THE D
DIMENSION TO EXCEED 0.46.
DIM
A
A1
B
B1
C
C1
C2
D
E
F
G
J
K
P
R1
R2
S
S1
V
V1
Y
Z
AA
θ
θ1
θ2
θ3
MILLIMETERS
MIN
MAX
20.000 BSC
10.000 BSC
20.000 BSC
10.000 BSC
--1.600
0.050
0.150
1.350
1.450
0.270
0.370
0.450
0.750
0.270
0.330
0.650 BSC
0.090
0.170
0.500 REF
0.325 BSC
0.100
0.200
0.100
0.200
22.000 BSC
11.000 BSC
22.000 BSC
11.000 BSC
0.250 REF
1.000 REF
0.090
0.160
8 °
0°
7 °
3 °
13 °
11 °
11 °
13 °
Figure 23-6 112-pin LQFP mechanical dimensions (case no. 987)
138
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
B.3 80-pin QFP package
L
60
41
61
D
S
M
V
P
B
C A-B
D
0.20
M
B
B
-A-,-B-,-D-
0.20
L
H A-B
-B-
0.05 D
-A-
S
S
S
40
DETAIL A
DETAIL A
21
80
1
0.20
A
H A-B
M
S
F
20
-DD
S
0.05 A-B
J
S
0.20
C A-B
M
S
D
S
D
M
E
DETAIL C
C
-H-
-C-
DATUM
PLANE
0.20
M
C A-B
S
D
S
SECTION B-B
VIEW ROTATED 90 °
0.10
H
SEATING
PLANE
N
M
G
U
T
DATUM
PLANE
-H-
R
K
W
X
DETAIL C
Q
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE
LEAD WHERE THE LEAD EXITS THE PLASTIC
BODY AT THE BOTTOM OF THE PARTING LINE.
4. DATUMS -A-, -B- AND -D- TO BE
DETERMINED AT DATUM PLANE -H-.
5. DIMENSIONS S AND V TO BE DETERMINED
AT SEATING PLANE -C-.
6. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B DO INCLUDE MOLD MISMATCH
AND ARE DETERMINED AT DATUM PLANE -H-.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 TOTAL IN
EXCESS OF THE D DIMENSION AT MAXIMUM
MATERIAL CONDITION. DAMBAR CANNOT
BE LOCATED ON THE LOWER RADIUS OR
THE FOOT.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
MILLIMETERS
MIN
MAX
13.90
14.10
13.90
14.10
2.15
2.45
0.22
0.38
2.00
2.40
0.22
0.33
0.65 BSC
--0.25
0.13
0.23
0.65
0.95
12.35 REF
5°
10 °
0.13
0.17
0.325 BSC
0°
7°
0.13
0.30
16.95
17.45
0.13
--0°
--16.95
17.45
0.35
0.45
1.6 REF
Figure 1 80-pin QFP Mechanical Dimensions (case no. 841B)
Freescale Semiconductor
139
Device User Guide — 9S12DT128DGV2/D V02.17
140
Freescale Semiconductor
Device User Guide — 9S12DT128DGV2/D V02.17
User Guide End Sheet
Freescale Semiconductor
141
FINAL PAGE OF
142
PAGES
How to Reach Us:
Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
USA/Europe/Locations not listed:
Freescale Semiconductor Literature Distribution
P.O. Box 5405, Denver, Colorado 80217
1-800-521-6274 or 480-768-2130
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
Japan:
Freescale Semiconductor Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu
Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
which may be provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer’s technical experts.
Asia/Pacific:
Freescale Semiconductor H.K. Ltd.
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
852-26668334
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Learn More:
For more information about Freescale
Semiconductor products, please visit
http://www.freescale.com
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008.
9S12DT128DGV2/D
V02.17, 03 Jun 2010
Similar pages