MC9S12K Family Device User Guide Covers MC9S12KT256, MC9S12KG256, MC9S12KG128, MC9S12KL128, MC9S12KC128, MC9S12KG64, MC9S12KL64, MC9S12KC64 and MC9S12KG32 HCS12 Microcontrollers 9S12KT256DGV1/D V01.09 9 SEP 2004 freescale.com Device User Guide — 9S12KT256DGV1/D V01.09 Revision History Version Revision Number Date 2 Author Description of Changes 01.00 16 JUL 02 Original Version. 01.01 22 NOV 02 Change load cap value on VDD and VDDPLL. Correct expanded bus timing from 20MHz to 25 MHz. 01.02 15 JAN 03 Move ATD interrupt vector from $ffd0 to $ffd2. Change PWeh and tDSW parameter in external bus timing. 01.03 13 JUN 03 Expand to a K-Family SoC Guide and include 9S12KT256. 01.04 18 JUN 03 Replace 16-channel ATD with two 8-channel ATDs for 9S12KT256. 01.05 14 NOV 03 Changed to a Device User Guide and added Document number. Updated Table A-17 Oscillator Characteristics. Replaced XCLKS with PE7 for Clock Selection diagrams. Added CTRL to Table 2-1 Signal Properties. Replaced Burst programming with Row Programming in NVM electricals. Changed Digital logic to Internal Logic. Added LRAE bootloader information. Changed PWEL, PWEH, tDSW, tACCE, tNAD, tNAV, tRWV, tLSV, tNOV, tP0V and tP1V in the external bus timing. Added voltage regulator characteristics. 01.06 10 FEB 04 Updated Table A-7 3.3V I/O Characteristics. 01.07 13 MAY 04 Updated Table A-16 NVM Timing Characteristics. Corrected A.6.1.2 Row Programming time tbwpgm equation 01.08 20 JUL 04 Expanded K-family to include 9S12KC128, 9S12KC64, 9S12KL128 and 9S12KL64. 01.09 9 SEP 04 Updated osciilator start up time and supply current characteristics. Added ATDCTL0 and ATDCTL1 register bits to Sec 1.7. Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Table of Contents Section 1 Introduction 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 MC9S12KG(L)(C)128(64)(32) Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 MC9S12KT(G)256 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Device Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Detailed Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Part ID Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Section 2 Signal Description 2.1 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.2 Signal Properties Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.3 Detailed Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.1 EXTAL, XTAL — Oscillator Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.2 RESET — External Reset Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.3 TEST — Test Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.4 VREGEN — Voltage Regulator Enable Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.3.5 XFC — PLL Loop Filter Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin . . . . . 61 2.3.7 PAD[15:8] / AN[15:8] — Port AD Input Pins [15:8]. . . . . . . . . . . . . . . . . . . . . . . . 61 2.3.8 PAD[7:0] / AN[7:0] — Port AD Input Pins [7:0]. . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.3.9 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins . . . . . . . . . . . . . . . . . . . . 61 2.3.10 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins . . . . . . . . . . . . . . . . . . . . . . 62 2.3.11 PE7 / NOACC / XCLKS — Port E I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.3.12 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.3.13 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.3.14 PE4 / ECLK — Port E I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.3.15 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.16 PE2 / R/W — Port E I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.17 PE1 / IRQ — Port E Input Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.18 PE0 / XIRQ — Port E Input Pin 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.3.19 PH7 / KWH7 / SS2 — Port H I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Freescale Semiconductor 3 Device User Guide — 9S12KT256DGV1/D V01.09 2.3.20 2.3.21 2.3.22 2.3.23 2.3.24 2.3.25 2.3.26 2.3.27 2.3.28 2.3.29 2.3.30 2.3.31 2.3.32 2.3.33 2.3.34 2.3.35 2.3.36 2.3.37 2.3.38 2.3.39 2.3.40 2.3.41 2.3.42 2.3.43 2.3.44 2.3.45 2.3.46 2.3.47 2.3.48 2.3.49 2.3.50 2.3.51 2.3.52 2.3.53 2.3.54 2.3.55 4 PH6 / KWH6 / SCK2 — Port H I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 PH5 / KWH5 / MOSI2 — Port H I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 PH4 / KWH4 / MISO2 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 PH3 / KWH3 / SS1 — Port H I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 PH2 / KWH2 / SCK1 — Port H I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . 65 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . 65 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 PK7 / ECS / ROMCTL — Port K I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] . . . . . . . . . . . . . . . . . . . . . . . . . 66 PM7 / TXCAN4 — Port M I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 PM6 / RXCAN4 — Port M I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 PM5 / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 . . . . . . . . . . . . . . . . . . . . 66 PM4 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4 . . . . . . . . . . . . . . . . . . . 66 PM3 / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . 67 PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2 . . . . . . . . . . . . . . . . . . . 67 PM1 / TXCAN0 — Port M I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 PM0 / RXCAN0 — Port M I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . 67 PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 67 PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5. . . . . . . . . . . . . . . . . . . . . . . . 67 PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4. . . . . . . . . . . . . . . . . . . . . . . . 68 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . 68 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. . . . . . . . . . . . . . . . . . . . . . . . 68 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. . . . . . . . . . . . . . . . . . . . . . . . 68 PS7 / SS0 — Port S I/O Pin 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PS6 / SCK0 — Port S I/O Pin 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 PS5 / MOSI0 — Port S I/O Pin 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 PS4 / MISO0 — Port S I/O Pin 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 PS3 / TXD1 — Port S I/O Pin 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 PS2 / RXD1 — Port S I/O Pin 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 PS1 / TXD0 — Port S I/O Pin 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 PS0 / RXD0 — Port S I/O Pin 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 2.3.56 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.4 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.4.1 VDDX,VSSX — Power Supply Pins for I/O Drivers . . . . . . . . . . . . . . . . . . . . . . . 70 2.4.2 VDDR, VSSR — Power Supply Pins for I/O Drivers & for Internal Voltage Regulator 70 2.4.3 VDD1, VDD2, VSS1, VSS2 — Power Supply Pins for Internal Logic . . . . . . . . . 70 2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG . . . . . . . . . . . . . . . . . . 70 2.4.5 VRH, VRL — ATD Reference Voltage Input Pins . . . . . . . . . . . . . . . . . . . . . . . . 70 2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL . . . . . . . . . . . . . . . . . . . . . . . . 70 Section 3 System Clock Description Section 4 Modes of Operation 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.4 4.4.1 4.4.2 4.4.3 4.4.4 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Chip Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Securing the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Operation of the Secured Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Unsecuring the Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Pseudo Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Wait . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Section 5 Resets and Interrupts 5.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.1 Vector Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.1 Effects of Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Section 6 HCS12 Core Block Description 6.1 6.2 6.3 6.4 CPU12 Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 HCS12 Background Debug Module (BDM) Block Description . . . . . . . . . . . . . . . . . 78 HCS12 Debug (DBG) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 HCS12 Interrupt (INT) Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Freescale Semiconductor 5 Device User Guide — 9S12KT256DGV1/D V01.09 6.5 6.6 HCS12 Multiplexed External Bus Interface (MEBI) Block Description . . . . . . . . . . . 79 HCS12 Module Mapping Control (MMC) Block Description . . . . . . . . . . . . . . . . . . . 79 Section 7 Analog to Digital Converter (ATD) Block Description Section 8 Clock Reset Generator (CRG) Block Description 8.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Section 9 EEPROM Block Description Section 10 Flash EEPROM Block Description Section 11 IIC Block Description Section 12 MSCAN Block Description Section 13 OSC Block Description Section 14 Port Integration Module (PIM) Block Description Section 15 Pulse Width Modulator (PWM) Block Description Section 16 Serial Communications Interface (SCI) Block Description Section 17 Serial Peripheral Interface (SPI) Block Description Section 18 Timer (TIM) Block Description Section 19 Voltage Regulator (VREG) Block Description 19.1 Device-specific information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 19.1.1 VDD1, VDD2, VSS1, VSS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Appendix A Electrical Characteristics A.1 General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 A.1.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 A.1.2 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 A.1.3 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A.1.4 Current Injection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 A.1.5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 A.1.6 ESD Protection and Latch-up Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A.1.7 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 A.1.8 Power Dissipation and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 87 A.1.9 I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A.1.10 Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 A.2 Voltage Regulator (VREG_3V3) Operating Characteristics . . . . . . . . . . . . . . . . . . . 94 A.3 Chip Power-up and LVI/LVR graphical explanation . . . . . . . . . . . . . . . . . . . . . . . . . 95 A.4 Output Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 A.4.1 Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 A.4.2 Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.5 ATD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 A.5.1 ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 A.5.2 Factors influencing accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 A.5.3 ATD accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 A.6 NVM, Flash and EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 A.6.1 NVM timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 A.6.2 NVM Reliability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 A.7 Reset, Oscillator and PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 A.7.1 Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 A.7.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 A.7.3 Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.8 MSCAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 A.9 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 A.9.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 A.9.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 A.10 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 A.10.1 General Muxed Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Appendix B Package Information B.1 B.2 B.3 80-pin QFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 100-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 112-pin LQFP package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Freescale Semiconductor 7 Device User Guide — 9S12KT256DGV1/D V01.09 8 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 List of Figures Figure 0-1 Figure 1-1 Figure 1-2 Figure 1-3 Figure 1-4 Figure 1-5 Figure 1-6 Figure 2-1 Figure 2-2 Figure 2-3 Figure 2-4 Figure 2-5 Figure 2-6 Figure 2-7 Figure 3-1 Figure A-1 Figure A-2 Figure A-3 Figure A-4 Figure A-5 Figure A-6 Figure A-7 Figure A-8 Figure A-9 Figure B-1 Figure B-2 Figure B-3 Order Part number Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 MC9S12KG(L)(C)128(64)(32) Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . 19 MC9S12KT(G)256 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 MC9S12KT256 and MC9S12KG256 Memory Map . . . . . . . . . . . . . . . . . . . . 23 MC9S12KG128, MC9S12KL128 and MC9S12KC128 Memory Map . . . . . . 24 MC9S12KG64, MC9S12KL64 and MC9S12KC64 Memory Map . . . . . . . . . 25 MC9S12KG32 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Pin assignments for 112 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Pin assignments for 100 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Pin assignments for 80 QFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 PLL Loop Filter Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Loop Controlled Pierce Oscillator Connections (PE7=1) . . . . . . . . . . . . . . . . 62 Full Swing Pierce Oscillator Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . 63 External Clock Connections (PE7=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Clock Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled) . . . . . 95 ATD Accuracy Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Basic PLL functional diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Jitter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 SPI Master Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 SPI Slave Timing (CPHA =1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 General External Bus Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 80-pin QFP Mechanical Dimensions (case no. 841B) . . . . . . . . . . . . . . . . 122 100-pin LQFP Mechanical Dimensions (case no. 983) . . . . . . . . . . . . . . . 123 112-pin LQFP Mechanical Dimensions (case no. 987) . . . . . . . . . . . . . . . 124 Freescale Semiconductor 9 Device User Guide — 9S12KT256DGV1/D V01.09 10 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 List of Tables Table 0-1 Table 0-2 Table 1-1 Table 1-2 Table 1-3 Table 1-4 Table 1-5 Table 2-1 Table 2-2 Table 2-3 Table 4-1 Table 4-2 Table 4-3 Table 5-1 Table 5-2 Table A-1 Table A-2 Table A-3 Table A-4 Table A-5 Table A-6 Table A-7 Table A-8 Table A-9 Table A-10 Table A-11 Table A-12 Table A-13 Table A-14 Table A-15 Table A-16 Table A-17 Table A-18 List of MC9S12K-Family members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Document References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 MC9S12KT(G)256 Device Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 MC9S12KG(L)(C)128(64)(32) Device Memory Map . . . . . . . . . . . . . . . . . . . . 22 Detailed MSCAN Foreground Receive and Transmit Buffer Layout. . . . . . . . 43 Assigned Part ID Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Memory size registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Signal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Power and Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Clock selection based on PE7 during reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Clock Selection Based on PE7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Voltage Regulator VREGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Interrupt Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Reset Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 ESD and Latch-Up Protection Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 86 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Thermal Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.3V I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 VREG_3V3 - Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Voltage Regulator - Capacitive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5V ATD Operating Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.3V ATD Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 ATD Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5V ATD Conversion Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.3V ATD Conversion Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 NVM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 NVM Reliability Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Startup Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Freescale Semiconductor 11 Device User Guide — 9S12KT256DGV1/D V01.09 Table A-19 Table A-20 Table A-21 Table A-22 Table A-23 Table A-24 12 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 PLL Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 MSCAN Wake-up Pulse Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 SPI Master Mode Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 SPI Slave Mode Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Expanded Bus Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Preface The Device User Guide provides information about the MC9S12K-Family devices made up of standard HCS12 blocks and the HCS12 processor core. This document is part of the customer documentation. A complete set of device manuals also includes all the individual Block Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block Guide. If applicable, special implementation details of the module are given in the block description sections of this document. Table 0-1 shows a feature overview of the MC9S12K-Family members. Table 0-1 List of MC9S12K-Family members Flash RAM EEPROM Device Temp Options1 Package CAN SCI SPI IIC A/D2 PWM2 TIM2 I/O3 256K 12K 4K MC9S12KT256 C, V, M 256K 12K 4K MC9S12KG256 C, V, M 128K 8K 2K MC9S12KG128 C, V, M 64K 4K 1K MC9S12KG64 C, V, M 32K 2K 1K MC9S12KG32 C, V, M 128K 6K 2K MC9S12KL128 C, V, M 64K 128K 64K 4K 6K 4K 1K None None MC9S12KL64 MC9S12KC128 MC9S12KC64 C, V, M C, V, M C, V, M 112 LQFP 3 2 3 1 16 8 8 91 112 LQFP 2 2 3 1 16 8 8 91 80 QFP 2 2 3 1 8 7 8 59 112 LQFP 2 2 3 1 16 8 8 91 100 LQFP 2 2 2 1 13 7 8 79 80 QFP 2 2 2 1 8 7 8 59 112 LQFP 2 2 2 1 16 8 8 91 80 QFP 2 2 2 1 8 7 8 59 80 QFP 2 2 2 1 8 7 8 59 112 LQFP 1 1 2 1 16 8 8 91 100 LQFP 1 1 2 1 13 7 8 79 80 QFP 1 1 2 1 8 7 8 59 112 LQFP 1 1 2 1 16 8 8 91 80 QFP 1 1 2 1 8 7 8 59 112 LQFP 1 1 2 1 16 8 8 91 100 LQFP 1 1 2 1 13 7 8 79 80 QFP 1 1 2 1 8 7 8 59 112 LQFP 1 1 2 1 16 8 8 91 80 QFP 1 1 2 1 8 7 8 59 NOTES: 1. C: TA = 85˚C, f = 25MHz. V: TA=105˚C, f = 25MHz. M: TA= 125˚C, f = 25MHz 2. Number of channels 3. I/O is the sum of ports capable to act as digital input or output. Freescale Semiconductor 13 Device User Guide — 9S12KT256DGV1/D V01.09 Figure 0-1 shows the part number coding based on the package and temperature options for the MC9S12K-Family. MC9S12 KT256 Temperature Options C = -40˚C to 85˚C V = -40˚C to 105˚C M = -40˚C to 125˚C C FU Package Option Temperature Option Device Title Controller Family Package Options PV = 112LQFP PU = 100LQFP FU = 80QFP Figure 0-1 Order Part number Coding Table 0-2 shows names and versions of the referenced documents throughout the Device User Guide. Table 0-2 Document References User Guide Version Document Order Number CPU12 Reference Manual V02 S12CPUV2/D HCS12 Background Debug (BDM) Block Guide V04 S12BDMV4/D HCS12 Debug (DBG) Block Guide V01 S12DBGV1/D HCS12 Interrupt (INT) Block Guide V01 S12INTV1/D HCS12 Multiplexed Expanded Bus Interface (MEBI) Block Guide V03 S12MEBIV3/D HCS12 Module Mapping Control (MMC) Block Guide V04 S12MMCV4/D Analog to Digital Converter: 10-Bit, 16 Channels (ATD_10B16C) Block Guide V03 S12ATD10B16CV3/D1 Analog to Digital Converter: 10-Bit, 8 Channels (ATD_10B8C) Block Guide V03 S12ATD10B8CV3/D2 Clock and Reset Generator (CRG) Block Guide V04 S12CRGV4/D 2K Byte EEPROM (EETS2K) Block Guide V01 S12EETS2KV1/D(1) 4K Byte EEPROM (EETS4K) Block Guide V02 S12EETS4KV2/D(2) 128K Byte Flash with Error Code Correction (FTS128K1ECC) Block Guide V01 FTS128K1ECCV1/D(1) 256K Byte Flash with Error Code Correction (FTS256K2ECC) Block Guide V01 FTS256K2ECCV1/D(2) Inter IC Bus (IIC) Block Guide V02 S12IICV2/D Motorola Scalable CAN (MSCAN) Block Guide V02 S12MSCANV2/D Oscillator Loop Control Pierce (OSC_LCP) Block Guide V01 S12OSCLCPV1/D Port Integration Module(1) (PIM_9KG128) Block Guide V01 S12KG128PIMV1/D Port Integration Module(2) (PIM_9KT256) Block Guide V01 S12KT256PIMV1/D Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block Guide V01 S12PWM8B6CV1/D Serial Communications Interface (SCI) Block Guide V02 S12SCIV2/D Serial Peripheral Interface (SPI) Block Guide V03 S12SPIV3/D Timer: 16-Bit, 8 Channels (TIM_16B8C) Block Guide V01 S12TIM16B8CV1/D Voltage Regulator (VREG_3V3) Block Guide V01 S12VREG3V3V1/D NOTES: 1. Block Guide for MC9S12K-Family except MC9S12KT256 and MC9S12KG256. 2. Block Guide for MC9S12KT256 and MC9S12KG256 only. 14 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Section 1 Introduction 1.1 Overview The MC9S12K-Family is a 112/100/80 pin 16-bit Flash-based microcontroller family targeted for high reliability systems. Members of the MC9S12K-Family have an increased performance in reliability over the life of the product due to a built-in Error Checking and Correction Code (ECC) in the Flash memory. The program and erase operations automatically generate six parity bits per word making ECC transparent to the user. All members of the MC9S12K-Family are comprised of standard on-chip peripherals including a 16-bit central processing unit (CPU12), up to 256K bytes of Flash EEPROM, up to 4K bytes of EEPROM, up to 12K bytes of RAM, up to two asynchronous serial communications interface (SCI), up to three serial peripheral interface (SPI), IIC-bus, an 8-channel IC/OC timer, 16-channel or two 8-channel 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), up to three CAN 2.0 A, B software compatible modules, 29 discrete digital I/O channels (Port A, Port B, Port E and Port K), and 20 discrete digital I/O lines with interrupt and wakeup capability. The MC9S12K-Family has full 16-bit data paths throughout, however, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements. 1.2 Features • HCS12 Core – 16-bit HCS12 CPU i. Upward compatible with M68HC11 instruction set ii. Interrupt stacking and programmer’s model identical to M68HC11 iii. Instruction queue iv. Enhanced indexed addressing • – MEBI (Multiplexed External Bus Interface) – MMC (Memory Map and Interface) – INT (Interrupt Controller) – DBG (Debugger) – BDM (Background Debug Mode) Oscillator – 4Mhz to 16Mhz frequency range – Pierce with amplitude loop control – Clock monitor Freescale Semiconductor 15 Device User Guide — 9S12KT256DGV1/D V01.09 • • Clock and Reset Generator (CRG) – Phase-locked loop clock frequency multiplier – Self Clock mode in absence of external clock – COP watchdog – Real Time interrupt (RTI) Memory – 32K, 64K, 128K or 256K Byte Flash EEPROM i. Internal program/erase voltage generation ii. Security and Block Protect bits iii. Hamming Error Correction Coding (ECC) – 1K, 2K or 4K Byte EEPROM – 2K, 4K, 6K, 8K or 12K Byte static RAM Single-cycle misaligned word accesses without wait states • • • • 16 Analog-to-Digital Converter(s) (ADC) – One 16-channel module with 10-bit resolution except for MC9S12KT256 and MC9S12KG256 – Two 8-channel module with 10-bit resolution for MC9S12KT256 and MC9S12KG256 – External conversion trigger capability 8-channel Timer (TIM) – Programmable input capture or output compare channels – Simple PWM mode – Counter Modulo Reset – External Event Counting – Gated Time Accumulation 8-channel Pulse Width Modulator (PWM) – Programmable period and duty cycle per channel – 8-bit 8-channel or 16-bit 4-channel – Edge and center aligned PWM signals – Emergency shutdown input Two or Three 1M bit per second, CAN 2.0 A, B software compatible modules – Five receive and three transmit buffers – Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit – Four separate interrupt channels for Rx, Tx, error and wake-up Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 • • • • – Low-pass filter wake-up function – Loop-back for self test operation Serial interfaces – Two asynchronous serial communication interface (SCI) – Three synchronous serial peripheral interface (SPI) – Inter-IC Bus (IIC) Internal 2.5V Regulator – Input voltage range from 3.15V to 5.5V – Low power mode capability – Low Voltage Reset (LVR) and Low Voltage Interrupt (LVI) 20 key wake up inputs – Rising or falling edge triggered interrupt capability – Digital filter to prevent short pulses from triggering interrupts – Programmable pull ups and pull downs Operating frequency for ambient temperatures (TA -40°C to 125°C) – • 50MHz equivalent to 25MHz Bus Speed 112-Pin LQFP, 100-Pin LQFP, or 80-Pin QFP package – I/O lines with 3.3V/5V input and drive capability – 3.3V/5V A/D converter inputs 1.3 Modes of Operation • • • Normal modes – Normal Single-Chip Mode – Normal Expanded Wide Mode – Normal Expanded Narrow Mode – Emulation Expanded Wide Mode – Emulation Expanded Narrow Mode Special Operating Modes – Special Single-Chip Mode with active Background Debug Mode – Special Test Mode (Motorola use only) – Special Peripheral Mode (Motorola use only) Each of the above modes of operation can be configured for three Low power submodes Freescale Semiconductor 17 Device User Guide — 9S12KT256DGV1/D V01.09 • 18 – Stop Mode – Pseudo Stop Mode – Wait Mode Secure operation, preventing the unauthorized read and write of the memory contents. Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 1.4 MC9S12KG(L)(C)128(64)(32) Block Diagram SPI0 Multiplexed Address/Data Bus PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 ADDR7 ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1 ADDR0 Internal Logic 2.5V VDD1,2 VSS1,2 CAN4 RxCAN TxCAN PWM OSC/PLL 2.5V VDDPLL VSSPLL Voltage Regulator 3.3V/5V A/D Converter 3.3V/5V VDDR Voltage Reference VSSR RxCAN TxCAN IIC I/O Driver 3.3V/5V VDDX VSSX CAN0 DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 DATA15 DATA14 DATA13 DATA12 DATA11 DATA10 DATA9 DATA8 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PTB ADDR15 ADDR14 ADDR13 ADDR12 ADDR11 ADDR10 ADDR9 ADDR8 DDRB PTA DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 Multiplexed Narrow Bus DDRA VDDA VSSA MISO MOSI SCK SS SPI1 SPI2 SDA SCL KWJ0 KWJ1 KWJ6 KWJ7 PWM0 PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 PWM7 KWP0 KWP1 KWP2 KWP3 KWP4 KWP5 KWP6 KWP7 MISO MOSI SCK SS MISO MOSI SCK SS KWH0 KWH1 KWH2 KWH3 KWH4 KWH5 KWH6 KWH7 DDRK PS0 PS1 PS2 PS3 PS4 PS5 PS6 PS7 PM0 PM1 PM2 PM3 PM4 PM5 PM6 PM7 PJ0 PJ1 PJ6 PJ7 PP0 PP1 PP2 PP3 PP4 PP5 PP6 PP7 PH0 PH1 PH2 PH3 PH4 PH5 PH6 PH7 XADDR14 XADDR15 XADDR16 XADDR17 XADDR18 XADDR19 ECS Signals shown in Bold are not available on n the 80 Pin Package SCI1 TEST Multiplexed Wide Bus RXD TXD RXD TXD SCI0 PAD System Integration Module (SIM) TIM PTK Breakpoints Debugger PTT PTE DDRE XIRQ IRQ R/W LSTRB ECLK MODA MODB NOACC/XCLKS DDRT CRG PT0 PT1 PT2 PT3 PT4 PT5 PT6 PT7 PTS PLL RESET PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 IOC0 IOC1 IOC2 IOC3 IOC4 IOC5 IOC6 IOC7 DDRS CPU12 PTM Periodic Interrupt COP Watchdog Clock Monitor OSC DDRM XTAL EXTAL VSSPLL VDDPLL XFC PK0 PK1 PK2 PK3 PK4 PK5 PK7 PTJ Single-wire BDM BKGD PIX0 PIX1 PIX2 PIX3 PIX4 PIX5 ECS DDRJ PPAGE PAD08 PAD09 PAD10 PAD11 PAD12 PAD13 PAD14 PAD15 PTP Voltage Regulator DDRP VDDR VSSR VREGEN VDD1,2 VSS1,2 VRH VRL VDDA VSSA AN08 AN09 AN10 AN11 AN12 AN13 AN14 AN15 PAD00 PAD01 PAD02 PAD03 PAD04 PAD05 PAD06 PAD07 Module to Port Routing AN00 AN01 AN02 AN03 AN04 AN05 AN06 AN07 8K Byte RAM PAD 2K Byte EEPROM VRH VRL VDDA VSSA PTH ATD DDRH 128K Byte Flash EEPROM Figure 1-1 MC9S12KG(L)(C)128(64)(32) Block Diagram Freescale Semiconductor 19 Device User Guide — 9S12KT256DGV1/D V01.09 RXD TXD RXD TXD SCI0 SCI1 TEST SPI0 Multiplexed Address/Data Bus MISO MOSI SCK SS RxCAN TxCAN RxCAN CAN1 TxCAN RxCAN CAN4 TxCAN CAN0 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 ADDR15 ADDR14 ADDR13 ADDR12 ADDR11 ADDR10 ADDR9 ADDR8 ADDR7 ADDR6 ADDR5 ADDR4 ADDR3 ADDR2 ADDR1 ADDR0 PTB DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 IIC DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 Multiplexed Narrow Bus DDRB PTA DATA15 DATA14 DATA13 DATA12 DATA11 DATA10 DATA9 DATA8 Multiplexed Wide Bus DDRA Internal Logic 2.5V VDD1,2 VSS1,2 I/O Driver 3.3V/5V VDDX VSSX PWM OSC/PLL 2.5V VDDPLL VSSPLL Voltage Regulator 3.3V/5V A/D Converter 3.3V/5V VDDR Voltage Reference VSSR VDDA VSSA SPI1 SPI2 SDA SCL KWJ0 KWJ1 KWJ6 KWJ7 PWM0 PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 PWM7 KWP0 KWP1 KWP2 KWP3 KWP4 KWP5 KWP6 KWP7 MISO MOSI SCK SS MISO MOSI SCK SS KWH0 KWH1 KWH2 KWH3 KWH4 KWH5 KWH6 KWH7 DDRK PT0 PT1 PT2 PT3 PT4 PT5 PT6 PT7 PS0 PS1 PS2 PS3 PS4 PS5 PS6 PS7 PM0 PM1 PM2 PM3 PM4 PM5 PM6 PM7 PJ0 PJ1 PJ6 PJ7 PP0 PP1 PP2 PP3 PP4 PP5 PP6 PP7 PH0 PH1 PH2 PH3 PH4 PH5 PH6 PH7 XADDR14 XADDR15 XADDR16 XADDR17 XADDR18 XADDR19 ECS Signals shown in Bold are not available on n the 80 Pin Package System Integration Module (SIM) TIM AD1 Breakpoints Debugger PTK PTE DDRE XIRQ IRQ R/W LSTRB ECLK MODA MODB NOACC/XCLKS PTT CRG DDRT PLL RESET PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7 IOC0 IOC1 IOC2 IOC3 IOC4 IOC5 IOC6 IOC7 PK0 PK1 PK2 PK3 PK4 PK5 PK7 PTS CPU12 DDRS Periodic Interrupt COP Watchdog Clock Monitor OSC PAD08 PAD09 PAD10 PAD11 PAD12 PAD13 PAD14 PAD15 PTM XTAL EXTAL VSSPLL VDDPLL XFC PIX0 PIX1 PIX2 PIX3 PIX4 PIX5 ECS DDRM Single-wire BDM BKGD AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 PTJ PPAGE VRH VRL VDDA VSSA DDRJ Voltage Regulator VRH VRL VDDA VSSA PTP VDDR VSSR VREGEN VDD1,2 VSS1,2 PAD00 PAD01 PAD02 PAD03 PAD04 PAD05 PAD06 PAD07 ATD1 DDRP AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 12K Byte RAM VRH VRL VDDA VSSA PTH 4K Byte EEPROM VRH VRL VDDA VSSA DDRH ATD0 Module to Port Routing 256K Byte Flash EEPROM AD0 1.5 MC9S12KT(G)256 Block Diagram Figure 1-2 MC9S12KT(G)256 Block Diagram 20 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 1.6 Device Memory Map Table 1-1 shows the device register map of the MC9S12KT256 and MC9S12KG256 after reset. Table 1-2 shows the device register map of the MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64) after reset. Table 1-1 MC9S12KT(G)256 Device Memory Map Address Module Size $000 - $017 CORE (Ports A, B, E, Modes, Inits, Test) $018 Reserved 1 $019 Voltage Regulator (VREG) 1 $01A - $01B Device ID register (PARTID) 2 $01C - $01F CORE (MEMSIZ, IRQ, HPRIO) $020 - $02F CORE (DBG) $030 - $033 CORE (PPAGE, Port K) $034 - $03F Clock and Reset Generator (PLL, RTI, COP) 12 $040 - $06F Standard Timer 16-bit 8 channels (TIM) 48 $070 - $07F Reserved 16 $080 - $09F Analog to Digital Converter 10-bit 8 channels (ATD0) 32 $0A0 - $0C7 Reserved 40 $0C8 - $0CF Serial Communications Interface 0 (SCI0) 8 $0D0 - $0D7 Serial Communications Interface 1 (SCI1) 8 $0D8 - $0DF Serial Peripheral Interface 0 (SPI0) 8 $0E0 - $0E7 Inter Integrated Circuit Bus (IIC) 8 $0E8 - $0EF Reserved 8 $0F0 - $0F7 Serial Peripheral Interface 1 (SPI1) 8 $0F8 - $0FF Serial Peripheral Interface 2 (SPI2) $100- $10F Flash Control Register 16 $110- $11B EEPROM Control Register 12 $11C - $11F Reserved $120 - $13F Analog to Digital Converter 10-bit 8 channels (ATD1) 32 $140 - $17F Motorola Scalable Controller Area Network 0 (CAN0) 64 $180 - $1BF Motorola Scalable Controller Area Network 1 (CAN1) $1C0 - $23F Reserved $240 - $27F Port Integration Module (PIM) 64 $280 - $2BF Motorola Scalable Controller Area Network 4 (CAN4) 64 $2C0 - $2E7 Pulse Width Modulator 8-bit 8 channels (PWM) $2E8 - $3FF Reserved Freescale Semiconductor 24 4 16 4 8 4 64 128 40 280 21 Device User Guide — 9S12KT256DGV1/D V01.09 Table 1-2 MC9S12KG(L)(C)128(64)(32) Device Memory Map Address 22 Module Size $000 - $017 CORE (Ports A, B, E, Modes, Inits, Test) 24 $018 Reserved 1 $019 Voltage Regulator (VREG) 1 $01A - $01B Device ID register (PARTID) 2 $01C - $01F CORE (MEMSIZ, IRQ, HPRIO) 4 $020 - $02F CORE (DBG) $030 - $033 CORE (PPAGE, Port K) $034 - $03F Clock and Reset Generator (PLL, RTI, COP) 12 $040 - $06F Standard Timer 16-bit 8 channels (TIM) 48 $070 - $07F Reserved 16 $080 - $0AF Analog to Digital Converter 10-bit 16 channels (ATD) 48 $0B0 - $0C7 Reserved 24 $0C8 - $0CF Serial Communications Interface 0 (SCI0) 8 $0D0 - $0D7 Serial Communications Interface 1 (SCI1) 8 $0D8 - $0DF Serial Peripheral Interface 0 (SPI0) 8 $0E0 - $0E7 Inter Integrated Circuit Bus (IIC) 8 $0E8 - $0EF Reserved 8 $0F0 - $0F7 Serial Peripheral Interface 1 (SPI1) 8 $0F8 - $0FF Serial Peripheral Interface 2 (SPI2) 8 $100- $10F Flash Control Register 16 $110- $11B EEPROM Control Register 12 $11C - $13F Reserved 36 $140 - $17F Motorola Scalable Controller Area Network 0 (CAN0) 64 $180 - $23F Reserved $240 - $27F Port Integration Module (PIM) 64 $280 - $2BF Motorola Scalable Controller Area Network 4 (CAN4) 64 $2C0 - $2E7 Pulse Width Modulator 8-bit 8 channels (PWM) 40 $2E8 - $3FF Reserved 16 4 192 280 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Figure 1-4 illustrates the full user configurable device memory map of MC9S12KT256 and MC9S12KG256. $0000 1K Register Space $0000 $0400 $03FF Mappable to any 2K Boundary $0000 4K Bytes EEPROM $1000 $0FFF Mappable to any 4K Boundary $1000 12K Bytes RAM $3FFF Mappable to any 16K Boundary and alignable to top or bottom $4000 0.5K, 1K, 2K or 4K Protected Sector $4000 $7FFF 16K Fixed Flash EEPROM $8000 $8000 16K Page Window sixteen * 16K Flash EEPROM Pages EXT $BFFF $C000 $C000 16K Fixed Flash EEPROM $FFFF 2K, 4K, 8K or 16K Protected Boot Sector $FF00 $FF00 $FFFF VECTORS VECTORS VECTORS NORMAL SINGLE CHIP EXPANDED SPECIAL SINGLE CHIP $FFFF BDM (If Active) The figure shows a useful map, which is not the map out of reset. After reset the map is: $0000 - $03FF: Register Space $1000 - $3FFF: 12K RAM $0000 - $0FFF: 4K EEPROM (1K hidden behind Register Space) Figure 1-3 MC9S12KT256 and MC9S12KG256 Memory Map Freescale Semiconductor 23 Device User Guide — 9S12KT256DGV1/D V01.09 Figure 1-4 illustrates the full user configurable device memory map of MC9S12KG128, MC9S12KL128 and MC9S12KC128. $0000 $0400 $0800 $1000 $2000 $0000 1K Register Space $03FF Mappable to any 2K Boundary $0800 2K Bytes EEPROM $0FFF Mappable to any 2K Boundary $2000 8K Bytes RAM $3FFF Mappable to any 8K Boundary $4000 0.5K, 1K, 2K or 4K Protected Sector $4000 $7FFF 16K Fixed Flash EEPROM $8000 $8000 16K Page Window eight * 16K Flash EEPROM Pages EXT $BFFF $C000 $C000 16K Fixed Flash EEPROM $FFFF 2K, 4K, 8K or 16K Protected Boot Sector $FF00 $FF00 $FFFF VECTORS VECTORS VECTORS NORMAL SINGLE CHIP EXPANDED SPECIAL SINGLE CHIP $FFFF BDM (If Active) The figure shows a useful map, which is not the map out of reset. After reset the map is: $0000 - $03FF: Register Space $0000 - $1FFF: 8K RAM (1K RAM hidden behind Register Space) $0000 - $07FF: 2K EEPROM (not visible) Figure 1-4 MC9S12KG128, MC9S12KL128 and MC9S12KC128 Memory Map 24 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Figure 1-5 illustrates the full user configurable device memory map of MC9S12KG64, MC9S12KL64 and MC9S12KC64. $0000 1K Register Space $03FF Mappable to any 2K Boundary $0800 $0000 $0400 $0800 $1000 $0FFF 1K Bytes EEPROM Mappable to any 2K Boundary (1K mapped two times in 2K space) $3000 $3000 4K Bytes RAM $3FFF Mappable to any 4K Boundary $4000 0.5K, 1K, 2K or 4K Protected Sector $4000 $7FFF 16K Fixed Flash EEPROM $8000 $8000 16K Page Window four * 16K Flash EEPROM Pages EXT $BFFF $C000 $C000 16K Fixed Flash EEPROM $FFFF 2K, 4K, 8K or 16K Protected Boot Sector $FF00 $FF00 $FFFF VECTORS VECTORS VECTORS NORMAL SINGLE CHIP EXPANDED SPECIAL SINGLE CHIP $FFFF BDM (If Active) The figure shows a useful map, which is not the map out of reset. After reset the map is: $0000 - $03FF: Register Space $0000 - $0FFF: 4K RAM (1K RAM hidden behind Register Space) $0000 - $03FF: 1K EEPROM (not visible) Figure 1-5 MC9S12KG64, MC9S12KL64 and MC9S12KC64 Memory Map Freescale Semiconductor 25 Device User Guide — 9S12KT256DGV1/D V01.09 Figure 1-6 illustrates the full user configurable device memory map of MC9S12KG32. $0000 $0000 $0400 $0800 $1000 $3800 1K Register Space $03FF Mappable to any 2K Boundary $0800 $0FFF 1K Bytes EEPROM Mappable to any 2K Boundary (1K mapped two times in 2K space) $3800 2K Bytes RAM $3FFF Mappable to any 2K Boundary $4000 $8000 $8000 EXT 32K Fixed Flash EEPROM $FFFF $FF00 $FF00 $FFFF VECTORS VECTORS VECTORS NORMAL SINGLE CHIP EXPANDED SPECIAL SINGLE CHIP $FFFF 2K, 4K, 8K or 16K Protected Boot Sector BDM (If Active) The figure shows a useful map, which is not the map out of reset. After reset the map is: $0000 - $03FF: Register Space $0000 - $07FF: 2K RAM (1K RAM hidden behind Register Space) $0000 - $03FF: 1K EEPROM (not visible) Figure 1-6 MC9S12KG32 Memory Map 26 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 1.7 Detailed Register Map The following tables show the detailed register map of the MC9S12K-Family. $0000 - $000F Address Name $0000 PORTA $0001 PORTB $0002 DDRA $0003 DDRB $0004 Reserved $0005 Reserved $0006 Reserved $0007 Reserved $0008 PORTE $0009 DDRE $000A PEAR $000B MODE $000C PUCR $000D RDRIV $000E EBICTL $000F Reserved $0010 - $0014 Address Name $0010 INITRM $0011 INITRG Freescale Semiconductor MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface) Bit 7 Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: NOACCE Write: Read: MODC Write: Read: PUPKE Write: Read: RDPK Write: Read: 0 Write: Read: 0 Write: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5 4 3 2 Bit 1 Bit 0 6 5 4 3 Bit 2 0 0 PIPOE NECLK LSTRE RDWE 0 0 EMK EME PUPBE PUPAE RDPB RDPA 0 MODB MODA 0 0 0 0 0 0 0 0 0 IVIS 0 0 0 0 0 0 0 0 0 0 0 0 0 PUPEE RDPE ESTR 0 MMC map 1 of 4 (HCS12 Module Mapping Control) Bit 7 Read: RAM15 Write: Read: 0 Write: Bit 6 Bit 5 Bit 4 Bit 3 RAM14 RAM13 RAM12 RAM11 REG14 REG13 REG12 REG11 Bit 2 0 Bit 1 0 0 0 Bit 0 RAMHAL 0 27 Device User Guide — 9S12KT256DGV1/D V01.09 $0010 - $0014 Address MMC map 1 of 4 (HCS12 Module Mapping Control) Name $0012 INITEE $0013 MISC $0014 Reserved Read: Write: Read: Write: Read: Write: $0015 - $0016 Address ITCR $0016 ITEST Read: Write: Read: Write: $0017 - $0017 Address $0017 Read: Write: $0018 - $0018 Address $0018 Read: Write: $0019 - $0019 Address $0019 Read: Write: $001A - $001B Address 28 PARTIDH $001B PARTIDL EE15 EE14 EE13 EE12 EE11 0 0 0 0 0 0 0 0 Bit 2 0 Bit 1 0 Bit 0 EEON EXSTR1 EXSTR0 ROMHM ROMON 0 0 0 0 Bit 7 0 Bit 6 0 Bit 5 0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 WRINT ADR3 ADR2 ADR1 ADR0 INTE INTC INTA INT8 INT6 INT4 INT2 INT0 Bit 7 0 Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 Bit 7 0 Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 Bit 7 0 Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 LVDS Bit 1 Bit 0 LVIE LVIF Miscellaneous Peripherals (Device Guide) Name $001A Bit 3 VREG3V3 (Voltage Regulator) Name VREGCTRL Bit 4 Miscellaneous Peripherals (Device Guide) Name Reserved Bit 5 MMC map 2 of 4 (HCS12 Module Mapping Control) Name Reserved Bit 6 INT map 1 of 2 (HCS12 Interrupt) Name $0015 Bit 7 Read: Write: Read: Write: Bit 7 ID15 Bit 6 ID14 Bit 5 ID13 Bit 4 ID12 Bit 3 ID11 Bit 2 ID10 Bit 1 ID9 Bit 0 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 $001C - $001D Guide) Address Name $001C MEMSIZ0 $001D MEMSIZ1 MMC map 3 of 4 (HCS12 Module Mapping Control, Device Bit 7 Bit 6 Bit 5 Bit 4 Read: reg_sw0 0 eep_sw1 eep_sw0 Write: Read: rom_sw1 rom_sw0 0 0 Write: $001E - $001E Address $001E Read: Write: $001F - $001F Address $001F Read: Write: $0020 - $002F Addres s $0020 $0021 $0022 $0023 $0024 $0025 $0026 $0027 $0028 $0029 $002A $002B - DBGSC DBGTBH DBGTBL DBGCNT DBGCCX DBGCCH DBGCCL - DBGC2 BKPCT0 DBGC3 BKPCT1 DBGCAX BKP0X DBGCAH BKP0H Freescale Semiconductor 0 pag_sw1 pag_sw0 Bit 7 Bit 6 IRQE IRQEN Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 Bit 0 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1 DBG (including BKP) map 1of 1 (HCS12 Debug) Name DBGC1 0 INT map 2 of 2 (HCS12 Interrupt) Name HPRIO Bit 2 Bit 1 Bit 0 ram_sw2 ram_sw1 ram_sw0 MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface) Name INTCR Bit 3 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 ARM TRGSEL BEGIN DBGBRK BF CF 0 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 TBF 0 read DBGEN write AF read write read Bit 15 write read write read write read write read write read write Bit 2 Bit 1 0 CAPMOD TRG CNT PAGSEL EXTCMP Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 RWCEN RWC RWBEN RWB 9 Bit 8 read BKABEN FULL BDM TAGAB BKCEN TAGC write read BKAMBH BKAMBL BKBMBH BKBMBL RWAEN RWA write read PAGSEL EXTCMP write read write Bit 0 Bit 15 14 13 12 11 10 29 Device User Guide — 9S12KT256DGV1/D V01.09 $0020 - $002F Addres s $002C $002D $002E $002F DBG (including BKP) map 1of 1 (HCS12 Debug) Name DBGCAL BKP0L DBGCBX BKP1X DBGCBH BKP1H DBGCBL BKP1L read write read write read write read write $0030 - $0031 Address PPAGE $0031 Reserved Read: Write: Read: Write: $0032 - $0033 Address PORTK $0033 DDRK $0034 - $003F 30 Address Name $0034 SYNR $0035 REFDV $0036 CTFLG TEST ONLY $0037 CRGFLG $0038 CRGINT $0039 CLKSEL $003A PLLCTL $003B RTICTL $003C COPCTL Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 PAGSEL EXTCMP Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 0 Bit 6 0 0 0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PIX5 PIX4 PIX3 PIX2 PIX1 PIX0 0 0 0 0 0 0 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface) Name $0032 Bit 6 MMC map 4 of 4 (HCS12 Module Mapping Control) Name $0030 Bit 7 Read: Write: Read: Write: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 CRG (Clock and Reset Generator) Bit 7 Read: 0 Write: Read: 0 Write: Read: TOUT7 Write: Read: RTIF Write: Read: RTIE Write: Read: PLLSEL Write: Read: CME Write: Read: 0 Write: Read: WCOP Write: Bit 6 0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SYN5 SYN4 SYN3 SYN2 SYN1 SYN0 0 0 0 TOUT6 TOUT5 TOUT4 PROF 0 PSTP 0 0 LOCKIF LOCKIE SYSWAI ROAWAI REFDV3 REFDV2 REFDV1 REFDV0 TOUT3 TOUT2 LOCK TRACK 0 0 PLLWAI CWAI RTIWAI COPWAI PRE PCE SCME RTR2 RTR1 RTR0 CR2 CR1 CR0 0 PLLON AUTO ACQ RTR6 RTR5 RTR4 RTR3 0 0 0 RSBCK TOUT1 SCMIF SCMIE TOUT0 SCM 0 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 $0034 - $003F Address $003D $003E $003F Name FORBYP TEST ONLY CTCTL TEST ONLY ARMCOP CRG (Clock and Reset Generator) Bit 7 Bit 6 Read: RTIBYP COPBYP Write: Read: TCTL7 TCTL6 Write: Read: 0 0 Write: Bit 7 6 $0040 - $006F Address TIOS $0041 CFORC $0042 OC7M $0043 OC7D $0044 TCNT (hi) $0045 TCNT (lo) $0046 TSCR1 $0047 TTOV $0048 TCTL1 $0049 TCTL2 $004A TCTL3 $004B TCTL4 $004C TIE $004D TSCR2 $004E TFLG1 $004F TFLG2 $0050 TC0 (hi) $0051 TC0 (lo) $0052 TC1 (hi) $0053 TC1 (lo) Freescale Semiconductor Bit 4 PLLBYP Bit 3 0 Bit 2 0 Bit 1 FCM Bit 0 0 TCTL5 TCTL4 TCLT3 TCTL2 TCTL1 TCTL0 0 5 0 4 0 3 0 2 0 1 0 Bit 0 TIM (Timer 16 Bit 8 Channels) Name $0040 Bit 5 0 Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 0 FOC7 0 FOC6 0 FOC5 0 FOC4 0 FOC3 0 FOC2 0 FOC1 0 FOC0 OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0 OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 TEN TSWAI TSFRZ TFFCA 0 0 0 0 TOV7 TOV6 TOV5 TOV4 TOV3 TOV2 TOV1 TOV0 OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4 OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0 EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A C7I C6I C5I C4I C3I C2I C1I C0I 0 0 0 TCRE PR2 PR1 PR0 C6F C5F C4F C3F C2F C1F C0F 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 TOI C7F TOF 31 Device User Guide — 9S12KT256DGV1/D V01.09 $0040 - $006F Address 32 TIM (Timer 16 Bit 8 Channels) Name $0054 TC2 (hi) $0055 TC2 (lo) $0056 TC3 (hi) $0057 TC3 (lo) $0058 TC4 (hi) $0059 TC4 (lo) $005A TC5 (hi) $005B TC5 (lo) $005C TC6 (hi) $005D TC6 (lo) $005E TC7 (hi) $005F TC7 (lo) $0060 PACTL $0061 PAFLG $0062 PACNT (hi) $0063 PACNT (lo) $0064 Reserved $0065 Reserved $0066 Reserved $0067 Reserved $0068 Reserved $0069 Reserved $006A Reserved $006B Reserved $006C Reserved Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI 0 0 0 0 0 0 PAOVF PAIF Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 $0040 - $006F Address TIM (Timer 16 Bit 8 Channels) Name $006D Reserved $006E Reserved $006F Reserved Read: Write: Read: Write: Read: Write: $0070 - $007F Address $0070 - $007F $0080 - $00AF Address Name $0080 ATDCTL0 $0081 ATDCTL1 $0082 ATDCTL2 $0083 ATDCTL3 $0084 ATDCTL4 $0085 ATDCTL5 $0086 ATDSTAT0 $0087 Reserved $0088 ATDTEST0 $0089 ATDTEST1 $008A ATDSTAT0 $008B ATDSTAT1 $008C ATDDIEN1 $008D ATDDIEN0 $008E PORTAD1 $008F PORTAD0 Freescale Semiconductor Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 Reserved space Name Reserved Bit 7 0 Read: Write: Bit 7 0 Bit 6 0 ATD (Analog to Digital Converter 10 Bit 16 Channel)1 Bit 7 Read: 0 Write: Read: ETRIGSEL Write: Read: ADPU Write: Read: 0 Write: Read: SRES8 Write: Read: DJM Write: Read: SCF Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: CCF15 Write: Read: CCF7 Write: Read: IEN15 Write: Read: IEN7 Write: Read: PTAD15 Write: Read: PTAD7 Write: Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 Bit 2 Bit 1 Bit 0 WRAP3 WRAP2 WRAP1 WRAP0 0 0 0 ETRIGCH3 ETRIGCH2 ETRIGCH1 ETRIGCH0 AFFC AWAI ETRIG ASCIE S8C S4C S2C S1C FIFO FRZ1 FRZ0 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 DSGN SCAN MULT CC CB CA ETORF FIFOR 0 CC2 CC1 CC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CCF14 CCF13 CCF12 CCF11 CCF10 CCF9 CCF8 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 IEN14 IEN13 IEN12 IEN11 IEN10 IEN9 IEN8 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1 IEN0 PTAD14 PTAD13 PTAD12 PTAD11 PTAD10 PTAD9 PTAD8 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0 0 ETRIGLE ETRIGP 0 ASCIF SC 33 Device User Guide — 9S12KT256DGV1/D V01.09 ATD (Analog to Digital Converter 10 Bit 16 Channel)1 $0080 - $00AF Address 34 Name $0090 ATDDR0H $0091 ATDDR0L $0092 ATDDR1H $0093 ATDDR1L $0094 ATDDR2H $0095 ATDDR2L $0096 ATDDR3H $0097 ATDDR3L $0098 ATDDR4H $0099 ATDDR4L $009A ATDDR5H $009B ATDDR5L $009C ATDDR6H $009D ATDDR6L $009E ATDDR7H $009F ATDDR7L $00A0 ATDDR8H $00A1 ATDDR8L $00A2 ATDDR9H $00A3 ATDDR9L $00A4 ATDDR10H $00A5 ATDDR10L $00A6 ATDDR11H $00A7 ATDDR11L $00A8 ATDDR12H Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit15 Bit 6 14 Bit 5 13 Bit 4 12 Bit 3 11 Bit 2 10 Bit 1 9 Bit 0 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 ATD (Analog to Digital Converter 10 Bit 16 Channel)1 $0080 - $00AF Address Name $00A9 ATDDR12L $00AA ATDDR13H $00AB ATDDR13L $00AC ATDDR14H $00AD ATDDR14L $00AE ATDDR15H $00AF ATDDR15L Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit7 Bit 6 Bit6 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit 1 0 Bit 0 0 NOTES: 1. Registers only available on MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64) Reserved space1 $00B0 - $00C7 Address $00B0 - $00C7 Name Reserved Read: Write: Bit 7 0 Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 NOTES: 1. Reserved space for MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64) $0080 - $009F Address Name $0080 ATD0CTL0 $0081 ATD0CTL1 $0082 ATD0CTL2 $0083 ATD0CTL3 $0084 ATD0CTL4 $0085 ATD0CTL5 $0086 ATD0STAT0 $0087 Reserved $0088 ATD0TEST0 $0089 ATD0TEST1 Freescale Semiconductor ATD0 (Analog to Digital Converter 10 Bit 8 Channel)1 Bit 7 Read: 0 Write: Read: ETRIGSEL Write: Read: ADPU Write: Read: 0 Write: Read: SRES8 Write: Read: DJM Write: Read: SCF Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 0 0 0 0 AFFC AWAI S8C S4C S2C SMP1 SMP0 PRS4 DSGN SCAN MULT ETORF FIFOR 0 0 0 0 0 Bit 2 Bit 1 Bit 0 WRAP2 WRAP1 WRAP0 ETRIGCH2 ETRIGCH1 ETRIGCH0 ETRIG ASCIE S1C FIFO FRZ1 FRZ0 PRS3 PRS2 PRS1 PRS0 CC CB CA 0 CC2 CC1 CC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ETRIGLE ETRIGP 0 0 0 ASCIF SC 35 Device User Guide — 9S12KT256DGV1/D V01.09 ATD0 (Analog to Digital Converter 10 Bit 8 Channel)1 $0080 - $009F Address Name $008A Reserved $008B ATD0STAT1 $008C Reserved $008D ATD0DIEN $008E Reserved $008F PORTAD0 $0090 ATD0DR0H $0091 ATD0DR0L $0092 ATD0DR1H $0093 ATD0DR1L $0094 ATD0DR2H $0095 ATD0DR2L $0096 ATD0DR3H $0097 ATD0DR3L $0098 ATD0DR4H $0099 ATD0DR4L $009A ATD0DR5H $009B ATD0DR5L $009C ATD0DR6H $009D ATD0DR6L $009E ATD0DR7H $009F ATD0DR7L Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 0 Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 0 0 0 0 0 0 0 0 IEN7 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1 IEN0 0 0 0 0 0 0 0 0 PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 NOTES: 1. Registers only available on MC9S12KT256 and MC9S12KG256 36 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Reserved space1 $00A0 - $00C7 Address $00A0 - $00C7 Name Reserved Read: Write: Bit 7 0 Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 NOTES: 1. Reserved space for MC9S12KT256 and MC9S12KG256 $00C8 - $00CF Address Name $00C8 SCI0BDH $00C9 SCI0BDL $00CA SCI0CR1 $00CB SCI0CR2 $00CC SCI0SR1 $00CD SCI0SR2 $00CE SCI0DRH $00CF SCI0DRL $00D0 - $00D7 Address Name $00D0 SCI1BDH $00D1 SCI1BDL $00D2 SCI1CR1 $00D3 SCI1CR2 $00D4 SCI1SR1 $00D5 SCI1SR2 $00D6 SCI1DRH $00D7 SCI1DRL Freescale Semiconductor SCI0 (Asynchronous Serial Interface) Bit 7 Bit 6 Read: 0 0 Write: Read: SBR7 SBR6 Write: Read: LOOPS SCISWAI Write: Read: TIE TCIE Write: Read: TDRE TC Write: Read: 0 0 Write: Read: R8 T8 Write: Read: R7 R6 Write: T7 T6 Bit 5 0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SBR12 SBR11 SBR10 SBR9 SBR8 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0 RSRC M WAKE ILT PE PT RIE ILIE TE RE RWU SBK RDRF IDLE OR NF FE PF 0 0 0 BRK13 TXDIR 0 0 0 0 0 0 R5 T5 R4 T4 R3 T3 R2 T2 R1 T1 R0 T0 RAF SCI1 (Asynchronous Serial Interface) Bit 7 Bit 6 Read: 0 0 Write: Read: SBR7 SBR6 Write: Read: LOOPS SCISWAI Write: Read: TIE TCIE Write: Read: TDRE TC Write: Read: 0 0 Write: Read: R8 T8 Write: Read: R7 R6 Write: T7 T6 Bit 5 0 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SBR12 SBR11 SBR10 SBR9 SBR8 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0 RSRC M WAKE ILT PE PT RIE ILIE TE RE RWU SBK RDRF IDLE OR NF FE PF 0 0 0 BRK13 TXDIR 0 0 0 0 0 0 R5 T5 R4 T4 R3 T3 R2 T2 R1 T1 R0 T0 RAF 37 Device User Guide — 9S12KT256DGV1/D V01.09 $00D8 - $00DF Address SPI0 (Serial Peripheral Interface) Name $00D8 SPI0CR1 $00D9 SPI0CR2 $00DA SPI0BR $00DB SPI0SR $00DC Reserved $00DD SPI0DR $00DE Reserved $00DF Reserved Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: $00E0 - $00E7 Address IBAD $00E1 IBFD $00E2 IBCR $00E3 IBSR $00E4 IBDR $00E5 Reserved $00E6 Reserved $00E7 Reserved Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: $00E8 - $00EF Address $00E8 - $00EF 38 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE 0 0 0 SPISWAI SPC0 SPPR2 SPPR1 SPPR0 SPR2 SPR1 SPR0 SPIF 0 SPTEF MODF 0 0 0 0 0 0 0 0 0 0 0 0 Bit7 6 5 4 3 2 1 Bit0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MODFEN BIDIROE 0 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 0 IBC7 IBC6 IBC5 IBC4 IBC3 IBC2 IBC1 IBC0 IBEN IBIE MS/SL TX/RX TXAK 0 TCF IAAS IBB 0 0 RSTA SRW D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 IBAL IBIF IBSWAI RXAK Reserved space Name Reserved Bit 6 IIC (Inter IC Bus) Name $00E0 Bit 7 Read: Write: Bit 7 0 Bit 6 0 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 $00F0 - $00F7 Address SPI1 (Serial Peripheral Interface) Name $00F0 SPI1CR1 $00F1 SPI1CR2 $00F2 SPI1BR $00F3 SPI1SR $00F4 Reserved $00F5 SPI1DR $00F6 Reserved $00F7 Reserved Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: $00F8 - $00FF Address SPI2CR1 $00F9 SPI2CR2 $00FA SPI2BR $00FB SPI2SR $00FC Reserved $00FD SPI2DR $00FE Reserved $00FF Reserved $0100 - $010F Address Name $0100 FCLKDIV $0101 FSEC $0102 FTSTMOD $0103 FCNFG Freescale Semiconductor Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE 0 0 0 SPISWAI SPC0 SPPR2 SPPR1 SPPR0 SPR2 SPR1 SPR0 SPIF 0 SPTEF MODF 0 0 0 0 0 0 0 0 0 0 0 0 Bit7 6 5 4 3 2 1 Bit0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MODFEN BIDIROE 0 0 SPI2 (Serial Peripheral Interface) Name $00F8 Bit 7 Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE 0 0 0 SPISWAI SPC0 SPPR2 SPPR1 SPPR0 SPR2 SPR1 SPR0 SPIF 0 SPTEF MODF 0 0 0 0 0 0 0 0 0 0 0 0 Bit7 6 5 4 3 2 1 Bit0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0 RNV5 RNV4 RNV3 RNV2 WRALL1 FDFD 0 MODFEN BIDIROE 0 0 Flash Control Register Bit 7 Bit 6 Read: FDIVLD PRDIV8 Write: Read: KEYEN Write: Read: 0 0 Write: Read: CBEIE CCIE Write: 0 KEYACC 0 DFDIE SEC 0 0 0 0 0 BKSEL(1) 39 Device User Guide — 9S12KT256DGV1/D V01.09 $0100 - $010F Address Name $0104 FPROT $0105 FSTAT $0106 FCMD $0107 FCTL2 $0108 FADDRHI $0109 FADDRLO $010A FDATAHI $010B FDATALO $010C Reserved $010D Reserved $010E Reserved $010F Reserved Flash Control Register Bit 7 Read: FPOPEN Write: Read: CBEIF Write: Read: 0 Write: Read: NV7 Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Bit 6 RNV6 CCIF Bit 5 Bit 4 FPHDIS PVIOL Bit 3 FPHS ACCERR Bit 2 Bit 1 FPLDIS DFDIF Bit 0 FPLS BLANK 0 0 NV2 NV1 NV0 CMDB NV6 NV5 NV4 NV3 FADDRHI FADDRLO FDATAHI FDATALO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NOTES: 1. Bit only available on MC9S12KT256 and MC9S12KG256. 2. Register only available on MC9S12KT256 and MC9S12KG256. $0110 - $011B Address 40 Name $0110 ECLKDIV $0111 Reserved $0112 Reserved for Factory Test $0113 ECNFG $0114 EPROT $0115 ESTAT $0116 ECMD $0117 Reserved for Factory Test $0118 EADDRHI EEPROM Control Register Bit 7 Bit 6 Read: EDIVLD PRDIV8 Write: Read: 0 0 Write: Read: 0 0 Write: Read: CBEIE CCIE Write: Read: NV6 EPOPEN Write: Read: CCIF CBEIF Write: Read: 0 CMDB6 Write: Read: 0 0 Write: Read: 0 0 Write: Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 EDIV5 EDIV4 EDIV3 EDIV2 EDIV1 EDIV0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NV5 NV4 EPDIS EP2 EP1 EP0 PVIOL ACCERR 0 0 0 0 0 0 0 0 0 0 0 CMDB5 BLANK CMDB2 0 CMDB0 0 0 0 10 9 Bit 8 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 $0110 - $011B Address EEPROM Control Register Name $0119 EADDRLO $011A EDATAHI $011B EDATALO Read: Write: Read: Write: Read: Write: $011C - $011F Address $011C - $011F $0120 - $013F Address Name $0120 ATD1CTL0 $0121 ATD1CTL1 $0122 ATD1CTL2 $0123 ATD1CTL3 $0124 ATD1CTL4 $0125 ATD1CTL5 $0126 ATD1STAT0 $0127 Reserved $0128 ATD1TEST0 $0129 ATD1TEST1 $012A Reserved $012B ATD1STAT1 $012C Reserved $012D ATD1DIEN $012E Reserved $012F PORTAD1 Freescale Semiconductor Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Bit 7 6 5 4 3 2 1 Bit 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 Reserved space Name Reserved Bit 7 Read: Write: Bit 7 0 Bit 6 0 ATD1 (Analog to Digital Converter 10 Bit 8 Channel)1 Bit 7 Read: 0 Write: Read: ETRIGSEL Write: Read: ADPU Write: Read: 0 Write: Read: SRES8 Write: Read: DJM Write: Read: SCF Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: Read: CCF7 Write: Read: 0 Write: Read: IEN7 Write: Read: 0 Write: Read: PTAD7 Write: Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 Bit 1 Bit 0 WRAP2 WRAP1 WRAP0 0 0 0 0 ETRIGCH2 ETRIGCH1 ETRIGCH0 AFFC AWAI ETRIG ASCIE S8C S4C S2C S1C FIFO FRZ1 FRZ0 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 DSGN SCAN MULT CC CB CA ETORF FIFOR 0 CC2 CC1 CC0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 0 0 0 0 0 0 0 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1 IEN0 0 0 0 0 0 0 0 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0 0 ETRIGLE ETRIGP 0 0 0 ASCIF SC 41 Device User Guide — 9S12KT256DGV1/D V01.09 ATD1 (Analog to Digital Converter 10 Bit 8 Channel)1 $0120 - $013F Address Name $0130 ATD1DR0H $0131 ATD1DR0L $0132 ATD1DR1H $0133 ATD1DR1L $0134 ATD1DR2H $0135 ATD1DR2L $0136 ATD1DR3H $0137 ATD1DR3L $0138 ATD1DR4H $0139 ATD1DR4L $013A ATD1DR5H $013B ATD1DR5L $013C ATD1DR6H $013D ATD1DR6L $013E ATD1DR7H $013F ATD1DR7L Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit15 Bit 6 14 Bit 5 13 Bit 4 12 Bit 3 11 Bit 2 10 Bit 1 9 Bit 0 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 Bit15 14 13 12 11 10 9 Bit8 Bit7 Bit6 0 0 0 0 0 0 NOTES: 1. Registers only available on MC9S12KT256 and MC9S12KG256. Reserved space for MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64). $0140 - $017F Address 42 Name $0140 CAN0CTL0 $0141 CAN0CTL1 $0142 CAN0BTR0 $0143 CAN0BTR1 $0144 CAN0RFLG CAN0 (Motorola Scalable CAN - MSCAN) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: RXACT SYNCH RXFRM CSWAI TIME WUPE SLPRQ INITRQ Write: Read: 0 SLPAK INITAK CANE CLKSRC LOOPB LISTEN WUPM Write: Read: SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 Write: Read: SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10 Write: Read: RSTAT1 RSTAT0 TSTAT1 TSTAT0 WUPIF CSCIF OVRIF RXF Write: Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 $0140 - $017F Address Name $0145 CAN0RIER $0146 CAN0TFLG $0147 CAN0TIER $0148 CAN0TARQ $0149 CAN0TAAK $014A CAN0TBSEL $014B CAN0IDAC $014C Reserved $014D Reserved $014E CAN0RXERR $014F CAN0TXERR $0150 $0153 $0154 $0157 $0158 $015B $015C $015F $0160 $016F $0170 $017F CAN0IDAR0 CAN0IDAR3 CAN0IDMR0 CAN0IDMR3 CAN0IDAR4 CAN0IDAR7 CAN0IDMR4 CAN0IDMR7 CAN0RXFG CAN0TXFG CAN0 (Motorola Scalable CAN - MSCAN) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Read: WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE Write: Read: 0 0 0 0 0 TXE2 TXE1 Write: Read: 0 0 0 0 0 TXEIE2 TXEIE1 Write: Read: 0 0 0 0 0 ABTRQ2 ABTRQ1 Write: Read: 0 0 0 0 0 ABTAK2 ABTAK1 Write: Read: 0 0 0 0 0 TX2 TX1 Write: Read: 0 0 0 IDHIT2 IDHIT1 IDAM1 IDAM0 Write: Read: 0 0 0 0 0 0 0 Write: Read: 0 0 0 0 0 0 0 Write: Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 Write: Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 Write: Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 Write: Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 Write: Read: AC7 AC6 AC5 AC4 AC3 AC2 AC1 Write: Read: AM7 AM6 AM5 AM4 AM3 AM2 AM1 Write: Read: FOREGROUND RECEIVE BUFFER see (Table 1-3) Write: Read: FOREGROUND TRANSMIT BUFFER see (Table 1-3) Write: Bit 0 RXFIE TXE0 TXEIE0 ABTRQ0 ABTAK0 TX0 IDHIT0 0 0 RXERR0 TXERR0 AC0 AM0 AC0 AM0 Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout Address $xxx0 $xxx1 $xxx2 $xxx3 Name Extended ID Standard ID CANxRIDR0 Extended ID Standard ID CANxRIDR1 Extended ID Standard ID CANxRIDR2 Extended ID Standard ID CANxRIDR3 Freescale Semiconductor Read: Read: Write: Read: Read: Write: Read: Read: Write: Read: Read: Write: Bit 7 ID28 ID10 Bit 6 ID27 ID9 Bit 5 ID26 ID8 Bit 4 ID25 ID7 Bit 3 ID24 ID6 Bit 2 ID23 ID5 Bit 1 ID22 ID4 Bit 0 ID21 ID3 ID20 ID2 ID19 ID1 ID18 ID0 SRR=1 RTR IDE=1 IDE=0 ID17 ID16 ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR 43 Device User Guide — 9S12KT256DGV1/D V01.09 Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout Address Name $xxx4- CANxRDSR0 - Read: $xxxB CANxRDSR7 Write: Read: $xxxC CANRxDLR Write: Read: $xxxD Reserved Write: Read: $xxxE CANxRTSRH Write: Read: $xxxF CANxRTSRL Write: Extended ID Read: CANxTIDR0 Write: $xx10 Standard ID Read: Write: Extended ID Read: CANxTIDR1 Write: $xx10 Standard ID Read: Write: Extended ID Read: CANxTIDR2 Write: $xx12 Standard ID Read: Write: Extended ID Read: CANxTIDR3 Write: $xx13 Standard ID Read: Write: $xx14- CANxTDSR0 - Read: $xx1B CANxTDSR7 Write: Read: $xx1C CANxTDLR Write: Read: $xx1D CONxTTBPR Write: Read: $xx1E CANxTTSRH Write: Read: $xx1F CANxTTSRL Write: $0180 - $01BF Address 44 Name $0180 CAN1CTL0 $0181 CAN1CTL1 $0182 CAN1BTR0 $0183 CAN1BTR1 Bit 7 DB7 Bit 6 DB6 Bit 5 DB5 Bit 4 DB4 Bit 3 DB3 Bit 2 DB2 Bit 1 DB1 Bit 0 DB0 DLC3 DLC2 DLC1 DLC0 TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8 TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15 ID2 ID1 ID0 RTR IDE=0 ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 DLC3 DLC2 DLC1 DLC0 PRIO7 PRIO6 PRIO5 PRIO4 PRIO3 PRIO2 PRIO1 PRIO0 TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8 TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0 CAN1 (Motorola Scalable CAN - MSCAN)1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: RXACT SYNCH RXFRM CSWAI TIME WUPE SLPRQ INITRQ Write: Read: 0 SLPAK INITAK CANE CLKSRC LOOPB LISTEN WUPM Write: Read: SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 Write: Read: SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10 Write: Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 $0180 - $01BF Address $0184 $0185 $0186 $0187 $0188 $0189 $018A $018B $018C $018D $018E $018F $0190 $0191 $0192 $0193 $0194 $0195 $0196 $0197 $0198 $0199 $019A $019B $019C Name CAN1 (Motorola Scalable CAN - MSCAN)1 Bit 7 Bit 6 Bit 5 Read: RSTAT1 CAN1RFLG WUPIF CSCIF Write: Read: CAN1RIER WUPIE CSCIE RSTATE1 Write: Read: 0 0 0 CAN1TFLG Write: Read: 0 0 0 CAN1TIER Write: Read: 0 0 0 CAN1TARQ Write: Read: 0 0 0 CAN1TAAK Write: Read: 0 0 0 CAN1TBSEL Write: Read: 0 0 CAN1IDAC IDAM1 Write: Read: 0 0 0 Reserved Write: Read: 0 0 0 Reserved Write: Read: RXERR7 RXERR6 RXERR5 CAN1RXERR Write: Read: TXERR7 TXERR6 TXERR5 CAN1TXERR Write: Read: CAN1IDAR0 AC7 AC6 AC5 Write: Read: CAN1IDAR1 AC7 AC6 AC5 Write: Read: CAN1IDAR2 AC7 AC6 AC5 Write: Read: CAN1IDAR3 AC7 AC6 AC5 Write: Read: CAN1IDMR0 AM7 AM6 AM5 Write: Read: CAN1IDMR1 AM7 AM6 AM5 Write: Read: CAN1IDMR2 AM7 AM6 AM5 Write: Read: CAN1IDMR3 AM7 AM6 AM5 Write: Read: CAN1IDAR4 AC7 AC6 AC5 Write: Read: CAN1IDAR5 AC7 AC6 AC5 Write: Read: CAN1IDAR6 AC7 AC6 AC5 Write: Read: CAN1IDAR7 AC7 AC6 AC5 Write: Read: CAN1IDMR4 AM7 AM6 AM5 Write: Freescale Semiconductor Bit 4 RSTAT0 Bit 3 TSTAT1 Bit 2 TSTAT0 Bit 1 Bit 0 OVRIF RXF OVRIE RXFIE TXE2 TXE1 TXE0 TXEIE2 TXEIE1 TXEIE0 RSTATE0 TSTATE1 TSTATE0 0 0 0 0 0 0 0 0 0 0 ABTRQ2 ABTRQ1 ABTRQ0 ABTAK2 ABTAK1 ABTAK0 TX2 TX1 TX0 0 IDHIT2 IDHIT1 IDHIT0 0 0 0 0 0 0 0 0 0 0 IDAM0 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0 AC4 AC3 AC2 AC1 AC0 AC4 AC3 AC2 AC1 AC0 AC4 AC3 AC2 AC1 AC0 AC4 AC3 AC2 AC1 AC0 AM4 AM3 AM2 AM1 AM0 AM4 AM3 AM2 AM1 AM0 AM4 AM3 AM2 AM1 AM0 AM4 AM3 AM2 AM1 AM0 AC4 AC3 AC2 AC1 AC0 AC4 AC3 AC2 AC1 AC0 AC4 AC3 AC2 AC1 AC0 AC4 AC3 AC2 AC1 AC0 AM4 AM3 AM2 AM1 AM0 45 Device User Guide — 9S12KT256DGV1/D V01.09 CAN1 (Motorola Scalable CAN - MSCAN)1 $0180 - $01BF Address Name $019D CAN1IDMR5 $019E CAN1IDMR6 $019F CAN1IDMR7 $01A0 $01AF $01B0 $01BF CAN1RXFG CAN1TXFG Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 FOREGROUND RECEIVE BUFFER see (Table 1-3) FOREGROUND TRANSMIT BUFFER see (Table 1-3) NOTES: 1. Registers only available on MC9S12KT256. Reserved space for MC9S12KG256(128)(64)(32), MC9S12KL128(64) and MC9S12KC128(64). $01C0 - $023F Address $01C0 - $023F Reserved space Name Reserved Read: Write: $0240 - $027F Address 46 PTT $0241 PTIT $0242 DDRT $0243 RDRT $0244 PERT $0245 PPST $0246 Reserved $0247 Reserved $0248 PTS $0249 PTIS $024A DDRS $024B RDRS Bit 6 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 PIM (Port Integration Module) Name $0240 Bit 7 0 Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PTT7 PTT6 PTT5 PTT4 PTT3 PTT2 PTT1 PTT0 PTIT7 PTIT6 PTIT5 PTIT4 PTIT3 PTIT2 PTIT1 PTIT0 DDRT7 DDRT7 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0 RDRT7 RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0 PERT7 PERT6 PERT5 PERT4 PERT3 PERT2 PERT1 PERT0 PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PTS7 PTS6 PTS5 PTS4 PTS3 PTS2 PTS1 PTS0 PTIS7 PTIS6 PTIS5 PTIS4 PTIS3 PTIS2 PTIS1 PTIS0 DDRS7 DDRS7 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0 RDRS7 RDRS6 RDRS5 RDRS4 RDRS3 RDRS2 RDRS1 RDRS0 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 $0240 - $027F Address PIM (Port Integration Module) Name $024C PERS $024D PPSS $024E WOMS $024F Reserved $0250 PTM $0251 PTIM $0252 DDRM $0253 RDRM $0254 PERM $0255 PPSM $0256 WOMM $0257 MODRR $0258 PTP $0259 PTIP $025A DDRP $025B RDRP $025C PERP $025D PPSP $025E PIEP $025F PIFP $0260 PTH $0261 PTIH $0262 DDRH $0263 RDRH $0264 PERH Freescale Semiconductor Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Read: Write: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PERS7 PERS6 PERS5 PERS4 PERS3 PERS2 PERS1 PERS0 PPSS7 PPSS6 PPSS5 PPSS4 PPSS3 PPSS2 PPSS1 PPSS0 WOMS7 WOMS6 WOMS5 WOMS4 WOMS3 WOMS2 WOMS1 WOMS0 0 0 0 0 0 0 0 0 PTM7 PTM6 PTM5 PTM4 PTM3 PTM2 PTM1 PTM0 PTIM7 PTIM6 PTIM5 PTIM4 PTIM3 PTIM2 PTIM1 PTIM0 DDRM7 DDRM7 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0 RDRM7 RDRM6 RDRM5 RDRM4 RDRM3 RDRM2 RDRM1 RDRM0 PERM7 PERM6 PERM5 PERM4 PERM3 PERM2 PERM1 PERM0 PPSM7 PPSM6 PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0 WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0 0 MODRR6 MODRR5 MODRR4 MODRR3 MODRR2 MODRR1 MODRR0 PTP7 PTP6 PTP5 PTP4 PTP3 PTP2 PTP1 PTP0 PTIP7 PTIP6 PTIP5 PTIP4 PTIP3 PTIP2 PTIP1 PTIP0 DDRP7 DDRP7 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0 RDRP7 RDRP6 RDRP5 RDRP4 RDRP3 RDRP2 RDRP1 RDRP0 PERP7 PERP6 PERP5 PERP4 PERP3 PERP2 PERP1 PERP0 PPSP7 PPSP6 PPSP5 PPSP4 PPSP3 PPSP2 PPSP1 PPSS0 PIEP7 PIEP6 PIEP5 PIEP4 PIEP3 PIEP2 PIEP1 PIEP0 PIFP7 PIFP6 PIFP5 PIFP4 PIFP3 PIFP2 PIFP1 PIFP0 PTH7 PTH6 PTH5 PTH4 PTH3 PTH2 PTH1 PTH0 PTIH7 PTIH6 PTIH5 PTIH4 PTIH3 PTIH2 PTIH1 PTIH0 DDRH7 DDRH7 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0 RDRH7 RDRH6 RDRH5 RDRH4 RDRH3 RDRH2 RDRH1 RDRH0 PERH7 PERH6 PERH5 PERH4 PERH3 PERH2 PERH1 PERH0 47 Device User Guide — 9S12KT256DGV1/D V01.09 $0240 - $027F Address Name $0265 PPSH $0266 PIEH $0267 PIFH $0268 PTJ $0269 PTIJ $026A DDRJ $026B RDRJ $026C PERJ $026D PPSJ $026E PIEJ $026F PIFJ $0270 $027F Reserved $0280 - $02BF Address $0280 $0281 $0282 $0283 $0284 $0285 $0286 $0287 $0288 $0289 $028A 48 PIM (Port Integration Module) Bit 7 Read: PPSH7 Write: Read: PIEH7 Write: Read: PIFH7 Write: Read: PTJ7 Write: Read: PTIJ7 Write: Read: DDRJ7 Write: Read: RDRJ7 Write: Read: PERJ7 Write: Read: PPSJ7 Write: Read: PIEJ7 Write: Read: PIFJ7 Write: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PPSH6 PPSH5 PPSH4 PPSH3 PPSH2 PPSH1 PPSH0 PIEH6 PIEH5 PIEH4 PIEH3 PIEH2 PIEH1 PIEH0 PIFH6 PIFH5 PIFH4 PIFH3 PIFH2 PIFH1 PIFH0 0 0 0 0 PTJ1 PTJ0 0 0 0 0 PTIJ1 PTIJ0 0 0 0 0 DDRJ1 DDRJ0 0 0 0 0 RDRJ1 RDRJ0 0 0 0 0 PERJ1 PERJ0 0 0 0 0 PPSJ1 PPSJ0 0 0 0 0 PIEJ1 PIEJ0 0 0 0 0 PIFJ1 PIFJ0 PTJ6 PTIJ6 DDRJ7 RDRJ6 PERJ6 PPSJ6 PIEJ6 PIFJ6 Read: CAN4 (Motorola Scalable CAN - MSCAN) Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: RXACT SYNCH CAN4CTL0 RXFRM CSWAI TIME WUPE SLPRQ INITRQ Write: Read: 0 SLPAK INITAK CAN4CTL1 CANE CLKSRC LOOPB LISTEN WUPM Write: Read: CAN4BTR0 SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 Write: Read: CAN4BTR1 SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10 Write: Read: RSTAT1 RSTAT0 TSTAT1 TSTAT0 CAN4RFLG WUPIF CSCIF OVRIF RXF Write: Read: CAN4RIER WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE Write: Read: 0 0 0 0 0 CAN4TFLG TXE2 TXE1 TXE0 Write: Read: 0 0 0 0 0 CAN4TIER TXEIE2 TXEIE1 TXEIE0 Write: Read: 0 0 0 0 0 CAN4TARQ ABTRQ2 ABTRQ1 ABTRQ0 Write: Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0 CAN4TAAK Write: Read: 0 0 0 0 0 CAN4TBSEL TX2 TX1 TX0 Write: Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 $0280 - $02BF Address $028B $028C $028D $028E $028F $0290 $0291 $0292 $0293 $0294 $0295 $0296 $0297 $0298 $0299 $029A $029B $029C $029D $029E $029F $02A0 $02AF $02B0 $02BF CAN4 (Motorola Scalable CAN - MSCAN) Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: 0 0 0 IDHIT2 IDHIT1 IDHIT0 CAN4IDAC IDAM1 IDAM0 Write: Read: 0 0 0 0 0 0 0 0 Reserved Write: Read: 0 0 0 0 0 0 0 0 Reserved Write: Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0 CAN4RXERR Write: Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0 CAN4TXERR Write: Read: CAN4IDAR0 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Write: Read: CAN4IDAR1 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Write: Read: CAN4IDAR2 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Write: Read: CAN4IDAR3 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Write: Read: CAN4IDMR0 AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 Write: Read: CAN4IDMR1 AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 Write: Read: CAN4IDMR2 AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 Write: Read: CAN4IDMR3 AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 Write: Read: CAN4IDAR4 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Write: Read: CAN4IDAR5 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Write: Read: CAN4IDAR6 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Write: Read: CAN4IDAR7 AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0 Write: Read: CAN4IDMR4 AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 Write: Read: CAN4IDMR5 AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 Write: Read: CAN4IDMR6 AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 Write: Read: CAN4IDMR7 AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0 Write: Read: FOREGROUND RECEIVE BUFFER see (Table 1-3) CAN4RXFG Write: Read: CAN4TXFG FOREGROUND TRANSMIT BUFFER see (Table 1-3) Write: Freescale Semiconductor 49 Device User Guide — 9S12KT256DGV1/D V01.09 $02C0 - $02E7 Address $02C0 $02C1 $02C2 $02C3 $02C4 $02C5 $02C6 $02C7 $02C8 $02C9 $02CA $02CB $02CC $02CD $02CE $02CF $02D0 $02D1 $02D2 $02D3 $02D4 $02D5 $02D6 $02D7 $02D8 50 Name PWM (Pulse Width Modulator 8 Bit 8 Channel) Bit 7 Read: PWME PWME7 Write: Read: PWMPOL PPOL7 Write: Read: PWMCLK PCLK7 Write: Read: 0 PWMPRCLK Write: Read: PWMCAE CAE7 Write: Read: PWMCTL CON67 Write: Read: 0 PWMTST Test Only Write: Read: 0 PWMPRSC Write: Read: PWMSCLA Bit 7 Write: Read: PWMSCLB Bit 7 Write: Read: 0 PWMSCNTA Write: Read: 0 PWMSCNTB Write: Read: Bit 7 PWMCNT0 Write: 0 Read: Bit 7 PWMCNT1 Write: 0 Read: Bit 7 PWMCNT2 Write: 0 Read: Bit 7 PWMCNT3 Write: 0 Read: Bit 7 PWMCNT4 Write: 0 Read: Bit 7 PWMCNT5 Write: 0 Read: Bit 7 PWMCNT6 Write: 0 Read: Bit 7 PWMCNT7 Write: 0 Read: PWMPER0 Bit 7 Write: Read: PWMPER1 Bit 7 Write: Read: PWMPER2 Bit 7 Write: Read: PWMPER3 Bit 7 Write: Read: PWMPER4 Bit 7 Write: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PWME6 PWME5 PWME4 PWME3 PWME2 PWME1 PWME0 PPOL6 PPOL5 PPOL4 PPOL3 PPOL2 PPOL1 PPOL0 PCLK6 PCLK5 PCLK4 PCLK3 PCLK2 PCLK1 PCLK0 PCKB2 PCKB1 PCKB0 PCKA2 PCKA1 PCKA0 CAE6 CAE5 CAE4 CAE3 CAE2 CAE1 CAE0 CON45 CON23 CON01 PSWAI PFRZ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 Bit 0 0 Bit 0 0 Bit 0 0 Bit 0 0 Bit 0 0 Bit 0 0 Bit 0 0 Bit 0 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 0 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 $02C0 - $02E7 Address Name $02D9 PWMPER5 $02DA PWMPER6 $02DB PWMPER7 $02DC PWMDTY0 $02DD PWMDTY1 $02DE PWMDTY2 $02DF PWMDTY3 $02E0 PWMDTY4 $02E1 PWMDTY5 $02E2 PWMDTY6 $02E3 PWMDTY7 $02E4 PWMSDN $02E5 Reserved $02E6 Reserved $02E7 Reserved PWM (Pulse Width Modulator 8 Bit 8 Channel) Bit 7 Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: Bit 7 Write: Read: PWMIF Write: Read: 0 Write: Read: 0 Write: Read: 0 Write: $02E8 - $03FF Address $02E8 - $03FF Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0 PWMIE 0 PWMRS PWMLVL TRT 0 0 0 PWM7IN 0 0 PWM7IN PWM7E L NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 5 0 Bit 4 0 Bit 3 0 Bit 2 0 Bit 1 0 Bit 0 0 Reserved space Name Reserved Bit 6 Read: Write: Bit 7 0 Bit 6 0 1.8 Part ID Assignments The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after reset. The read-only value is a unique part ID for each revision of the chip. Table 1-4 Assigned Part ID Numbers shows the assigned part ID number. Freescale Semiconductor 51 Device User Guide — 9S12KT256DGV1/D V01.09 Table 1-4 Assigned Part ID Numbers Device Mask Set Number MC9S12KT256 MC9S12KG128 0L33V 0L74N Part ID1 $7000 $7100 NOTES: 1. The coding is as follows: Bit 15-12: Major family identifier Bit 11-8: Minor family identifier Bit 7-4: Major mask set revision number including FAB transfers Bit 3-0: Minor - non full - mask set revision The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C and $001D after reset). Table 1-5 shows the read-only values of these registers. Refer to HCS12 Module Mapping and Control (MMC) Block Guide for further details. Table 1-5 Memory size registers Device MC9S12KT256 MC9S12KT256 MC9S12KG128 MC9S12KG128 52 Register name MEMSIZ0 MEMSIZ1 MEMSIZ0 MEMSIZ1 Value $25 $81 $13 $80 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Section 2 Signal Description 2.1 Device Pinout The MC9S12K-Family and its derivatives are available in a 112-pin low profile quad flat pack (LQFP), a 100-pin low profile quad flat pack (LQFP), and a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. Figure 2-1, Figure 2-2 and Figure 2-3 show the pin assignments for different packages. Freescale Semiconductor 53 MC9S12K-Family 112LQFP 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 VRH VDDA PAD15/AN15 PAD07/AN07 PAD14/AN14 PAD06/AN06 PAD13/AN13 PAD05/AN05 PAD12/AN12 PAD04/AN04 PAD11/AN11 PAD03/AN03 PAD10/AN10 PAD02/AN02 PAD09/AN09 PAD01/AN01 PAD08/AN08 PAD00/AN00 VSS2 VDD2 PA7/ADDR15/DATA15 PA6/ADDR14/DATA14 PA5/ADDR13/DATA13 PA4/ADDR12/DATA12 PA3/ADDR11/DATA11 PA2/ADDR10/DATA10 PA1/ADDR9/DATA9 PA0/ADDR8/DATA8 ADDR5/DATA5/PB5 ADDR6/DATA6/PB6 ADDR7/DATA7/PB7 SS2/KWH7/PH7 SCK2/KWH6/PH6 MOSI2/KWH5/PH5 MISO2/KWH4/PH4 XCLKS/NOACC/PE7 MODB/IPIPE1/PE6 MODA/IPIPE0/PE5 ECLK/PE4 VSSR VDDR RESET VDDPLL XFC VSSPLL EXTAL XTAL TEST SS1/KWH3/PH3 SCK1/KWH2/PH2 MOSI1/KWH1/PH1 MISO1/KWH0/PH0 LSTRB/TAGLO/PE3 R/W/PE2 IRQ/PE1 XIRQ/PE0 SS1/PWM3/KWP3/PP3 SCK1/PWM2/KWP2/PP2 MOSI1/PWM1/KWP1/PP1 MISO1/PWM0/KWP0/PP0 XADDR17/PK3 XADDR16/PK2 XADDR15/PK1 XADDR14/PK0 IOC0/PT0 IOC1/PT1 IOC2/PT2 IOC3/PT3 VDD1 VSS1 IOC4/PT4 IOC5/PT5 IOC6/PT6 IOC7/PT7 XADDR19/PK5 XADDR18/PK4 KWJ1/PJ1 KWJ0/PJ0 MODC/TAGHI/BKGD ADDR0/DATA0/PB0 ADDR1/DATA1/PB1 ADDR2/DATA2/PB2 ADDR3/DATA3/PB3 ADDR4/DATA4/PB4 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 PP4/KWP4/PWM4/MISO2 PP5/KWP5/PWM5/MOSI2 PP6/KWP6/PWM6/SS2 PP7/KWP7/PWM7/SCK2 PK7/ECS VDDX VSSX PM0/RXCAN0 PM1/TXCAN0 PM2/RXCAN1/RXCAN0/MISO0 PM3/TXCAN1/TXCAN0/SS0 PM4/RXCAN0/RXCAN4/MOSI0 PM5/TXCAN0/TXCAN4/SCK0 PJ6/KWJ6/RXCAN4/SDA PJ7/KWJ7/TXCAN4/SCL VREGEN PS7/SS0 PS6/SCK0 PS5/MOSI0 PS4/MISO0 PS3/TXD1 PS2/RXD1 PS1/TXD0 PS0/RXD0 PM6/RXCAN4 PM7/TXCAN4 VSSA VRL Device User Guide — 9S12KT256DGV1/D V01.09 Signals shown in Bold are not available on the 80 Pin Package Signals shown in Italic are only available in MC9S12KT256 Figure 2-1 Pin assignments for 112 LQFP 54 Freescale Semiconductor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MC9S12K-Family 100LQFP 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VRH VDDA PAD07/AN07 PAD06/AN06 PAD05/AN05 PAD12/AN12 PAD04/AN04 PAD11/AN11 PAD03/AN03 PAD10/AN10 PAD02/AN02 PAD09/AN09 PAD01/AN01 PAD08/AN08 PAD00/AN00 VSS2 VDD2 PA7/ADDR15/DATA15 PA6/ADDR14/DATA14 PA5/ADDR13/DATA13 PA4/ADDR12/DATA12 PA3/ADDR11/DATA11 PA2/ADDR10/DATA10 PA1/ADDR9/DATA9 PA0/ADDR8/DATA8 ADDR5/DATA5/PB5 ADDR6/DATA6/PB6 ADDR7/DATA7/PB7 KWH5/PH5 XCLKS/NOACC/PE7 MODB/IPIPE1/PE6 MODA/IPIPE0/PE5 ECLK/PE4 VSSR VDDR RESET VDDPLL XFC VSSPLL EXTAL XTAL TEST SS1/KWH3/PH3 SCK1/KWH2/PH2 MOSI1/KWH1/PH1 MISO1/KWH0/PH0 LSTRB/TAGLO/PE3 R/W/PE2 IRQ/PE1 XIRQ/PE0 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 SS1/PWM3/KWP3/PP3 SCK1/PWM2/KWP2/PP2 MOSI1/PWM1/KWP1/PP1 MISO1/PWM0/KWP0/PP0 XADDR16/PK2 XADDR15/PK1 XADDR14/PK0 IOC0/PT0 IOC1/PT1 IOC2/PT2 IOC3/PT3 VDD1 VSS1 IOC4/PT4 IOC5/PT5 IOC6/PT6 IOC7/PT7 KWJ1/PJ1 KWJ0/PJ0 MODC/TAGHI/BKGD ADDR0/DATA0/PB0 ADDR1/DATA1/PB1 ADDR2/DATA2/PB2 ADDR3/DATA3/PB3 ADDR4/DATA4/PB4 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PP4/KWP4/PWM4/MISO2 PP5/KWP5/PWM5/MOSI2 PP6/KWP6/PWM6/SS2 PP7/KWP7/PWM7/SCK2 VDDX VSSX PM0/RXCAN0 PM1/TXCAN0 PM2/RXCAN1/RXCAN0/MISO0 PM3/TXCAN1/TXCAN0/SS0 PM4/RXCAN0/RXCAN4/MOSI0 PM5/TXCAN0/TXCAN4/SCK0 PJ6/KWJ6/RXCAN4/SDA PJ7/KWJ7/TXCAN4/SCL VREGEN PS7/SS0 PS6/SCK0 PS5/MOSI0 PS4/MISO0 PS3/TXD1 PS2/RXD1 PS1/TXD0 PS0/RXD0 VSSA VRL Device User Guide — 9S12KT256DGV1/D V01.09 Signals shown in Bold are not available on the 80 Pin Package Signals shown in Italic are only available in MC9S12KT256 Figure 2-2 Pin assignments for 100 LQFP Freescale Semiconductor 55 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MC9S12K-Family 80 QFP 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 VRH VDDA PAD07/AN07 PAD06/AN06 PAD05/AN05 PAD04/AN04 PAD03/AN03 PAD02/AN02 PAD01/AN01 PAD00/AN00 VSS2 VDD2 PA7/ADDR15/DATA15 PA6/ADDR14/DATA14 PA5/ADDR13/DATA13 PA4/ADDR12/DATA12 PA3/ADDR11/DATA11 PA2/ADDR10/DATA10 PA1/ADDR9/DATA9 PA0/ADDR8/DATA8 ADDR5/DATA5/PB5 ADDR6/DATA6/PB6 ADDR7/DATA7/PB7 XCLKS/NOACC/PE7 MODB/IPIPE1/PE6 MODA/IPIPE0/PE5 ECLK/PE4 VSSR VDDR RESET VDDPLL XFC VSSPLL EXTAL XTAL TEST LSTRB/TAGLO/PE3 R/W/PE2 IRQ/PE1 XIRQ/PE0 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 PWM3/KWP3/PP3 PWM2/KWP2/PP2 PWM1/KWP1/PP1 PWM0/KWP0/PP0 IOC0/PT0 IOC1/PT1 IOC2/PT2 IOC3/PT3 VDD1 VSS1 IOC4/PT4 IOC5/PT5 IOC6/PT6 IOC7/PT7 MODC/TAGHI/BKGD ADDR0/DATA0/PB0 ADDR1/DATA1/PB1 ADDR2/DATA2/PB2 ADDR3/DATA3/PB3 ADDR4/DATA4/PB4 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PP4/KWP4/PWM4/MISO2 PP5/KWP5/PWM5/MOSI2 PP7/KWP7/PWM7SCK2 VDDX VSSX PM0/RXCAN0 PM1/TXCAN0 PM2/RXCAN1/RXCAN0/MISO0 PM3/TXCAN1/TXCAN0/SS0 PM4/RXCAN0/RXCAN4/MOSI0 PM5/TXCAN0/TXCAN4/SCK0 PJ6/KWJ6/RXCAN4/SDA PJ7/KWJ7/TXCAN4/SCL VREGEN PS3/TXD1 PS2/RXD1 PS1/TXD0 PS0/RXD0 VSSA VRL Device User Guide — 9S12KT256DGV1/D V01.09 Signals shown in Italic are only available in MC9S12KT256 Figure 2-3 Pin assignments for 80 QFP 56 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 2.2 Signal Properties Summary (Table 2-1) summarizes the pin functionality. Signals shown in bold are not available in the 80 pin package. (Table 2-2) summarizes the power and ground pins. Table 2-1 Signal Properties Pin Name Pin Name Powered Function 3 Function 4 by Internal Pull Resistor Reset CTRL State Pin Name Function 1 Pin Name Function 2 EXTAL — — — VDDPLL NA NA XTAL — — — VDDPLL NA NA RESET — — — VDDR None None Description Oscillator Pins External Reset TEST — — — NA NA NA Test Input VREGEN — — — VDDX NA NA Voltage Regulator Enable Input XFC — — — VDDPLL NA NA PLL Loop Filter VDDR Always Up Up Background Debug, Tag High, Mode Input BKGD PAD[15:8] TAGHI AN[15:8] MODC AN1[7:0]1 — — VDDA None None Port AD Input, Analog Inputs of ATD in MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64); Analog Inputs of ATD1 in MC9S12KT256 and MC9S12KG256 None Port AD Input, Analog Inputs of ATD in MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64); Analog Inputs of ATD0 in MC9S12KT256 and MC9S12KG256 PAD[7:0] AN[7:0] AN0[7:0]1 — VDDA None PA[7:0] ADDR[15:8]/ DATA[15:8] — — VDDR PUCR Disabled Port A I/O, Multiplexed Address/Data PB[7:0] ADDR[7:0]/ DATA[7:0] — — VDDR PUCR Disabled Port B I/O, Multiplexed Address/Data PE7 NOACC XCLKS — VDDR PUCR PE6 IPIPE1 MODB — VDDR While RESET pin is low: Down Port E I/O, Pipe Status, Mode Input PE5 IPIPE0 MODA — VDDR While RESET pin is low: Down Port E I/O, Pipe Status, Mode Input PE4 ECLK — — VDDR PUCR Up Port E I/O, Bus Clock Output PE3 LSTRB TAGLO — VDDR PUCR Up Port E I/O, Byte Strobe, Tag Low PE2 R/W — — VDDR PUCR Up Port E I/O, R/W in expanded modes PE1 IRQ — — VDDR PE0 XIRQ — — VDDR PH7 KWH7 SS2 — VDDR Freescale Semiconductor Up Always Up PERH/ PPSH Port E I/O, Access, Clock Select Port E Input, Maskable Interrupt Port E Input, Non Maskable Interrupt Disabled Port H I/O, Interrupt, SS of SPI2 57 Device User Guide — 9S12KT256DGV1/D V01.09 Pin Name Pin Name Powered Function 3 Function 4 by Internal Pull Resistor Reset CTRL State Pin Name Function 1 Pin Name Function 2 PH6 KWH6 SCK2 — VDDR PERH/ PPSH Disabled PH5 KWH5 MOSI2 — VDDR PERH/ PPSH Disabled PH4 KWH4 MISO2 — VDDR PERH/ PPSH Disabled PH3 KWH3 SS1 — VDDR PERH/ PPSH Disabled PH2 KWH2 SCK1 — VDDR PERH/ PPSH Disabled PH1 KWH1 MOSI1 — VDDR PERH/ PPSH Disabled PH0 KWH0 MISO1 — VDDR PERH/ PPSH Disabled PJ7 KWJ7 TXCAN4 SCL VDDX PERJ/ PPSJ Up Port J I/O, Interrupt, TX of CAN4, SCL of IIC PJ6 KWJ6 RXCAN4 SDA VDDX PERJ/ PPSJ Up Port J I/O, Interrupt, RX of CAN4, SDA of IIC PJ[1:0] KWJ[1:0] — — VDDX PERJ/ PPSJ Up Port J I/O, Interrupts PK7 ECS ROMCTL — VDDX PUCR Up Port K I/O, Emulation Chip Select, ROM On Enable PK[5:0] XADDR[19:14] — — VDDX PUCR Up Port K I/O, Extended Addresses Disabled Port M I/O, CAN4 TX Description Port H I/O, Interrupt, SCK of SPI2 Port H I/O, Interrupt, MOSI of SPI2 Port H I/O, Interrupt, MISO of SPI2 Port H I/O, Interrupt, SS of SPI1 Port H I/O, Interrupt, SCK of SPI1 Port H I/O, Interrupt, MOSI of SPI1 Port H I/O, Interrupt, MISO of SPI1 PM7 TXCAN4 — — VDDX PERM/ PPSM PM6 RXCAN4 — — VDDX PERM/ PPSM Disabled Port M I/O, CAN4 RX PM5 TXCAN0 TXCAN4 SCK0 VDDX PERM/ PPSM Disabled Port M I/O, CAN0 TX, CAN4 TX, SPI0 SCK PM4 RXCAN0 RXCAN4 MOSI0 VDDX PERM/ PPSM Disabled Port M I/O, CAN0 RX, CAN4 RX, SPI0 MOSI PM3 TXCAN11 TXCAN0 SS0 VDDX PERM/ PPSM Disabled Port M I/O, CAN1 TX, CAN0 TX, SPI0 SS PM2 RXCAN11 RXCAN0 MISO0 VDDX PERM/ PPSM Disabled Port M I/O, CAN1 RX, CAN0 RX, SPI0 MISO PM1 TXCAN0 — — VDDX PERM/ PPSM Disabled Port M I/O, CAN0 TX PM0 RXCAN0 — — VDDX PERM/ PPSM Disabled Port M I/O, CAN0 RX PP7 KWP7 PWM7 SCK2 VDDX PERP/ PPSP Disabled Port P I/O, Interrupt, PWM Channel 7, SCK of SPI2 PP6 KWP6 PWM6 SS2 VDDX PERP/ PPSP Disabled Port P I/O, Interrupt, PWM Channel 6, SPI2 SS PP5 KWP5 PWM5 MOSI2 VDDX PERP/ PPSP Disabled Port P I/O, Interrupt, PWM Channel 5, SPI2 MOSI PP4 KWP4 PWM4 MISO2 VDDX PERP/ PPSP Disabled Port P I/O, Interrupt, PWM Channel 4, SPI2 MISO 58 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Pin Name Pin Name Powered Function 3 Function 4 by Internal Pull Resistor Reset CTRL State Pin Name Function 1 Pin Name Function 2 PP3 KWP3 PWM3 SS1 VDDX PERP/ PPSP Disabled Port P I/O, Interrupt, PWM Channel 3, SPI1 SS PP2 KWP2 PWM2 SCK1 VDDX PERP/ PPSP Disabled Port P I/O, Interrupt, PWM Channel 2, SPI1 SCK PP1 KWP1 PWM1 MOSI1 VDDX PERP/ PPSP Disabled Port P I/O, Interrupt, PWM Channel 1, SPI1 MOSI PP0 KWP0 PWM0 MISO1 VDDX PERP/ PPSP Disabled Port P I/O, Interrupt, PWM Channel 0, SPI1 MISO PS7 SS0 — — VDDX PERS/ PPSS Up Port S I/O, SPI0 SS PS6 SCK0 — — VDDX PERS/ PPSS Up Port S I/O, SPI0 SCK PS5 MOSI0 — — VDDX PERS/ PPSS Up Port S I/O, SPI0 MOSI PS4 MISO0 — — VDDX PERS/ PPSS Up Port S I/O, SPI0 MISO PS3 TXD1 — — VDDX PERS/ PPSS Up Port S I/O, SCI1TXD PS2 RXD1 — — VDDX PERS/ PPSS Up Port S I/O, SCI1RXD PS1 TXD0 — — VDDX PERS/ PPSS Up Port S I/O, SCI0 TXD PS0 RXD0 — — VDDX PERS/ PPSS Up Port S I/O, SCI0 RXD PT[7:0] IOC[7:0] — — VDDX Up or Down Description Disabled Port T I/O, Timer channels NOTES: 1. Only available on MC9S12KT256. Table 2-2 Power and Ground Mnemonic Nominal Voltage VDD1 VDD2 2.5 V VSS1 VSS2 0V VDDR 3.3/5.0 V VSSR 0V VDDX 3.3/5.0 V VSSX 0V VDDA 3.3/5.0 V VSSA 0V VRH 3.3/5.0 V Reference voltage high for the ATD converter. VRL 0V Reference voltage low for the ATD converter. Freescale Semiconductor Description Internal power and ground generated by internal regulator. These also allow an external source to supply the core VDD/VSS voltages and bypass the internal voltage regulator. External power and ground, supply to pin drivers and internal voltage regulator. External power and ground, supply to pin drivers. Operating voltage and ground for the analog-to-digital converter and the reference for the internal voltage regulator, allows the supply voltage to the A/D to be bypassed independently. 59 Device User Guide — 9S12KT256DGV1/D V01.09 NOTE: Mnemonic Nominal Voltage VDDPLL 2.5 V VSSPLL 0V Description Provides operating voltage and ground for the Phased-Locked Loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator. All VSS pins must be connected together in the application. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on MCU pin load. 2.3 Detailed Signal Descriptions 2.3.1 EXTAL, XTAL — Oscillator Pins EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived from the EXTAL input frequency. XTAL is the crystal output. 2.3.2 RESET — External Reset Pin An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up state, and an output when an internal MCU function causes a reset. 2.3.3 TEST — Test Pin This input only pin is reserved for test. NOTE: The TEST pin must be tied to VSS in all applications. 2.3.4 VREGEN — Voltage Regulator Enable Pin This input only pin enables or disables the on-chip voltage regulator. 60 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 2.3.5 XFC — PLL Loop Filter Pin PLL loop filter. Please ask your Motorola representative for the interactive application note to compute PLL loop filter elements. Any current leakage on this pin must be avoided. XFC R MCU CP CS VDDPLL VDDPLL Figure 2-4 PLL Loop Filter Connections 2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug communication. In MCU expanded modes of operation when instruction tagging is on, an input low on this pin during the falling edge of E-clock tags the high half of the instruction word being read into the instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODC bit at the rising edge of RESET. 2.3.7 PAD[15:8] / AN[15:8] — Port AD Input Pins [15:8] PAD15 - PAD8 are general purpose input pins and analog inputs of the single analog to digital converter with 16 channels on MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64). PAD15 PAD8 are general purpose input pins and analog inputs of the analog to digital converter with 8 channels (ATD1) on MC9S12KT256 and MC9S12KG256. 2.3.8 PAD[7:0] / AN[7:0] — Port AD Input Pins [7:0] PAD7 - PAD0 are general purpose input pins and analog inputs of the single analog to digital converter with 16 channels on MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64). PAD7 PAD0 are general purpose input pins and analog inputs of the analog to digital converter with 8 channels (ATD0) on MC9S12KT256 and MC9S12KG256. 2.3.9 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. Freescale Semiconductor 61 Device User Guide — 9S12KT256DGV1/D V01.09 2.3.10 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus. 2.3.11 PE7 / NOACC / XCLKS — Port E I/O Pin 7 PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal will assert when the CPU is not using the bus. The XCLKS is an input signal which controls whether a crystal in combination with the internal Loop Controlled Pierce (low power) oscillator is used or whether Full Swing Pierce oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of RESET. If the input is a logic low the EXTAL pin is configured for an external clock drive or Full Swing Pierce Oscillator. If input is a logic high a Loop Controlled Pierce oscillator circuit is configured on EXTAL and XTAL. Since this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is a Loop Controlled Pierce oscillator circuit on EXTAL and XTAL. Table 2-3 Clock selection based on PE7 during reset PE7 Description 1 Loop Controlled Pierce Oscillator selected 0 Full Swing Pierce Oscillator or external clock selected EXTAL C7 MCU Crystal or ceramic resonator XTAL C8 VSSPLL Figure 2-5 Loop Controlled Pierce Oscillator Connections (PE7=1) 62 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 EXTAL C7 MCU Crystal or ceramic resonator RB RS XTAL * C8 VSSPLL * Rs can be zero (shorted) when use with higher frequency crystals. Refer to manufacturer’s data. Figure 2-6 Full Swing Pierce Oscillator Connections (PE7=0) EXTAL CMOS-COMPATIBLE EXTERNAL OSCILLATOR (VDDPLL-Level) MCU XTAL not connected Figure 2-7 External Clock Connections (PE7=0) 2.3.12 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the instruction queue tracking signal IPIPE1. 2.3.13 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the instruction queue tracking signal IPIPE0. 2.3.14 PE4 / ECLK — Port E I/O Pin 4 PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK. ECLK can be used as a timing reference. Freescale Semiconductor 63 Device User Guide — 9S12KT256DGV1/D V01.09 2.3.15 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 PE3 is a general purpose input or output pin. In MCU expanded modes of operation, LSTRB can be used for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on, TAGLO is used to tag the low half of the instruction word being read into the instruction queue. 2.3.16 PE2 / R/W — Port E I/O Pin 2 PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the read/write output signal for the external bus. It indicates the direction of data on the external bus. 2.3.17 PE1 / IRQ — Port E Input Pin 1 PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode. 2.3.18 PE0 / XIRQ — Port E Input Pin 0 PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode. 2.3.19 PH7 / KWH7 / SS2 — Port H I/O Pin 7 PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral Interface 2 (SPI2). 2.3.20 PH6 / KWH6 / SCK2 — Port H I/O Pin 6 PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 2 (SPI2). 2.3.21 PH5 / KWH5 / MOSI2 — Port H I/O Pin 5 PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2). 2.3.22 PH4 / KWH4 / MISO2 — Port H I/O Pin 2 PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 2 (SPI2). 64 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 2.3.23 PH3 / KWH3 / SS1 — Port H I/O Pin 3 PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral Interface 1 (SPI1). 2.3.24 PH2 / KWH2 / SCK1 — Port H I/O Pin 2 PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1). 2.3.25 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1). 2.3.26 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1). 2.3.27 PJ7 / KWJ7 / TXCAN4 / SCL — PORT J I/O Pin 7 PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable Controller Area Network controller 4 (CAN4) or the serial clock pin SCL of the IIC module. 2.3.28 PJ6 / KWJ6 / RXCAN4 / SDA — PORT J I/O Pin 6 PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable Controller Area Network controller 4 (CAN4) or the serial data pin SDA of the IIC module. 2.3.29 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. 2.3.30 PK7 / ECS / ROMCTL — Port K I/O Pin 7 PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used as the emulation chip select output (ECS). During MCU expanded modes of operation, this pin is used to Freescale Semiconductor 65 Device User Guide — 9S12KT256DGV1/D V01.09 enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET, the state of this pin is latched to the ROMON bit.For all other modes the reset state of the ROMON bit is as follows: special single : ROMCTL = 1 normal single : ROMCTL = 1 emulation expanded wide : ROMCTL = 0 emulation expanded narrow : ROMCTL = 0 special test : ROMCTL = 0 peripheral test : ROMCTL = 1 2.3.31 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins provide the expanded address XADDR[19:14] for the external bus. 2.3.32 PM7 / TXCAN4 — Port M I/O Pin 7 PM7 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 4 (CAN4). 2.3.33 PM6 / RXCAN4 — Port M I/O Pin 6 PM6 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controllers 4 (CAN4). 2.3.34 PM5 / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5 PM5 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 0 or 4 (CAN0 or CAN4). It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0). 2.3.35 PM4 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4 PM4 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controllers 0 or 4 (CAN0 or CAN4). It can be configured as the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial Peripheral Interface 0 (SPI0). 66 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 2.3.36 PM3 / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 PM3 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as the slave select pin SS of the Serial Peripheral Interface 0 (SPI0). 2.3.37 PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2 PM2 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as the master input (during master mode) or slave output pin (during slave mode) MISO for the Serial Peripheral Interface 0 (SPI0). 2.3.38 PM1 / TXCAN0 — Port M I/O Pin 1 PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Motorola Scalable Controller Area Network controller 0 (CAN0). 2.3.39 PM0 / RXCAN0 — Port M I/O Pin 0 PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Motorola Scalable Controller Area Network controller 0 (CAN0). 2.3.40 PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7 PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 2 (SPI2). 2.3.41 PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6 PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output. It can be configured as slave select pin SS of the Serial Peripheral Interface 2 (SPI2). 2.3.42 PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5 PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2). Freescale Semiconductor 67 Device User Guide — 9S12KT256DGV1/D V01.09 2.3.43 PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4 PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 2 (SPI2). 2.3.44 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. It can be configured as slave select pin SS of the Serial Peripheral Interface 1 (SPI1). 2.3.45 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. It can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1). 2.3.46 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1 PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1). 2.3.47 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0 PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. It can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1). 2.3.48 PS7 / SS0 — Port S I/O Pin 7 PS6 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial Peripheral Interface 0 (SPI0). 2.3.49 PS6 / SCK0 — Port S I/O Pin 6 PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0). 68 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 2.3.50 PS5 / MOSI0 — Port S I/O Pin 5 PS5 is a general purpose input or output pin. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0). 2.3.51 PS4 / MISO0 — Port S I/O Pin 4 PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0). 2.3.52 PS3 / TXD1 — Port S I/O Pin 3 PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial Communication Interface 1 (SCI1). 2.3.53 PS2 / RXD1 — Port S I/O Pin 2 PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial Communication Interface 1 (SCI1). 2.3.54 PS1 / TXD0 — Port S I/O Pin 1 PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial Communication Interface 0 (SCI0). 2.3.55 PS0 / RXD0 — Port S I/O Pin 0 PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial Communication Interface 0 (SCI0). 2.3.56 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output compare pins IOC7-IOC0 of the Timer (TIM). 2.4 Power Supply Pins MC9S12K-Family power and ground pins are described below. NOTE: All VSS pins must be connected together in the application. Freescale Semiconductor 69 Device User Guide — 9S12KT256DGV1/D V01.09 2.4.1 VDDX,VSSX — Power Supply Pins for I/O Drivers External power and ground for I/O drivers. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded. 2.4.2 VDDR, VSSR — Power Supply Pins for I/O Drivers & for Internal Voltage Regulator External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded. 2.4.3 VDD1, VDD2, VSS1, VSS2 — Power Supply Pins for Internal Logic Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VREGEN is tied to ground. NOTE: No load allowed except for bypass capacitors. 2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to digital converter. It also provides the reference for the internal voltage regulator. This allows the supply voltage to the ATD and the reference voltage to be bypassed independently. 2.4.5 VRH, VRL — ATD Reference Voltage Input Pins VRH and VRL are the reference voltage input pins for the analog to digital converter. 2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by the internal voltage regulator. NOTE: 70 No load allowed except for bypass capacitors. Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Section 3 System Clock Description The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules. Figure 3-1 shows the clock connections from the CRG to all modules. Consult the CRG Block Guide for details on clock generation. HCS12 CORE Core Clock BDM CPU MEBI MMC INT DBG Flash RAM EEPROM TIM EXTAL ATD OSC CRG Bus Clock PWM SCI0, SCI1 Oscillator Clock XTAL SPI0, SPI1, SPI2 CAN0, CAN1, CAN4 IIC PIM Figure 3-1 Clock Connections Freescale Semiconductor 71 Device User Guide — 9S12KT256DGV1/D V01.09 Section 4 Modes of Operation 4.1 Overview Eight possible modes determine the operating configuration of the MC9S12K-Family. Each mode has an associated default memory map and external bus configuration controlled by a further pin. Three low power modes exist for the device. 4.2 Chip Configuration Summary The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during reset ((Table 4-1)). The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal. Table 4-1 Mode Selection BKGD = MODC PE6 = MODB PE5 = MODA PK7 = ROMCTL ROMON Bit 0 0 0 X 1 0 0 1 0 1 1 0 0 1 0 X 0 0 1 1 0 X 1 0 0 1 1 X 1 0 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Mode Description Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all other modes but a serial command is required to make BDM active. Emulation Expanded Narrow, BDM allowed Special Test (Expanded Wide), BDM allowed Emulation Expanded Wide, BDM allowed Normal Single Chip, BDM allowed Normal Expanded Narrow, BDM allowed Peripheral; BDM allowed but bus operations would cause bus conflicts (must not be used) Normal Expanded Wide, BDM allowed For further explanation on the modes refer to the HCS12 MEBI Block Guide. 72 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Table 4-2 Clock Selection Based on PE7 PE7 = XCLKS Description 1 Loop Controlled Pierce Oscillator selected 0 Full Swing Pierce Oscillator or external clock selected Table 4-3 Voltage Regulator VREGEN VREGEN Description 1 Internal Voltage Regulator enabled 0 Internal Voltage Regulator disabled, VDD1,2 and VDDPLL must be supplied externally with 2.5V 4.3 Security The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows: • Protection of the contents of FLASH, • Protection of the contents of EEPROM, • Operation in single-chip mode, • Operation from external memory with internal FLASH and EEPROM disabled. The user must be reminded that part of the security must lie with the user’s code. An extreme example would be user’s code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user’s program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters stored in EEPROM. 4.3.1 Securing the Microcontroller Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part. The security byte resides in a portion of the Flash array. Check the Flash Block Guide for more details on the security configuration. Freescale Semiconductor 73 Device User Guide — 9S12KT256DGV1/D V01.09 4.3.2 Operation of the Secured Microcontroller 4.3.2.1 Normal Single Chip Mode This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked. 4.3.2.2 Executing from External Memory The user may wish to execute from external space with a secured microcontroller. This is accomplished by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM operations will be blocked. 4.3.3 Unsecuring the Microcontroller In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be done through an external program in expanded mode. Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode. This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to an external program (again through BDM commands). Note that if the part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be secured again. 4.4 Low Power Modes The microcontroller features three main low power modes. Consult the respective Block Guide for information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of information about the clock system is the Clock and Reset Generator Guide (CRG). 4.4.1 Stop Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static mode. Wake up from this mode can be done via reset or external interrupts. 4.4.2 Pseudo Stop This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are turned off. This mode consumes more current than the full STOP mode, but the wake up time from this mode is significantly shorter. 74 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 4.4.3 Wait This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active. For further power consumption the peripherals can individually turn off their local clocks. 4.4.4 Run Although this is not a low power mode, unused peripheral modules should not be enabled in order to save power. Freescale Semiconductor 75 Device User Guide — 9S12KT256DGV1/D V01.09 Section 5 Resets and Interrupts 5.1 Overview Consult the Exception Processing section of the CPU12 Reference Manual for information on resets and interrupts. Both local masking and CCR masking are included as listed in Table 5-1. System resets can be generated through external control of the RESET pin, through the clock and reset generator module CRG or through the low voltage reset (LVR) generator of the voltage regulator module. Refer to the CRG and VREG Block Guides for detailed information on reset generation. 5.2 Vectors 5.2.1 Vector Table (Table 5-1) lists interrupt sources and vectors in default order of priority. Table 5-1 Interrupt Vector Locations Interrupt Source CCR Mask Local Enable HPRIO Value to Elevate $FFFE, $FFFF External Reset, Power On Reset or Low Voltage Reset (see CRG Flags Register to determine reset source) None None – $FFFC, $FFFD Clock Monitor fail reset None PLLCTL (CME, FCME) – $FFFA, $FFFB COP failure reset None COP rate select – $FFF8, $FFF9 Unimplemented instruction trap None None – $FFF6, $FFF7 SWI None None – $FFF4, $FFF5 XIRQ X-Bit None – $FFF2, $FFF3 IRQ I-Bit IRQCR (IRQEN) $F2 $FFF0, $FFF1 Real Time Interrupt I-Bit CRGINT (RTIE) $F0 $FFEE, $FFEF Standard Timer channel 0 I-Bit TIE (C0I) $EE $FFEC, $FFED Standard Timer channel 1 I-Bit TIE (C1I) $EC $FFEA, $FFEB Standard Timer channel 2 I-Bit TIE (C2I) $EA $FFE8, $FFE9 Standard Timer channel 3 I-Bit TIE (C3I) $E8 $FFE6, $FFE7 Standard Timer channel 4 I-Bit TIE (C4I) $E6 $FFE4, $FFE5 Standard Timer channel 5 I-Bit TIE (C5I) $E4 $FFE2, $FFE3 Standard Timer channel 6 I-Bit TIE (C6I) $E2 $FFE0, $FFE1 Standard Timer channel 7 I-Bit TIE (C7I) $E0 $FFDE, $FFDF Standard Timer overflow I-Bit TSCR2 (TOI) $DE $FFDC, $FFDD Pulse accumulator overflow I-Bit PACTL (PAOVI) $DC $FFDA, $FFDB Pulse accumulator input edge I-Bit PACTL (PAI) $DA $FFD8, $FFD9 SPI0 I-Bit SPICR1 (SPIE, SPTIE) $D8 $D6 Vector Address $FFD6, $FFD7 SCI0 I-Bit SCICR2 (TIE, TCIE, RIE, ILIE) $FFD4, $FFD5 SCI1 I-Bit SCICR2 (TIE, TCIE, RIE, ILIE) $D4 $FFD2, $FFD3 ATD0 I-Bit ATDCTL2 (ASCIE) $D2 76 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 $FFD0, $FFD1 ATD1 I-Bit ATDCTL2 (ASCIE)1 $D0 $CE $CC $FFCE, $FFCF Port J I-Bit PIEJ (PIEJ7, PIEJ6, PIEJ1, PIEJ0) $FFCC, $FFCD Port H I-Bit PIEH (PIEH7-0) $FFCA, $FFCB Reserved $FFC8, $FFC9 $FFC6, $FFC7 I-Bit $CA Reserved I-Bit $C8 CRG PLL lock I-Bit CRGINT (LOCKIE) $C6 $FFC4, $FFC5 CRG Self Clock Mode I-Bit CRGINT (SCMIE) $C4 $FFC2, $FFC3 FLASH Double Fault Detect I-Bit FCNFG (DFDIE) $C2 $FFC0, $FFC1 IIC Bus I-Bit IBCR (IBIE) $C0 $FFBE, $FFBF SPI1 I-Bit SPICR1 (SPIE, SPTIE) $BE $FFBC, $FFBD SPI2 I-Bit SPICR1 (SPIE, SPTIE) $BC $FFBA, $FFBB EEPROM command I-Bit ECNFG (CCIE, CBEIE) $BA $FFB8, $FFB9 FLASH command I-Bit FCNFG (CCIE, CBEIE) $B8 $FFB6, $FFB7 CAN0 wake-up I-Bit CAN0RIER (WUPIE) $B6 $FFB4, $FFB5 CAN0 errors I-Bit CAN0RIER (CSCIE, OVRIE) $B4 $FFB2, $FFB3 CAN0 receive I-Bit CAN0RIER (RXFIE) $B2 $FFB0, $FFB1 CAN0 transmit I-Bit CAN0TIER (TXEIE2 - TXEIE0) $FFAE, $FFAF CAN1 wake-up I-Bit $FFAC, $FFAD CAN1 errors I-Bit $FFAA, $FFAB CAN1 receive $FFA8, $FFA9 CAN1 transmit CAN1RIER CAN1RIER (CSCIE, OVRIE)1 I-Bit I-Bit (WUPIE)1 CAN1RIER (RXFIE)1 CAN1TIER (TXEIE2 - TXEIE0)1 $B0 $AE $AC $AA $A8 $FFA6, $FFA7 I-Bit $A6 $FFA4, $FFA5 I-Bit $A4 $FFA2, $FFA3 I-Bit $A2 $FFA0, $FFA1 I-Bit Reserved $FF9E, $FF9F Reserved I-Bit $A0 $9E $FF9C, $FF9D I-Bit $9C $FF9A, $FF9B I-Bit $9A $FF98, $FF99 I-Bit $98 $FF96, $FF97 CAN4 wake-up I-Bit CAN4RIER (WUPIE) $96 $FF94, $FF95 CAN4 errors I-Bit CAN4RIER (CSCIE, OVRIE) $94 $FF92, $FF93 CAN4 receive I-Bit CAN4RIER (RXFIE) $92 $FF90, $FF91 CAN4 transmit I-Bit CAN4TIER (TXEIE2 - TXEIE0) $90 $FF8E, $FF8F Port P I-Bit PIEP (PIEP7-0) $8E $FF8C, $FF8D PWM Emergency Shutdown I-Bit PWMSDN (PWMIE) $8C $FF8A, $FF8B VREG Low Voltage Interrupt I-Bit CTRL0 (LVIE) $8A $FF80 to $FF89 Reserved NOTES: 1. Interrupt vector is only available on MC9S12KT256. Otherwise it is reserved. Freescale Semiconductor 77 Device User Guide — 9S12KT256DGV1/D V01.09 5.3 Resets Resets are a subset of the interrupts featured inTable 5-1. The different sources capable of generating a system reset are summarized in Table 5-2. Table 5-2 Reset Summary Reset Priority Source Vector Power-on Reset 1 CRG Module $FFFE, $FFFF External Reset 1 RESET pin $FFFE, $FFFF Low Voltage Reset 1 VREG Module $FFFE, $FFFF Clock Monitor Reset 2 CRG Module $FFFC, $FFFD COP Watchdog Reset 3 CRG Module $FFFA, $FFFB 5.3.1 Effects of Reset When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the respective module Block Guides for register reset states. Refer to the HCS12 MEBI Block Guide for mode dependent pin configuration of port A, B and E out of reset. Refer to the PIM Block Guide for reset configurations of all peripheral module ports. Refer to Table 1-2(Table 1-2) for locations of the memories depending on the operating mode after reset. The RAM array is not automatically initialized out of reset. Section 6 HCS12 Core Block Description 6.1 CPU12 Block Description Consult the CPU12 Reference Manual for information about the Central Processing Unit. When the CPU12 Reference Manual refers to cycles this is equivalent to Bus Clock periods. So 1 cycle is equivalent to 1 Bus Clock period. 6.2 HCS12 Background Debug Module (BDM) Block Description Consult the HCS12 BDM Block Guide for information about the Background Debug Module. When the BDM Block Guide refers to alternate clock this is equivalent to Oscillator Clock. 78 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 6.3 HCS12 Debug (DBG) Block Description Consult the HCS12 DBG Block Guide for information about the Debug module. 6.4 HCS12 Interrupt (INT) Block Description Consult the HCS12 INT Block Guide for information about the Interrupt module. 6.5 HCS12 Multiplexed External Bus Interface (MEBI) Block Description Consult the HCS12 MEBI Block Guide for information about the Multiplexed External Bus Interface module. 6.6 HCS12 Module Mapping Control (MMC) Block Description Consult the HCS12 MMC Block Guide for information about the Module Mapping Control module. Section 7 Analog to Digital Converter (ATD) Block Description Consult the ATD_10B16C Block Guide for further information about the A/D Converter module for the MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64). When the ATD_10B16C Block Guide refers to freeze mode this is equivalent to active BDM mode. Consult the ATD_10B8C Block Guide for further information about the A/D Converter module for the MC9S12KT256 and MC9S12KG256. When the ATD_10B8C Block Guide refers to freeze mode this is equivalent to active BDM mode. Section 8 Clock Reset Generator (CRG) Block Description Consult the CRG Block Guide for information about the Clock and Reset Generator module. 8.1 Device-specific information The Low Voltage Reset feature uses the low voltage reset signal from the VREG module as an input to the CRG module. When the regulator output voltage supply to the internal chip logic falls below a specified threshold the LVR signal from the VREG module causes the CRG module to generate a reset. Consult the VREG Block Guide for voltage level specifications. Freescale Semiconductor 79 Device User Guide — 9S12KT256DGV1/D V01.09 Section 9 EEPROM Block Description Consult the EETS2K Block Guide for information about the EEPROM module for the MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64). Consult the EETS4K Block Guide for information about the EEPROM module for the MC9S12KT256 and MC9S12KG256. Section 10 Flash EEPROM Block Description Consult the FTS128K1ECC Block Guide for information about the flash module for the MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64). Consult the FTS256K2ECC Block Guide for information about the flash module for the MC9S12KT256 and MC9S12KG256. The "S12 LRAE" is a generic Load RAM and Execute (LRAE) program which will be programmed into the flash memory of this device during manufacture. This LRAE program will provide greater programming flexibility to the end users by allowing the device to be programmed directly using SCI after it is assembled on the PCB. Use of the LRAE program is at the discretion of the end user and, if not required, it must simply be erased prior to flash programming. For more details of the S12 LRAE and its implementation, please see the S12 LREA Application Note (AN2546/D) . It is planned that most HC9S12 devices manufactured after Q1 of 2004 will be shipped with the S12 LRAE programmed in the Flash . Exact details of the changeover (ie blank to programmed) for each product will be communicated in advance via GPCN and will be traceable by the customer via datecode marking on the device. Please contact Motorola SPS Sales if you have any additional questions. Section 11 IIC Block Description Consult the IIC Block Guide for information about the Inter-IC Bus module. Section 12 MSCAN Block Description There are three MSCAN modules (CAN4, CAN1 and CAN0) implemented on the MC9S12KT256. There are only two MSCAN modules (CAN4 and CAN0) implemented on the MC9S12KG128(64)(32). There is only one MSCAN module (CAN0) implemented on the MC9S12KL128(64) and MC9S12KC128(64). Consult the MSCAN Block Guide for information about the Motorola Scalable CAN Module. Section 13 OSC Block Description 80 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Consult the OSC_LCP Block Guide for information about the Oscillator module. Section 14 Port Integration Module (PIM) Block Description Consult the PIM_9KG128 Block Guide for information about the Port Integration Module for the MC9S12KG128(64)(32), MC9S12KL128(64) and MC9S12KC128(64). Consult the PIM_9KT256 Block Guide for information about the Port Integration Module for the MC9S12KT256 and MC9S12KG256. Section 15 Pulse Width Modulator (PWM) Block Description Consult the PWM_8B8C Block Guide for information about the Pulse Width Modulator Module. When the PWM_8B8C Block Guide refers to freeze mode this is equivalent to active BDM mode. Section 16 Serial Communications Interface (SCI) Block Description There are two Serial Communications Interface modules (SCI1 and SCI0). Consult the SCI Block Guide for information about the Serial Communications Interface module. Section 17 Serial Peripheral Interface (SPI) Block Description There are three Serial Peripheral Interfaces (SPI2, SPI1 and SPI0) implemented on MC9S12K-Family. Consult the SPI Block Guide for information about each Serial Peripheral Interface module. Section 18 Timer (TIM) Block Description Consult the TIM_16B8C Block Guide for information about the Timer module. When the TIM_16B8C Block Guide refers to freeze mode this is equivalent to active BDM mode. Section 19 Voltage Regulator (VREG) Block Description Consult the VREG_3V3 Block Guide for information about the dual output linear voltage regulator. Freescale Semiconductor 81 Device User Guide — 9S12KT256DGV1/D V01.09 19.1 Device-specific information 19.1.1 VDD1, VDD2, VSS1, VSS2 In all package versions, both internal VDD and VSS of the 2.5V domain are bonded out on 2 sides of the device as two pin pairs (VDD1, VSS1 & VDD2, VSS2). VDD1 and VDD2 are connected together internally. VSS1 and VSS2 are connected together internally. This allows systems to employ better supply routing and further decoupling. 82 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Appendix A Electrical Characteristics A.1 General NOTE: The electrical characteristics given in this section are preliminary and should be used as a guide only. Values cannot be guaranteed by Motorola and are subject to change without notice. This supplement contains the most accurate electrical information for the MC9S12K-Family of microcontrollers available at the time of publication. The information should be considered PRELIMINARY and is subject to change. This introduction is intended to give an overview on several common topics like power supply, current injection etc. A.1.1 Parameter Classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate. NOTE: This classification is shown in the column labeled “C” in the parameter tables where appropriate. P: Those parameters are guaranteed during production testing on each individual device. C: Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. They are regularly verified by production monitors. T: Those parameters are achieved by design characterization on a small sample size from typical devices. All values shown in the typical column are within this category. D: Those parameters are derived mainly from simulations. A.1.2 Power Supply The MC9S12K-Family utilizes several pins to supply power to the I/O ports, A/D converter, oscillator, PLL and internal logic. The VDDA, VSSA pair supplies the A/D converter. The VDDX, VSSX pair supplies the I/O pins Freescale Semiconductor 83 Device User Guide — 9S12KT256DGV1/D V01.09 The VDDR, VSSR pair supplies the internal voltage regulator. VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic. VDDPLL, VSSPLL supply the oscillator and the PLL. VSS1 and VSS2 are internally connected by metal. VDD1 and VDD2 are internally connected by metal. VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection. NOTE: In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted. IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins. VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL. IDD is used for the sum of the currents flowing into VDD1 and VDD2. A.1.3 Pins There are four groups of functional pins. A.1.3.1 3.3V/5V I/O pins Those I/O pins have a nominal level of 3.3V or 5V depending on the application operating point. This group of pins is comprised of all port I/O pins, the analog inputs, BKGD pin and the RESET inputs.The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently. A.1.3.2 Analog Reference This group of pins is comprised of the VRH and VRL pins. A.1.3.3 Oscillator The pins EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL. A.1.3.4 PLL The pin XFC dedicated to the oscillator have a nominal 2.5V level. It is supplied by VDDPLL. A.1.3.5 TEST This pin is used for production testing only. A.1.4 Current Injection Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the injection current may flow out of VDD5 and could result in external power supply going out of regulation. 84 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Insure external VDD5 load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption. A.1.5 Absolute Maximum Ratings Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device. This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5). Table A-1 Absolute Maximum Ratings Num Rating Symbol Min Max Unit 1 I/O, Regulator and Analog Supply Voltage VDD5 -0.3 6.5 V 2 Internal Logic Supply Voltage1 VDD -0.3 3.0 V 3 PLL Supply Voltage (1) VDDPLL -0.3 3.0 V 4 Voltage difference VDDX to VDDR and VDDA ∆VDDX -0.3 0.3 V 5 Voltage difference VSSX to VSSR and VSSA ∆VSSX -0.3 0.3 V 6 Digital I/O Input Voltage VIN -0.3 6.5 V 7 Analog Reference VRH, VRL -0.3 6.5 V 8 XFC, EXTAL, XTAL inputs VILV -0.3 3.0 V 9 TEST input VTEST -0.3 10.0 V 10 Instantaneous Maximum Current Single pin limit for all digital I/O pins 2 ID -25 +25 mA 11 Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL3 IDL -25 +25 mA 12 Instantaneous Maximum Current Single pin limit for TEST4 IDT -0.25 0 mA 13 Operating Temperature Range (packaged) TA – 40 125 °C 14 Operating Temperature Range (junction) TJ – 40 140 °C 15 Storage Temperature Range Tstg – 65 155 °C NOTES: 1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source. 2. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA. 3. These pins are internally clamped to VSSPLL and VDDPLL 4. This pin is clamped low to VSSR, but not clamped high. This pin must be tied low in applications. Freescale Semiconductor 85 Device User Guide — 9S12KT256DGV1/D V01.09 A.1.6 ESD Protection and Latch-up Immunity All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. Table A-2 ESD and Latch-up Test Conditions Model Human Body Machine Description Symbol Value Unit Series Resistance R1 1500 Ohm Storage Capacitance C 100 pF Number of Pulse per pin positive negative - 3 3 Series Resistance R1 0 Ohm Storage Capacitance C 200 pF Number of Pulse per pin positive negative - 3 3 Minimum input voltage limit -2.5 V Maximum input voltage limit 7.5 V Latch-up Table A-3 ESD and Latch-Up Protection Characteristics Num C 1 C 2 Rating Symbol Min Max Unit Human Body Model (HBM) VHBM 2000 - V C Machine Model (MM) VMM 200 - V 3 C Charge Device Model (CDM) VCDM 500 - V 4 C Latch-up Current at 125°C positive negative ILAT +100 -100 - mA 5 C Latch-up Current at 27°C positive negative ILAT +200 -200 - mA A.1.7 Operating Conditions This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data. 86 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 NOTE: Instead of specifying ambient temperature all parameters are specified for the more meaningful silicon junction temperature. For power dissipation calculations refer to Section A.1.8 Power Dissipation and Thermal Characteristics. Table A-4 Operating Conditions Rating Symbol Min Typ Max Unit I/O, Regulator and Analog Supply Voltage VDD5 3.15 3.3/5 5.5 V Internal Logic Supply Voltage1 VDD 2.35 2.5 2.75 V PLL Supply Voltage (1) VDDPLL 2.35 2.5 2.75 V Voltage Difference VDDX to VDDA ∆VDDX -0.1 0 0.1 V Voltage Difference VSSX to VSSR and VSSA ∆VSSX -0.1 0 0.1 V Oscillator fosc 0.5 - 16 MHz Bus Frequency fbus 0.5 - 25 MHz Operating Junction Temperature Range TJ -40 - 100 °C Operating Ambient Temperature Range 2 TA -40 27 85 °C Operating Junction Temperature Range TJ -40 - 120 °C Operating Ambient Temperature Range (2) TA -40 27 105 °C Operating Junction Temperature Range TJ -40 - 140 °C Operating Ambient Temperature Range (2) TA -40 27 125 °C MC9S12K-FamilyC/MC9S12KT256C MC9S12K-FamilyV/MC9S12KT256V MC9S12K-FamilyM/MC9S12KT256M NOTES: 1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when this regulator is disabled and the device is powered from an external source. 2. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the relation between ambient temperature TA and device junction temperature TJ. A.1.8 Power Dissipation and Thermal Characteristics Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be obtained from: T J = T A + ( P D • Θ JA ) T J = Junction Temperature, [°C ] T A = Ambient Temperature, [°C ] Freescale Semiconductor 87 Device User Guide — 9S12KT256DGV1/D V01.09 P D = Total Chip Power Dissipation, [W] Θ JA = Package Thermal Resistance, [°C/W] The total power dissipation can be calculated from: P D = P INT + P IO P INT = Chip Internal Power Dissipation, [W] Two cases with internal voltage regulator enabled and disabled must be considered: 1. Internal Voltage Regulator disabled P INT = I DD ⋅ V DD + I DDPLL ⋅ V DDPLL + I DDA ⋅ V DDA 2 P IO = R DSON ⋅ I IO i i ∑ PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR. For RDSON is valid: V OL R DSON = ------------ ;for outputs driven low I OL respectively V DD5 – V OH R DSON = ------------------------------------ ;for outputs driven high I OH 2. Internal voltage regulator enabled P INT = I DDR ⋅ V DDR + I DDA ⋅ V DDA IDDR is the current shown in Table A-8 and not the overall current flowing into VDDR, which additionally contains the current flowing into the external loads with output high. 2 P IO = R DSON ⋅ I IO i i ∑ PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR. 88 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Table A-5 Thermal Package Characteristics1 Num C Rating Symbol Min Typ Max Unit 1 T Thermal Resistance LQFP112, single sided PCB2 θJA - - 54 o 2 T Thermal Resistance LQFP112, double sided PCB with 2 internal planes3 θJA - - 41 oC/W 3 T Thermal Resistance QFP 80, single sided PCB θJA - - 51 o C/W 4 T θJA - - 41 o C/W Thermal Resistance QFP 80, double sided PCB with 2 internal planes C/W NOTES: 1. The values for thermal resistance are achieved by package simulations 2. PC Board according to EIA/JEDEC Standard 51-2 3. PC Board according to EIA/JEDEC Standard 51-7 A.1.9 I/O Characteristics This section describes the characteristics of all 3.3V/5V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances. Freescale Semiconductor 89 Device User Guide — 9S12KT256DGV1/D V01.09 Table A-6 5V I/O Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C 1 P 2 P 3 C Input Hysteresis 4 P 5 P Rating Symbol Min Typ Max Unit Input High Voltage VIH 0.65*VDD5 - VDD5 + 0.3 V Input Low Voltage VIL VSS5 - 0.3 - 0.35*VDD5 V Input Leakage Current (pins in high impedance input mode) Vin = VDD5 or VSS5 Output High Voltage (pins in output mode) Partial Drive IOH = –2.0mA VHYS 250 mV Iin –2.5 - 2.5 µA VOH VDD5 – 0.8 - - V VOL - - 0.8 V Full Drive IOH = –10.0mA 6 P Output Low Voltage (pins in output mode) Partial Drive IOL = +2.0mA Full Drive IOL = +10.0mA 7 P Internal Pull Up Device Current, tested at VIL Max. IPUL - - –130 µA 8 P Internal Pull Up Device Current, tested at VIH Min. IPUH -10 - - µA 9 P Internal Pull Down Device Current, tested at VIH Min. IPDH - - 130 µA 10 P Internal Pull Down Device Current, tested at VIL Max. IPDL 10 - - µA 11 D Input Capacitance 7 - pF 12 T Injection current1 Single Pin limit Total Device Limit. Sum of all injected currents IICS IICP - 2.5 25 mA 13 P Port H, J, P Interrupt Input Pulse filtered2 tpign 3 µs 14 P Port H, J, P Interrupt Input Pulse passed(2) tpval Cin -2.5 -25 10 µs NOTES: 1. Refer to Section A.1.4 Current Injection, for more details 2. Parameter only applies in STOP or Pseudo STOP mode. 90 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Table A-7 3.3V I/O Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 1 P Input High Voltage VIH 0.65*VDD5 - VDD5 + 0.3 V 2 P Input Low Voltage VIL VSS5 - 0.3 - 0.35*VDD5 V 3 C Input Hysteresis 4 Input Leakage Current (pins in high impedance input P mode) Vin = VDD5 or VSS5 VHYS 250 mV Iin –1 - 1 µA 5 Output High Voltage (pins in output mode) P Partial Drive IOH = –0.75mA Full Drive IOH = –4.5mA VOH VDD5 – 0.4 - - V 6 Output Low Voltage (pins in output mode) P Partial Drive IOL = +0.9mA Full Drive IOL = +5.5mA VOL - - 0.4 V 7 Internal Pull Up Device Current, P tested at V Max. IL IPUL - - –60 µA 8 Internal Pull Up Device Current, P tested at V Min. IH IPUH -6 - - µA 9 Internal Pull Down Device Current, P tested at V Min. IH IPDH - - 60 µA 10 Internal Pull Down Device Current, P tested at V Max. IL IPDL 6 - - µA 11 D Input Capacitance Cin 7 - pF 12 Injection current1 T Single Pin limit Total Device Limit. Sum of all injected currents IICS IICP - 2.5 25 mA 13 P Port P, J Interrupt Input Pulse filtered2 tPULSE 3 µs 14 P Port P, J Interrupt Input Pulse passed(2) tPULSE -2.5 -25 10 µs NOTES: 1. Refer to Section A.1.4 Current Injection, for more details 2. Parameter only applies in STOP or Pseudo STOP mode. A.1.10 Supply Currents This section describes the current consumption characteristics of the device as well as the conditions for the measurements. Freescale Semiconductor 91 Device User Guide — 9S12KT256DGV1/D V01.09 A.1.10.1 Measurement Conditions All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator. A.1.10.2 Additional Remarks In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be given. A very good estimate is to take the single chip currents and add the currents due to the external loads. 92 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Table A-8 Supply Current Characteristics Conditions are shown in Table A-4 unless otherwise noted Num Rating Symbol Min Typ Max 1 Run supply currents Single Chip, Internal regulator enabled IDD5 65 IDDW 40 5 Unit mA Wait Supply current All modules enabled only RTI enabled1 2 3 4 Pseudo Stop Current (RTI and COP enabled)1,2 -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C Pseudo Stop Current (RTI and COP disabled)1,2 -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C IDDPS IDDPS 90 130 155 180 250 295 470 520 1000 40 80 105 130 200 245 420 470 800 mA 350 1200 µA 2400 5000 200 1000 µA 2000 5000 Stop Current2 5 -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C IDDS 20 60 85 110 180 225 400 450 600 100 800 µA 1800 5000 NOTES: 1. PLL off 2. All those low power dissipation levels TJ = TA can be assumed. Freescale Semiconductor 93 Device User Guide — 9S12KT256DGV1/D V01.09 A.2 Voltage Regulator (VREG_3V3) Operating Characteristics This section describes the characteristics of the on chip voltage regulator. Table A-9 VREG_3V3 - Operating Conditions Num C Symbol Min Typical Max Unit 1 P Input Voltages VVDDR,A 3.15 — 5.5 V 2 P Regulator Current Reduced Power Mode Shutdown Mode IREG — — 20 12 50 40 µA µA P Output Voltage Core Full Performance Mode Reduced Power Mode Shutdown Mode1 VDD 2.35 1.7 — 2.5 2.5 — 2.75 2.75 — V V V 4 P Output Voltage PLL Full Performance Mode Reduced Power Mode2 Shutdown Mode(1) VDDPLL 2.35 1.7 — 2.5 2.5 — 2.75 2.75 — V V V 5 P Low Voltage Interrupt3 Assert Level Deassert Level VLVIA VLVID 4.1 4.25 4.37 4.52 4.66 4.77 V V 5 P Low Voltage Reset4 Assert Level Deassert Level VLVRA VLVRD 2.25 — — — — 2.55 V V 7 C Power-on Reset5 Assert Level Deassert Level VPORA VPORD 0.97 — ----- — 2.05 V V 3 Characteristic NOTES: 1. High Impedance Output 2. Current IDDPLL = 500µA 3. Monitors VDDA, active only in Full Performance Mode. Indicates I/O & ADC performance degradation due to low supply voltage. 4. Monitors VDD, active only in Full Performance Mode. VLVRA and VPORD must overlap 5. Monitors VDD. Active in all modes. NOTE: 94 The electrical characteristics given in this section are preliminary and should be used as a guide only. Values in this section cannot be guaranteed by Motorola and are subject to change without notice. Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 A.3 Chip Power-up and LVI/LVR graphical explanation Voltage regulator sub modules LVI (low voltage interrupt), POR (power-on reset) and LVR (low voltage reset) handle chip power-up or drops of the supply voltage. Their function is described in Figure A-1. Figure A-1 Voltage Regulator - Chip Power-up and Voltage Drops (not scaled) V VDDA VLVID VLVIA VDD VLVRD VLVRA VPORD t LVI LVI enabled LVI disabled due to LVR POR LVR A.4 Output Loads A.4.1 Resistive Loads The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits allows no external DC loads. Freescale Semiconductor 95 Device User Guide — 9S12KT256DGV1/D V01.09 A.4.2 Capacitive Loads The capacitive loads are specified in Table A-10. Ceramic capacitors with X7R dielectricum are required. Table A-10 Voltage Regulator - Capacitive Loads Num Characteristic 1 VDD external capacitive load 2 VDDPLL external capacitive load 96 Symbol Min Typical Max Unit CDDext 200 440 12000 nF CDDPLLext 90 220 5000 nF Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 A.5 ATD Characteristics This section describes the characteristics of the analog to digital converter. A.5.1 ATD Operating Characteristics The Table A-11 shows conditions under which the ATD operates. The following constraints exist to obtain full-scale, full range results: VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped. Table A-11 5V ATD Operating Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min VRL VRH VSSA VDDA/2 VRH-VRL 4.75 fATDCLK Typ Max Unit VDDA/2 VDDA V V 5.25 V 0.5 2.0 MHz NCONV10 TCONV10 TCONV10 14 7 3.5 28 14 7 Cycles µs µs NCONV8 TCONV8 12 6 26 13 Cycles µs Reference Potential 1 D Low High 2 C Differential Reference Voltage1 3 D ATD Clock Frequency 5.0 ATD 10-Bit Conversion Period 4 D Clock Cycles2 Conv, Time at 2.0MHz ATD Clock fATDCLK Conv, Time at 4.0MHz3 ATD Clock fATDCLK ATD 8-Bit Conversion Period Clock Cycles(1) Conv, Time at 2.0MHz ATD Clock fATDCLK 5 D 6 D Stop Recovery Time (VDDA=5.0 Volts) tSR 20 µs 7 P Reference Supply current (two ATD modules) IREF 0.750 mA 8 P Reference Supply current (one ATD module) IREF 0.375 mA NOTES: 1. Full accuracy is not guaranteed when differential voltage is less than 4.75V 2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks. 3. Reduced accuracy see Table A-14 and Table A-15. Freescale Semiconductor 97 Device User Guide — 9S12KT256DGV1/D V01.09 Table A-12 3.3V ATD Operating Characteristics Conditions are shown in Table A-4 unless otherwise noted; Supply Voltage 3.3V-10% <= VDDA <= 3.3V+10% Num C Rating Symbol Min VRL VRH VSSA VDDA/2 Typ Max Unit VDDA/2 VDDA V V 3.6 V Reference Potential 1 D Low High 2 C Differential Reference Voltage VRH-VRL 3.0 3 D ATD Clock Frequency fATDCLK 0.5 2.0 MHz TCONV10 14 7 3.5 28 14 7 Cycles µs µs NCONV8 TCONV8 12 6 26 13 Cycles µs 3.3 ATD 10-Bit Conversion Period 4 D Clock Cycles1 NCONV10 Conv, Time at 2.0MHz ATD Clock fATDCLK T Conv, Time at 4.0MHz2 ATD Clock fATDCLK CONV10 ATD 8-Bit Conversion Period Clock Cycles(1) Conv, Time at 2.0MHz ATD Clock fATDCLK 5 D 6 D Recovery Time (VDDA=3.3 Volts) tREC 20 µs 7 P Reference Supply current (two ATD modules) IREF 0.500 mA 8 P Reference Supply current (one ATD module) IREF 0.250 mA NOTES: 1. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample period of 16 ATD clocks. 2. Reduced accuracy see Table A-14 and Table A-15. A.5.2 Factors influencing accuracy Three factors - source resistance, source capacitance and current injection - have an influence on the accuracy of the ATD. A.5.2.1 Source Resistance: Due to the input pin leakage current as specified in Table A-6 and Table A-7in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance are allowed. A.5.2.2 Source capacitance When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS- CINN). A.5.2.3 Current injection There are two cases to consider. 98 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 1. A current is injected into the channel being converted. The channel being stressed has conversion values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than VRL unless the current is higher than specified as disruptive conditions. 2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy of the conversion depending on the source resistance. The additional input voltage error on the converted channel can be calculated as VERR = K * RS * IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted channel. Table A-13 ATD Electrical Characteristics Conditions are shown in Table A-4 unless otherwise noted Num Rating Symbol Min Typ Max Unit RS - - 1 KΩ 10 22 pF 2.5 mA 1 Max input Source Resistance 2 Total Input Capacitance Non Sampling Sampling 3 Disruptive Analog Input Current INA 4 Coupling Ratio positive current injection Kp 10-4 A/A 5 Coupling Ratio negative current injection Kn 10-2 A/A CINN CINS -2.5 A.5.3 ATD accuracy Table A-14 and Table A-15 specify the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance. Table A-14 5V ATD Conversion Performance Conditions are shown in Table A-4 unless otherwise noted VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV fATDCLK = 2.0MHz Num C Rating Symbol Min Typ Max 1 P 10-Bit Resolution LSB 2 P 10-Bit Differential Nonlinearity DNL –1 3 P 10-Bit Integral Nonlinearity INL –2.5 4 P 10-Bit Absolute Error1 AE -3 5 C 10-Bit Absolute Error at fATDCLK= 4MHz AE ±7.0 Counts 6 P 8-Bit Resolution LSB 20 mV 7 P 8-Bit Differential Nonlinearity DNL –0.5 8 P 8-Bit Integral Nonlinearity INL –1.0 9 P 8-Bit Absolute Error(1) AE -1.5 Freescale Semiconductor 5 Unit mV 1 Counts ±1.5 2.5 Counts ±2.0 3 Counts 0.5 Counts ±0.5 1.0 Counts ±1.0 1.5 Counts 99 Device User Guide — 9S12KT256DGV1/D V01.09 NOTES: 1. These values include quantization error which is inherently 1/2 count for any A/D converter. Table A-15 3.3V ATD Conversion Performance Conditions are shown in Table A-4 unless otherwise noted VREF = VRH - VRL = 3.328V. Resulting to one 8 bit count = 13mV and one 10 bit count = 3.25mV fATDCLK = 2.0MHz Num C Rating Symbol Min Typ Max 3.25 Unit 1 P 10-Bit Resolution LSB mV 2 P 10-Bit Differential Nonlinearity DNL –1.5 3 P 10-Bit Integral Nonlinearity INL –3.5 4 P 10-Bit Absolute Error1 AE -5 5 C 10-Bit Absolute Error at fATDCLK= 4MHz AE ±7.0 Counts 6 P 8-Bit Resolution LSB 13 mV 7 P 8-Bit Differential Nonlinearity DNL –0.5 8 P 8-Bit Integral Nonlinearity INL –1.5 9 P 8-Bit Absolute Error(1) AE -2.0 1.5 Counts ±1.5 3.5 Counts ±2.5 5 Counts 0.5 Counts ±0.1 1.5 Counts ±1.5 2.0 Counts NOTES: 1. These values include the quantization error which is inherently 1/2 count for any A/D converter. For the following definitions see also Figure A-2. Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps. Vi – Vi – 1 DNL ( i ) = ------------------------ – 1 1LSB The Integral Non-Linearity (INL) is defined as the sum of all DNLs: n INL ( n ) = ∑ i=1 100 Vn – V0 DNL ( i ) = -------------------- – n 1LSB Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 DNL 10-Bit Absolute Error Boundary LSB Vi-1 Vi $3FF 8-Bit Absolute Error Boundary $3FE $3FD $3FC $FF $3FB $3FA $3F9 $3F8 $FE $3F7 $3F6 $3F4 8-Bit Resolution 10-Bit Resolution $3F5 $FD $3F3 9 Ideal Transfer Curve 8 2 7 10-Bit Transfer Curve 6 5 4 1 3 8-Bit Transfer Curve 2 1 0 5 10 15 20 25 30 35 40 50 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 Vin mV Figure A-2 ATD Accuracy Definitions NOTE:Figure A-2 shows only definitions, for specification values refer to Table A-14 and Table A-15 . Freescale Semiconductor 101 Device User Guide — 9S12KT256DGV1/D V01.09 A.6 NVM, Flash and EEPROM NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM. A.6.1 NVM timing The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured. The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as fNVMOP. The minimum program and erase times shown in Table A-16 are calculated for maximum fNVMOP and maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz. A.6.1.1 Single Word Programming The programming time for single word programming is dependant on the bus frequency as a well as on the frequency fNVMOP and can be calculated according to the following formula. 1 1 t swpgm = 9 ⋅ --------------------- + 25 ⋅ ---------f NVMOP f bus A.6.1.2 Row Programming Flash programming where up to 64 words in a row can be programmed consecutively by keeping the command pipeline filled. The time to program a consecutive word can be calculated as: 1 1 t bwpgm = 4 ⋅ --------------------- + 9 ⋅ ---------f NVMOP f bus The time to program a whole row is: t brpgm = t swpgm + 63 ⋅ t bwpgm Row programming is more than 2 times faster than single word programming. A.6.1.3 Sector Erase Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes: 102 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 1 t era ≈ 4000 ⋅ --------------------f NVMOP The setup time can be ignored for this operation. A.6.1.4 Mass Erase Erasing a NVM block takes: 1 t mass ≈ 20000 ⋅ --------------------f NVMOP The setup time can be ignored for this operation. A.6.1.5 Blank Check The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup of the command. t check ≈ location ⋅ t cyc + 10 ⋅ t cyc Table A-16 NVM Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 50 1 MHz 1 D External Oscillator Clock fNVMOSC 0.5 2 D Bus frequency for Programming or Erase Operations fNVMBUS 1 3 D Operating Frequency fNVMOP 150 200 kHz 4 P Single Word Programming Time tswpgm 46 2 74.5 3 µs 5 D Flash Burst Programming consecutive word 4 tbwpgm 20.4 (2) 31 (3) µs 6 D Flash Burst Programming Time for 64 Words (4) tbrpgm 1331.2 (2) 2027.5 (3) µs 7 P Sector Erase Time tera 20 5 26.7 (3) ms 8 P Mass Erase Time tmass 100 (5) 133 (3) ms 9 D Blank Check Time Flash per block tcheck 11 6 65546 7 tcyc 10 D Blank Check Time EEPROM per block tcheck 11 (6) 2058(7) tcyc MHz NOTES: 1. Restrictions for oscillator in crystal mode apply! 2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency fbus. 3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus. Refer to formula in Sections Section A.6.1.1 Single Word Programming- Section A.6.1.4 Mass Erase for guidance. 4. Burst Programming operations are not applicable to EEPROM 5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP. 6. Minimum time, if first word in the array is not blank 7. Maximum time to complete check on an erased block Freescale Semiconductor 103 Device User Guide — 9S12KT256DGV1/D V01.09 A.6.2 NVM Reliability The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures. The failure rates for data retention and program/erase cycling are specified at the operating conditions noted. The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed. NOTE: All values shown in Table A-17 are target values and subject to further extensive characterization. Table A-17 NVM Reliability Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Data Retention at an average junction temperature of TJavg = 70°C tNVMRET 15 nFLPE 1000 Typ Max Unit 1 C 2 C Flash number of Program/Erase cycles 3 C EEPROM number of Program/Erase cycles (–40°C ≤ TJ ≤ 0°C) nEEPE 10,000 Cycles 4 C EEPROM number of Program/Erase cycles (0°C < TJ ≤ 140°C) nEEPE 100,000 Cycles 104 Years 10,000 Cycles Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 A.7 Reset, Oscillator and PLL This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and Phase-Locked-Loop (PLL). A.7.1 Startup Table A-18 summarizes several startup characteristics explained in this section. Detailed description of the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide. Table A-18 Startup Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 2.07 V 1 T POR release level VPORR 2 T POR assert level VPORA 0.97 V 3 D Reset input pulse width, minimum input time PWRSTL 2 tosc 4 D Startup from Reset nRST 192 5 D Interrupt pulse width, IRQ edge-sensitive mode PWIRQ 20 6 D Wait recovery startup time tWRS 196 nosc ns 14 tcyc A.7.1.1 POR The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by nuposc. A.7.1.2 SRAM Data Retention Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset the PORF bit in the CRG Flags Register has not been set. A.7.1.3 External Reset When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an oscillation before reset. A.7.1.4 Stop Recovery Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR is performed before releasing the clocks to the system. Freescale Semiconductor 105 Device User Guide — 9S12KT256DGV1/D V01.09 A.7.1.5 Pseudo Stop and Wait Recovery The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts fetching the interrupt vector. A.7.2 Oscillator The device features an internal low-power loop controlled Pierce oscillator and a full swing Pierce oscillator/external clock mode. The selection of loop controlled Pierce oscillator or full swing Pierce oscillator/external clock depends on the XCLKS signal which is sampled during reset. Full swing Pierce oscillator/external clock mode allows the input of a square wave. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. tCQOUT specifies the maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum oscillator start-up time tUPOSC. The device also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency fCMFA Table A-19 Oscillator Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 1a C Crystal oscillator range (loop controlled Pierce) fOSC 4.0 16 MHz 1b C Crystal oscillator range (full swing Pierce) 1,2 fOSC 0.5 40 MHz 2 P Startup Current iOSC 100 3 C Oscillator start-up time (loop controlled Pierce) tUPOSC 4 D Clock Quality check time-out tCQOUT 0.45 5 P Clock Monitor Failure Assert Frequency fCMFA 50 6 P External square wave input frequency 2 fEXT 0.5 7 D External square wave pulse width low tEXTL 9.5 ns 8 D External square wave pulse width high tEXTH 9.5 ns 9 D External square wave rise time tEXTR 1 ns 10 D External square wave fall time tEXTF 1 ns 11 D Input Capacitance (EXTAL, XTAL pins) 12 P EXTAL Pin Input High Voltage VIH,EXTAL T EXTAL Pin Input High Voltage VIH,EXTAL VDDPLL + 0.3 V P EXTAL Pin Input Low Voltage VIL,EXTAL 0.3*VDDPLL V T EXTAL Pin Input Low Voltage VIL,EXTAL 13 14 C EXTAL Pin Input Hysteresis µA 33 CIN 100 504 ms 2.5 s 200 KHz 50 MHz 7 pF 0.7*VDDPLL V VSSPLL - 0.3 VHYS,EXTAL V 250 mV NOTES: 1. Depending on the crystal a damping series resistor might be necessary 106 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 2. Only valid if full swing Pierce oscillator/external clock mode is selected 3. fOSC = 4MHz, C = 22pF. 4. Maximum value is for extreme cases using high Q, low frequency crystals A.7.3 Phase Locked Loop The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode. A.7.3.1 XFC Component Selection This section describes the selection of the XFC components to achieve a good filter characteristics. Cp VDDPLL Cs fosc fref 1 refdv+1 R Phase ∆ fcmp XFC Pin VCO KΦ KV fvco Detector Loop Divider 1 synr+1 1 2 Figure A-3 Basic PLL functional diagram The following procedure can be used to calculate the resistance and capacitance values using typical values for K1, f1 and ich from Table A-20. The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used for fOSC = 4MHz and a 25MHz bus clock. The VCO Gain at the desired VCO frequency is approximated by: KV = K1 ⋅ e ( f 1 – f vco ) ----------------------K 1 ⋅ 1V = – 100 ⋅ e ( 60 – 50 ) -----------------------– 100 = -90.48MHz/V The phase detector relationship is given by: Freescale Semiconductor 107 Device User Guide — 9S12KT256DGV1/D V01.09 K Φ = – i ch ⋅ K V = 316.7Hz/Ω ich is the current in tracking mode. The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10, typical values are 50. ζ = 0.9 ensures a good transient response. 2 ⋅ ζ ⋅ f ref f ref 1 f C < ------------------------------------------ ------ → f C < -------------- ;( ζ = 0.9 ) 4 ⋅ 10 2 10 π⋅ ζ+ 1+ζ fC < 25kHz And finally the frequency relationship is defined as f VCO n = ------------- = 2 ⋅ ( synr + 1 ) f ref = 50 With the above values the resistance can be calculated. The example is shown for a loop bandwidth fC=10kHz: 2 ⋅ π ⋅ n ⋅ fC R = ----------------------------- = 2*π*50*10kHz/(316.7Hz/Ω)=9.9kΩ=~10kΩ KΦ The capacitance Cs can now be calculated as: 2 0.516 2⋅ζ C s = ---------------------- ≈ --------------- ;( ζ = 0.9 ) = 5.19nF =~ 4.7nF π ⋅ fC ⋅ R fC ⋅ R The capacitance Cp should be chosen in the range of: C s ⁄ 20 ≤ C p ≤ C s ⁄ 10 Cp = 470pF A.7.3.2 Jitter Information NOTE: This section is under construction The basic functionality of the PLL is shown in Figure A-3. With each transition of the clock fcmp, the deviation from the reference clock fref is measured and input voltage to the VCO is adjusted accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-4. 108 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 1 0 2 3 N-1 N tmin1 tnom tmax1 tminN tmaxN Figure A-4 Jitter Definitions The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger number of clock periods (N). Defining the jitter as: t max ( N ) t min ( N ) J ( N ) = max 1 – --------------------- , 1 – --------------------- N ⋅ t nom N ⋅ t nom NOTE: From the evaluation data a formula for tmax= f(N), resp. tmin = f(N) should be derived. Assuming no long term drift of the reference clock, the following will hold lim J ( N ) = 0 N→∞ This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent. Freescale Semiconductor 109 Device User Guide — 9S12KT256DGV1/D V01.09 Table A-20 PLL Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol Min Typ Max Unit 1 P Self Clock Mode frequency fSCM 1 5.5 MHz 2 D VCO locking range fVCO 8 50 MHz 3 D ∆trk 3% 4%1 — 4 D Lock Detection ∆Lock 0% 1.5%(1) — 5 D Un-Lock Detection ∆unl 0.5% 2.5%(1) — 6 D ∆unt 6% 8%(1) — 7 C PLLON Total Stabilization delay2 tstab 0.5 ms 8 D PLLON Acquisition mode stabilization delay(2) tacq 0.3 ms 9 D PLLON Tracking mode stabilization delay(2) tal 0.2 ms 10 D Fitting parameter VCO loop gain K1 -100 MHz/V 11 D Fitting parameter VCO loop frequency f1 60 MHz 12 D Charge pump current acquisition mode ich -38.5 µA 13 D Charge pump current tracking mode ich -3.5 µA 14 C Jitter fit parameter 1(2) j1 1.1 % 15 C Jitter fit parameter 2(2) j2 0.13 % Lock Detector transition from Acquisition to Tracking mode Lock Detector transition from Tracking to Acquisition mode NOTES: 1. % deviation from target frequency 2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs = 10KΩ. 110 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 A.8 MSCAN Table A-21 MSCAN Wake-up Pulse Characteristics Conditions are shown in Table A-4 unless otherwise noted Num C Rating Symbol 1 P MSCAN Wake-up dominant pulse filtered tWUP 2 P MSCAN Wake-up dominant pulse pass tWUP Freescale Semiconductor Min 5 Typ Max Unit 2 µs µs 111 Device User Guide — 9S12KT256DGV1/D V01.09 A.9 SPI A.9.1 Master Mode Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-22. SS1 (OUTPUT) 2 1 SCK (CPOL = 0) (OUTPUT) 3 11 4 4 12 SCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 6 MSB IN2 9 MOSI (OUTPUT) BIT 6 . . . 1 LSB IN 9 MSB OUT2 BIT 6 . . . 1 10 LSB OUT 1.if configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure A-5 SPI Master Timing (CPHA = 0) 112 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 SS1 (OUTPUT) 1 2 12 11 11 12 3 SCK (CPOL = 0) (OUTPUT) 4 4 SCK (CPOL = 1) (OUTPUT) 5 MISO (INPUT) 6 MSB IN2 9 MOSI (OUTPUT) PORT DATA BIT 6 . . . 1 LSB IN 10 MASTER MSB OUT2 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure A-6 SPI Master Timing (CPHA =1) Table A-22 SPI Master Mode Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs Num C 1 P 1 Rating Symbol Min Operating Frequency fop P SCK Period 2 D 3 Max Unit DC 1/4 fbus tsck 4 2048 tbus Enable Lead Time tlead 1/2 — tsck D Enable Lag Time tlag 1/2 4 D Clock (SCK) High or Low Time twsck tbus − 30 5 D Data Setup Time (Inputs) tsu 25 ns 6 D Data Hold Time (Inputs) thi 0 ns 9 D Data Valid (after SCK Edge) tv 10 D Data Hold Time (Outputs) tho 11 D Rise Time Inputs and Outputs tr 25 ns 12 D Fall Time Inputs and Outputs tf 25 ns Freescale Semiconductor Typ tsck 1024 tbus 25 0 ns ns ns 113 Device User Guide — 9S12KT256DGV1/D V01.09 A.9.2 Slave Mode Figure A-7 and Figure A-8 illustrate the slave mode timing. Timing values are shown in Table A-23. SS (INPUT) 1 12 11 3 11 12 SCK (CPOL = 0) (INPUT) 4 2 4 SCK (CPOL = 1) (INPUT) 8 7 MISO (OUTPUT) 9 SLAVE MSB OUT 5 MOSI (INPUT) 10 10 BIT 6 . . . 1 SEE NOTE SLAVE LSB OUT 6 BIT 6 . . . 1 MSB IN LSB IN NOTE: Not defined but normally MSB of character just received. Figure A-7 SPI Slave Timing (CPHA = 0) SS (INPUT) 3 1 2 12 11 11 12 SCK (CPOL = 0) (INPUT) 4 4 SCK (CPOL = 1) (INPUT) SEE NOTE SLAVE MSB OUT 7 MOSI (INPUT) 5 8 10 9 MISO (OUTPUT) BIT 6 . . . 1 SLAVE LSB OUT 6 MSB IN BIT 6 . . . 1 LSB IN NOTE: Not defined but normally LSB of character just received. Figure A-8 SPI Slave Timing (CPHA =1) 114 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Table A-23 SPI Slave Mode Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs Num C Rating Symbol Min Typ Max Unit 1 P Operating Frequency fop DC 1/4 fbus 1 P SCK Period tsck 4 2048 tbus 2 D Enable Lead Time tlead 1 tcyc 3 D Enable Lag Time tlag 1 tcyc 4 D Clock (SCK) High or Low Time twsck tcyc − 30 ns 5 D Data Setup Time (Inputs) tsu 25 ns 6 D Data Hold Time (Inputs) thi 25 ns 7 D Slave Access Time ta 1 tcyc 8 D Slave MISO Disable Time tdis 1 tcyc 9 D Data Valid (after SCK Edge) tv 25 ns 10 D Data Hold Time (Outputs) tho 11 D Rise Time Inputs and Outputs tr 25 ns 12 D Fall Time Inputs and Outputs tf 25 ns Freescale Semiconductor 0 ns 115 Device User Guide — 9S12KT256DGV1/D V01.09 A.10 External Bus Timing A timing diagram of the external multiplexed-bus is illustrated in Figure A-9 with the actual timing values shown on table Table A-24. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle. A.10.1 General Muxed Bus Timing The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs. 116 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 1, 2 3 4 ECLK PE4 5 9 Addr/Data (read) PA, PB 6 16 15 7 data 8 14 13 data addr 17 11 data addr data 12 Addr/Data (write) PA, PB 10 19 18 Non-Multiplexed Addresses PK5:0 20 21 22 23 ECS PK7 24 25 26 27 28 29 30 31 32 33 34 R/W PE2 LSTRB PE3 NOACC PE7 35 36 PIPO0 PIPO1, PE6,5 Figure A-9 General External Bus Timing Freescale Semiconductor 117 Device User Guide — 9S12KT256DGV1/D V01.09 Table A-24 Expanded Bus Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF Num C Rating Symbol Min Typ Max Unit fo 0 25.0 1 tcyc 40 2 1 P Frequency of operation (E-clock) 2 P Cycle time 3 D Pulse width, E low PWEL 17 3 4 D Pulse width, E high1 PWEH 17 4 5 D Address delay time tAD 6 D Address valid time to E rise (PWEL–tAD) tAV 11 6 7 D Muxed address hold time tMAH 2 7 8 D Address hold to data valid tAHDS 7 8 9 D Data hold to address tDHA 2 9 10 D Read data setup time tDSR 13 10 11 D Read data hold time tDHR 0 11 12 D Write data delay time tDDW 13 D Write data hold time tDHW 2 13 14 D Write data setup time(1) (PWEH–tDDW) tDSW 10 14 15 D Address access time(1) (tcyc–tAD–tDSR) tACCA 19 15 16 D E high access time(1) (PWEH–tDSR) tACCE 4 16 17 D Non-multiplexed address delay time tNAD 18 D Non-muxed address valid to E rise (PWEL–tNAD) tNAV 10 18 19 D Non-multiplexed address hold time tNAH 2 19 20 D Chip select delay time tCSD 21 D Chip select access time(1) (tcyc–tCSD–tDSR) tACCS 11 21 22 D Chip select hold time tCSH 2 22 23 D Chip select negated time tCSN 8 23 24 D Read/write delay time tRWD 25 D Read/write valid time to E rise (PWEL–tRWD) tRWV 10 25 26 D Read/write hold time tRWH 2 26 27 D Low strobe delay time tLSD 28 D Low strobe valid time to E rise (PWEL–tLSD) tLSV 10 28 29 D Low strobe hold time tLSH 2 29 30 D NOACC strobe delay time tNOD 31 D NOACC valid time to E rise (PWEL–tLSD) tNOV 118 8 7 7 16 7 7 7 10 5 12 17 20 24 27 30 31 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Table A-24 Expanded Bus Timing Characteristics Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF 32 D NOACC hold time tNOH 2 33 D PIPO0 delay time tP0D 2 34 D PIPO0 valid time to E rise (PWEL–tP0D) tP0V 10 35 D PIPO1 delay time(1) (PWEH-tP1V) tP1D 2 36 D PIPO1 valid time to E fall tP1V 10 32 7 33 34 7 35 36 NOTES: 1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches. Freescale Semiconductor 119 Device User Guide — 9S12KT256DGV1/D V01.09 120 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Appendix B Package Information This section provides the physical dimensions of the MC9S12K-Family packages. Freescale Semiconductor 121 Device User Guide — 9S12KT256DGV1/D V01.09 B.1 80-pin QFP package L 60 41 61 B D D S V B P B 0.20 M C A-B L 0.20 M H A-B -B- 0.05 D -A- S S S 40 -A-,-B-,-DDETAIL A DETAIL A 21 80 1 A 0.20 M H A-B S F 20 -DD S 0.05 A-B J S 0.20 M C A-B S D S D M E DETAIL C C -H- -CSEATING PLANE N 0.20 M C A-B S D S SECTION B-B DATUM PLANE VIEW ROTATED 90 ° 0.10 H M G U T DATUM -HPLANE R K W X DETAIL C Q NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -A-, -B- AND -D- TO BE DETERMINED AT DATUM PLANE -H-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. DIM A B C D E F G H J K L M N P Q R S T U V W X MILLIMETERS MIN MAX 13.90 14.10 13.90 14.10 2.15 2.45 0.22 0.38 2.00 2.40 0.22 0.33 0.65 BSC --0.25 0.13 0.23 0.65 0.95 12.35 REF 5° 10 ° 0.13 0.17 0.325 BSC 0° 7° 0.13 0.30 16.95 17.45 0.13 --0° --16.95 17.45 0.35 0.45 1.6 REF Figure B-1 80-pin QFP Mechanical Dimensions (case no. 841B) 122 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 B.2 100-pin LQFP package 0.2 T L–M N 4X G 0.2 T L–M N 4X 25 TIPS 76 100 CL 1 X X = L, M OR N AB 75 AB L VIEW Y M B V BASE METAL ÉÉ ÇÇÇ ÉÉ ÇÇÇ F 3X VIEW Y V1 B1 25 J PLATING 0.08 26 T L–M N M 50 N A1 U D 51 SECTION AB–AB ROTATED 90_ CLOCKWISE S1 A S 4X C q2 0.08 T SEATING PLANE T 4X q3 VIEW AA 0.05 (W) q1 R1 2X R 0.25 C2 GAGE PLANE C1 (Z) (K) E q VIEW AA 100X NOTES: 1. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 2. DIMENSIONS IN MILLIMETERS. 3. DATUMS L, M AND N TO BE DETERMINED AT THE SEATING PLANE, DATUM T. 4. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE, DATUM T. 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B INCLUDE MOLD MISMATCH. 6. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.35. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07. DIM A A1 B B1 C C1 C2 D E F G J K R1 S S1 U V V1 W Z q q1 q2 q3 MILLIMETERS MIN MAX 14.00 BSC 7.00 BSC 14.00 BSC 7.00 BSC ––– 1.70 0.05 0.20 1.30 1.50 0.10 0.30 0.45 0.75 0.15 0.23 0.50 BSC 0.07 0.20 0.50 REF 0.08 0.20 16.00 BSC 8.00 BSC 0.09 0.16 16.00 BSC 8.00 BSC 0.20 REF 1.00 REF 0_ 7_ 0_ ––– 12_ REF 12_ REF CASE 983–02 ISSUE E DATE 01/30/96 Figure B-2 100-pin LQFP Mechanical Dimensions (case no. 983) Freescale Semiconductor 123 Device User Guide — 9S12KT256DGV1/D V01.09 B.3 112-pin LQFP package 0.20 T L-M N 4X PIN 1 IDENT 0.20 T L-M N 4X 28 TIPS 112 J1 85 4X P J1 1 CL 84 VIEW Y 108X G X X=L, M OR N VIEW Y V B L M B1 28 57 29 F D 56 0.13 N S1 A S C2 VIEW AB θ2 0.050 0.10 T 112X SEATING PLANE θ3 T θ R R2 R 0.25 R1 GAGE PLANE (K) C1 E (Y) (Z) VIEW AB M BASE METAL T L-M N SECTION J1-J1 ROTATED 90 ° COUNTERCLOCKWISE A1 C AA J V1 θ1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS IN MILLIMETERS. 3. DATUMS L, M AND N TO BE DETERMINED AT SEATING PLANE, DATUM T. 4. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE, DATUM T. 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS A AND B INCLUDE MOLD MISMATCH. 6. DIMENSION D DOES NOT INCLUDE DAMBAR DIM A A1 B B1 C C1 C2 D E F G J K P R1 R2 S S1 V V1 Y Z AA θ θ1 θ2 θ3 MILLIMETERS MIN MAX 20.000 BSC 10.000 BSC 20.000 BSC 10.000 BSC --- 1.600 0.050 0.150 1.350 1.450 0.270 0.370 0.450 0.750 0.270 0.330 0.650 BSC 0.090 0.170 0.500 REF 0.325 BSC 0.100 0.200 0.100 0.200 22.000 BSC 11.000 BSC 22.000 BSC 11.000 BSC 0.250 REF 1.000 REF 0.090 0.160 8 ° 0° 7 ° 3 ° 13 ° 11 ° 11 ° 13 ° Figure B-3 112-pin LQFP Mechanical Dimensions (case no. 987) 124 Freescale Semiconductor Device User Guide — 9S12KT256DGV1/D V01.09 Freescale Semiconductor 125 FINAL PAGE OF 126 PAGES How to Reach Us: Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted USA/Europe/Locations not listed: Freescale Semiconductor Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the Japan: Freescale Semiconductor Japan Ltd. SPS, Technical Information Center 3-20-1, Minami-Azabu Minato-ku Tokyo 106-8573, Japan 81-3-3440-3569 suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Asia/Pacific: Freescale Semiconductor H.K. Ltd. 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T. Hong Kong 852-26668334 Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Learn More: For more information about Freescale Semiconductor products, please visit http://www.freescale.com Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2004. 9S12KT256DGV1/D V01.09, 9 SEP 2004