Freescale MK60N512VLQ100 Up to 100 mhz arm cortex-m4 core with dsp instructions delivering 1.25 dhrystone mips per mhz Datasheet

Freescale Semiconductor
Data Sheet: Product Preview
K60 Sub-Family Data Sheet
Document Number: K60P144M100SF2
Rev. 4, 3/2011
K60P144M100SF2
Supports the following:
MK60N256VLQ100,
MK60X256VLQ100,
MK60N512VLQ100,
MK60N256VMD100,
MK60X256VMD100,
MK60N512VMD100
Features
• Operating Characteristics
– Voltage range: 1.71 to 3.6 V
– Flash write voltage range: 1.71 to 3.6 V
– Temperature range (ambient): -40 to 105°C
• Performance
– Up to 100 MHz ARM Cortex-M4 core with DSP
instructions delivering 1.25 Dhrystone MIPS per
MHz
• Memories and memory interfaces
– Up to 512 KB program flash memory on nonFlexMemory devices
– Up to 256 KB program flash memory on
FlexMemory devices
– Up to 256 KB FlexNVM on FlexMemory devices
– 4 KB FlexRAM on FlexMemory devices
– Up to 128 KB RAM
– Serial programming interface (EzPort)
– FlexBus external bus interface
• Clocks
– 3 to 32 MHz crystal oscillator
– 32 kHz crystal oscillator
– Multi-purpose clock generator
• System peripherals
– 10 low-power modes to provide power optimization
based on application requirements
– Memory protection unit with multi-master
protection
– 16-channel DMA controller, supporting up to 64
request sources
– External watchdog monitor
– Software watchdog
– Low-leakage wakeup unit
• Security and integrity modules
– Hardware CRC module to support fast cyclic
redundancy checks
– Hardware random-number generator
– Hardware encryption supporting DES, 3DES, AES,
MD5, SHA-1, and SHA-256 algorithms
– 128-bit unique identification (ID) number per chip
• Human-machine interface
– Low-power hardware touch sensor interface (TSI)
– General-purpose input/output
• Analog modules
– Two 16-bit SAR ADCs
– Programmable gain amplifier (up to x64) integrated
into each ADC
– Two 12-bit DACs
– Three analog comparators (CMP) containing a 6-bit
DAC and programmable reference input
– Voltage reference
• Timers
– Programmable delay block
– Eight-channel motor control/general purpose/PWM
timer
– Two 2-channel quadrature decoder/general purpose
timers
– IEEE 1588 timers
– Periodic interrupt timers
– 16-bit low-power timer
– Carrier modulator transmitter
– Real-time clock
This document contains information on a product under development. Freescale
reserves the right to change or discontinue this product without notice.
© 2010–2011 Freescale Semiconductor, Inc.
Preliminary
• Communication interfaces
– Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability
– USB full-/low-speed On-the-Go controller with on-chip transceiver
– Two Controller Area Network (CAN) modules
– Three SPI modules
– Two I2C modules
– Five UART modules
– Secure Digital host controller (SDHC)
– I2S module
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
2
Preliminary
Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................5
6 Peripheral operating requirements and behaviors....................21
1.1 Determining valid orderable parts......................................5
6.1 Core modules....................................................................22
2 Part identification......................................................................5
6.1.1
Debug trace timing specifications.......................22
2.1 Description.........................................................................5
6.1.2
JTAG electricals..................................................23
2.2 Format...............................................................................5
6.2 System modules................................................................26
2.3 Fields.................................................................................5
6.3 Clock modules...................................................................26
2.4 Example............................................................................6
6.3.1
MCG specifications.............................................26
3 Terminology and guidelines......................................................6
6.3.2
Oscillator electrical specifications.......................28
3.1 Definition: Operating requirement......................................6
6.3.3
32kHz Oscillator Electrical Characteristics.........30
3.2 Definition: Operating behavior...........................................7
6.4 Memories and memory interfaces.....................................31
3.3 Definition: Attribute............................................................7
6.4.1
Flash (FTFL) electrical specifications.................31
3.4 Definition: Rating...............................................................8
6.4.2
EzPort Switching Specifications.........................35
3.5 Result of exceeding a rating..............................................8
6.4.3
Flexbus Switching Specifications........................36
3.6 Relationship between ratings and operating
6.5 Security and integrity modules..........................................39
requirements......................................................................8
6.6 Analog...............................................................................39
3.7 Guidelines for ratings and operating requirements............9
6.6.1
ADC electrical specifications..............................39
3.8 Definition: Typical value.....................................................9
6.6.2
CMP and 6-bit DAC electrical specifications......47
3.9 Typical value conditions....................................................10
6.6.3
12-bit DAC electrical characteristics...................50
4 Ratings......................................................................................10
6.6.4
Voltage reference electrical specifications..........53
4.1 Thermal handling ratings...................................................11
6.7 Timers................................................................................54
4.2 Moisture handling ratings..................................................11
6.8 Communication interfaces.................................................54
4.3 ESD handling ratings.........................................................11
6.8.1
Ethernet switching specifications........................55
4.4 Voltage and current operating ratings...............................11
6.8.2
USB electrical specifications...............................56
5 General.....................................................................................12
6.8.3
USB DCD electrical specifications......................56
5.1 Nonswitching electrical specifications...............................12
6.8.4
USB VREG electrical specifications...................57
5.1.1
Voltage and current operating requirements......12
6.8.5
CAN switching specifications..............................57
5.1.2
LVD and POR operating requirements...............13
6.8.6
DSPI switching specifications (low-speed
5.1.3
Voltage and current operating behaviors............14
5.1.4
Power mode transition operating behaviors.......14
5.1.5
Power consumption operating behaviors............15
5.1.6
EMC radiated emissions operating behaviors....18
6.8.8
I2C switching specifications................................61
5.1.7
Designing with radiated emissions in mind.........19
6.8.9
UART switching specifications............................61
5.1.8
Capacitance attributes........................................19
6.8.10
SDHC specifications...........................................61
5.2 Switching specifications.....................................................19
6.8.11
I2S switching specifications................................62
5.2.1
Device clock specifications.................................19
5.2.2
General switching specifications.........................20
5.3 Thermal specifications.......................................................21
mode)..................................................................58
6.8.7
DSPI switching specifications (high-speed
mode)..................................................................59
6.9 Human-machine interfaces (HMI)......................................64
6.9.1
TSI electrical specifications................................64
7 Dimensions...............................................................................65
5.3.1
Thermal operating requirements.........................21
7.1 Obtaining package dimensions.........................................65
5.3.2
Thermal attributes...............................................21
8 Pinout........................................................................................65
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
3
8.1 K60 Signal Multiplexing and Pin Assignments..................65
9 Revision History........................................................................74
8.2 K60 Pinouts.......................................................................72
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
4
Preliminary
Freescale Semiconductor, Inc.
Ordering parts
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to http://www.freescale.com and perform a part number
search for the following device numbers: PK60 and MK60.
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q K## M FFF T PP CCC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
K##
Kinetis family
• K60
M
Flash memory type
• N = Program flash only
• X = Program flash and FlexMemory
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
5
Terminology and guidelines
Field
Description
Values
FFF
Program flash memory size
•
•
•
•
•
•
32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
T
Temperature range (°C)
• V = –40 to 105
• C = –40 to 85
PP
Package identifier
•
•
•
•
•
•
•
•
•
•
•
•
•
FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
EX = 64 QFN (9 mm x 9 mm)
LH = 64 LQFP (10 mm x 10 mm)
LK = 80 LQFP (12 mm x 12 mm)
MB = 81 MAPBGA (8 mm x 8 mm)
LL = 100 LQFP (14 mm x 14 mm)
MC = 121 MAPBGA (8 mm x 8 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
MF = 196 MAPBGA (15 mm x 15 mm)
MJ = 256 MAPBGA (17 mm x 17 mm)
CCC
Maximum CPU frequency (MHz)
•
•
•
•
•
50 = 50 MHz
72 = 72 MHz
100 = 100 MHz
120 = 120 MHz
150 = 150 MHz
N
Packaging type
• R = Tape and reel
• (Blank) = Trays
2.4 Example
This is an example part number:
MK60N512VMD100
3 Terminology and guidelines
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
6
Preliminary
Freescale Semiconductor, Inc.
Terminology and guidelines
3.1.1 Example
This is an example of an operating requirement, which you must meet for the
accompanying operating behaviors to be guaranteed:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
0.9
Max.
1.1
Unit
V
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical
characteristic that are guaranteed during operation if you meet the operating requirements
and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior, which is guaranteed if you meet the
accompanying operating requirements:
Symbol
IWP
Description
Min.
Digital I/O weak pullup/ 10
pulldown current
Max.
130
Unit
µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
3.3.1 Example
This is an example of an attribute:
Symbol
CIN_D
Description
Input capacitance:
digital pins
Min.
—
Max.
7
Unit
pF
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
7
Terminology and guidelines
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
3.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
–0.3
Max.
1.2
Unit
V
3.5 Result of exceeding a rating
Failures in time (ppm)
40
30
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
20
10
0
Operating rating
Measured characteristic
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
8
Preliminary
Freescale Semiconductor, Inc.
Terminology and guidelines
3.6 Relationship between ratings and operating requirements
era
Op
go
tin
a
rh
lin
nd
g
in
rat
n.)
mi
g(
tin
era
Op
e
gr
em
ir
qu
n.
mi
t(
en
)
Op
tin
e
gr
era
em
ir
qu
x
ma
t(
en
.)
x.)
ma
g(
g
lin
nd
ha
tin
era
Op
r
go
in
rat
Fatal
range
Limited
operating
range
Normal
operating
range
Limited
operating
range
Fatal
range
- Probable permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- Probable permanent failure
Handling range
- No permanent failure
∞
–∞
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
9
Ratings
Symbol
Description
IWP
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
70
Max.
130
Unit
µA
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
5000
4500
4000
TJ
IDD_STOP (μA)
3500
150 °C
3000
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.90
0.95
1.00
1.05
1.10
VDD (V)
3.9 Typical value conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
4 Ratings
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
10
Preliminary
Freescale Semiconductor, Inc.
Ratings
4.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
Solder temperature, leaded
—
245
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
-2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device model
-500
+500
V
2
Latch-up current at ambient temperature of 85°C
-100
+100
mA
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.4 Voltage and current operating ratings
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
185
mA
–0.3
5.5
V
VDIO
Digital input voltage (except RESET, EXTAL, and XTAL)
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
11
General
Symbol
VAIO
ID
Description
Min.
Max.
Unit
Analog, RESET, EXTAL, and XTAL input voltage
–0.3
VDD + 0.3
V
Instantaneous maximum current single pin limit (applies to all
port pins)
–25
25
mA
VDDA
Analog supply voltage
VDD – 0.3
VDD + 0.3
V
VUSB_DP
USB_DP input voltage
–0.3
3.63
V
VUSB_DM
USB_DM input voltage
–0.3
3.63
V
VREGIN
USB regulator input
–0.3
6.0
V
RTC battery supply voltage
–0.3
3.8
V
VBAT
5 General
5.1 Nonswitching electrical specifications
5.1.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
1.71
3.6
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
VBAT
VIH
VIL
VHYS
RTC battery supply voltage
Notes
Input high voltage
Input low voltage
Input hysteresis
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
12
Preliminary
Freescale Semiconductor, Inc.
General
Table 1. Voltage and current operating requirements (continued)
Symbol
IIC
Description
Min.
Notes
1
0
DC injection current — total MCU limit, includes sum
of all stressed pins
• VIN < VSS
VRFVBAT
Unit
DC injection current — single pin
• VIN < VSS
VRAM
Max.
–0.2
mA
1
VDD voltage required to retain RAM
VBAT voltage required to retain the VBAT register file
0
–5
mA
1.2
—
V
TBD
—
V
1. All functional non-supply pins are internally clamped to VSS, and induce an injection current when VIN is less than VSS. The
IIC maximum operating requirement should not be exceeded. If this requirement cannot be met, the input must be current
limited to the value specified.
5.1.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
VPOR
Falling VDD POR detect voltage
TBD
1.1
TBD
V
VLVDH
Falling low-voltage detect threshold — high
range (LVDV=01)
TBD
2.56
TBD
V
Low-voltage warning thresholds — high range
1
VLVW1H
• Level 1 falling (LVWV=00)
TBD
2.70
TBD
V
VLVW2H
• Level 2 falling (LVWV=01)
TBD
2.80
TBD
V
VLVW3H
• Level 3 falling (LVWV=10)
TBD
2.90
TBD
V
VLVW4H
• Level 4 falling (LVWV=11)
TBD
3.00
TBD
V
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low range
(LVDV=00)
60
TBD
1.60
mV
TBD
V
Low-voltage warning thresholds — low range
1
VLVW1L
• Level 1 falling (LVWV=00)
TBD
1.80
TBD
V
VLVW2L
• Level 2 falling (LVWV=01)
TBD
1.90
TBD
V
VLVW3L
• Level 3 falling (LVWV=10)
TBD
2.00
TBD
V
VLVW4L
• Level 4 falling (LVWV=11)
TBD
2.10
TBD
V
VHYSL
Notes
Low-voltage inhibit reset/recover hysteresis —
low range
40
mV
VBG
Bandgap voltage reference
TBD
1.00
TBD
V
tLPO
Internal low power oscillator period
TBD
1000
TBD
μs
factory trimmed
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
13
General
1. Rising thresholds are falling threshold + hysteresis voltage
Table 3. VBAT power operating requirements
Symbol
Description
VPOR_VBAT Falling VBAT supply POR detect voltage
Min.
Typ.
Max.
Unit
TBD
1.1
TBD
V
Notes
5.1.3 Voltage and current operating behaviors
Table 4. Voltage and current operating behaviors
Symbol
Min.
Max.
Unit
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA
VDD – 0.5
—
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA
VDD – 0.5
—
V
—
100
mA
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA
—
0.5
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA
—
0.5
V
Output low current total for all ports
—
100
mA
IIN
Input leakage current (per pin)
—
1
μA
IOZ
Hi-Z (off-state) leakage current (per pin)
—
1
μA
RPU
Internal pullup resistors
30
50
kΩ
2
RPD
Internal pulldown resistors
30
50
kΩ
3
VOH
Description
Notes
Output high voltage — high drive strength
Output high voltage — low drive strength
IOHT
Output high current total for all ports
VOL
Output low voltage — high drive strength
Output low voltage — low drive strength
IOLT
1
1. Measured at VDD=3.6V
2. Measured at VDD supply voltage = VDD min and Vinput = VSS
3. Measured at VDD supply voltage = VDD min and Vinput = VDD
5.1.4 Power mode transition operating behaviors
All specifications except tPOR, and VLLSx→RUN recovery times in the following table
assume this clock configuration:
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
14
Preliminary
Freescale Semiconductor, Inc.
General
• CPU and system clocks = 100 MHz
• Bus and FlexBus clocks = 50 MHz
• Flash clock = 25 MHz
Table 5. Power mode transition operating behaviors
Symbol
tPOR
Description
Min.
Max.
Unit
Notes
—
300
μs
1
• RUN → VLLS1
—
4.1
μs
• VLLS1 → RUN
—
123.8
μs
• RUN → VLLS2
—
4.1
μs
• VLLS2 → RUN
—
49.3
μs
• RUN → VLLS3
—
4.1
μs
• VLLS3 → RUN
—
49.2
μs
• RUN → LLS
—
4.1
μs
• LLS → RUN
—
5.9
μs
• RUN → STOP
—
4.1
μs
• STOP → RUN
—
4.2
μs
• RUN → VLPS
—
4.1
μs
• VLPS → RUN
—
5.8
μs
After a POR event, amount of time from the point VDD
reaches 1.8V to execution of the first instruction
across the operating temperature range of the chip.
RUN → VLLS1 → RUN
RUN → VLLS2 → RUN
RUN → VLLS3 → RUN
RUN → LLS → RUN
RUN → STOP → RUN
RUN → VLPS → RUN
1. Normal boot (FTFL_OPT[LPBOOT]=1)
5.1.5 Power consumption operating behaviors
Table 6. Power consumption operating behaviors
Symbol
IDDA
Description
Analog supply current
Min.
Typ.
Max.
Unit
Notes
—
—
TBD
mA
1
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
15
General
Table 6. Power consumption operating behaviors (continued)
Symbol
Description
Min.
IDD_RUN
Run mode current — all peripheral clocks
disabled, code executing from flash
Max.
Unit
Notes
2
• @ 1.8V
• @ 3.0V
IDD_RUN
Typ.
—
40
TBD
mA
—
42
TBD
mA
Run mode current — all peripheral clocks
enabled, code executing from flash
3
• @ 1.8V
• @ 3.0V
IDD_RUN_M Run mode current — all peripheral clocks
enabled and peripherals active, code executing
AX
from flash
• @ 1.8V
• @ 3.0V
—
55
TBD
mA
—
56
TBD
mA
4
—
85
TBD
mA
—
85
TBD
mA
IDD_WAIT
Wait mode high frequency current at 3.0 V — all
peripheral clocks disabled
—
35
TBD
mA
2
IDD_WAIT
Wait mode reduced frequency current at 3.0 V
— all peripheral clocks disabled
—
15
TBD
mA
5
IDD_STOP
Stop mode current at 3.0 V
—
0.4
TBD
mA
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
—
1.25
TBD
mA
6
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
—
TBD
TBD
mA
7
IDD_VLPW
Very-low-power wait mode current at 3.0 V
—
1.05
TBD
mA
8
IDD_VLPS
Very-low-power stop mode current at 3.0 V
—
50
TBD
μA
IDD_LLS
Low leakage stop mode current at 3.0 V
—
12
TBD
μA
• 128KB RAM devices
—
8
TBD
μA
• 64KB RAM devices
—
6
TBD
μA
IDD_VLLS3
Very low-leakage stop mode 3 current at 3.0 V
IDD_VLLS2
Very low-leakage stop mode 2 current at 3.0 V
—
4
TBD
μA
IDD_VLLS1
Very low-leakage stop mode 1 current at 3.0 V
—
2
TBD
μA
IDD_VBAT
Average current when CPU is not accessing
RTC registers at 3.0 V
—
550
TBD
nA
9
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode.
All peripheral clocks disabled.
3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All
peripheral clocks enabled, but peripherals are not in active operation.
4. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All
peripheral clocks enabled, and peripherals are in active operation.
5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
16
Preliminary
Freescale Semiconductor, Inc.
General
6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral
clocks disabled. Code executing from flash.
7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral
clocks enabled but peripherals are not in active operation. Code executing from flash.
8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral
clocks disabled.
9. Includes 32kHz oscillator current and RTC operation.
5.1.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
•
•
•
•
•
MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE)
All peripheral clocks disabled except FTFL
LVD disabled, USB regulator disabled
No GPIOs toggled
Code execution from flash
Figure 1. Run mode supply current vs. core frequency — all peripheral clocks disabled
The following data was measured under these conditions:
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
17
General
•
•
•
•
•
MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE)
All peripheral clocks enabled but peripherals are not in active operation
LVD disabled, USB regulator disabled
No GPIOs toggled
Code execution from flash
Figure 2. Run mode supply current vs. core frequency — all peripheral clocks enabled
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
18
Preliminary
Freescale Semiconductor, Inc.
General
5.1.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors
Symbol
Description
Frequency
band (MHz)
Typ.
Unit
Notes
dBμV
1, 2
—
2, 3
VRE1
Radiated emissions voltage, band 1
0.15–50
TBD
VRE2
Radiated emissions voltage, band 2
50–150
TBD
VRE3
Radiated emissions voltage, band 3
150–500
TBD
VRE4
Radiated emissions voltage, band 4
500–1000
TBD
0.15–1000
TBD
VRE_IEC_SAE IEC and SAE level
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions, IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/
Wideband TEM (GTEM) Cell Method.
2. VDD = 3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated
Circuits—TEM/Wideband TEM (GTEM) Cell Method.
5.1.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to http://www.freescale.com.
2. Perform a keyword search for “EMC design.”
5.1.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol
Description
Min.
Max.
Unit
CIN_A
Input capacitance: analog pins
—
7
pF
CIN_D
Input capacitance: digital pins
—
7
pF
5.2 Switching specifications
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
19
General
5.2.1 Device clock specifications
Symbol
Description
Min.
Max.
Unit
System and core clock
—
100
MHz
System and core clock when USB in operation
20
—
MHz
Bus clock
—
50
MHz
FlexBus clock
—
50
MHz
Flash clock
—
25
MHz
Notes
Normal run mode
fSYS
fSYS_USB
fBUS
FB_CLK
fFLASH
VLPR mode
fSYS
System and core clock
—
2
MHz
fBUS
Bus clock
—
2
MHz
FlexBus clock
—
2
MHz
Flash clock
—
1
MHz
FB_CLK
fFLASH
5.2.2 General switching specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
CAN, CMT, IEEE 1588 timer, and I2C signals.
Symbol
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5
—
Bus clock
cycles
1
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter enabled) — Asynchronous path
100
—
ns
2
GPIO pin interrupt pulse width (digital glitch filter
disabled, analog filter disabled) — Asynchronous path
16
—
ns
2
External reset pulse width (digital glitch filter disabled)
TBD
—
2
—
Mode select (EZP_CS) hold time after reset
deassertion
Bus clock
cycles
Port rise and fall time (high drive strength)
3
• Slew disabled
—
12
ns
• Slew enabled
—
36
ns
Port rise and fall time (low drive strength)
4
• Slew disabled
—
32
ns
• Slew enabled
—
36
ns
1. The greater synchronous and asynchronous timing must be met.
2. This is the shortest pulse that is guaranteed to be recognized.
3. 75pF load
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
20
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
4. 15pF load
5.3 Thermal specifications
5.3.1 Thermal operating requirements
Table 9. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
5.3.2 Thermal attributes
Board
type
Symbol Description
144
LQFP
144
81
80
MAPBGAMAPBGA LQFP
Unit
Notes
Singlelayer
(1s)
RθJA
Thermal resistance, junction to ambient
(natural convection)
52
50
TBD
TBD
°C/W
1
Fourlayer
(2s2p)
RθJA
Thermal resistance, junction to ambient
(natural convection)
44
30
TBD
TBD
°C/W
1
Singlelayer
(1s)
RθJMA
Thermal resistance, junction to ambient
(200 ft./min. air speed)
43
41
TBD
TBD
°C/W
1
Fourlayer
(2s2p)
RθJMA
Thermal resistance, junction to ambient
(200 ft./min. air speed)
38
27
TBD
TBD
°C/W
1
—
RθJB
Thermal resistance, junction to board
33
17
TBD
TBD
°C/W
2
—
RθJC
Thermal resistance, junction to case
11
10
TBD
TBD
°C/W
3
—
ΨJT
Thermal characterization parameter,
junction to package top outside center
(natural convection)
2
2
TBD
TBD
°C/W
4
1.
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method
Environmental Conditions—Forced Convection (Moving Air).
6 Peripheral operating requirements and behaviors
All digital I/O switching characteristics assume:
1. output pins
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
21
Peripheral operating requirements and behaviors
• have CL=30pF loads,
• are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
• are configured for high drive strength (PORTx_PCRn[DSE]=1)
2. input pins
• have their passive filter disabled (PORTx_PCRn[PFE]=0)
6.1 Core modules
6.1.1 Debug trace timing specifications
Table 10. Debug trace operating behaviors
Symbol
Description
Min.
Max.
Unit
Tcyc
Clock period
Frequency dependent
MHz
Twl
Low pulse width
2
—
ns
Twh
High pulse width
2
—
ns
Tr
Clock and data rise time
—
3
ns
Tf
Clock and data fall time
—
3
ns
Ts
Data setup
3
—
ns
Th
Data hold
2
—
ns
Figure 3. TRACE_CLKOUT specifications
TRACE_CLKOUT
Ts
Th
Ts
Th
TRACE_D[3:0]
Figure 4. Trace data specifications
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
22
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.1.2 JTAG electricals
Table 11. JTAG limited voltage range electricals
Symbol
J1
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
25
• Serial Wire Debug
0
50
1/J1
—
J2
TCLK cycle period
J3
TCLK clock pulse width
ns
ns
• Boundary Scan
50
—
• JTAG and CJTAG
20
—
• Serial Wire Debug
10
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
0
—
ns
J7
TCLK low to boundary scan output data valid
—
25
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1
—
ns
J11
TCLK low to TDO data valid
—
17
ns
J12
TCLK low to TDO high-Z
—
17
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
Table 12. JTAG full voltage range electricals
Symbol
J1
J2
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
TCLK frequency of operation
MHz
• Boundary Scan
0
10
• JTAG and CJTAG
0
20
• Serial Wire Debug
0
40
1/J1
—
TCLK cycle period
ns
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
23
Peripheral operating requirements and behaviors
Table 12. JTAG full voltage range electricals (continued)
Symbol
J3
Description
Min.
Max.
TCLK clock pulse width
Unit
ns
• Boundary Scan
50
—
• JTAG and CJTAG
25
—
• Serial Wire Debug
12.5
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
0
—
ns
J7
TCLK low to boundary scan output data valid
—
25
ns
J8
TCLK low to boundary scan output high-Z
—
25
ns
J9
TMS, TDI input data setup time to TCLK rise
8
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1.4
—
ns
J11
TCLK low to TDO data valid
—
22.1
ns
J12
TCLK low to TDO high-Z
—
22.1
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
J2
J3
J3
TCLK (input)
J4
J4
Figure 5. Test clock input timing
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
24
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
TCLK
J5
Data inputs
J6
Input data valid
J7
Data outputs
Output data valid
J8
Data outputs
J7
Data outputs
Output data valid
Figure 6. Boundary scan (JTAG) timing
TCLK
J9
TDI/TMS
J10
Input data valid
J11
TDO
Output data valid
J12
TDO
J11
TDO
Output data valid
Figure 7. Test Access Port timing
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
25
Peripheral operating requirements and behaviors
TCLK
J14
J13
TRST
Figure 8. TRST timing
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
6.3.1 MCG specifications
Table 13. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
—
32.768
—
kHz
31.25
—
39.0625
kHz
Internal reference (slow clock) current
—
TBD
—
µA
Internal reference (slow clock) startup time
—
TBD
4
µs
Δfdco_res_t
Resolution of trimmed DCO output frequency at
fixed voltage and temperature — using SCTRIM
and SCFTRIM
—
± 0.1
± 0.3
%fdco
1
Δfdco_res_t
Resolution of trimmed DCO output frequency at
fixed voltage and temperature — using SCTRIM
only
—
± 0.2
± 0.5
%fdco
1
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
+ 0.5
± 3.5
%fdco
1
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0–70°C
—
± 0.5
± TBD
%fdco
1
fintf_ft
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25°C
3.4
—
4
MHz
fintf_t
Internal reference frequency (fast clock) — user
trimmed
3
—
5
MHz
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25°C
fints_t
Internal reference frequency (slow clock) — user
trimmed
Iints
tirefsts
Δfdco_t
Notes
- 1.0
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
26
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 13. MCG specifications (continued)
Symbol
Iintf
tirefstf
Description
Min.
Typ.
Max.
Unit
Internal reference (fast clock) current
—
TBD
—
µA
Internal reference startup time (fast clock)
—
TBD
TBD
µs
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
50
MHz
60
62.91
75
MHz
80
83.89
100
MHz
—
23.99
—
MHz
—
47.97
—
MHz
—
71.99
—
MHz
—
95.98
—
MHz
Notes
FLL
ffll_ref
fdco
FLL reference frequency range
DCO output
frequency range
Low range (DRS=00)
2, 3
640 × ffll_ref
Mid range (DRS=01)
1280 × ffll_ref
Mid-high range (DRS=10)
1920 × ffll_ref
High range (DRS=11)
2560 × ffll_ref
fdco_t_DMX3 DCO output
frequency
2
Low range (DRS=00)
4, 5
732 × ffll_ref
Mid range (DRS=01)
1464 × ffll_ref
Mid-high range (DRS=10)
2197 × ffll_ref
High range (DRS=11)
2929 × ffll_ref
Jcyc_fll
FLL period jitter
—
TBD
TBD
ps
6
Jacc_fll
FLL accumulated jitter of DCO output over a 1µs
time window
—
TBD
TBD
ps
6
FLL target frequency acquisition time
—
—
1
ms
7
48.0
—
100
MHz
—
950
—
µA
tfll_acquire
PLL
fvco
VCO operating frequency
Ipll
PLL operating current
• PLL @ 96 MHz (fosc_hi_1=8MHz,
fpll_ref=2MHz, VDIV multiplier=48)
8
fpll_ref
PLL reference frequency range
2.0
—
4.0
MHz
Jcyc_pll
PLL period jitter
—
400
—
ps
9, 10
Jacc_pll
PLL accumulated jitter over 1µs window
—
TBD
—
ps
9, 10
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
27
Peripheral operating requirements and behaviors
Table 13. MCG specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Dlock
Lock entry frequency tolerance
± 1.49
—
± 2.98
%
Dunl
Lock exit frequency tolerance
± 4.47
—
± 5.97
%
tpll_lock
Lock detector detection time
—
—
0.15 +
1075(1/
fpll_ref)
ms
Notes
11
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation
(Δfdco_t) over voltage and temperature should be considered.
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
6. This specification was obtained at TBD frequency.
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
10. This specification was obtained at internal frequency of TBD.
11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes
it is already running.
6.3.2 Oscillator electrical specifications
This section provides the electrical characteristics of the module.
6.3.2.1
Symbol
VDD
IDDOSC
Oscillator DC electrical specifications
Table 14. Oscillator DC electrical specifications
Description
Min.
Typ.
Max.
Unit
Supply voltage
1.71
—
3.6
V
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz
—
300
—
μA
• 16 MHz
—
700
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
28
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 14. Oscillator DC electrical specifications (continued)
Symbol
Description
Min.
IDDOSC
Supply current — high gain mode (HGO=1)
Typ.
Max.
Unit
Notes
1
• 32 kHz
—
25
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz
—
800
—
μA
• 16 MHz
—
1.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain mode
(HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
—
0
—
kΩ
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
RS
2, 4
Series resistor — high-frequency, high-gain
mode (HGO=1)
Vpp5
1.
2.
3.
4.
VDD=3.3 V, Temperature =25 °C
See crystal or resonator manufacturer's recommendation
Cx,Cy can be provided by using either the integrated capacitors or by using external components.
When low power mode is selected, RF is integrated and must not be attached externally.
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
29
Peripheral operating requirements and behaviors
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any
other devices.
6.3.2.2
Symbol
Oscillator frequency specifications
Table 15. Oscillator frequency specifications
Description
Min.
Typ.
Max.
Unit
fosc_lo
Oscillator crystal or resonator frequency — low
frequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency — high
frequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fec_extal
Input clock frequency (external clock mode)
—
—
50
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
TBD
—
ms
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
800
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
4
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
3
—
ms
tcst
Notes
1
2, 3
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL
2. Proper PC board layout procedures must be followed to achieve specifications.
3. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register
being set.
6.3.3 32kHz Oscillator Electrical Characteristics
This section describes the module electrical characteristics.
6.3.3.1
Symbol
VBAT
RF
Cpara
32kHz oscillator DC electrical specifications
Table 16. 32kHz oscillator DC electrical specifications
Description
Min.
Typ.
Max.
Unit
Supply voltage
1.71
—
3.6
V
Internal feedback resistor
—
100
—
MΩ
Parasitical capacitance of EXTAL32 and XTAL32
—
2.5
—
pF
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
30
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 16. 32kHz oscillator DC electrical specifications (continued)
Symbol
Cload
Vpp
6.3.3.2
Symbol
fosc_lo
tstart
Description
Min.
Typ.
Max.
Unit
Internal load capacitance (programmable)
—
15
—
pF
Peak-to-peak amplitude of oscillation
—
0.6
—
V
Notes
32kHz oscillator frequency specifications
Table 17. 32kHz oscillator frequency specifications
Description
Min.
Typ.
Max.
Unit
Oscillator crystal
—
32
—
kHz
Crystal start-up time
—
1000
—
ms
1
1. Proper PC board layout procedures must be followed to achieve specifications.
6.4 Memories and memory interfaces
6.4.1 Flash (FTFL) electrical specifications
This section describes the electrical characteristics of the FTFL module.
6.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 18. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
thvpgm4
thversscr
Longword Program high-voltage time
—
20
TBD
μs
Sector Erase high-voltage time
—
20
100
ms
1
—
160
800
ms
1
thversblk256k Erase Block high-voltage time for 256 KB
Notes
1. Maximum time based on expectations at cycling end-of-life.
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
31
Peripheral operating requirements and behaviors
6.4.1.2
Symbol
Flash timing specifications — commands
Table 19. Flash command timing specifications
Description
Min.
Typ.
Max.
Unit
—
—
1.4
ms
Notes
Read 1s Block execution time
trd1blk256k
• 256 KB data flash
trd1sec2k
Read 1s Section execution time (flash sector)
—
—
40
μs
1
tpgmchk
Program Check execution time
—
—
35
μs
1
trdrsrc
Read Resource execution time
—
—
35
μs
1
tpgm4
Program Longword execution time
—
50
TBD
μs
Erase Flash Block execution time
tersblk256k
tersscr
2
• 256 KB data flash
Erase Flash Sector execution time
—
160
800
ms
—
20
100
ms
2
Program Section execution time
tpgmsec512
• 512 B flash
—
TBD
TBD
ms
tpgmsec1k
• 1 KB flash
—
TBD
TBD
ms
tpgmsec2k
• 2 KB flash
—
TBD
TBD
ms
trd1all
Read 1s All Blocks execution time
—
—
2.8
ms
trdonce
Read Once execution time
—
—
35
μs
Program Once execution time
—
50
TBD
μs
tersall
Erase All Blocks execution time
—
320
1600
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
35
μs
1
—
175
TBD
ms
tpgmonce
1
Program Partition for EEPROM execution time
tpgmpart256k
• 256 KB FlexNVM
Set FlexRAM Function execution time:
tsetram32k
• 32 KB EEPROM backup
—
TBD
TBD
ms
tsetram256k
• 256 KB EEPROM backup
—
TBD
TBD
ms
Byte-write to FlexRAM for EEPROM operation
teewr8bers
Byte-write to erased FlexRAM location execution
time
—
100
TBD
μs
3
Byte-write to FlexRAM execution time:
teewr8b32k
• 32 KB EEPROM backup
—
TBD
TBD
ms
teewr8b64k
• 64 KB EEPROM backup
—
TBD
1.5
ms
teewr8b128k
• 128 KB EEPROM backup
—
TBD
TBD
ms
teewr8b256k
• 256 KB EEPROM backup
—
TBD
2.5
ms
Word-write to FlexRAM for EEPROM operation
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
32
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 19. Flash command timing specifications (continued)
Symbol
teewr16bers
Description
Word-write to erased FlexRAM location
execution time
Min.
Typ.
Max.
Unit
—
100
TBD
μs
Notes
Word-write to FlexRAM execution time:
teewr16b32k
• 32 KB EEPROM backup
—
TBD
TBD
ms
teewr16b64k
• 64 KB EEPROM backup
—
TBD
1.5
ms
teewr16b128k
• 128 KB EEPROM backup
—
TBD
TBD
ms
teewr16b256k
• 256 KB EEPROM backup
—
TBD
2.5
ms
Longword-write to FlexRAM for EEPROM operation
teewr32bers
Longword-write to erased FlexRAM location
execution time
—
200
TBD
μs
Longword-write to FlexRAM execution time:
teewr32b32k
• 32 KB EEPROM backup
—
TBD
TBD
ms
teewr32b64k
• 64 KB EEPROM backup
—
TBD
2.7
ms
teewr32b128k
• 128 KB EEPROM backup
—
TBD
TBD
ms
teewr32b256k
• 256 KB EEPROM backup
—
TBD
3.7
ms
1. Assumes 25MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.
6.4.1.3
Flash (FTFL) current and power specfications
Table 20. Flash (FTFL) current and power specfications
Symbol
Description
IDD_PGM
Worst case programming current in program flash
6.4.1.4
Symbol
Typ.
Unit
10
mA
Reliability specifications
Table 21. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
tnvmretp10k
Data retention after up to 10 K cycles
5
TBD
—
years
2
tnvmretp1k
Data retention after up to 1 K cycles
10
TBD
—
years
2
tnvmretp100
Data retention after up to 100 cycles
15
TBD
—
years
2
10 K
TBD
—
cycles
3
TBD
—
years
2
nnvmcycp
Cycling endurance
Data Flash
tnvmretd10k
Data retention after up to 10 K cycles
5
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
33
Peripheral operating requirements and behaviors
Table 21. NVM reliability specifications (continued)
Symbol
Description
tnvmretd1k
tnvmretd100
nnvmcycd
Min.
Typ.1
Max.
Unit
Notes
Data retention after up to 1 K cycles
10
TBD
—
years
2
Data retention after up to 100 cycles
15
TBD
—
years
2
10 K
TBD
—
cycles
3
Cycling endurance
FlexRAM as EEPROM
tnvmretee100 Data retention up to 100% of write endurance
5
TBD
—
years
2
tnvmretee10
Data retention up to 10% of write endurance
10
TBD
—
years
2
tnvmretee1
Data retention up to 1% of write endurance
15
TBD
—
years
2
Write endurance
4
nnvmwree16
• EEPROM backup to FlexRAM ratio = 16
35 K
TBD
—
writes
nnvmwree128
• EEPROM backup to FlexRAM ratio = 128
315 K
TBD
—
writes
nnvmwree512
• EEPROM backup to FlexRAM ratio = 512
1.27 M
TBD
—
writes
nnvmwree4k
• EEPROM backup to FlexRAM ratio = 4096
10 M
TBD
—
writes
nnvmwree32k
• EEPROM backup to FlexRAM ratio =
32,768
80 M
TBD
—
writes
1. Typical data retention values are based on intrinsic capability of the technology measured at high temperature derated to
25°C. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin
EB618.
2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application).
3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum value
assumes all byte-writes to FlexRAM.
6.4.1.5
Write endurance to FlexRAM for EEPROM
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size
can be set to any of several non-zero values.
The bytes not assigned to data flash via the FlexNVM partition code are used by the
FTFL to obtain an effective endurance increase for the EEPROM data. The built-in
EEPROM record management system raises the number of program/erase cycles that can
be attained prior to device wear-out by cycling the EEPROM data through a larger
EEPROM NVM storage space.
While different partitions of the FlexNVM are available, the intention is that a single
choice for the FlexNVM partition code and EEPROM data set size is used throughout the
entire lifetime of a given application. The EEPROM endurance equation and graph
shown below assume that only one configuration is ever used.
Writes_subsystem =
EEPROM – 2 × EEESPLIT × EEESIZE
EEESPLIT × EEESIZE
× Write_efficiency × nnvmcycd
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
34
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
where
• Writes_subsystem — minimum number of writes to each FlexRAM location for
subsystem (each subsystem can have different endurance)
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;
entered with Program Partition command
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program
Partition command
• EEESIZE — allocated FlexRAM based on DEPART; entered with Program Partition
command
• Write_efficiency —
• 0.25 for 8-bit writes to FlexRAM
• 0.50 for 16-bit or 32-bit writes to FlexRAM
• nnvmcycd — data flash cycling endurance
Figure 9. EEPROM backup writes to FlexRAM
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
35
Peripheral operating requirements and behaviors
6.4.2 EzPort Switching Specifications
Table 22. EzPort switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
EP1
EZP_CK frequency of operation (all commands except
READ)
—
fSYS/2
MHz
EP1a
EZP_CK frequency of operation (READ command)
—
fSYS/8
MHz
EP2
EZP_CS negation to next EZP_CS assertion
2 x tEZP_CK
—
ns
EP3
EZP_CS input valid to EZP_CK high (setup)
5
—
ns
EP4
EZP_CK high to EZP_CS input invalid (hold)
5
—
ns
EP5
EZP_D input valid to EZP_CK high (setup)
2
—
ns
EP6
EZP_CK high to EZP_D input invalid (hold)
5
—
ns
EP7
EZP_CK low to EZP_Q output valid (setup)
—
12
ns
EP8
EZP_CK low to EZP_Q output invalid (hold)
0
—
ns
EP9
EZP_CS negation to EZP_Q tri-state
—
12
ns
EZP_CK
EP3
EP2
EP4
EZP_CS
EP9
EP7
EP8
EZP_Q (output)
EP5
EP6
EZP_D (input)
Figure 10. EzPort Timing Diagram
6.4.3 Flexbus Switching Specifications
All processor bus timings are synchronous; input setup/hold and output delay are given in
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be
the same as the internal system bus frequency or an integer divider of that frequency.
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
36
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
The following timing numbers indicate when data is latched or driven onto the external
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be
derived from these values.
Table 23. Flexbus switching specifications
Num
Description
Min.
Max.
Unit
Notes
Operating voltage
2.7
3.6
V
Frequency of operation
—
50
Mhz
FB1
Clock period
20
—
ns
FB2
Address, data, and control output valid
TBD
11.5
ns
1
FB3
Address, data, and control output hold
0
—
ns
1
FB4
Data and FB_TA input setup
8.5
—
ns
2
FB5
Data and FB_TA input hold
0.5
—
ns
2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,
and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
37
Peripheral operating requirements and behaviors
FB1
FB_CLK
FB3
FB5
FB_A[Y]
Address
FB4
FB2
FB_D[X]
Address
Data
FB_RW
FB_TS
FB_ALE
AA=1
FB_CSn
AA=0
FB_OEn
FB4
FB_BEn
FB5
AA=1
FB_TA
FB_TSIZ[1:0]
AA=0
TSIZ
Figure 11. FlexBus read timing diagram
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
38
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
FB1
FB_CLK
FB2
FB3
FB_A[Y]
FB_D[X]
Address
Address
Data
FB_RW
FB_TS
FB_ALE
AA=1
FB_CSn
AA=0
FB_OEn
FB4
FB_BEn
FB5
AA=1
FB_TA
FB_TSIZ[1:0]
AA=0
TSIZ
Figure 12. FlexBus write timing diagram
6.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
6.6 Analog
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
39
Peripheral operating requirements and behaviors
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the
differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and
ADCx_DP3.
The ADCx_DP2 and ADCx_DM2 ADC inputs are used as the PGA inputs and are not
direct device pins. Accuracy specifications for these pins are defined in Table 26 and
Table 27.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
6.6.1.1
16-bit ADC operating conditions
Table 24. 16-bit ADC operating conditions
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
ΔVDDA
Supply voltage
Delta to VDD (VDDVDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSSVSSA)
-100
0
+100
mV
2
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
VREFL
Reference
voltage low
VSSA
VSSA
VSSA
V
VADIN
Input voltage
VREFL
—
VREFH
V
CADIN
Input
capacitance
• 16 bit modes
—
8
10
pF
• 8/10/12 bit
modes
—
4
5
—
2
5
Symbol
RADIN
RAS
fADCK
fADCK
Input resistance
Analog source
resistance
13/12 bit modes
ADC conversion
clock frequency
≤13 bit modes
ADC conversion
clock frequency
16 bit modes
fADCK < 4MHz
Notes
kΩ
3
—
—
5
kΩ
4
1.0
—
18.0
MHz
5
2.0
—
12.0
MHz
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
40
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 24. 16-bit ADC operating conditions (continued)
Symbol
Crate
Description
Conditions
ADC conversion
rate
≤13
bit modes
Min.
Typ.1
Max.
Unit
Notes
6
18.484
—
818.330
Ksps
No ADC hardware
averaging
Continuous
conversions enabled
Peripheral clock =
50MHz
Crate
ADC conversion
rate
16 bit modes
No ADC hardware
averaging
7
37.037
—
361.402
Ksps
Continuous
conversions enabled
Peripheral clock =
50MHz
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. DC potential difference.
3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the
best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS/
CAS time constant should be kept to <1ns.
4. In order to use the maximum ADC conversion clock frequency ADHSC bit should be set and the ADLPC should be clear.
5. In order to use the maximum ADC conversion clock frequency ADHSC bit should be set and the ADLPC should be clear.
6. For guidelines and examples of conversion rate calculation please download the ADC calculator tool http://
cache.freescale.com/files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1
7. For guidelines and examples of conversion rate calculation please download the ADC calculator tool http://
cache.freescale.com/files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
41
Peripheral operating requirements and behaviors
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
Z ADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
due to
input
protection
Z AS
R AS
ADC SAR
ENGINE
R ADIN
V ADIN
C AS
V AS
R ADIN
INPUT PIN
R ADIN
INPUT PIN
R ADIN
INPUT PIN
C ADIN
Figure 13. ADC input impedance equivalency diagram
6.6.1.2
Symbol
IDDA
fADACK
16-bit ADC electrical characteristics
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Description
Conditions1
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
• ADLPC=1, ADHSC=0
—
2.4
—
MHz
• ADLPC=1, ADHSC=1
—
4.0
—
MHz
tADACK = 1/
fADACK
• ADLPC=0, ADHSC=0
—
5.2
—
MHz
• ADLPC=0, ADHSC=1
—
6.2
—
MHz
Supply current
ADC
asynchronous
clock source
Sample Time
See Reference Manual chapter for sample times
Conversion Time The ADC calculator tool can be used to determine ADC conversion times for different ADC
configurations: http://cache.freescale.com/files/soft_dev_tools/software/app_software/
converters/ADC_CALCULATOR_CNV.zip?fpsp=1
TUE
Total unadjusted
error
• ≤13 bit modes
±0.8
±TBD
• <12 bit modes
±0.5
±1
LSB4
ADC
conversion
clock
<12MHz,
Max
hardware
averaging
(AVGE =
%1, AVGS
= %11)
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
42
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
DNL
INL
EFS
EQ
ENOB
Description
Conditions1
Min.
Typ.2
Max.
Unit
Notes
LSB4
ADC
conversion
clock
<12MHz,
Max
hardware
averaging
(AVGE =
%1, AVGS
= %11)
LSB4
Max
averaging
LSB4
VADIN =
VDDA
Differential nonlinearity
• ≤13 bit modes
±0.7
±TBD
• <12 bit modes
±0.2
±0.5
Integral nonlinearity
• ≤13 bit modes
—
±1.0
±TBD
• <12 bit modes
—
±0.5
±TBD
Full-scale error
• ≤13 bit modes
—
±0.4
±TBD
• <12 bit modes
—
±1.0
±TBD
• 16 bit modes
—
-1 to 0
—
• ≤13 bit modes
—
—
±0.5
Quantization
error
Effective number 16 bit differential mode
of bits
• Avg=32
LSB4
5
• Avg=1
TBD
13.6
TBD
bits
TBD
13.2
TBD
bits
TBD
TBD
TBD
bits
TBD
TBD
TBD
bits
16 bit single-ended mode
• Avg=32
• Avg=1
SINAD
THD
Signal-to-noise
plus distortion
See ENOB
Total harmonic
distortion
16 bit differential mode
6.02 × ENOB + 1.76
dB
5
• Avg=32
—
-94
TBD
dB
—
TBD
TBD
dB
16 bit single-ended mode
• Avg=32
SFDR
Spurious free
dynamic range
16 bit differential mode
5
• Avg=32
TBD
95
—
dB
TBD
TBD
—
dB
16 bit single-ended mode
• Avg=32
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
43
Peripheral operating requirements and behaviors
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
Description
EIL
Input leakage
error
Conditions1
Typ.2
Min.
Max.
IIn × RAS
Unit
Notes
mV
IIn =
leakage
current
(refer to
the MCU's
voltage
and
current
operating
ratings)
Temp sensor
slope
VTEMP25
Temp sensor
voltage
• –40°C to 25°C
—
TBD
—
mV/°C
• 25°C to 105°C
—
TBD
—
mV/°C
—
TBD
—
mV
25°C
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).
For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock
speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. Input data is 1 kHz sine wave.
FIGURE TBD
Figure 14. Typical TUE vs. ADC conversion rate 12-bit single-ended mode
FIGURE TBD
Figure 15. Typical ENOB vs. Averaging for 16-bit differential and 16-bit single-ended
modes
6.6.1.3
16-bit ADC with PGA operating conditions
Table 26. 16-bit ADC with PGA operating conditions
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
VREFPGA
PGA ref voltage
Symbol
VADIN
VCM
VREFOUT VREFOUT VREFOUT
V
Input voltage
VSSA
—
VDDA
V
Input Common
Mode range
VSSA
—
VDDA
V
Notes
2, 3
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
44
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 26. 16-bit ADC with PGA operating conditions (continued)
Min.
Typ.1
Max.
Unit
Notes
Gain = 1, 2, 4, 8
—
128
—
kΩ
IN+ to IN-4
Gain = 16, 32
—
64
—
Gain = 64
—
32
—
Symbol
Description
Conditions
RPGAD
Differntial input
impedance
RAS
Analog source
resistance
—
100
—
Ω
5
TS
ADC sampling
time
1.25
—
—
µs
6
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. ADC must be configured to use the internal voltage reference (VREFOUT)
3. PGA reference connected to the VREFOUT pin. If the user wishes to drive VREFOUT with a voltage other than the output
of the VREF module, the VREF module must be disabled.
4. For single ended configurations the input impedence of the driven input is 1/2.
5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at
8 MHz ADC clock.
6.6.1.4
16-bit ADC with PGA characteristics
Table 27. 16-bit ADC with PGA characteristics
Symbol
Description
IDDA_PGA
Supply current
IDC_PGA
Input DC current
IILKG
G
BW
PSRR
Input Leakage
current
Gain4
Input signal
bandwidth
Power supply
rejection ration
Conditions
Min.
Typ.1
Max.
Unit
—
590
TBD
μA
PGA disabled
A
2
μA
3
—
TBD
TBD
• PGAG=0
TBD
0.98
TBD
• PGAG=1
TBD
1.99
TBD
• PGAG=2
TBD
3.97
TBD
• PGAG=3
TBD
7.95
TBD
• PGAG=4
TBD
15.8
TBD
• PGAG=5
TBD
31.4
TBD
• PGAG=6
TBD
61.2
TBD
—
—
4
kHz
—
—
40
kHz
TBD
TBD
—
dB
• 16-bit modes
• < 16-bit modes
Gain=1
Notes
RAS < 100Ω
VDDA= 3V
±100mV,
fVDDA= 50Hz,
60Hz
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
45
Peripheral operating requirements and behaviors
Table 27. 16-bit ADC with PGA characteristics (continued)
Symbol
Description
CMRR
Common mode
rejection ratio
Min.
Typ.1
Max.
Unit
Notes
• Gain=1
TBD
TBD
—
dB
• Gain=64
TBD
TBD
—
dB
VCM=
500mVpp,
fVCM= 50Hz,
100Hz
Conditions
VOFS
Input offset
voltage
—
0.2
TBD
mV
Gain=1, ADC
Averaging=32
TGSW
Gain switching
settling time
—
—
10
µs
5
dG/dT
Gain drift over
temperature
—
TBD
TBD
ppm/°C
0 to 50°C
—
TBD
TBD
ppm/°C
—
TBD
TBD
ppm/°C
0 to 50°C, ADC
Averaging=32
—
TBD
TBD
%/V
—
TBD
TBD
%/V
VDDA from 1.71
to 3.6V
dVOFS/dT
Offset drift over
temperature
dG/dVDDA
Gain drift over
supply voltage
EIL
Input leakage
error
• Gain=1
• Gain=64
Gain=1
• Gain=1
• Gain=64
All modes
IIn × RAS
mV
IIn = leakage
current
(refer to the
MCU's voltage
and current
operating
ratings)
VPP,DIFF
SNR
THD
SFDR
Maximum
differential input
signal swing
V
6
16-bit
differential
mode,
Average=32
where VX = VREFPGA × 0.583
Signal-to-noise
ratio
• Gain=1
• Gain=64
TBD
83.0
—
dB
TBD
57.5
—
dB
Total harmonic
distortion
• Gain=1
• Gain=64
TBD
89.4
—
dB
TBD
90.0
—
dB
Spurious free
dynamic range
• Gain=1
• Gain=64
TBD
90.9
—
dB
TBD
77.0
—
dB
16-bit
differential
mode,
Average=32,
fin=500Hz
16-bit
differential
mode,
Average=32,
fin=500Hz
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
46
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 27. 16-bit ADC with PGA characteristics (continued)
Symbol
Description
ENOB
Effective number
of bits
SINAD
Signal-to-noise
plus distortion
ratio
Min.
Typ.1
Max.
Unit
Notes
• Gain=1, Average=4
TBD
12.3
—
bits
• Gain=1, Average=8
TBD
12.7
—
bits
• Gain=64, Average=4
TBD
8.4
—
bits
16-bit
differential
mode,
fin=500Hz
• Gain=64, Average=8
TBD
8.7
—
bits
• Gain=1, Average=32
TBD
13.3
—
bits
• Gain=2, Average=32
TBD
13.1
—
bits
• Gain=4, Average=32
TBD
12.5
—
bits
• Gain=8, Average=32
TBD
11.8
—
bits
• Gain=16, Average=32
TBD
11.1
—
bits
• Gain=32, Average=32
TBD
10.2
—
bits
• Gain=64, Average=32
TBD
9.3
—
bits
Conditions
See ENOB
6.02 × ENOB + 1.76
dB
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.
2. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong
function if input common mode voltage (VCM) and the PGA gain.
3. This is the input leakage current of the module in addition to the PAD leakage current.
4. Gain = 2PGAG
5. When the PGA gain is changed, it takes some time to settle the output for the ADC to work properly. During a gain
switching, a few ADC outputs should be discarded (minimum two data samples, may be more depending on ADC
sampling rate and time of the switching).
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the
PGA reference voltage and gain setting.
6.6.2 CMP and 6-bit DAC electrical specifications
Table 28. Comparator and 6-bit DAC electrical specifications
Symbol
VDD
Description
Min.
Typ.
Max.
Unit
Supply voltage
1.71
—
3.6
V
IDDHS
Supply current, High-speed mode (EN=1, PMODE=1)
—
—
200
μA
IDDLS
Supply current, low-speed mode (EN=1, PMODE=0)
—
—
20
μA
VAIN
Analog input voltage
VSS – 0.3
—
VDD
V
VAIO
Analog input offset voltage
—
—
20
mV
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
47
Peripheral operating requirements and behaviors
Table 28. Comparator and 6-bit DAC electrical specifications (continued)
Symbol
VH
Description
Min.
Typ.
Max.
Unit
• CR0[HYSTCTR] = 00
—
5
—
mV
• CR0[HYSTCTR] = 01
—
10
—
mV
• CR0[HYSTCTR] = 10
—
20
—
mV
• CR0[HYSTCTR] = 11
—
30
—
mV
Analog comparator hysteresis1
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN=1,
PMODE=1)
20
50
200
ns
tDLS
Propagation delay, low-speed mode (EN=1,
PMODE=0)
120
250
600
ns
Analog comparator initialization delay2
—
—
TBD
ns
6-bit DAC current adder (enabled)
—
7
—
μA
IDAC6b
INL
6-bit DAC integral non-linearity
–0.5
—
0.5
LSB3
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
48
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
0.08
0.07
0.06
HYSTCTR
Setting
CM P Hystereris (V)
0.05
00
0.04
01
10
11
0.03
0.02
0.01
0
0.1
0.4
0.7
1
1.3
1.6
1.9
Vin level (V)
2.2
2.5
2.8
3.1
Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
49
Peripheral operating requirements and behaviors
0.18
0.16
0.14
CMP
P Hystereris (V)
0.12
HYSTCTR
Setting
0.1
00
01
0
08
0.08
10
11
0.06
0.04
0.02
0
0.1
0.4
0.7
1
1.3
1.6
Vin level (V)
1.9
2.2
2.5
2.8
3.1
Figure 17. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)
6.6.3 12-bit DAC electrical characteristics
6.6.3.1
Symbol
12-bit DAC operating requirements
Table 29. 12-bit DAC operating requirements
Desciption
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
VDACR
Reference voltage
1.13
3.6
V
TA
Temperature
−40
105
°C
CL
Output load capacitance
—
100
pF
IL
Output load current
—
1
mA
Notes
1
2
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREFO)
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
50
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.6.3.2
Symbol
12-bit DAC operating behaviors
Table 30. 12-bit DAC operating behaviors
Description
Min.
Typ.
Max.
Unit
IDDA_DACLP Supply current — low-power mode
—
—
150
μA
IDDA_DACH Supply current — high-speed mode
—
—
700
μA
Notes
P
tDACLP
Full-scale settling time (0x080 to 0xF7F) — lowpower mode
—
100
200
μs
1
tDACHP
Full-scale settling time (0x080 to 0xF7F) — highpower mode
—
15
30
μs
1
tCCDACLP
Code-to-code settling time (0xBF8 to 0xC08) —
low-power mode
—
—
5
μs
1
tCCDACHP
Code-to-code settling time (0xBF8 to 0xC08) —
high-speed mode
1
TBD
—
μs
1
Vdacoutl
DAC output voltage range low — high-speed
mode, no load, DAC set to 0x000
—
100
TBD
mV
Vdacouth
DAC output voltage range high — high-speed
mode, no load, DAC set to 0xFFF
VDACR
−100
—
VDACR
mV
INL
Integral non-linearity error — high speed mode
—
—
±8
LSB
2
DNL
Differential non-linearity error — VDACR > 2 V
—
—
±1
LSB
3
DNL
Differential non-linearity error — VDACR =
VREFO (1.15 V)
—
—
±1
LSB
4
VOFFSET
Offset error
±0.4
—
±0.8
%FSR
5
EG
Gain error
±0.1
—
±0.6
%FSR
5
90
dB
PSRR
1.
2.
3.
4.
Power supply rejection ratio, VDDA > = 2.4 V
60
TCO
Temperature coefficient offset voltage
—
TBD
—
μV/C
TGE
Temperature coefficient gain error
—
TBD
—
ppm of
FSR/C
AC
Offset aging coefficient
—
—
TBD
μV/yr
Rop
Output resistance load = 3 kΩ
—
—
250
Ω
SR
Slew rate -80h→ F7Fh→ 80h
V/μs
• High power (SPHP)
1.2
1.7
—
• Low power (SPLP)
0.05
0.12
—
—
—
-80
CT
Channel to channel cross talk
BW
3dB bandwidth
dB
kHz
• High power (SPHP)
550
—
—
• Low power (SPLP)
40
—
—
Settling within ±1 LSB
The INL is measured for 0+100mV to VDACR−100 mV
The DNL is measured for 0+100 mV to VDACR−100 mV
The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
51
Peripheral operating requirements and behaviors
5. Calculated by a best fit curve from VSS+100 mV to VREF−100 mV
Figure 18. Typical INL error vs. digital code
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
52
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Figure 19. Offset at half scale vs. temperature
6.6.4 Voltage reference electrical specifications
Table 31. VREF full-range operating requirements
Symbol
Description
Min.
Max.
Unit
Supply voltage
1.71
3.6
V
TA
Temperature
−40
105
°C
CL
Output load capacitance
—
100
nF
VDDA
Notes
Table 32. VREF full-range operating behaviors
Symbol
Vout
Description
Min.
Typ.
Max.
Unit
Voltage reference output with factory trim at
nominal VDDA and temperature=25C
TBD
1.2
TBD
V
Notes
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
53
Peripheral operating requirements and behaviors
Table 32. VREF full-range operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Vout
Voltage reference output with factory trim
TBD
—
TBD
V
Vout
Voltage reference output user trim
1.198
—
1.202
V
Vstep
Voltage reference trim step
—
0.5
—
mV
Vdrift
Temperature drift (Vmax -Vmin across the full
temperature range)
—
—
20
mV
Ac
Aging coefficient
—
—
TBD
ppm/year
Ibg
Bandgap only (MODE_LV = 00) current
—
—
TBD
µA
Itr
Tight-regulation buffer (MODE_LV =10) current
—
—
1.1
mA
Load regulation (MODE_LV = 10) current =
±1.0mA
—
—
TBD
V
Tstup
Buffer startup time
—
—
100
µs
DC
Line regulation (power supply rejection)
—
—
TBD
mV
–60
—
TBD
dB
Notes
See
Figure 20
Table 33. VREF limited-range operating requirements
Symbol
Description
Min.
Max.
Unit
TA
Temperature
0
50
°C
Notes
Table 34. VREF limited-range operating behaviors
Symbol
Vout
Description
Min.
Max.
Unit
Voltage reference output with factory trim
TBD
TBD
V
Notes
TBD
Figure 20. Typical output vs.temperature
TBD
Figure 21. Typical output vs. VDD
6.7 Timers
See General switching specifications.
6.8 Communication interfaces
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
54
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.8.1 Ethernet switching specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
6.8.1.1
MII signal switching specifications
The following timing specs meet the requirements for MII style interfaces for a range of
transceiver devices.
Table 35. MII signal switching specifications
Symbol
—
MII1
Description
RXCLK frequency
RXCLK pulse width high
Min.
Max.
Unit
—
25
MHz
35%
65%
RXCLK
period
MII2
RXCLK pulse width low
35%
65%
RXCLK
period
MII3
RXD[3:0], RXDV, RXER to RXCLK setup
5
—
ns
MII4
RXCLK to RXD[3:0], RXDV, RXER hold
5
—
ns
TXCLK frequency
—
25
MHz
35%
65%
TXCLK
—
MII5
TXCLK pulse width high
period
MII6
TXCLK pulse width low
35%
65%
TXCLK
period
MII7
TXCLK to TXD[3:0], TXEN, TXER invalid
2
—
ns
MII8
TXCLK to TXD[3:0], TXEN, TXER valid
—
25
ns
MII6
MII5
TXCLK (input)
MII8
MII7
TXD[n:0]
Valid data
TXEN
Valid data
TXER
Valid data
Figure 22. MII transmit signal timing diagram
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
55
Peripheral operating requirements and behaviors
MII2
MII1
MII3
MII4
RXCLK (input)
RXD[n:0]
Valid data
RXDV
Valid data
RXER
Valid data
Figure 23. MII receive signal timing diagram
6.8.1.2
RMII signal switching specifications
The following timing specs meet the requirements for RMII style interfaces for a range of
transceiver devices.
Table 36. RMII signal switching specifications
Num
—
Description
EXTAL frequency (RMII input clock RMII_CLK)
Min.
Max.
Unit
—
50
MHz
RMII1
RMII_CLK pulse width high
35%
65%
RMII_CLK
period
RMII2
RMII_CLK pulse width low
35%
65%
RMII_CLK
period
RMII3
RXD[1:0], CRS_DV, RXER to RMII_CLK setup
4
—
ns
RMII4
RMII_CLK to RXD[1:0], CRS_DV, RXER hold
2
—
ns
RMII7
RMII_CLK to TXD[1:0], TXEN invalid
4
—
ns
RMII8
RMII_CLK to TXD[1:0], TXEN valid
—
15
ns
6.8.2 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit http://www.usb.org.
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
56
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.8.3 USB DCD electrical specifications
Table 37. USB DCD electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDP_SRC
USB_DP source voltage (up to 250 μA)
TBD
TBD
TBD
V
0.8
—
2.0
V
VLGC
Threshold voltage for logic high
IDP_SRC
USB_DP source current
7
10
13
μA
IDM_SINK
USB_DM sink current
50
100
150
μA
RDM_DWN
D- pulldown resistance for data pin contact detect
14.25
—
24.8
kΩ
VDAT_REF
Data detect voltage
0.25
TBD
0.4
V
6.8.4 USB VREG electrical specifications
Table 38. USB VREG electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VREGIN
Input supply voltage
2.7
—
5.5
V
IDDon
Quiescent current — Run mode, load current
equal zero, input supply (VREGIN) > 3.6 V
—
120
TBD
μA
IDDstby
Quiescent current — Standby mode, load
current equal zero
—
1
TBD
μA
IDDoff
Quiescent current — Shutdown mode
—
500
—
nA
—
—
TBD
μA
• VREGIN = 5.0 V and temperature=25C
• Across operating voltage and temperature
ILOADrun
Maximum load current — Run mode
—
—
120
mA
ILOADstby
Maximum load current — Standby mode
—
—
1
mA
VReg33out
Regulator output voltage — Input supply
(VREGIN) > 3.6 V
3
3.3
3.6
V
2.5
2.8
3.6
V
Regulator output voltage — Input supply
(VREGIN) < 3.6 V, pass-through mode
2.3
—
3.6
V
COUT
External output capacitor
1.76
2.2
8.16
μF
ESR
External output capacitor equivalent series
resistance
1
—
100
mΩ
ILIM
Current limitation threshold
185
290
395
mA
• Run mode
• Standby mode
VReg33out
Notes
1
1. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
57
Peripheral operating requirements and behaviors
6.8.5 CAN switching specifications
See General switching specifications.
6.8.6 DSPI switching specifications (low-speed mode)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 39. Master mode DSPI timing (low-speed mode)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
Notes
1.71
3.6
V
1
—
12.5
MHz
4 x tBCLK
—
ns
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS3
DSPI_PCSn to DSPI_SCK output valid
(tSCK/2) - 4
—
ns
DS4
DSPI_SCK to DSPI_PCSn output hold
(tSCK/2) - 4
—
ns
DS5
DSPI_SCK to DSPI_SOUT valid
—
10
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
-2
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
15
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
DSPI_PCSn
DS3
DS1
DS2
DS4
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
DS7
DS8
Data
First data
Last data
DS5
First data
DS6
Data
Last data
Figure 24. DSPI classic SPI timing — master mode
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
58
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 40. Slave mode DSPI timing (low-speed mode)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
1.71
3.6
V
—
6.25
MHz
8 x tBCLK
—
ns
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
20
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
5
—
ns
DS14
DSPI_SCK to DSIP_SIN input hold
15
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
15
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
15
ns
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS16
DS11
Data
Last data
DS14
First data
Data
Last data
Figure 25. DSPI classic SPI timing — slave mode
6.8.7 DSPI switching specifications (high-speed mode)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 41. Master mode DSPI timing (high-speed mode)
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
25
MHz
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
59
Peripheral operating requirements and behaviors
Table 41. Master mode DSPI timing (high-speed mode) (continued)
Num
Description
Min.
Max.
Unit
2 x tBCLK
—
ns
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) − 2
(tSCK/2) + 2
ns
DS3
DSPI_PCSn to DSPI_SCK output valid
(tSCK/2) − 2
—
ns
DS4
DSPI_SCK to DSPI_PCSn output hold
(tSCK/2) − 2
—
ns
DS5
DSPI_SCK to DSPI_SOUT valid
—
8.5
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
−2
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
TBD
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
Min.
Max.
Unit
2.7
3.6
V
12.5
MHz
4 x tBCLK
—
ns
(tSCK/2) − 2
(tSCK/2 + 2
ns
DSPI_PCSn
DS3
DS1
DS2
DS4
DSPI_SCK
DS8
DS7
(CPOL=0)
DSPI_SIN
Data
First data
Last data
DS5
DSPI_SOUT
DS6
First data
Data
Last data
Figure 26. DSPI classic SPI timing — master mode
Table 42. Slave mode DSPI timing (high-speed mode)
Num
Description
Operating voltage
Frequency of operation
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
TBD
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2
—
ns
DS14
DSPI_SCK to DSIP_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
14
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
14
ns
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
60
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
DSPI_SS
DS10
DS9
DSPI_SCK
DS15
(CPOL=0)
DS12
DSPI_SOUT
First data
DS13
DS16
DS11
Data
Last data
DS14
DSPI_SIN
First data
Data
Last data
Figure 27. DSPI classic SPI timing — slave mode
6.8.8 I2C switching specifications
See General switching specifications.
6.8.9 UART switching specifications
See General switching specifications.
6.8.10 SDHC specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
Table 43. SDHC switching specifications
Num
Symbol
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Card input clock
SD1
fpp
Clock frequency (low speed)
0
400
kHz
fpp
Clock frequency (SD\SDIO full speed)
0
25
MHz
fpp
Clock frequency (MMC full speed)
0
20
MHz
fOD
Clock frequency (identification mode)
0
400
kHz
SD2
tWL
Clock low time
7
—
ns
SD3
tWH
Clock high time
7
—
ns
SD4
tTLH
Clock rise time
—
3
ns
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
61
Peripheral operating requirements and behaviors
Table 43. SDHC switching specifications
(continued)
Num
Symbol
Description
Min.
Max.
Unit
SD5
tTHL
Clock fall time
—
3
ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6
tOD
SDHC output delay (output valid)
-5
6.5
ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7
tTHL
SDHC input setup time
5
—
ns
SD8
tTHL
SDHC input hold time
0
—
ns
SD3
SD2
SD1
SDHC_CLK
SD6
Output SDHC_CMD
Output SDHC_DAT[3:0]
SD7
SD8
Input SDHC_CMD
Input SDHC_DAT[3:0]
Figure 28. SDHC timing
6.8.11 I2S switching specifications
This section provides the AC timings for the I2S in master (clocks driven) and slave
modes (clocks input). All timings are given for non-inverted serial clock polarity
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0,
RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all
the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync
(I2S_FS) shown in the figures below.
Table 44. I2S master mode timing
Num
S1
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
I2S_MCLK cycle time
2 x tSYS
ns
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
62
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 44. I2S master mode timing (continued)
Num
Description
Min.
Max.
Unit
S2
I2S_MCLK pulse width high/low
45%
55%
MCLK period
S3
I2S_BCLK cycle time
5 x tSYS
—
ns
S4
I2S_BCLK pulse width high/low
45%
55%
BCLK period
S5
I2S_BCLK to I2S_FS output valid
—
15
ns
S6
I2S_BCLK to I2S_FS output invalid
-2.5
—
ns
S7
I2S_BCLK to I2S_TXD valid
—
15
ns
S8
I2S_BCLK to I2S_TXD invalid
-3
—
ns
S9
I2S_RXD/I2S_FS input setup before I2S_BCLK
20
—
ns
S10
I2S_RXD/I2S_FS input hold after I2S_BCLK
0
—
ns
S1
S2
S2
I2S_MCLK (output)
S3
I2S_BCLK (output)
S4
S4
S6
S5
I2S_FS (output)
S10
S9
I2S_FS (input)
S7
S8
S7
S8
I2S_TXD
S9
S10
I2S_RXD
Figure 29. I2S timing — master mode
Table 45. I2S slave mode timing
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
8 x tSYS
—
ns
S11
I2S_BCLK cycle time (input)
S12
I2S_BCLK pulse width high/low (input)
45%
55%
MCLK period
S13
I2S_FS input setup before I2S_BCLK
10
—
ns
S14
I2S_FS input hold after I2S_BCLK
3
—
ns
S15
I2S_BCLK to I2S_TXD/I2S_FS output valid
—
20
ns
S16
I2S_BCLK to I2S_TXD/I2S_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_BCLK
10
—
ns
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
63
Peripheral operating requirements and behaviors
Table 45. I2S slave mode timing (continued)
Num
Description
S18
I2S_RXD hold after I2S_BCLK
Min.
Max.
Unit
2
—
ns
S11
S12
I2S_BCLK (input)
S12
S15
S16
I2S_FS (output)
S13
S14
I2S_FS (input)
S15
S16
S15
S16
I2S_TXD
S17
S18
I2S_RXD
Figure 30. I2S timing — slave modes
6.9 Human-machine interfaces (HMI)
6.9.1 TSI electrical specifications
Table 46. TSI electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDDTSI
Operating voltage
1.71
—
3.6
V
Target electrode capacitance range
1
20
500
pF
fREFmax
Reference oscillator frequency
—
5.5
TBD
MHz
fELEmax
Electrode oscillator frequency
—
0.5
TBD
MHz
Internal reference capacitor
TBD
1
TBD
pF
Oscillator delta voltage
TBD
600
TBD
mV
IREF
Reference oscillator current source base current
TBD
1
TBD
μA
2
IELE
Electrode oscillator current source base current
TBD
1
TBD
μA
2
Pres5
Electrode capacitance measurement precision
—
TBD
TBD
%
3
Pres20
Electrode capacitance measurement precision
—
TBD
TBD
%
4
Pres100
Electrode capacitance measurement precision
—
TBD
TBD
%
5
CELE
CREF
VDELTA
Notes
1
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
64
Preliminary
Freescale Semiconductor, Inc.
Dimensions
Table 46. TSI electrical specifications (continued)
Symbol
Min.
Typ.
Max.
Unit
Notes
MaxSens2 Maximum sensitivity @ 20 pF electrode
0
0.003
0.25
—
fF/count
6
MaxSens
0.003
—
—
fF/count
7
Resolution
—
—
16
bits
Response time @ 20 pF
8
15
25
μs
Current added in run mode
—
TBD
—
μA
Low power mode current adder
—
1
TBD
μA
Res
TCon20
ITSI_RUN
ITSI_LP
Description
Maximum sensitivity
8
1.
2.
3.
4.
5.
6.
The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.
Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.
Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.
Measured with a 20 pF electrode, reference oscillator frequency of ~5 MHz (IREF = 5 μA, REFCHRG = 4), PS = 128,
NSCN = 2; Iext = 16 (EXTCHRG = 15).
7. Typical value depends on the configuration used.
8. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1
electrode, DELVOL = 2, EXTCHRG = 15.
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to http://www.freescale.com and perform a keyword
search for the drawing’s document number:
If you want the drawing for this package
Then use this document number
80-pin LQFP
98ASS23174W
81-pin MAPBGA
98ASA10631D
144-pin LQFP
98ASS23177W
144-pin MAPBGA
98ASA00222D
8 Pinout
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
65
Pinout
8.1 K60 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
NOTE
The 81-pin ballmap assignments are currently being developed.
The • in the entries in this package column indicate which
signals are present on the package.
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
—
L5
NC
NC
NC
—
M5
NC
NC
NC
—
A10 NC
NC
NC
—
B10 NC
NC
NC
—
C10 NC
NC
NC
1
D3
PTE0
ADC1_SE4
a
ADC1_SE4
a
PTE0
SPI1_PCS1 UART1_TX
SDHC0_D1
I2C1_SDA
2
D2
PTE1
ADC1_SE5
a
ADC1_SE5
a
PTE1
SPI1_SOUT UART1_RX
SDHC0_D0
I2C1_SCL
3
D1
PTE2
ADC1_SE6
a
ADC1_SE6
a
PTE2
SPI1_SCK
UART1_CT
S_b
SDHC0_DC
LK
4
E4
PTE3
ADC1_SE7
a
ADC1_SE7
a
PTE3
SPI1_SIN
UART1_RT
S_b
SDHC0_CM
D
5
E5
VDD
VDD
VDD
6
F6
VSS
VSS
VSS
7
E3
PTE4
DISABLED
PTE4
SPI1_PCS0 UART3_TX
SDHC0_D3
8
E2
PTE5
DISABLED
PTE5
SPI1_PCS2 UART3_RX
SDHC0_D2
9
E1
PTE6
DISABLED
PTE6
SPI1_PCS3 UART3_CT
S_b
I2S0_MCLK
10
F4
PTE7
DISABLED
PTE7
UART3_RT
S_b
11
F3
PTE8
DISABLED
PTE8
I2S0_RX_F
S
12
F2
PTE9
DISABLED
PTE9
I2S0_RX_B
CLK
13
F1
PTE10
DISABLED
PTE10
I2S0_TXD
14
G4
PTE11
DISABLED
PTE11
I2S0_TX_F
S
15
G3
PTE12
DISABLED
PTE12
I2S0_TX_B
CLK
16
E6
VDD
VDD
VDD
17
F7
VSS
VSS
VSS
18
H3
VSS
VSS
VSS
ALT7
EzPort
I2S0_CLKIN
I2S0_RXD
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
66
Preliminary
Freescale Semiconductor, Inc.
Pinout
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
19
H1
USB0_DP
USB0_DP
USB0_DP
20
H2
USB0_DM
USB0_DM
USB0_DM
21
G1
VOUT33
VOUT33
VOUT33
22
G2
VREGIN
VREGIN
VREGIN
23
J1
ADC0_DP1
ADC0_DP1
ADC0_DP1
24
J2
ADC0_DM1 ADC0_DM1 ADC0_DM1
25
K1
ADC1_DP1
26
K2
ADC1_DM1 ADC1_DM1 ADC1_DM1
27
L1
PGA0_DP/ PGA0_DP/ PGA0_DP/
ADC0_DP0/ ADC0_DP0/ ADC0_DP0/
ADC1_DP3 ADC1_DP3 ADC1_DP3
28
L2
PGA0_DM/ PGA0_DM/ PGA0_DM/
ADC0_DM0/ ADC0_DM0/ ADC0_DM0/
ADC1_DM3 ADC1_DM3 ADC1_DM3
29
M1
PGA1_DP/ PGA1_DP/ PGA1_DP/
ADC1_DP0/ ADC1_DP0/ ADC1_DP0/
ADC0_DP3 ADC0_DP3 ADC0_DP3
30
M2
PGA1_DM/ PGA1_DM/ PGA1_DM/
ADC1_DM0/ ADC1_DM0/ ADC1_DM0/
ADC0_DM3 ADC0_DM3 ADC0_DM3
31
H5
VDDA
VDDA
VDDA
32
G5
VREFH
VREFH
VREFH
33
G6
VREFL
VREFL
VREFL
34
H6
VSSA
VSSA
VSSA
35
K3
ADC1_SE1
6/
CMP2_IN2/
ADC0_SE2
2
ADC1_SE1
6/
CMP2_IN2/
ADC0_SE2
2
ADC1_SE1
6/
CMP2_IN2/
ADC0_SE2
2
36
J3
ADC0_SE1
6/
CMP1_IN2/
ADC0_SE2
1
ADC0_SE1
6/
CMP1_IN2/
ADC0_SE2
1
ADC0_SE1
6/
CMP1_IN2/
ADC0_SE2
1
37
M3
VREF_OUT/ VREF_OUT VREF_OUT/
CMP1_IN5/
CMP1_IN5/
CMP0_IN5/
CMP0_IN5/
ADC1_SE1
ADC1_SE1
8
8
38
L3
DAC0_OUT/ DAC0_OUT DAC0_OUT/
CMP1_IN3/
CMP1_IN3/
ADC0_SE2
ADC0_SE2
3
3
39
L4
DAC1_OUT/ DAC1_OUT DAC1_OUT/
CMP2_IN3/
CMP2_IN3/
ADC1_SE2
ADC1_SE2
3
3
40
M7
XTAL32
ADC1_DP1
XTAL32
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
EzPort
ADC1_DP1
XTAL32
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
67
Pinout
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
EzPort
41
M6
EXTAL32
EXTAL32
EXTAL32
42
L6
VBAT
VBAT
VBAT
43
—
VDD
VDD
VDD
44
—
VSS
VSS
VSS
45
M4
PTE24
ADC0_SE1
7
ADC0_SE1
7
PTE24
CAN1_TX
UART4_TX
EWM_OUT
_b
46
K5
PTE25
ADC0_SE1
8
ADC0_SE1
8
PTE25
CAN1_RX
UART4_RX
EWM_IN
47
K4
PTE26
DISABLED
PTE26
UART4_CT
S_b
48
J4
PTE27
DISABLED
PTE27
UART4_RT
S_b
49
H4
PTE28
DISABLED
PTE28
50
J5
PTA0
JTAG_TCL
K/
SWD_CLK/
EZP_CLK
TSI0_CH1
PTA0
UART0_CT
S_b
FTM0_CH5
JTAG_TCL
K/
SWD_CLK
EZP_CLK
51
J6
PTA1
JTAG_TDI/
EZP_DI
TSI0_CH2
PTA1
UART0_RX
FTM0_CH6
JTAG_TDI
EZP_DI
52
K6
PTA2
JTAG_TDO/ TSI0_CH3
TRACE_SW
O/EZP_DO
PTA2
UART0_TX
FTM0_CH7
JTAG_TDO/ EZP_DO
TRACE_SW
O
53
K7
PTA3
JTAG_TMS/ TSI0_CH4
SWD_DIO
PTA3
UART0_RT
S_b
FTM0_CH0
JTAG_TMS/
SWD_DIO
54
L7
PTA4
NMI_b/
EZP_CS_b
PTA4
FTM0_CH1
NMI_b
55
M8
PTA5
DISABLED
PTA5
FTM0_CH2
56
E7
VDD
VDD
VDD
57
G7
VSS
VSS
VSS
58
J7
PTA6
DISABLED
PTA6
FTM0_CH3
TRACE_CL
KOUT
59
J8
PTA7
ADC0_SE1
0
ADC0_SE1
0
PTA7
FTM0_CH4
TRACE_D3
60
K8
PTA8
ADC0_SE1
1
ADC0_SE1
1
PTA8
FTM1_CH0
61
L8
PTA9
DISABLED
PTA9
FTM1_CH1
62
M9
PTA10
DISABLED
PTA10
63
L9
PTA11
DISABLED
PTA11
64
K9
PTA12
CMP2_IN0
TSI0_CH5
CMP2_IN0
PTA12
CAN0_TX
ENET_1588
_CLKIN
RTC_CLKO USB_CLKIN
UT
RMII0_RXE CMP2_OUT I2S0_RX_B
R/
CLK
MII0_RXER
EZP_CS_b
JTAG_TRS
T
FTM1_QD_
PHA
TRACE_D2
MII0_RXD3
FTM1_QD_
PHB
TRACE_D1
FTM2_CH0
MII0_RXD2
FTM2_QD_
PHA
TRACE_D0
FTM2_CH1
MII0_RXCL
K
FTM2_QD_
PHB
FTM1_CH0
RMII0_RXD
1/
MII0_RXD1
I2S0_TXD
FTM1_QD_
PHA
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
68
Preliminary
Freescale Semiconductor, Inc.
Pinout
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
CMP2_IN1
65
J9
PTA13
CMP2_IN1
66
L10 PTA14
67
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
FTM1_QD_
PHB
PTA13
CAN0_RX
FTM1_CH1
RMII0_RXD
0/
MII0_RXD0
I2S0_TX_F
S
DISABLED
PTA14
SPI0_PCS0 UART0_TX
RMII0_CRS
_DV/
MII0_RXDV
I2S0_TX_B
CLK
L11 PTA15
DISABLED
PTA15
SPI0_SCK
UART0_RX
RMII0_TXE
N/
MII0_TXEN
I2S0_RXD
68
K10 PTA16
DISABLED
PTA16
SPI0_SOUT UART0_CT
S_b
RMII0_TXD
0/
MII0_TXD0
I2S0_RX_F
S
69
K11 PTA17
ADC1_SE1
7
ADC1_SE1
7
PTA17
SPI0_SIN
RMII0_TXD
1/
MII0_TXD1
I2S0_MCLK I2S0_CLKIN
70
E8
VDD
VDD
VDD
71
G8
VSS
VSS
VSS
72
M12 PTA18
EXTAL
EXTAL
PTA18
FTM0_FLT2 FTM_CLKIN
0
73
M11 PTA19
XTAL
XTAL
PTA19
FTM1_FLT0 FTM_CLKIN
1
74
L12 RESET_b
RESET_b
RESET_b
75
K12 PTA24
DISABLED
PTA24
MII0_TXD2
FB_A29
76
J12
PTA25
DISABLED
PTA25
MII0_TXCL
K
FB_A28
77
J11
PTA26
DISABLED
PTA26
MII0_TXD3
FB_A27
78
J10
PTA27
DISABLED
PTA27
MII0_CRS
FB_A26
79
H12 PTA28
DISABLED
PTA28
MII0_TXER
FB_A25
80
H11 PTA29
DISABLED
PTA29
MII0_COL
FB_A24
81
H10 PTB0
/
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
/
PTB0
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
I2C0_SCL
FTM1_CH0
RMII0_MDI
O/
MII0_MDIO
FTM1_QD_
PHA
82
H9
/
ADC0_SE9/
ADC1_SE9/
TSI0_CH6
/
PTB1
ADC0_SE9/
ADC1_SE9/
TSI0_CH6
I2C0_SDA
FTM1_CH1
RMII0_MDC
/MII0_MDC
FTM1_QD_
PHB
83
G12 PTB2
/
/
PTB2
ADC0_SE1 ADC0_SE1
2/TSI0_CH7 2/TSI0_CH7
I2C0_SCL
UART0_RT
S_b
ENET0_158
8_TMR0
FTM0_FLT3
84
G11 PTB3
/
/
PTB3
ADC0_SE1 ADC0_SE1
3/TSI0_CH8 3/TSI0_CH8
I2C0_SDA
UART0_CT
S_b
ENET0_158
8_TMR1
FTM0_FLT0
85
G10 PTB4
/
ADC1_SE1
0
ENET0_158
8_TMR2
FTM1_FLT0
PTB1
/
ADC1_SE1
0
UART0_RT
S_b
PTB4
EzPort
LPT0_ALT1
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
69
Pinout
144 144
LQF MAP
P BGA
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
86
G9
PTB5
/
ADC1_SE1
1
/
ADC1_SE1
1
PTB5
87
F12 PTB6
/
ADC1_SE1
2
/
ADC1_SE1
2
PTB6
FB_AD23
88
F11 PTB7
/
ADC1_SE1
3
/
ADC1_SE1
3
PTB7
FB_AD22
89
F10 PTB8
PTB8
UART3_RT
S_b
FB_AD21
90
F9
PTB9
SPI1_PCS1 UART3_CT
S_b
FB_AD20
91
E12 PTB10
/
ADC1_SE1
4
/
ADC1_SE1
4
PTB10
SPI1_PCS0 UART3_RX
FB_AD19
FTM0_FLT1
92
E11 PTB11
/
ADC1_SE1
5
/
ADC1_SE1
5
PTB11
SPI1_SCK
UART3_TX
FB_AD18
FTM0_FLT2
93
H7
VSS
VSS
VSS
94
F5
VDD
VDD
VDD
95
E10 PTB16
/TSI0_CH9
/TSI0_CH9
PTB16
SPI1_SOUT UART0_RX
FB_AD17
EWM_IN
96
E9
PTB17
/TSI0_CH10 /TSI0_CH10 PTB17
SPI1_SIN
UART0_TX
FB_AD16
EWM_OUT
_b
97
D12 PTB18
/TSI0_CH11 /TSI0_CH11 PTB18
CAN0_TX
FTM2_CH0
I2S0_TX_B
CLK
FB_AD15
FTM2_QD_
PHA
98
D11 PTB19
/TSI0_CH12 /TSI0_CH12 PTB19
CAN0_RX
FTM2_CH1
I2S0_TX_F
S
FB_OE_b
FTM2_QD_
PHB
PTB9
ENET0_158
8_TMR3
ALT6
99
D10 PTB20
PTB20
SPI2_PCS0
FB_AD31
CMP0_OUT
D9
PTB21
PTB21
SPI2_SCK
FB_AD30
CMP1_OUT
101
C12 PTB22
PTB22
SPI2_SOUT
FB_AD29
CMP2_OUT
102
C11 PTB23
PTB23
SPI2_SIN
103
B12 PTC0
/
ADC0_SE1
4/
TSI0_CH13
/
ADC0_SE1
4/
TSI0_CH13
PTC0
SPI0_PCS4 PDB0_EXT
RG
I2S0_TXD
FB_AD14
104
B11 PTC1
/
ADC0_SE1
5/
TSI0_CH14
/
ADC0_SE1
5/
TSI0_CH14
PTC1
SPI0_PCS3 UART1_RT
S_b
FTM0_CH0
FB_AD13
105
A12 PTC2
/
ADC0_SE4
b/
CMP1_IN0/
TSI0_CH15
/
ADC0_SE4
b/
CMP1_IN0/
TSI0_CH15
PTC2
SPI0_PCS2 UART1_CT
S_b
FTM0_CH1
FB_AD12
106
A11 PTC3
/CMP1_IN1
/CMP1_IN1
PTC3
SPI0_PCS1 UART1_RX
FTM0_CH2
FB_CLKOU
T
107
H8
VSS
VSS
VSS
EzPort
FTM2_FLT0
100
SPI0_PCS5
ALT7
FB_AD28
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
70
Preliminary
Freescale Semiconductor, Inc.
Pinout
144 144
LQF MAP
P BGA
Pin Name
Default
VDD
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
108
—
VDD
109
A9
PTC4
PTC4
SPI0_PCS0 UART1_TX
FTM0_CH3
FB_AD11
CMP1_OUT
110
D8
PTC5
PTC5
SPI0_SCK
LPT0_ALT2 FB_AD10
CMP0_OUT
111
C8
PTC6
/CMP0_IN0
/CMP0_IN0
PTC6
SPI0_SOUT PDB0_EXT
RG
FB_AD9
112
B8
PTC7
/CMP0_IN1
/CMP0_IN1
PTC7
SPI0_SIN
FB_AD8
113
A8
PTC8
/
ADC1_SE4
b/
CMP0_IN2
/
ADC1_SE4
b/
CMP0_IN2
PTC8
114
D7
PTC9
/
ADC1_SE5
b/
CMP0_IN3
/
ADC1_SE5
b/
CMP0_IN3
PTC9
115
C7
PTC10
/
ADC1_SE6
b/
CMP0_IN4
/
ADC1_SE6
b/
CMP0_IN4
PTC10
116
B7
PTC11
/
ADC1_SE7
b
/
ADC1_SE7
b
PTC11
117
A7
PTC12
PTC12
UART4_RT
S_b
FB_AD27
118
D6
PTC13
PTC13
UART4_CT
S_b
FB_AD26
119
C6
PTC14
PTC14
UART4_RX
FB_AD25
120
B6
PTC15
PTC15
UART4_TX
FB_AD24
121
—
VSS
VSS
VSS
122
—
VDD
VDD
VDD
123
A6
PTC16
PTC16
CAN1_RX
UART3_RX
ENET0_158 FB_CS5_b/
8_TMR0
FB_TSIZ1/
FB_BE23_1
6_BLS15_8
_b
124
D5
PTC17
PTC17
CAN1_TX
UART3_TX
ENET0_158 FB_CS4_b/
8_TMR1
FB_TSIZ0/
FB_BE31_2
4_BLS7_0_
b
125
C5
PTC18
PTC18
UART3_RT
S_b
ENET0_158 FB_TBST_b
8_TMR2
/FB_CS2_b/
FB_BE15_8
_BLS23_16
_b
126
B5
PTC19
PTC19
UART3_CT
S_b
ENET0_158 FB_CS3_b/ FB_TA_b
8_TMR3
FB_BE7_0_
BLS31_24_
b
ALT7
EzPort
VDD
I2S0_MCLK I2S0_CLKIN FB_AD7
I2S0_RX_B
CLK
FB_AD6
I2C1_SCL
I2S0_RX_F
S
FB_AD5
I2C1_SDA
I2S0_RXD
FB_RW_b
FTM2_FLT0
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
71
Pinout
144 144
LQF MAP
P BGA
Pin Name
127
A5
PTD0
128
D4
PTD1
129
C4
130
131
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
PTD0
SPI0_PCS0 UART2_RT
S_b
FB_ALE/
FB_CS1_b/
FB_TS_b
PTD1
SPI0_SCK
FB_CS0_b
PTD2
PTD2
SPI0_SOUT UART2_RX
B4
PTD3
PTD3
SPI0_SIN
A4
PTD4
PTD4
SPI0_PCS1 UART0_RT
S_b
FTM0_CH4
FB_AD2
EWM_IN
132
A3
PTD5
/
ADC0_SE6
b
/
ADC0_SE6
b
PTD5
SPI0_PCS2 UART0_CT
S_b
FTM0_CH5
FB_AD1
EWM_OUT
_b
133
A2
PTD6
/
ADC0_SE7
b
/
ADC0_SE7
b
PTD6
SPI0_PCS3 UART0_RX
FTM0_CH6
FB_AD0
FTM0_FLT0
134
M10 VSS
VSS
VSS
135
F8
VDD
VDD
VDD
136
A1
PTD7
PTD7
CMT_IRO
FTM0_CH7
137
C9
PTD8
DISABLED
PTD8
I2C0_SCL
FB_A16
138
B9
PTD9
DISABLED
PTD9
I2C0_SDA
FB_A17
139
B3
PTD10
DISABLED
PTD10
140
B2
PTD11
DISABLED
PTD11
SPI2_PCS0
SDHC0_CL
KIN
FB_A19
141
B1
PTD12
DISABLED
PTD12
SPI2_SCK
SDHC0_D4
FB_A20
142
C3
PTD13
DISABLED
PTD13
SPI2_SOUT
SDHC0_D5
FB_A21
143
C2
PTD14
DISABLED
PTD14
SPI2_SIN
SDHC0_D6
FB_A22
144
C1
PTD15
DISABLED
PTD15
SPI2_PCS1
SDHC0_D7
FB_A23
/
ADC0_SE5
b
/
ADC0_SE5
b
UART2_CT
S_b
EzPort
FB_AD4
UART2_TX
UART0_TX
ALT7
FB_AD3
FTM0_FLT1
FB_A18
8.2 K60 Pinouts
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
72
Preliminary
Freescale Semiconductor, Inc.
PTD15
PTD14
PTD13
PTD12
PTD11
PTD10
PTD9
PTD8
PTD7
VDD
VSS
PTD6
PTD5
PTD4
PTD3
PTD2
PTD1
PTD0
PTC19
PTC18
PTC17
PTC16
VDD
VSS
PTC15
PTC14
PTC13
PTC12
PTC11
PTC10
PTC9
PTC8
PTC7
PTC6
PTC5
PTC4
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
Pinout
PTE0
1
108
VDD
PTE1
2
107
VSS
PTE2
3
106
PTC3
PTE3
4
105
PTC2
VDD
5
104
PTC1
VSS
6
103
PTC0
PTE4
7
102
PTB23
PTE5
8
101
PTB22
PTE6
9
100
PTB21
PTE7
10
99
PTB20
RESET_b
ADC0_SE16/CMP1_IN2/ADC0_SE21
36
73
PTA19
72
74
PTA18
35
71
PTA24
ADC1_SE16/CMP2_IN2/ADC0_SE22
VSS
75
70
34
VDD
PTA25
VSSA
69
PTA26
76
PTA17
77
33
68
32
VREFL
PTA16
VREFH
67
PTA27
PTA15
78
66
31
PTA14
PTA28
VDDA
65
79
PTA13
30
64
PTA29
PGA1_DM/ADC1_DM0/ADC0_DM3
PTA12
80
63
29
PTA11
PTB0
PGA1_DP/ADC1_DP0/ADC0_DP3
62
81
PTA10
28
61
PTB1
PGA0_DM/ADC0_DM0/ADC1_DM3
PTA9
82
60
27
PTA8
PTB2
PGA0_DP/ADC0_DP0/ADC1_DP3
59
83
PTA7
26
58
PTB3
ADC1_DM1
PTA6
84
57
25
VSS
PTB4
ADC1_DP1
56
85
VDD
24
55
PTB5
ADC0_DM1
PTA5
86
54
23
PTA4
PTB6
ADC0_DP1
53
87
PTA3
22
52
PTB7
VREGIN
PTA2
88
51
21
PTA1
PTB8
VOUT33
50
89
PTA0
20
49
PTB9
USB0_DM
PTE28
90
48
19
PTE27
PTB10
USB0_DP
47
91
PTE26
18
46
PTB11
VSS
PTE25
92
45
17
PTE24
VSS
VSS
44
93
VSS
16
43
VDD
VDD
VDD
94
42
15
VBAT
PTB16
PTE12
41
95
EXTAL32
14
40
PTB17
PTE11
XTAL32
96
39
13
DAC1_OUT/CMP2_IN3/ADC1_SE23
PTB18
PTE10
38
PTB19
97
37
98
12
DAC0_OUT/CMP1_IN3/ADC0_SE23
11
VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18
PTE8
PTE9
Figure 31. K60 144 LQFP Pinout Diagram
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
73
Revision History
1
2
3
4
5
6
7
8
9
10
11
12
A
PTD7
PTD6
PTD5
PTD4
PTD0
PTC16
PTC12
PTC8
PTC4
NC
PTC3
PTC2
A
B
PTD12
PTD11
PTD10
PTD3
PTC19
PTC15
PTC11
PTC7
PTD9
NC
PTC1
PTC0
B
C
PTD15
PTD14
PTD13
PTD2
PTC18
PTC14
PTC10
PTC6
PTD8
NC
PTB23
PTB22
C
D
PTE2
PTE1
PTE0
PTD1
PTC17
PTC13
PTC9
PTC5
PTB21
PTB20
PTB19
PTB18
D
E
PTE6
PTE5
PTE4
PTE3
VDD
VDD
VDD
VDD
PTB17
PTB16
PTB11
PTB10
E
F
PTE10
PTE9
PTE8
PTE7
VDD
VSS
VSS
VDD
PTB9
PTB8
PTB7
PTB6
F
G
VOUT33
VREGIN
PTE12
PTE11
VREFH
VREFL
VSS
VSS
PTB5
PTB4
PTB3
PTB2
G
H
USB0_DP
USB0_DM
VSS
PTE28
VDDA
VSSA
VSS
VSS
PTB1
PTB0
PTA29
PTA28
H
J
ADC0_DP1
ADC0_DM1
ADC0_SE16/
CMP1_IN2/
ADC0_SE21
PTE27
PTA0
PTA1
PTA6
PTA7
PTA13
PTA27
PTA26
PTA25
J
K
ADC1_DP1
ADC1_DM1
ADC1_SE16/
CMP2_IN2/
ADC0_SE22
PTE26
PTE25
PTA2
PTA3
PTA8
PTA12
PTA16
PTA17
PTA24
K
L
PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA0_DM/
ADC0_DM0/
ADC1_DM3
DAC0_OUT/
CMP1_IN3/
ADC0_SE23
DAC1_OUT/
CMP2_IN3/
ADC1_SE23
NC
VBAT
PTA4
PTA9
PTA11
PTA14
PTA15
RESET_b
L
PGA1_DP/
M ADC1_DP0/
ADC0_DP3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
VREF_OUT/
CMP1_IN5/
CMP0_IN5/
ADC1_SE18
PTE24
NC
EXTAL32
XTAL32
PTA5
PTA10
VSS
PTA19
PTA18
M
2
3
4
5
6
7
8
9
10
11
12
1
Figure 32. K60 144 MAPBGA Pinout Diagram
9 Revision History
The following table provides a revision history for this document.
Table 47. Revision History
Rev. No.
Date
1
11/2010
Substantial Changes
Initial public revision
Table continues on the next page...
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
74
Preliminary
Freescale Semiconductor, Inc.
Revision History
Table 47. Revision History (continued)
Rev. No.
Date
2
3/2011
Substantial Changes
Many updates throughout
Corrected 81- and 104-pin package codes
3
3/2011
Added sections that were inadvertently removed in previous revision
4
3/2011
Reworded IIC footnote in "Voltage and Current Operating Requirements"
table.
Added paragraph to "Peripheral operating requirements and behaviors"
section.
Added "JTAG full voltage range electricals" table to the "JTAG electricals"
section.
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.
Freescale Semiconductor, Inc.
Preliminary
75
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
[email protected]
Document Number: K60P144M100SF2
Rev. 4, 3/2011
Preliminary
Information in this document is provided solely to enable system and sofware
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.
For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© 2010–2011 Freescale Semiconductor, Inc.
Similar pages