ML7800 - FBE* SERIES 3-TERMINAL POSITIVE VOLTAGE REGULATOR The ML7800 series are 3-Terminal Positive Voltage Regulators. These regulators employ internal current-limiting, thermal-shutdown and safe-area compensation, making them essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current (Please refer to the "thermal design" portion of application note). They are intended as fixed voltage regulations in a wide range of applications including local (on-card) regulation for elimination of distributution problems associated with single point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents. * Parts of FBE are satisfied with requirements of directive 2002/95/EC on RoHS. ■ Package Outline TO-220 TO-220F 1. OUT 2. GND 3. IN 32 1 ABSOLUTE MAXIMUM RATINGS (Ta=25℃) PARAMETER Input Voltage Maximum Rating SYMBOL VIN Storage Temperature Range Power Dissipation ML7805 to ML7809 35 ML7812 to ML7820 35 ML7824 40 V ℃ -40 to +125 Tstg Operating Temperature Range UNIT Operating Junction Temperature Tj -30 to +150 Operating Ambient Temperature Topr -30 to +75 ℃ 15(Tc≦70℃ ) PD W THERMAL RESISTANCE Thermal Resistance Junction-to-Ambient Temperature Θ ja 60 Junction-to-Case Θ jc 5 ELECTRICAL CHARACTERISTICS PARAMETER (Tj=25℃,C1=0.33μF,Co=0.1μF) TEST CONDITIONS SYMBOL ℃/W Measurement is to be conducted in pulse testing. MIN. TYP. MAX. UNIT ML7805A / ML7805FA Output Voltage Vo VIN=10V Io=0.5A 4.8 5.0 5.2 V Quiescent Current IQ VIN=10V Io=0mA - 4.2 8.0 mA ΔVo Io VIN=10V Io=0.005A to 1.5A - 15 100 mV Io=0.5A - 3 100 mV f=120Hz 62 78 - dB Io=0.5A - 40 - μV - -1.1 - mV/℃ Load Regulation ΔVo Vin VIN=7 to 25V Line Regulation ein=2Vp-p Ripple Rejection RR VIN=10V Io=0.5A Output Noise Voltage Average Temperature Cofficient of Output Voltage VNO VIN=10V BW=10Hz to 100KHz ΔVo / ΔT VIN=10V Io=0.5A MICRO ELECTRONICS LTD. 7/F, Enterprise Square Three, 39 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong. Fax: (852) 2341 0321 Tel: (852) 2343 0181-5 Website: www.microelectr.com.hk APR 2005 Page 1 of 11 ELECTRICAL CHARACTERISTICS PARAMETER (Tj=25℃,C1=0.33μF,Co=0.1μF) Measurement is to be conducted in pulse testing. TEST CONDITIONS MIN. TYP. MAX. UNIT SYMBOL ML7806A / ML7806FA Output Voltage Vo VIN=11V Io=0.5A 5.75 6.0 6.25 V Quiescent Current IQ VIN=11V Io=0mA - 4.3 8.0 mA ΔVo Io VIN=11V Io=0.005A to 1.5A - 15 120 mV - 5 120 mV f=120Hz 59 75 - dB Io=0.5A - 45 - μV Io=5mA - -0.8 - mV/℃ Load Regulation Line Regulation Ripple Rejection ΔVo Vin VIN=8 to 25V RR VIN=11V VIN=11V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=11V Cofficient of Output Voltage Io=0.5A Io=0.5A ein=2Vp-p BW=10Hz to 100KHz ML7808A / ML7808FA Output Voltage Vo VIN=14V Io=0.5A 7.7 8.0 8.3 V Quiescent Current IQ VIN=14V Io=0mA - 4.3 8.0 mA ΔVo Io VIN=14V Io=0.005A to 1.5A - 15 160 mV - 6 160 mV f=120Hz 55 72 - dB Io=0.5A - 52 - μV Io=5mA - -0.8 - mV/℃ Load Regulation Line Regulation Ripple Rejection ΔVo Vin VIN=10.5 to 25V RR VIN=14V VIN=14V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=14V Cofficient of Output Voltage Io=0.5A Io=0.5A ein=2Vp-p BW=10Hz to 100KHz ML7809A / ML7809FA Output Voltage Vo VIN=15V Io=0.5A 8.65 9.0 9.35 V Quiescent Current IQ VIN=15V Io=0mA - 4.3 8.0 mA ΔVo Io VIN=15V Io=0.005A to 1.5A - 15 180 mV - 7 180 mV f=120Hz 55 70 - dB Io=0.5A - 60 - μV Io=5mA - -1 - mV/℃ Load Regulation Line Regulation Ripple Rejection ΔVo Vin VIN=11.5 to 25V RR VIN=15V VIN=15V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=15V Cofficient of Output Voltage Io=0.5A Io=0.5A ein=2Vp-p BW=10Hz to 100KHz ML7812A / ML7812FA Output Voltage Vo VIN=19V Io=0.5A 11.5 12.0 12.5 V Quiescent Current IQ VIN=19V Io=0mA - 4.3 8.0 mA ΔVo Io VIN=19V Io=0.005A to 1.5A - 25 240 mV - 10 240 mV f=120Hz 55 71 - dB Io=0.5A - 75 - μV - -1 - mV/℃ Load Regulation Line Regulation Ripple Rejection ΔVo Vin VIN=14.5 to 30V RR VIN=19V VIN=19V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=19V Cofficient of Output Voltage Io=0.5A Io=0.5A ein=2Vp-p BW=10Hz to 100KHz Io=5mA Page 2 of 11 ELECTRICAL CHARACTERISTICS PARAMETER (Tj=25℃,C1=0.33μF,Co=0.1μF) Measurement is to be conducted in pulse testing. TEST CONDITIONS MIN. TYP. MAX. UNIT SYMBOL ML7815A / ML7815FA Output Voltage Vo VIN=23V Io=0.5A 14.4 15.0 15.6 V Quiescent Current IQ VIN=23V Io=0mA - 4.3 8.0 mA ΔVo Io VIN=23V Io=0.005A to 1.5A - 35 300 mV - 12 300 mV f=120Hz 54 70 - dB Io=0.5A - 90 - μV Io=5mA - -1 - mV/℃ Load Regulation Line Regulation Ripple Rejection ΔVo Vin VIN=17.5 to 30V RR VIN=23V VIN=23V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=23V Cofficient of Output Voltage Io=0.5A Io=0.5A ein=2Vp-p BW=10Hz to 100KHz ML7818A / ML7818FA Output Voltage Vo VIN=27V Io=0.5A 17.3 18.0 18.7 V Quiescent Current IQ VIN=27V Io=0mA - 4.5 8.0 mA ΔVo Io VIN=27V Io=0.005A to 1.5A - 55 360 mV - 15 360 mV f=120Hz 53 69 - dB Io=0.5A - 110 - μV Io=5mA - -1 - mV/℃ 19.2 20.0 20.8 V Load Regulation Line Regulation Ripple Rejection ΔVo Vin VIN=21 to 33V RR VIN=27V VIN=27V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=27V Cofficient of Output Voltage Io=0.5A Io=0.5A ein=2Vp-p BW=10Hz to 100KHz ML7820A / ML7820FA Output Voltage Quiescent Current Load Regulation Line Regulation Ripple Rejection Vo VIN=29V Io=0.5A IQ VIN=29V Io=0mA - 4.5 8.0 mA ΔVo Io VIN=29V Io=0.005A to 1.5A - 61 400 mV - 16 400 mV f=120Hz 51 66 - dB Io=0.5A - 150 - μV Io=5mA - -2.0 - mV/℃ ΔVo Vin VIN=23 to 35V RR VIN=29V VIN=29V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=29V Cofficient of Output Voltage Io=0.5A Io=0.5A ein=2Vp-p BW=10Hz to 100KHz ML7824A / ML7824FA Output Voltage Vo VIN=33V Io=0.5A 23.0 24.0 25.0 V Quiescent Current IQ VIN=33V Io=0mA - 4.6 8.0 mA ΔVo Io VIN=33V Io=0.005A to 1.5A - 65 480 mV - 18 480 mV f=120Hz 50 66 - dB Io=0.5A - 170 - μV - -2.4 - mV/℃ Load Regulation Line Regulation Ripple Rejection ΔVo Vin VIN=28 to 38V RR VIN=33V VIN=33V Output Noise Voltage VNO Average Temperature ΔVo / ΔT VIN=33V Cofficient of Output Voltage Io=0.5A Io=0.5A ein=2Vp-p BW=10Hz to 100KHz Io=5mA Page 3 of 11 ■ Power Dissipation vs. Ambient Temperature ■ Equivalent Circuit ■ Test Circuit 1. Output Voltage, Line Regulation, Load Regulation, Quiescent Current, Average Temperature Coefficient of Output Voltage, Output Noise Voltage. 2. Ripple Rejection ein = 2 Vp-p f = 120Hz ML7805 0.33uF IN OUT GND 2 IQ 3 ML7805 Io 1 IN OUT 3 GND 0.1uF Vo, VN VIN 0.33uF 2 0.1uF Load VIN 1 Load IIN Vo, eo Page 4 of 11 ■ Typical Characteristics ML7805 / 15 / 24 ML7805 / 15 / 24 Page 5 of 11 ■ Typical Characteristics /24 Quiescent Page 6 of 11 ■ Typical Characteristics Page 7 of 11 1. Application Circuit In the following explain only the positive regulator unless otherwise specified. However they can apply to the negative voltage regulator by easy change. Positive/Negative Voltage Supply Note : In the above positive and negative power supply application, D1 and D2 should be connected. If D1 and D2 are not connected, either of positive or negative power supply circuit may not turns on. 78 series IN +Vin OUT +Vo GND 0.33uF D1 0.1uF D2 0.1uF COM 0.33uF COM IN -Vin OUT -Vo 79 series 2. Note in Application Circuit If the higher voltage (above the rated value) or lower voltage (GND-0.5V) is supplied to the input terminals, the IC may be destroyed. To avoid such a case, a zener diode or other parts of the surge supressor should be connected as shown below. (1) L R 1 OUT 3 Vo 1 Vin + Capacitor Diode Capacitor OUT 3 Vo 2 (2) + 2 Ze ner Diode IN GND IN GND Vin If the higher voltage than the input terminal is supplied to the output terminal, the IC may be destroyed. To avoid input terminal short to the GND or the stored voltage in the capacitor back to the output terminal, by the large value capacitor connecting to the output terminal application, the SBD should be required as shown below; DIODE 1 IN GND Vin OUT 3 Vo + Capacitor 2 * In case of negative voltage regulator, reverse the SBD and capacitor direction. Page 8 of 11 3. Thermal Design (1) Heat Producting There are two kinds of heat producting (P LOSS-1, PLOSS-2) in three terminal regulator and the sum of them is total heat producting of IC (PLOSS). (1-1) PLOSS-1 : heat producting by own operation Input voltage (Vin) and quiescent current (IQ) produce the heat mentioned below equation. PLOSS-1 = Vin X IQ Input IN OUT Iout Output GND Vin Vout IQ (1-2) PLOSS-2 : heat producing by output current and the input-output differential voltage. Internal power transistor produces the hest mentioned following equation. PLOSS-2 = (Vin-Vout) x Iout (W) Therefore, the total heat producing PLOSS is : PLOSS = PLOSS-1 + PLOSS-2 = Vin X IQ + (Vin-Vout) X Iout (2) Thermal Resistance (2-1) Definition of Thermal Resistance : θ (W) Thermal resistance (θ ) is a degree of heat radiation mentioned following equation. = (T1 - T2)/P (℃ /W) Heat Producing Quantity Ambient Temperature or case temperature Heat Source Temperature : P (W) :T2 (℃ ) :T1 (℃ ) P(W) T1 Rp T2 T1 > T2 (2-2) Thermal resistance of TO-220 There are two kinds of thermal resistance of TO-220. One is "θjc" for the application with the heat sink, the other is "θja" for the application without the heat sink. thermal resistance between IC chip (junction point) and the package back side θjc : contacting with the heat sink. θja : thermal resistance between IC chip (junction point) and ambience. Page 9 of 11 (3) Heat Radiation Balance The heat produced in the IC is radiated to ambience through the package and the heat sink. The quantity of the heat radiation depends on the heat source temperature, ambient temperature and the thermal resistance of the package. (3-1) TO-220 with heat sink Heat radiation balance model of the TO-220 with heat sink is shown as below. PLOSS θJC θCH θJS Tj Ta Ambient Temperature Heat Source (junction) Temperature Where θHS θjc : thermal resistance between IC chip (junction point) and the package backside connecting to the heatsink. θjs : thermal resistance between IC chip (junction point) and the package surface. θCH : thermal resistance between package backside and the heat sink including the condidtion of insulator, silicon grease and tighten torque. θHS : thermal resistance of the heat sink Package Face Side Resin θJS Chip Package Back Side IC θJC θCH θHS Heat Sink If the js is large enough compare with other thermal resistance, the js can be neglected and the heat radiation model can be mentioned as below. PLOSS θJC θCH θHS Tj Ta The relation between temperature and heat radiation quantity is shown below. Tj=P LOSS X (θjc+θCH +θHS) + Ta (℃ ) Page 10 of 11 (4) Thermal Design The heat radiation balance model of the TO-220 with the heat sink is shown as follows. Heat radiation balance Tj = P LOSS X (θjc +θCH + θHS) + Ta (℃ ) (4-1) PLOSS = Vin X IQ + (Vin-Vout) X Iout (W) (4-2) (℃) (4-3) Substituting "Eq.(4-2) into "Eq.(4-1)" obtains Tj = [Vin X I Q +(Vin-Vout) X Iout] X (θjc +θCH +θHS)+Ta In Eq.(4-3) Vin, Iout, θCH, θHS, Ta depand on using condition. Tj, I Q,Vout,θjc depend on IC depend on IC specification. WhenθCH, IQ and Tj are assumed the following values, Eq.(4-3) becomes Eq.(4-4). θCH=0.3 to 0.4 (℃/W) Insert the mica paper (0.1t) and thermal conduction silicon grease between the IC and heat sink and tighten them with the bolt by 4Kg*cm-min. IQ = 5 to 6mA (max.) Tj = 125℃ (max.) Tj(max) = 125 = [5 X Vin + (Vin-Vout) X Iout] X (5+0.3+ θHS) +Ta (℃) (4-4) When fix the Vout, Tj depends on the Vin, Iout, θHS and Ta. It means; Lower Vin and / or Iout are required to linit the temperature rise. Smaller θHS is required for the effective heat reduce (i.e. using the large heat sink). In the thermal design, when fix the Vin, Iout and Ta, selectthe heat sink which θHS is smaller that the result of Eq.(4-4). For more detail, please refer the heat resistance value mentioned in the specification of the heat sink supplier. Page 11 of 11