MIL-PRF-38534 CERTIFIED M.S.KENNEDY CORP. RAD TOLERANT, HIGH SPEED, BUFFER AMPLIFIER 0002RH 4707 Dey Road Liverpool, N.Y. 13088 (315) 701-6751 FEATURES: Total Dose Tested to 300 Krads (Si) RAD Tolerant LH0002 Replacement High Input Impedance-180KΩ Min Low Output Impedance-10Ω Max Low Harmonic Distortion DC to 30 MHz Bandwidth Slew Rate is Typically 400 V/µS Operating Range from±5V to ±20V Contact MSK for MIL-PRF-38534 Qualification Status and Appendix G (Radiation Status) DESCRIPTION: The MSK 0002RH is a general purpose current amplifier. It is the industry wide RAD tolerant replacement for the LH0002. The device is ideal for use with an operational amplifier in a closed loop configuration to increase current output. The MSK 0002RH is designed with a symmetrical output stage that provides low output impedances to both the positive and negative portions of output pulses. The MSK 0002RH is packaged in a hermetic 8 lead low profile T0-5 header and is specified over the full military temperature range. EQUIVALENT SCHEMATIC TYPICAL APPLICATIONS PIN-OUT INFORMATION High Speed D/A Conversion 30MHz Buffer Line Driver Precision Current Source 1 2 3 4 1 V1+ V2+ E3 Output 5 6 7 8 E4 V2V1Input Rev. A 4/07 5 ABSOLUTE MAXIMUM RATINGS ±VCC VIN Pd Tc Supply Voltage Input Voltage Power Dissipation Case Operating Temperature (MSK 0002K/H/E RH) (MSK 0002RH) ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ TST Storage Temperature Range -65°C to +150°C TLD Lead Temperature Range +300°C (10 Seconds) TJ Junction Temperature +175°C θjC Thermal Resistance @ TC=125°C Output Devices 55°C/W ±20V ±20V 600mW ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ -55°C to +125°C -40°C to +85°C ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ELECTRICAL SPECIFICATIONS Parameter Quiescent Current Test Conditions 1 6 Group A Subgroup MSK 0002K/H/E RH 4 MSK 0002RH Units Min. Typ. Max. Min. Typ. Max. 1 - ±6.3 ±10 - ±6.3 ±12 mA 1 - ±5 ±15 - ±5 ±20 µA 2,3 - ±10 ±20 - - - µA 1 - ±6 ±30 - ±6 ±35 mV 2,3 - ±10 ±30 - - - mV 4 180 - - 180 - - KΩ 4 - - 10 - - 10 Ω 4 ±10 ±11 - ±10 ±11 - Vp 4 ±9.5 - - ±9.5 - - Vp VIN=3.0VPP f=1.0KHz 4 0.95 0.97 - 0.95 0.97 - V/V RS=10KΩ RL=1.0KΩ 5,6 0.92 - - - - - V/V 4 - 6 12 - 6 15 nS VIN=0V RS=10KΩ RL=1.0KΩ Input Current Output Offset Voltage Input Impedance 3 RS=10KΩ RL=1.0KΩ RS=300Ω RL=1.0KΩ VIN=1.0VRMS RS=200KΩ RL=1KΩ f=1.0KHz Output Impedance 3 VIN=1.0VRMS Rs=10KΩ RL=50Ω f=1.0KHz RL=1.0KΩ Output Voltage Swing f=1.0KHz RL=100Ω ±VCC=±15V f=1.0KHz Voltage Gain 2 Rise Time VOUT=2.5VPP f=10KHz RS=100Ω RL=50Ω NOTES: 1 Unless otherwise specified ±VCC=±12VDC, RL=1KΩ. 2 Subgroups 5 & 6 shall be tested as part of device initial characterization and after design and process changes. Parameter shall be guaranteed to the limits specified for subgroups 5 & 6 for all lots not specifically tested. 3 Devices shall be capable of meeting the parameter, but need not be tested. 4 Subgroup 1,4 TA=TC=+25°C Subgroup 2,5 TA=TC=+125°C Subgroup 3,6 TA=TC=-55°C 5 Continuous operation at or above absolute maximum ratings may adversly effect the device performance and/or life cycle. 6 Consult factory for post radiation limits. 2 Rev. A 4/07 APPLICATION NOTES HEAT SINKING To determine if a heat sink is necessary for your application and if so, what type, refer to the thermal model and governing equation below. Thermal Model: RΘSA = ((TJ - TA)/PD) - (RΘJC) - (RΘCS) = ((125°C - 80°C) / 0.36W) - 55°C/W - 0.15°C/W = 125 - 55.15 = 69.9°C/W This heat sink in this example must have a thermal resistance of no more than 69.9°C/W to maintain a junction temperature of no more than +125°C. Typical Applications: Governing Equation: TJ=PD X (RΘJC +RΘCS +RΘSA) +TA Where TJ=Junction Temperature PD=Total Power Dissipation RΘJC=Junction to Case Thermal Resistance RΘCS=Heat Sink to Ambient Thermal Resistance TC=Case Temperature TA=Ambient Temperature TS=Sink Temperature Example: This example demonstrates a worst case analysis for the buffer output stage. This occurs when the output voltage is 1/2 the power supply voltage. Under this condition, maximum power transfer occurs and the output is under maximum stress. Conditions: VCC= ±12VDC Vo= ±6Vp Sine Wave, Freq. = 1KHz RL= 100Ω For a worst case analysis we will treat the ±6Vp sine wave as an 6 VDC output voltage. 1.) Find Driver Power Dissipation PD= (Vcc-Vo) (Vo/RL) = (12V-6V) (6V/100Ω) = 360mW 2.) For conservative design, set TJ=+125°C Max. 3.) For this example, worst case TA=+80°C 4.) RΘJC = 55° C/W from MSK 0002RH Data Sheet 5.) RΘCS = 0.15° C/W for most thermal greases 6.) Rearrange governing equation to solve for RΘSA 3 Rev. A 4/07 TYPICAL PERFORMANCE CURVES 4 Rev. A 4/07 RADIATION CURVES NOTE: All radiation curve test conditions are in accordance with the electrical specifications table (page 2). See RAD report for bias and dose rate. 5 Rev. A 4/07 RADIATION CURVES CONT'D NOTE: All radiation curve test conditions are in accordance with the electrical specifications table (page 2). See RAD report for bias and dose rate. 6 Rev. A 4/07 MECHANICAL SPECIFICATIONS WEIGHT=1 GRAM TYPICAL ALL DIMENSIONS ARE ±0.010 INCHES UNLESS OTHERWISE LABELED ORDERING INFORMATION Part Number MSK0002RH MSK0002ERH MSK0002HRH MSK0002KRH Screening Level Industrial Extended Reliability MIL-PRF-38534 Class H MIL-PRF-38534 Class K M.S. Kennedy Corp. 4707 Dey Road, Liverpool, New York 13088 Phone (315) 701-6751 FAX (315) 701-6752 www.mskennedy.com The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products. Please visit our website for the most recent revision of this datasheet. Contact MSK for MIL-PRF-38534 qualification status and Appendix G (radiation status) 7 Rev. A 4/07