ETC NC7Z126P5

Revised June 2000
NC7SZ126
TinyLogic UHS Buffer with 3-STATE Output
General Description
Features
The NC7SZ126 is a single buffer with 3-STATE output from
Fairchild’s Ultra High Speed Series of TinyLogic. The
device is fabricated with advanced CMOS technology to
achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad VCC
operating range. The device is specified to operate over
the 1.8V to 5.5V range. The inputs and output are high
impedance above ground when VCC is 0V. Inputs tolerate
voltages up to 6V independent of VCC operating voltage.
The output tolerates voltages above VCC in the 3-STATE
condition.
■ Space saving SOT23 or SC70 5-lead package
■ Ultra High Speed; tPD 2.6 ns Typ into 50 pF at 5V VCC
■ High Output Drive; ±24 mA at 3V VCC
■ Broad VCC Operating Range; 1.8V to 5.5V
■ Matches the performance of LCX when operated at
3.3V VCC
■ Power down high impedance inputs/output
■ Overvoltage tolerant inputs facilitate 5V to 3V
translation
■ Patented noise/EMI reduction circuitry implemented
Ordering Code:
Order
Package
Product Code
Number
Number
Top Mark
NC7SZ126M5
MA05B
7Z26
5-Lead SOT23, JEDEC MO-178, 1.6mm
NC7SZ126M5X
MA05B
7Z26
5-Lead SOT23, JEDEC MO-178, 1.6mm
3k Units on Tape and Reel
NC7SZ126P5
MAA05A
Z26
5-Lead SC70, EIAJ SC-88a, 1.25mm Wide
250 Units on Tape and Reel
NC7SZ126P5X
MAA05A
Z26
5-Lead SC70, EIAJ SC-88a, 1.25mm Wide
3k Units on Tape and Reel
Package Description
Logic Symbol
Supplied As
250 Units on Tape and Reel
Connection Diagram
(Top View)
Pin Descriptions
Function Table
Pin Names
Description
A, OE
Inputs
OE
Inputs
A
Output
Y
Output
H
L
L
H
H
H
L
X
Z
OUT Y
H = HIGH Logic Level
L = LOW Logic Level
X = HIGH or LOW Logic Level
Z = HIGH Impedance State
TinyLogic is a trademark of Fairchild Semiconductor Corporation.
© 2000 Fairchild Semiconductor Corporation
Powered by ICminer.com Electronic-Library Service CopyRight 2003
DS012171
www.fairchildsemi.com
NC7SZ126 TinyLogic UHS Buffer with 3-STATE Output
October 1996
NC7SZ126
Absolute Maximum Ratings(Note 1)
Recommended Operating
Conditions (Note 2)
Supply Voltage (VCC )
−0.5V to +6V
DC Input Voltage (VIN)
−0.5V to +6V
Supply Voltage Operating (VCC)
1.8V to 5.5V
DC Output Voltage (VOUT)
−0.5V to +6V
Supply Voltage Data Retention (VCC)
1.5V to 5.5V
DC Input Diode Current (IIK)
Input Voltage (VIN)
@VIN < −0.5V
−50 mA
@ VIN > 6V
+20 mA
0V to 5.5V
Output Voltage (VOUT)
DC Output Diode Current (IOK)
Active State
0V to VCC
3-State
0V to 5.5V
@VOUT < −0.5V
−50 mA
Operating Temperature (TA)
@ VOUT > 6V, VCC = GND
+20 mA
Input Rise and Fall Time (tr, tf)
−40°C to +85°C
DC Output Current (IOUT)
±50 mA
VCC = 1.8V, 2.5V ±0.2V
0 ns/V to 20 ns/V
DC VCC/GND Current (ICC/IGND)
±50 mA
VCC = 3.3V ±0.3V
0 ns/V to 10 ns/V
VCC = 5.0V ±0.5V
0 ns/V to 5 ns/V
−65°C to +150 °C
Storage Temperature (TSTG)
150 °C
Junction Temperature under Bias (TJ)
Thermal Resistance (θJA)
Junction Lead Temperature (TL);
260 °C
(Soldering, 10 seconds)
Power Dissipation (PD) @+85°C
SOT23-5
200 mW
SC70-5
150 mW
SOT23-5
300°C/W
SC70-5
425°C/W
Note 1: Absolute maximum ratings are DC values beyond which the device
may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is
reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.
Note 2: Unused inputs must be held HIGH or LOW. They may not float.
DC Electrical Characteristics
Symbol
VIH
Parameter
HIGH Level Input Voltage
.
VIL
VOH
VOL
LOW Level Input Voltage
HIGH Level Output Voltage
TA = +25°C
VCC
Typ
TA = −40°C to +85°C
(V)
Min
Max
Min
1.8
0.75 VCC
0.75 VCC
2.3-5.5
0.7 VCC
0.7 VCC
1.8
0.25 VCC
0.25 VCC
2.3-5.5
0.3 VCC
0.3 VCC
1.8
1.7
1.8
1.7
2.2
2.3
2.2
3.0
2.9
3.0
2.9
4.5
4.4
4.5
4.4
2.3
1.9
2.15
1.9
IOH = −8 mA
3.0
2.4
2.80
2.4
IOH = −16 mA
3.0
2.3
2.68
2.3
4.5
3.8
4.20
3.8
V
V
0.1
0.1
Output Voltage
2.3
0.0
0.1
0.1
3.0
0.0
0.1
0.1
4.5
0.0
0.1
0.1
2.3
0.10
0.3
0.3
3.0
0.15
0.4
0.4
3.0
0.22
0.55
0.55
4.5
0.22
3-STATE
Output Leakage
IOFF
Power Off Leakage Current
ICC
Quiescent Supply Current
VIN = VIH IOH = −100 µA
IOH = −24 mA
IOH = −32 mA
0.0
IOZ
V
2.3
1.8
Input Leakage Current
Conditions
V
LOW Level
IIN
Unit
Max
V
VIN = VIL IOL = 100 µA
IOL = 8 mA
V
IOL = 16 mA
IOL = 24 mA
IOL = 32 mA
0.55
0.55
0-5.5
±1
±10
µA
0-5.5
±1
±10
µA
0.0
1
10
µA
VIN or VOUT = 5.5V
1.8-5.5
2.0
20
µA
VIN = 5.5V, GND
www.fairchildsemi.com
Powered by ICminer.com Electronic-Library Service CopyRight 2003
2
VIN = 5.5V, GND
VIN = VIH or VIL
VO = VCC or GND
Symbol
tPLH
tPLH
Propagation Delay
tPHL
tPZL
tPLZ
Min
Typ
Max
Min
Max
1.8
2
5.3
11
2
11.5
2.5 ± 0.2
0.8
3.4
7.5
0.8
8.0
3.3 ± 0.3
0.5
2.5
5.2
0.5
5.5
4.8
5.0 ± 0.5
0.5
2.1
4.5
0.5
3.3 ± 0.3
1.5
3.2
5.7
1.5
6.0
5.0 ± 0.5
0.8
2.6
5.0
0.8
5.3
Output Enable Time
tPZH
1.8
2.0
6.1
11.5
2
12
2.5 ± 0.2
1.5
3.8
8.0
1.5
8.5
3.3 ± 0.3
1.5
3.2
5.7
1.5
6.0
5.0 ± 0.5
0.8
2.3
5.0
0.8
5.3
1.8
2.0
5.6
11
2.0
12
2.5 ± 0.2
1.0
4.0
8.0
1.0
8.5
3.3 ± 0.3
1.0
3.5
5.7
1.0
6.0
5.0 ± 0.5
0.5
2.5
4.7
0.5
5.0
Output Disable Time
tPHZ
TA = −40°C to +85°C
(V)
Propagation Delay
tPHL
TA = +25°C
VCC
Parameter
CIN
Input Capacitance
0
4
COUT
Output Capacitance
0
8
CPD
Power Dissipation
3.3
17
Capacitance
5.0
24
Units
ns
ns
Conditions
CL = 15 pF, RD = 1 MΩ
S1 = OPEN
CL = 50 pF, RD = 500Ω
S1 = OPEN
Fig. No.
Figures
1, 3
Figures
1, 3
ns
CL = 50 pF, RD = 500Ω,
RU = 500Ω
Figures
S1 = GND for tPZH
1, 3
S1 = VI for tPZL
VI = 2 × VCC
ns
CL = 50 pF, RD = 500Ω,
RU = 500Ω
Figures
S1 = GND for tPHZ
1, 3
S1 = VI for tPLZ
VI = 2 × VCC
pF
pF
(Note 3)
Figure 2
Note 3: CPD is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (ICCD) at no output
loading and operating at 50% duty cycle. (See Figure 2.) CPD is related to ICCD dynamic operating current by the expression:
ICCD = (CPD) (V CC) (fIN) + (ICC static).
AC Loading and Waveforms
CL includes load and stray capacitance
Input PRR = 1.0 MHz, tw = 500 ns
FIGURE 1. AC Test Circuit
Input = AC Waveform; tr = tf = 1.8 ns;
PRR = 10 MHz; Duty Cycle = 50%
FIGURE 2. ICCD Test Circuit
FIGURE 3. AC Waveforms
3
Powered by ICminer.com Electronic-Library Service CopyRight 2003
www.fairchildsemi.com
NC7SZ126
AC Electrical Characteristics
NC7SZ126
Tape and Reel Specification
TAPE FORMAT
Package
Designator
Tape
Number
Cavity
Section
Cavities
Status
Status
125 (typ)
Empty
Sealed
Sealed
Leader (Start End)
M5, P5
Carrier
M5X, P5X
Cover Tape
250
Filled
Trailer (Hub End)
75 (typ)
Empty
Sealed
Leader (Start End)
125 (typ)
Empty
Sealed
3000
Filled
Sealed
75 (typ)
Empty
Sealed
Carrier
Trailer (Hub End)
TAPE DIMENSIONS inches (millimeters)
Package
SC70-5
SOT23-5
Tape Size
8 mm
8 mm
DIM A
DIM B
0.093
0.096
(2.35)
(2.45)
0.130
0.130
(3.3)
(3.3)
www.fairchildsemi.com
Powered by ICminer.com Electronic-Library Service CopyRight 2003
DIM F
DIM Ko
0.138 ± 0.004 0.053 ± 0.004
(3.5 ± 0.10)
(1.35 ± 0.10)
0.138 ± 0.002 0.055 ± 0.004
(3.5 ± 0.05)
4
(1.4 ± 0.11)
DIM P1
DIM W
0.157
0.315 ± 0.004
(4)
(8 ± 0.1)
0.157
0.315 ± 0.012
(4)
(8 ± 0.3)
NC7SZ126
Tape and Reel Specification
(Continued)
REEL DIMENSIONS inches (millimeters)
Tape
Size
8 mm
A
B
C
D
N
W1
W2
W3
7.0
0.059
0.512
0.795
2.165
0.331 + 0.059/−0.000
0.567
W1 + 0.078/−0.039
(177.8)
(1.50)
(13.00)
(20.20)
(55.00)
(8.40 + 1.50/−0.00)
(14.40)
(W1 + 2.00/−1.00)
5
Powered by ICminer.com Electronic-Library Service CopyRight 2003
www.fairchildsemi.com
NC7SZ126
Physical Dimensions inches (millimeters) unless otherwise noted
5-Lead SOT23, JEDEC MO-178, 1.6mm
Package Number MA05B
www.fairchildsemi.com
Powered by ICminer.com Electronic-Library Service CopyRight 2003
6
NC7SZ126 TinyLogic UHS Buffer with 3-STATE Output
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)
5-Lead SC70, EIAJ SC-88a, 1.25mm Wide
Package Number MAA05A
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and
Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD
SEMICONDUCTOR CORPORATION. As used herein:
2. A critical component in any component of a life support
device or system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the
body, or (b) support or sustain life, and (c) whose failure
to perform when properly used in accordance with
instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
user.
www.fairchildsemi.com
7
Powered by ICminer.com Electronic-Library Service CopyRight 2003
www.fairchildsemi.com