Murata NCA0101501B0-XC Non-isolated 10a sip/smt dc/dc Datasheet

Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
Features:
9 Small size, minimal footprint – SMT/SIP package
9 10A Output Current (all voltages)
9 High Efficiency: up to 95%
9 High reliability
9 RoHS Compliant
9 Cost efficient open frame design
9 Output voltage programmable by an external resistor.
9 Monotonic Startup with Pre-Bias
9 +’ve Enable Logic and –‘ve Enable Logic models available
9 Optional Power Good Signal
9 Sequencing / Tracking Feature
Output
PARD
(mVp-p)
Regulation
Max
Input
Vin
Nom.
(V)
Range
(V)
Iin
Typ
(A)
Efficiency
Vout
(V)
Iout
(A)
0.75
10
Typ.
50
Max.
75
Line
+/-0.2%
Load
+/-0.5%
12
6.0 – 14
0.8
Typ.
80%
1.2
10
50
75
+/-0.2%
+/-0.5%
12
6.0 – 14
1.2
86%
1.5
10
50
75
+/-0.2%
+/-0.5%
12
6.0 – 14
1.4
89%
1.8
10
50
75
+/-0.2%
+/-0.5%
12
6.0 – 14
1.7
90%
2.0
10
50
75
+/-0.2%
+/-0.5%
12
6.0 – 14
1.8
91%
2.5
10
50
75
+/-0.2%
+/-0.5%
12
6.0 – 14
2.3
92%
3.3
10
50
75
+/-0.2%
+/-0.5%
12
6.0 – 14
3.0
93%
5.0
10
50
75
+/-0.2%
+/-0.5%
12
6.5 – 14
4.4
95%
Full Load
Technical enquiries email: [email protected], tel: +508 339 3000
1
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
Input Characteristics
Input Voltage Operating Range
Input Reflected Ripple Current
Inrush Current Transient
Input Filter Type (external)
Input Turn ON Threshold
Input Turn OFF Threshold
Enable
(Positive enable has 20K pullup)
(Negative enable has no internal
pullup resistor)
Output Characteristics
Vout Accuracy
Output Loading
Output Ripple & Noise
@ 20Mhz Bandwidth.
Maximum Capacitive Load
Vout Trim Range (Nom)
Total Accuracy
Current Limit
Output Line Regulation
Output Load Regulation
Turn-on Overshoot
SC Protection Technique
Pre-bias Start-up at output
Dynamic Characteristics
Load Transient
Operating Frequency
Rise Time
Start-Up Time
General Specifications
MTBF
Thermal Protection
Operating Ambient Temperature
Operating Ambient Temperature
SIP Dimensions
SMT Dimensions
SIP Pin Dimensions
SMT Block Dimensions
Pin and Block Material
Flammability Rating
Notes & Conditions
Minimum 6.5 V input @ 5 volts output
Min
6.0
Typ.
12
200
Max
14
0.2
Positive enable: ON
Positive enable: OFF
Negative enable: ON; open circuit or
Negative enable: OFF
Notes & Conditions
100% load
100
5.0
4.0
open
<0.4
<0.4
2
Min
-1.5
0
Vdc
Vdc
Vin
Typ.
Low ESR
0.75
Over line/load temperature
Units
Vdc
mA p-p
A2s
μF
V
V
Max
+1.5
10
75
Units
%
A
mVp-p
8000
5.0
μF
V
+0.2
+0.5
1
A
%
%
%
<2%
23
-0.2
-0.5
Hiccup with auto recovery
Unit starts monotonically with prebias
Notes & Conditions
50% step, 0.1A/μs
Settling Time
Min
2
Max
100
200
Units
mV
μs
KHz
ms
ms
Max
Units
KHrs
°C
°C
°C
300
3.5
7
10% Vo to 90% Vo
Vin to Vout and On/Off to Vout
Vout rise to monotonic
Notes & Conditions
Calculated (MIL-HDBK-217F)
See thermal derating text
Without derating 300LFM
See Power derating curve
2”Lx0.327”Wx0.512”H
(50.8x8.3x13.0mm)
1.30”Lx0.53”Wx0.366”H
(33x13.46x9.3mm)
0.025” (0.64mm) SQUARE
0.063” x0.065” x 0.112” , SQUARE
Matte Sn Finish on component
Leads
UL94V-0
Typ.
Min
Typ.
919.53
110
-40
-40
50
85
0.64
mm
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
Standards Compliance
CSA C22.2, No.60950/UL 60950, Third Edition (2000), File UL E165113
Thermal Considerations
The power module operates in a variety of thermal environments; however, sufficient cooling should
be provided to help ensure reliable operation of the unit.
The thermal data presented is based on measurements taken at various airflows. Note that airflow is
parallel to the long axis of the module as shown in Figure 1 and derating applies accordingly.
Figure 1. Thermal Tests Set-Up.
The temperature at either location should not exceed 110°C. Over-temperature shutdown is
evaluated at these locations. The output power of the module should not exceed the rated power for
the module(Vo,set X Io,max).
Requirements for Cooling
To predict the approximate cooling needed for the module, refer to the Power Derating Curves in
Figures 2-17 .
These derating curves are approximations of the ambient temperature and airflow required to keep
the power module temperature below it's maximum rating. Once the module is assembled in the
actual system, the module's temperature should be verified.
3
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
TYPICAL DERATING CURVES SIP/SMT VERSION
SMT10W-12S05A
Vo=0.75V
Derating
Curve
NFA010
SMT Derating
Curve
Vout=0.75V
12
8
0LFM
6
100LFM
4
200LFM
300LFM
2
0
30
40
50
60
70
80
90
Ambient Temperature (C)
Fig. 2. SMT Power Derating vs Output Current for 12Vin 0.75V Out.
SIP10W-1
Derating
Curve V1
.0 Vout=0.75V
NFA010
SIP2S05A
Derating
Curve
Vout=0.75V
12
Output Current (A)
Output Current (A)
10
10
8
0LFM
6
100LFM
4
200LFM
2
300LFM
0
30
40
50
60
70
80
90
A mbient T emperature(C )
Fig. 3. SIP Power Derating vs Output Current for 12Vin 0.75V Out.
4
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
SMT10W-12S05A
Vo=1.2V
Derating
Curve
NFA010
SMT Derating
Curve
Vout=1.2V
12
8
6
0LFM
100LFM
4
200LFM
300LFM
2
0
30
40
50
60
70
80
90
Ambient Temperature (C)
Fig 4. SMT Power Derating vs Output Current for 12Vin 1.2V Out.
SIP10W-12S05A Derating Curve V1.0 Vout=1.2V
NFA010
SIP Derating Curve Vout=1.2V
12
Output Current (A)
Output Current (A
10
10
8
0LFM
6
100LFM
4
200LFM
2
300LFM
0
30
40
50
60
70
80
90
A mbient T emperature(C )
Fig 5. SIP Power Derating vs Output Current for 12Vin 1.2V Out.
5
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
SMT10W-12S05A
Vo=1.5V
Derating
Curve
NFA010
SMT Derating
Curve
Vout=1.5V
12
8
6
0LFM
100LFM
4
200LFM
300LFM
2
0
30
40
50
60
70
80
90
Ambient Temperature (C)
Fig 6. SMT Power Derating vs Output Current for 12Vin 1.5V Out.
SIP10W-12S05A Derating Curve V1.0 Vout=1.5V
NFA010 SIP Derating Curve Vout=1.5V
12
Output Current (A)
Output Current (A)
10
10
8
0LFM
6
100LFM
4
200LFM
2
300LFM
0
30
40
50
60
70
80
90
A mbient T emperature(C )
Fig 7. SIP Power Derating vs Output Current for 12Vin 1.5V Out.
6
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
SMT10W-12S05A
Vo=1.8V
Derating
Curve
NFA010
SMT Derating
Curve
Vout=1.8V
Output Current (A)
12
10
8
0LFM
6
100LFM
4
200LFM
300LFM
2
0
30
40
50
60
70
80
90
Ambient Temperature (C)
Fig 8. SMT Power Derating vs Output Current for 12Vin 1.8V Out.
SIP10W-1
2S05A
DeratingCurve
Curve V1Vout=1.8V
.0 Vout=1.8V
NFA010
SIP
Derating
Output Current (A)
12
10
8
0LFM
100LFM
6
4
200LFM
300LFM
2
0
30
40
50
60
70
80
90
A mbient T emperature(C )
Fig 9. SIP Power Derating vs Output Current for 12Vin 1.8V Out.
7
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
SMT10W-12S05A
Vo=2.0V
Derating
Curve
NFA010
SMT Derating
Curve
Vout=2.0V
12
8
0LFM
6
100LFM
4
200LFM
300LFM
2
0
30
40
50
60
70
80
90
Ambient Temperature (C)
Fig 10. SMT Power Derating vs Output Current for 12Vin 2.0V Out.
SIP10W-12S05A Derating Curve V1.0 Vout=2.0V
NFA010
SIP Derating Curve Vout=2.0V
12
Output Current (A)
Output Current (A)
10
10
8
6
0LFM
4
100LFM
200LFM
2
300LFM
0
30
40
50
60
70
80
90
A mbient T emperature(C )
Fig 11. SIP Power Derating vs Output Current for 12Vin 2.0V Out.
8
NFA010_6200880000_ B01_21/04/08
Non-Isolated 10A SIP/SMT DC/DC
Murata Power Solutions
VOLANT NFA010 SERIES
SMT10W-12S05A
Vo=2.5VCurve
DeratingVout=2.5V
Curve
NFA010
SMT Derating
10
8
6
0LFM
100LFM
4
200LFM
2
300LFM
0
30
40
50
60
70
80
90
Ambient Temperature (C)
Fig 12. SMT Power Derating vs Output Current for 12Vin 2.5V Out.
SIP10W-1SIP
2S05A
derating curve
V1.0Vout=2.5V
Vout=2.5V
NFA010
Derating
Curve
12
Output Current (A)
Output Current (A)
12
10
8
6
0LFM
4
100LFM
200LFM
2
300LFM
0
30
40
50
60
Ambient
70
80
90
Temperature(oC)
Fig 13. SIP Power Derating vs Output Current for 12Vin 2.5V Out.
9
NFA010_6200880000_ B01_21/04/08
Non-Isolated 10A SIP/SMT DC/DC
Murata Power Solutions
VOLANT NFA010 SERIES
SMT10W-12S05A Vo=3.3V Derating Curve
NFA010 SMT Derating Curve Vout=3.3V
Output Current (A)
12
10
8
0LFM
6
100LFM
4
200LFM
2
300LFM
0
30
40
50
60
70
80
90
Ambient Temperature (C)
Fig. 14. SMT Power Derating vs Output Current for 12Vin 3.3V Out.
SIP10W-1
2S05A
Derating Curve
Curve V1Vout=3.3V
.2 Vout=3.3V
NFA010
SIP
Derating
12
Output Current (A)
10
8
6
0LFM
4
100LFM
200LFM
2
300LFM
0
30
40
50
60
Ambient
70
80
90
Temperature(oC)
Fig 15. SIP Power Derating vs Output Current for 12Vin 3.3V Out.
10
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
SMT10W-12S05A Vo=5.0V Derating Curve
NFA010
SMT Derating Curve Vout=5.0V
Output Current (A
12
10
8
0LFM
6
100LFM
4
200LFM
2
300LFM
0
30
40
50
60
70
80
90
Ambient Temperature (C)
Fig. 16. SMT Power Derating vs Output Current for 12Vin 5.0V Out
SIP10W-12S05A
Derating Curve
V1.0 Vout=5.0V
Vout=5.0V
NFA010
SIP Derating
Curve
Output Current (A)
12
10
8
0LFM
6
100LFM
4
200LFM
2
300LFM
0
30
40
50
60
Ambient
70
80
90
Temperature(oC)
Fig 17. SIP Power Derating vs Output Current for 12Vin 5.0V Out.
11
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
TYPICAL EFFICIENCY CURVES FOR VARIOUS VOLTAGE MODELS SIP/SMT VERSION.
NFA010
SMT EfficiencyVo:
Curve
Vout=0.75V
SMT10W-12S05A
0.75V
(Eff Vs Io)
Efficiency (%
95%
85%
75%
6V
12V
14V
65%
55%
0
1
2
3
4
5
6
7
8
9
10
8
9
10
Current Load (A)
Fig 18. SMT Efficiency Curves for Vout=075V (25C)
NFA010 SIP
Efficiency Curve
SIP10W-12S05A
Vo:Vout=0.75V
0.75V (Eff Vs Io)
Efficiency (%
95%
85%
75%
6V
12V
14V
65%
55%
0
1
2
3
4
5
6
7
Current Load (A)
Fig 19. SIP Efficiency Curves for Vout=0.75V (25C)
12
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
NFA010 SMT10W-12S05A
SMT Efficiency Curve
Vout=1.2V
Vo: 1.2V
(Eff Vs Io)
Efficiency (%
95%
85%
75%
6V
12V
14V
65%
55%
0
1
2
3
4
5
6
7
8
9
10
8
9
10
Current Load (A)
Fig 20. SMT Efficiency Curves for Vout=1.2V (25C)
NFA010 SIP
Efficiency Curve
SIP10W-12S05A
Vo: Vout=1.2V
1.2V (Eff Vs Io)
100%
Efficiency (%
90%
80%
6V
12V
14V
70%
60%
0
1
2
3
4
5
6
7
Current Load (A)
Fig 21. SIP Efficiency Curves for Vout=1.2V (25C)
13
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
SMT10W-12S05A
Vo: Vout=1.5V
1.5V (Eff Vs Io)
NFA010 SMT
Efficiency Curve
Efficiency (%
95%
85%
75%
6V
12V
14V
65%
55%
0
1
2
3
4
5
6
7
8
9
10
8
9
10
Current Load (A)
Fig 22. SMT Efficiency Curves for Vout=1.5V (25C)
SIP10W-12S05A
Vo: Vout=1.5V
1.5V (Eff Vs Io)
NFA010
SIP Efficiency Curve
100%
Efficiency (%
95%
90%
85%
6V
80%
12V
14V
75%
70%
0
1
2
3
4
5
6
7
Current Load (A)
Fig 23. SIP Efficiency Curves for Vout=1.5V (25C)
14
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
Vo: 1.8V
(Eff Vs Io)
NFA010SMT10W-12S05A
SMT Efficiency Curve
Vout=1.8V
Efficiency (%
95%
85%
75%
6V
12V
14V
65%
55%
0
1
2
3
4
5
6
7
8
9
10
8
9
10
Current Load (A)
Fig 24. SMT Efficiency Curves for Vout=1.8V (25C)
NFA010
SIP EfficiencyVo:
Curve
SIP10W-12S05A
1.8VVout=1.8V
(Eff Vs Io)
100%
Efficiency (%
95%
90%
85%
6V
12V
80%
14V
75%
70%
0
1
2
3
4
5
6
7
Current Load (A)
Fig 25. SIP Efficiency Curves for Vout=1.8V (25C)
15
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
Vo: 2.0V
(Eff Vs Io)
NFA010 SMT10W-12S05A
SMT Efficiency Curve
Vout=2.0V
95%
85%
6V
75%
12V
14V
65%
55%
0
1
2
3
4
5
6
7
8
9
10
8
9
10
Fig 26. SMT Efficiency Curves for Vout=2.0V (25C)
NFA010 SIP10W-12S05A
SIP Efficiency Curve
Vout=2.0V
Vo: 2.0V
(Eff Vs Io)
100%
Efficiency (%
95%
90%
85%
6V
12V
80%
14V
75%
70%
0
1
2
3
4
5
6
7
Current Load (A)
Fig 27. SIP Efficiency Curves for Vout=2.0V (25C)
16
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
SMT10W-12S05A
Vo: Vout=2.5V
2.5V (Eff Vs Io)
NFA010 SMT
Efficiency Curve
95%
85%
6V
75%
12V
14V
65%
55%
0
1
2
3
4
5
6
7
8
9
10
8
9
10
Fig 28. SMT Efficiency Curves for Vout=2.5V (25C)
NFA010
SIP Efficiency Curve
Vout=2.5V
SIP10W-12S05A
Vo: 2.5V
(Eff Vs Io)
100%
Efficiency (%
95%
90%
85%
6V
12V
80%
14V
75%
70%
0
1
2
3
4
5
6
7
Current Load (A)
Fig 29. SIP Efficiency Curves for Vout=2.5V (25C)
17
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
NFA010 SMTSMT10W-12S05A
Efficiency Curve Vo:
Vout=3.3V
3.3V (Eff Vs Io)
95%
85%
6V
75%
12V
14V
65%
55%
0
1
2
3
4
5
6
7
8
9
10
8
9
10
Fig 30. SMT Efficiency Curves for Vout=3.3V (25C)
NFA010SIP10W-12S05A
SIP Efficiency Curve
Vout=3.3V
Vo:3.3V
(Eff Vs Io)
100%
Efficiency (%
95%
90%
85%
6V
12V
80%
14V
75%
70%
0
1
2
3
4
5
6
7
Current Load (A)
Fig 31. SIP Efficiency Curves for Vout=3.3V (25C)
18
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
SMT10W-12S05A
05.0V
(Eff Vs Io)
NFA010
SMT EfficiencyVo:
Curve
Vout=5.0V
Efficiency (%
95%
85%
75%
6.5V
12V
14V
65%
55%
0
1
2
3
4
5
6
7
8
9
10
8
9
10
Current Load (A)
Fig 32. SMT Efficiency Curves for Vout=5.0V (25C)
NFA010
SIP EfficiencyVo:
Curve
SIP10W-12S05A
5.0VVout=5.0V
(Eff Vs Io)
100%
Efficiency (%
95%
90%
6.5V
85%
12V
14V
80%
75%
0
1
2
3
4
5
6
7
Current Load (A)
Fig 33. SIP Efficiency Curves for Vout=5.0V (25C)
19
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
Typical Start Up
Ch1. Vin
Ch2. Vout, Full load.
Ch3. Q1-Vgs
Ch4. Q2-Vgs
Typical Start Up with pre-bias
Ch1 : Enable
Ch2 : Vout
Ch3 : Output current at Full Load.
20
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
Typical Output Noise and Ripple
Vin = 12Vdc , Vo=5.0V/10A
Output with 1uF ceramic and 10uF tantalum capacitor
Typical Output Transient Response
Vin = 12Vdc , Vo=5.0V , 50% - 100% - 50% Load change , @0.1A/uS
21
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
Output Voltage Set point adjustment.
NFA Series converters can be programmed by applying a voltage between the TRIM and GND pins
(Figure below). The following equation can be used to determine the value of Vtrim needed to obtain a
desired output voltage Vo:
For example, to program the output voltage of NFA Series module to 3.3 Vdc, Vtrim is calculated as
follows:
Circuit Configuration for programming Output voltage using external voltage source
Table 1 provides Rtrim values for some common output voltages, whileTable 2 provides values of the
external voltage source, Vtrim for the same common output voltages.
Table 1
Table 2
By using a 1% tolerance trim resistor, set point tolerance of ±2% is achieved as specified in the
electrical specification.
22
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
Remote Sense:
All Celestica SMT/SIP power modules offer an option for remote sense. The remote sense compensates for any
distribution drops to accurately control voltage at the point of load. The voltage between the sense pin to Vout
pin should not exceed 0.5V.
Voltage Sequencing:
NFA series power modules offer the ability to precisely sequence output voltage rise. The sequence feature
limits the output voltage to that presented at the Sequence pin. For example, if the sequence pin is connected
to a variable voltage source, and the converter is enabled, output voltage will track the voltage applied to the
sequence pin, to a maximum of the programmed output voltage. If this feature is not required, the sequence pin
should remain unconnected. In practice, the Sequence pin of a lower voltage converter may be connected to a
higher voltage source to ensure the lower voltage does not exceed the higher voltage during power on and
power off. If multiple NFA series converters are used, all Sequence pins may be connected to the same higher
voltage. In this way, all voltage rails will rise at the same rate, and cease to rise at their respective programmed
output voltages.
SMT Lead free Reflow profile
1. Ramp up rate during preheat : 1.33 ℃/Sec ( From 30℃ to 150℃ )
2. Soaking temperature : 0.29 ℃/Sec ( From 150℃ to 180℃ )
3. Ramp up rate during reflow : 0.8 ℃/Sec ( From 220℃ to 250℃ )
4. Peak temperature : 250℃, above 220℃ 40 to 70 Seconds
5. Ramp up rate during cooling : -1.56 ℃/Sec ( From 220℃ to 150℃ )
23
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
Mechanical and pinning Information.
Given below is the outline drawing showing physical dimensions of the SIP & SMT package.
The external dimensions for SMT package are 33.00mm X 13.46mm X 9.3mm.
BOTTOM VIEW OF BOARD
Recommended Pad Layout
33.0
(1.30)
3.05 (0.120)
4.83
4.83
4.83
8.80
(0.346)
max.
7.54 (0.297)
4.83
4.83
COM
+VO
4.83
1.65
(0.065)
(0.190) (0.190) (0.190) (0.190) (0.190)
SEQ
Dimensions are in millimetes and(inches)
7.54(0.297)
PGood +SENSE TRIM
TRIM +SENSE PGood
10.29
(0.405)
SURFACE MOUNT CONTACT
4.83
+VO
COM
SEQ
10.92
(0.430)
Top View of Board
0.64
(0.025)
1.91 (0.075)
1.22
(0.048)
2.84
(0.112)
3.05 (0.120)
4.83
ON/OFF
ON/OFF
+VIN
4.83
(0.190) (0.190) (0.190) (0.190) (0.190)
10.29 13.46
(0.405) (0.530)
1.60
(0.063)
4.83
+VIN
29.90
(1.177)
L1 INDUCTOR
PAD SIZE
MIN:3.556x2.413(0.140x0.095)
MAX:4.19x2.79(0.165x0.110)
Dimensions are in millimeters(Inches)
Tolerances : X.X = ±0.5mm(0.02in), X.XX = ±0.25mm(0.010in),unless otherwise noted.
Whereas, the external dimensions of the SIP version are 50.8mm X 12.95mm X 8.30mm.
SIZE SIP
0.327(8.30)max.
2.00(50.8)
0.23(5.8)
6 7 8 9 10 11 12
1 2 3 4 5
0.14(3.6)
0.510(12.95)
0.100(2.54)
0.010(0.25)
min.
0.025(0.64)
0.900(22.90)
0.050(1.30)
0.28(7.1)
0.025(0.64)
0.400(10.20)
0.29(7.4)
LAYOUT PATTERN
TOP VIEW
All Dimmension In Inches(mm)
Tolerance :
.XX= ± 0.02 ( .X= ± 0.5 )
.XXX= ± 0.010 ( .XX= ± 0.25 )
0.33(8.4)
1.1mm PLATED THROUGH HOLE
1.6mm PAD SIZE
24
PIN CONNECTION
Pin FUNCTION
+Output
1
+Output
2
3
+Sense
+Output
4
5
Common
PGood
6
Common
7
+V Input
8
+V Input
9
Sequence
10
Sequency
11 Trim
12 On/Off Control
NFA010_6200880000_ B01_21/04/08
Murata Power Solutions
Non-Isolated 10A SIP/SMT DC/DC
VOLANT NFA010 SERIES
Safety Considerations (Approvals Pending)
The NFA series of converters are certified to IEC/EN/CSA/UL 60950. If this product is built into information technology
equipment, the installation must comply with the above standard. An external input fuse (no more 20 A recommended)
must be used to meet the above requirements. The output of the converter [Vo(+)/Vo(-)] is considered to remain within
SELV limits when the input to the converter meets SELV or TNV-2 requirements.
The converters and materials meet UL 94V-0 flammability ratings.
Ordering Information
Part Number
NFA0101500B0C
NFA0101500S0C
NFA0101501B0C
NFA0101501S0C
Vin*
6.0V - 14.0V
6.0V - 14.0V
6.0V - 14.0V
6.0V - 14.0V
Vout
0.75V – 5.0V
0.75V – 5.0V
0.75V – 5.0V
0.75V – 5.0V
Iout
10A
10A
10A
10A
Enable Logic
Negative
Negative
Positive
Positive
Pin Length
0.139"
SMT
0.139"
SMT
* An input voltage of 6.5 Volts is required for 5 Volt output at full load.
Label Information
NFA0101500B0–XC
C = RoHS Compliant
Iout
X = Factory control character
(not required when ordering)
Vout
0 = Standard. (No PGood option)
P = Power Good Option
Place Holder
Vout Range
F=Fixed
A=Adjustable
Vin (value or range)
C= 3.3V-5.0V
E= 8.3V-14V
F= 6.0V-14V
Pin Length Option
B=0.139”
S=SMT
Enable Logic, 0 for–ve, 1 for +ve
Non-Isolated Family
RoHS Compliant
The NFA series of converters is in compliance with the European Union Directive 2002/95/EC (RoHS) with repsect to the following sustances: lead
(Pb), mercury (Hg), cadmium (Cd), hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE).
25
NFA010_6200880000_ B01_21/04/08
Similar pages