ONSEMI NLAS4051DR2G

NLAS4051
Analog Multiplexer/
Demultiplexer
TTL Compatible, Single−Pole, 8−Position
Plus Common Off
http://onsemi.com
The NLAS4051 is an improved version of the MC14051 and
MC74HC4051 fabricated in sub−micron Silicon Gate CMOS
technology for lower RDS(on) resistance and improved linearity with
low current. This device may be operated either with a single supply or
dual supply up to ±3.0 V to pass a 6.0 VPP signal without coupling
capacitors.
When operating in single supply mode, it is only necessary to tie
VEE, pin 7 to ground. For dual supply operation, VEE is tied to a
negative voltage, not to exceed maximum ratings.
MARKING
DIAGRAMS
16
SOIC−16
D SUFFIX
CASE 751B
1
1
16
Features
• Improved RDS(on) Specifications
• Pin for Pin Replacement for MAX4051 and MAX4051A
•
1
One Half the Resistance Operating at 5.0 V
Single or Dual Supply Operation
♦ Single 2.5−5.0 V Operation, or Dual ±3.0 V Operation
♦ With VCC of 3.0 to 3.3 V, Device Can Interface with 1.8 V
Logic, No Translators Needed
♦ Address and Inhibit Logic are Over−Voltage Tolerant and May
Be Driven Up +6.0 V Regardless of VCC
Improved Linearity Over Standard HC4051 Devices
Packages
Pb−Free Packages are Available*
VCC
16
1
NO1
NO2
NO4
NO0
NO6 ADDC ADDB ADDA
15
14
13
12
2
3
NO3 COM
4
5
NO7
NO5
11
6
10
7
Inhibit VEE
NLAS
4051
ALYWG
G
TSSOP−16
DT SUFFIX
CASE 948F
♦
•
• Popular SOIC, and Space Saving TSSOP, and QSOP 16 Pin
•
NLAS4051G
AWLYWW
1
16
QSOP−16
QS SUFFIX
CASE 492
1
S4051
ALYW
1
A
WL, L
Y
WW, W
G or G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
Package
Shipping †
NLAS4051DR2
SOIC−16
2500/Tape & Reel
NLAS4051DR2G
SOIC−16
(Pb−Free)
2500/Tape & Reel
NLAS4051DTR2
TSSOP−16 2500/Tape & Reel
Device
9
NLAS4051DTR2G TSSOP−16 2500/Tape & Reel
(Pb−Free)
8
GND
NLAS4051QSR
Figure 1. Pin Connection
(Top View)
QSOP−16
2500/Tape & Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2006
May, 2006 − Rev. 3
1
Publication Order Number:
NLAS4051/D
NLAS4051
NO0
TRUTH TABLE
Address
NO1
Inhibit
C
B
A
ON SWITCHES*
1
X
don’t care
X
don’t care
X
don’t care
All switches open
0
0
0
0
COM−NO0
0
0
0
1
COM−NO1
NO4
0
0
1
0
COM−NO2
NO5
0
0
1
1
COM−NO3
0
1
0
0
COM−NO4
0
1
0
1
COM−NO5
0
1
1
0
COM−NO6
0
1
1
1
COM−NO7
NO2
NO3
COM
NO6
NO7
ADDC
ADDB
ADDA
*NO and COM pins are identical and interchangeable. Either may be considered
an input or output; signals pass equally well in either direction.
LOGIC
Inhibit
Figure 2. Logic Diagram
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Symbol
Value
Unit
Negative DC Supply Voltage
Parameter
(Referenced to GND)
VEE
−7.0 to )0.5
V
Positive DC Supply Voltage (Note 1)
(Referenced to GND)
(Referenced to VEE)
VCC
−0.5 to )7.0
−0.5 to )7.0
V
VIS
VEE −0.5 to VCC )0.5
V
VIN
−0.5 to 7.0
V
I
$50
mA
−65 to )150
_C
Analog Input Voltage
Digital Input Voltage
(Referenced to GND)
DC Current, Into or Out of Any Pin
Storage Temperature Range
TSTG
Lead Temperature, 1 mm from Case for 10 Seconds
TL
260
_C
Junction Temperature under Bias
TJ
)150
_C
Thermal Resistance
SOIC
TSSOP
QSOP
JA
143
164
164
°C/W
Power Dissipation in Still Air,
SOIC
TSSOP
QSOP
PD
500
450
450
mW
MSL
Level 1
FR
UL 94 V−0 @ 0.125 in
VESD
u2000
u200
u1000
V
ILATCHUP
$300
mA
Moisture Sensitivity
Flammability Rating
ESD Withstand Voltage
Latchup Performance
Oxygen Index: 30% − 35%
Human Body Model (Note 2)
Machine Model (Note 3)
Charged Device Model (Note 4)
Above VCC and Below GND at 125°C (Note 5)
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. The absolute value of VCC $|VEE| ≤ 7.0.
2. Tested to EIA/JESD22−A114−A.
3. Tested to EIA/JESD22−A115−A.
4. Tested to JESD22−C101−A.
5. Tested to EIA/JESD78.
http://onsemi.com
2
NLAS4051
ÎÎÎÎÎ
ÎÎÎÎÎ ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎ
RECOMMENDED OPERATING CONDITIONS
Symbol
Min
Max
Unit
Negative DC Supply Voltage
Parameter
(Referenced to GND)
VEE
−5.5
GND
V
Positive DC Supply Voltage
(Referenced to GND)
(Referenced to VEE)
VCC
2.5
2.5
5.5
6.6
V
VIS
VEE
VCC
V
(Note 6) (Referenced to GND)
VIN
0
5.5
V
TA
−55
125
_C
tr, tf
0
0
100
20
ns/V
Analog Input Voltage
Digital Input Voltage
Operating Temperature Range, All Package Types
VCC = 3.0 V $ 0.3 V
VCC = 5.0 V $ 0.5 V
Input Rise/Fall Time
(Channel Select or Enable Inputs)
6. Unused digital inputs may not be left open. All digital inputs must be tied to a high−logic voltage level or a low−logic input voltage level.
DC CHARACTERISTICS − Digital Section (Voltages Referenced to GND)
Parameter
Symbol
Condition
Guaranteed Limit
VCC
V
−55 to 25°C
v85°C
v125°C
Unit
Minimum High−Level Input Voltage,
Address and Inhibit Inputs
VIH
2.5
3.0
4.5
5.5
1.75
2.1
3.15
3.85
1.75
2.1
3.15
3.85
1.75
2.1
3.15
3.85
V
Maximum Low−Level Input Voltage,
Address and Inhibit Inputs
VIL
2.5
3.0
4.5
5.5
.45
0.9
1.35
1.65
.45
0.9
1.35
1.65
.45
0.9
1.35
1.65
V
VIN = 6.0 or GND
IIN
0 V to 6.0 V
$0.1
$1.0
$1.0
A
Address, Inhibit and
VIS = VCC or GND
ICC
6.0
4.0
40
80
A
Maximum Input Leakage Current,
Address or Inhibit Inputs
Maximum Quiescent Supply Current
(per Package)
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ ÎÎÎ
ÎÎÎ
ÎÎÎÎ
DC ELECTRICAL CHARACTERISTICS − Analog Section
Symbol
Parameter
Guaranteed Limit
VCC
V
VEE
V
−55 to 25°C
v85_C
v125_C
Unit
RON
3.0
4.5
3.0
0
0
−3.0
86
37
26
108
46
33
120
55
37
Test Conditions
Maximum “ON” Resistance
(Note 7)
VIN = VIL or VIH
VIS = (VEE to VCC)
|IS| = 10 mA
(Figures 4 thru 9)
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
VIN = VIL or VIH, VIS= 2.0 V
VIS = ½ (VCC − VEE), VIS= 3.0 V
|IS| = 10 mA, VIS= 2.0 V
RON
3.0
4.5
3.0
0
0
−3.0
15
13
10
20
18
15
20
18
15
ON Resistance Flatness
|IS| = 10 mA VCOM = 1, 2, 3.5 V
VCOM = 2, 0, 2 V
Rflat(ON)
4.5
3.0
4
2
4
2
5
3
3.0
Maximum Off−Channel
Leakage Current
Switch Off
VIN = VIL or VIH
VIO = VCC −1.0 V or VEE +1.0 V
(Figure 17)
INC(OFF)
INO(OFF)
6.0
3.0
0
−3.0
0.1
0.1
5.0
5.0
100
100
nA
Maximum On−Channel
Leakage Current,
Channel− to−Channel
Switch On
VIO = VCC −1.0 V or VEE +1.0 V
(Figure 17)
ICOM(ON)
6.0
3.0
0
−3.0
0.1
0.1
5.0
5.0
100
100
nA
7. At supply voltage (VCC) approaching 2.5 V the analog switch on−resistance becomes extremely non−linear. Therefore, for low voltage
operation it is recommended that these devices only be used to control digital signals.
http://onsemi.com
3
NLAS4051
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
AC CHARACTERISTICS (Input tr = tf = 3 ns)
Guaranteed Limit
Parameter
Minimum Break−Before−
Make Time
Symbol
Test Conditions
VIN = VIL or VIH
VIS = VCC
RL = 300 CL = 35 pF
(Figure 19)
−55 to 25_C
VCC
V
VEE
V
Min
Typ*
v85_C
v125_C
Unit
3.0
4.5
3.0
0.0
0.0
−3.0
1.0
1.0
1.0
6.5
5.0
3.5
−
−
−
−
−
−
ns
tBBM
*Typical Characteristics are at 25_C.
AC CHARACTERISTICS (CL = 35 pF, Input tr = tf = 3 ns)
Guaranteed Limit
v85°C
−55 to 25°C
VCC
V
VEE
V
tTRANS
2.5
3.0
4.5
3.0
Turn−on Time
(Figures 14, 15, 20, and 21)
Inhibit to NO or NC
tON
Turn−off Time
(Figures 14, 15, 20, and 21)
Inhibit to NO or NC
tOFF
Maximum Input Capacitance, Select Inputs
CIN
8
CNO or CNC
10
Common I/O
CCOM
10
Feedthrough
C(ON)
1.0
Symbol
Parameter
Transition Time
(Address Selection Time)
(Figure 18)
Min
Typ
Max
0
0
0
−3.0
22
20
16
16
40
28
23
23
2.5
3.0
4.5
3.0
0
0
0
−3.0
22
18
16
16
2.5
3.0
4.5
3.0
0
0
0
−3.0
22
18
16
16
Min
v125°C
Max
Min
Max
Unit
45
30
25
25
50
35
30
28
ns
40
28
23
23
45
30
25
25
50
35
30
28
ns
40
28
23
23
45
30
25
25
50
35
30
28
ns
Typical @ 25°C, VCC = 5.0 V
Analog I/O
pF
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)
Parameter
Condition
Symbol
Typ
VCC
V
VEE
V
25°C
Unit
Maximum On−Channel Bandwidth or
Minimum Frequency Response
VIS = ½ (VCC − VEE)
Source Amplitude = 0 dBm
(Figures 10 and 22)
BW
3.0
4.5
6.0
3.0
0.0
0.0
0.0
−3.0
80
90
95
95
MHz
Off−Channel Feedthrough Isolation
f =100 kHz; VIS = ½ (VCC − VEE)
Source = 0 dBm
(Figures 12 and 22)
VISO
3.0
4.5
6.0
3.0
0.0
0.0
0.0
−3.0
−93
−93
−93
−93
dB
Maximum Feedthrough On Loss
VIS = ½ (VCC − VEE)
Source = 0 dBm
(Figures 10 and 22)
VONL
3.0
4.5
6.0
3.0
0.0
0.0
0.0
−3.0
−2
−2
−2
−2
dB
Charge Injection
VIN = VCC to VEE, fIS = 1 kHz, tr = tf = 3 ns
RIS = 0 , CL= 1000 pF, Q = CL * VOUT
(Figures 16 and 23)
Q
5.0
3.0
0.0
−3.0
9.0
12
pC
Total Harmonic Distortion THD + Noise
fIS = 1 MHz, RL = 10 K, CL = 50 pF,
VIS = 5.0 VPP sine wave
VIS = 6.0 VPP sine wave
(Figure 13)
6.0
3.0
0.0
−3.0
0.10
0.05
http://onsemi.com
4
THD
%
NLAS4051
100
100
10
2.0 V
80
RON ()
ICC (nA)
1
0.1
0.01
40
VCC = 3.0 V
0.001
3.0 V
4.5 V
5.5 V
20
0.0001
VCC = 5.0 V
0.00001
−40
−20
0
20
60
80
100
0
−4.0
120
−2.0
0
2.0
4.0
6.0
Temperature (°C)
VIS (VDC)
Figure 3. ICC versus Temp, VCC = 3 V and 5 V
Figure 4. RON versus VCC, Temp = 255C
50
100
125°C
90
125°C
85°C
40
80
25°C
70
60
RON ()
RON ()
60
50
85°C
40
25°C
30
20
−55°C
30
10
20
−55°C
10
0
0
0.5
1.0
1.5
0
2.0
1.0
2.0
2.5
Figure 5. Typical On Resistance
VCC = 2.0 V, VEE = 0 V
Figure 6. Typical On Resistance
VCC = 3.0 V, VEE = 0 V
3.0
25
125°C
125°C
85°C
20
15
15
RON ()
20
25°C
10
85°C
10
25°C
−55°C
−55°C
5
5
0
0
1.5
VCom (V)
25
RON ()
0.5
VCom (V)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VCom (V)
VCom (V)
Figure 7. Typical On Resistance
VCC = 4.5 V, VEE = 0 V
Figure 8. Typical On Resistance
VCC = 5.5 V, VEE = 0 V
http://onsemi.com
5
4.0
4.5
NLAS4051
25
125°C
85°C
RON ()
20
15
10
−55°C
25°C
5
0
−4
−2
0
VCom (V)
2
4
Figure 9. Typical On Resistance
VCC = 3.3 V, VEE = −3.3 V
90
40
72
PHASE SHIFT 18%/DIV (dB)
50
BANDWIDTH (dB)
30
20
10
0
−10
BANDWIDTH (ON−RESPONSE)
−20
−30
−40
54
36
18
0
PHASE SHIFT
−18
−36
−54
−72
−50
−90
0.1
1.0
10
100
0.1
FREQUENCY (mHz)
1.0
10
100
FREQUENCY (mHz)
Figure 10. Bandwidth, VCC = 5.0 V
Figure 11. Phase Shift, VCC = 5.0 V
0
0
−20
DISTORTION (%)
OFF ISOLATION 10 dB/DIV
−10
−30
−40
−50
−60
−70
3.0
5.5
4.5
0.1
$3.3
−80
−90
−100
0.01
0.1
1.0
10
100
10
FREQUENCY (mHz)
100
1000
10000
10000
FREQUENCY (mHz)
Figure 12. Off Isolation, VCC = 5.0 V
Figure 13. Total Harmonic Distortion
http://onsemi.com
6
NLAS4051
30
30
VCC = 4.5 V
25
20
20
TIME (ns)
TIME (ns)
TA = 25_C
25
15
tON (ns)
10
15
tOFF (ns)
5
0
2.5
3
3.5
4
4.5
10
tON
5
tOFF
0
−55
5
−40
25
85
125
VCC (VOLTS)
Temperature (°C)
Figure 14. tON and tOFF versus VCC
Figure 15. tON and tOFF versus Temp
3.0
100
2.5
10
VCC = 5 V
LEAKAGE (nA)
Q (pC)
2.0
1.5
1.0
0.5
1
ICOM(ON)
0.1
ICOM(OFF)
VCC = 3 V
0.01
0
VCC = 5.0 V
INO(OFF)
−0.5
0.001
0
1
3
4
5
−55
−20
25
70
85
125
VCOM (V)
TEMPERATURE (°C)
Figure 16. Charge Injection versus COM Voltage
Figure 17. Switch Leakage versus Temperature
VCC
0.1 F
2
VCC
Output
VOUT
VEE
300 Input
50%
50%
0V
35 pF
VCC
90%
Output
Address Select Pin
VEE
10%
ttrans
Figure 18. Channel Selection Propagation Delay
http://onsemi.com
7
ttrans
NLAS4051
VCC
DUT
VCC
Input
Output
GND
VOUT
0.1 F
300 tBMM
35 pF
90%
90% of VOH
Output
Address Select Pin
GND
Figure 19. tBBM (Time Break−Before−Make)
VCC
DUT
Input
VCC
0.1 F
50%
0V
Output
VOUT
Open
50%
300 VOH
35 pF
90%
90%
Output
GND
Enable
Input
tON
tOFF
Figure 20. tON/tOFF
VCC
VCC
Input
DUT
Output
50%
300 VOUT
Open
50%
0V
VCC
35 pF
Output
Input
10%
VOL
Enable
tOFF
Figure 21. tON/tOFF
http://onsemi.com
8
10%
tON
NLAS4051
50 DUT
Reference
Transmitted
Input
Output
50 Generator
50 Channel switch Address and Inhibit/s test socket is normalized. Off isolation is measured across an off
channel. On loss is the bandwidth of an On switch. VISO, Bandwidth and VONL are independent of the input
signal direction.
ǒVVOUT
Ǔ for VIN at 100 kHz
IN
V
VONL = On Channel Loss = 20 Log ǒ OUTǓ for VIN at 100 kHz to 50 MHz
VIN
VISO = Off Channel Isolation = 20 Log
Bandwidth (BW) = the frequency 3 dB below VONL
Figure 22. Off Channel Isolation/On Channel Loss (BW)/Crosstalk
(On Channel to Off Channel)/VONL
DUT
VCC
VIN
Output
Open
GND
CL
Output
Off
Off
On
VIN
Figure 23. Charge Injection: (Q)
TYPICAL OPERATION
+5.0 V
16
+3.0 V
VCC
16
VEE
VEE
7
GND
8
GND
VCC
7
8
−3.0 V
Figure 24. 5.0 Volts Single Supply
VCC = 5.0 V, VEE = 0
Figure 25. Dual Supply
VCC = 3.0 V, VEE = −3.0 V
http://onsemi.com
9
VOUT
NLAS4051
PACKAGE DIMENSIONS
SOIC−16
D SUFFIX
CASE 751B−05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
−A−
16
9
−B−
1
P
8 PL
0.25 (0.010)
8
B
M
S
G
R
K
DIM
A
B
C
D
F
G
J
K
M
P
R
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
S
TSSOP−16
CASE 948F−01
ISSUE A
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
K
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
8
1
N
0.15 (0.006) T U
S
0.25 (0.010)
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
M
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
H
D
DETAIL E
G
http://onsemi.com
10
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
NLAS4051
PACKAGE DIMENSIONS
QSOP−16
QS SUFFIX
CASE 492−01
ISSUE O
−A−
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. THE BOTTOM PACKAGE SHALL BE BIGGER THAN
THE TOP PACKAGE BY 4 MILS (NOTE: LEAD SIDE
ONLY). BOTTOM PACKAGE DIMENSION SHALL
FOLLOW THE DIMENSION STATED IN THIS
DRAWING.
4. PLASTIC DIMENSIONS DOES NOT INCLUDE MOLD
FLASH OR PROTRUSIONS. MOLD FLASH OR
PROTRUSIONS SHALL NOT EXCEED 6 MILS PER
SIDE.
5. BOTTOM EJECTOR PIN WILL INCLUDE THE
COUNTRY OF ORIGIN (COO) AND MOLD CAVITY I.D.
Q
R
H x 45_
U
RAD.
0.013 X 0.005
DP. MAX
−B−
MOLD PIN
MARK
RAD.
0.005−0.010
TYP
G
L
0.25 (0.010)
M
P
T
DETAIL E
V
K
C
N 8 PL
INCHES
DIM
MIN
MAX
A
0.189
0.196
B
0.150
0.157
C
0.061
0.068
D
0.008
0.012
F
0.016
0.035
G
0.025 BSC
H
0.008
0.018
J 0.0098 0.0075
K
0.004
0.010
L
0.230
0.244
M
0_
8_
N
0_
7_
P
0.007
0.011
Q
0.020 DIA
R
0.025
0.035
U
0.025
0.035
V
0_
8_
MILLIMETERS
MIN
MAX
4.80
4.98
3.81
3.99
1.55
1.73
0.20
0.31
0.41
0.89
0.64 BSC
0.20
0.46
0.249
0.191
0.10
0.25
5.84
6.20
0_
8_
0_
7_
0.18
0.28
0.51 DIA
0.64
0.89
0.64
0.89
0_
8_
−T−
D 16 PL
0.25 (0.010)
SEATING
PLANE
M
T B
S
A
S
J
M
F
DETAIL E
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
11
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NLAS4051/D