MC74VHC1G66, NLVHC1G66 SPST (NO) Normally Open Analog Switch MARKING DIAGRAMS 5 SC−88A DF SUFFIX CASE 419A V9 M G G 1 5 5 1 V9 M G G TSOP−5 DT SUFFIX CASE 483 1 VW M G 1 UDFN6 MU SUFFIX CASE 517AA Features • • • • • • • • http://onsemi.com M The MC74VHC1G66, NLVHC1G66 is a single pole single throw (SPST) analog switch. It achieves high speed propagation delays and low ON resistances while maintaining low power dissipation. This bilateral switch controls analog and digital voltages that may vary across the full power−supply range (from VCC to GND). The MC74VHC1G66, NLVHC1G66 is compatible in function to a single gate of the High Speed CMOS MC74VHC4066 and the metal−gate CMOS MC14066. The device has been designed so that the ON resistances (RON) are much lower and more linear over input voltage than RON of the metal−gate CMOS or High Speed CMOS analog switches. The newer NLVHC offers the same functionality in a 1.2x1.0x0.55mm UDFN6 package. The ON/OFF control inputs are compatible with standard CMOS outputs. The ON/OFF control input structure provides protection when voltages between 0 V and 5.5 V are applied, regardless of the supply voltage. This input structure helps prevent device destruction caused by supply voltage − input/output voltage mismatch, battery backup, hot insertion, etc. High Speed: tPD = 20 ns (Typ) at VCC = 5.0 V Low Power Dissipation: ICC = 1.0 mA (Max) at TA = 25°C Diode Protection Provided on Inputs and Outputs Improved Linearity and Lower ON Resistance over Input Voltage Chip Complexity: 11 FETs or 3 Equivalent Gates ON/OFF Control Input has OVT V9, V = Device Code M = Date Code* W = Work Week G = Pb−Free Package (Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location. Chip Complexity: FETs = 11 Pb−Free Packages are Available PIN ASSIGNMENT 1 IN/OUT XA 2 OUT/IN YA 3 GND 4 ON/OFF CONTROL 5 VCC FUNCTION TABLE On/Off Control Input State of Analog Switch L H Off On ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. © Semiconductor Components Industries, LLC, 2007 February, 2007 − Rev. 13 1 Publication Order Number: MC74VHC1G66/D MC74VHC1G66, NLVHC1G66 IN/OUT XA 1 OUT/IN YA 2 GND 3 5 4 VCC IN/OUT XA 1 6 VCC OUT/IN YA 2 5 NC GND 3 4 ON/OFF CONTROL ON/OFF CONTROL (SC−88A, TSOP−5) (UDFN6) Figure 1. Pinout Diagrams ON/OFF CONTROL X1 1 U 1 U IN/OUT XA Figure 2. Logic Symbol OUT/IN YA MAXIMUM RATINGS Symbol Characteristics VCC DC Supply Voltage VIN Digital Input Voltage VIS Analog Output Voltage IIK ICC TSTG V −0.5 to +7.0 V V Digital Input Diode Current −20 mA DC Supply Current, VCC and GND +25 mA *65 to )150 °C 260 °C Storage Temperature Range Lead Temperature, 1 mm from Case for 10 Seconds TJ Junction Temperature Under Bias qJA Thermal Resistance PD Power Dissipation in Still Air at 85°C MSL Moisture Sensitivity FR Flammability Rating ILATCHUP Unit −0.5 to VCC +0.5 TL VESD Value −0.5 to +7.0 ESD Withstand Voltage Latchup Performance )150 °C SC70−5 (Note 1) SOT23−5 350 230 °C/W SC70−5 SOT23−5 150 200 mW Level 1 Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4) u2000 u200 N/A V Above VCC and Below GND at 125°C (Note 5) $500 mA Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Measured with minimum pad spacing on an FR4 board, using 10 mm−by−1 inch, 2−ounce copper trace with no air flow. 2. Tested to EIA/JESD22−A114−A. 3. Tested to EIA/JESD22−A115−A. 4. Tested to JESD22−C101−A. 5. Tested to EIA/JESD78. http://onsemi.com 2 MC74VHC1G66, NLVHC1G66 RECOMMENDED OPERATING CONDITIONS Characteristics Min Max Unit 2.0 5.5 V DC Input Voltage GND 5.5 V VIS DC Output Voltage GND VCC V TA Operating Temperature Range −55 +125 °C tr, tf Input Rise and Fall Time ON/OFF Control Input 0 0 100 20 ns/V VCC = 3.3 V ± 0.3 V VCC = 5.0 V ± 0.5 V Time, Years 80 1,032,200 117.8 90 419,300 47.9 100 178,700 20.4 110 79,600 9.4 120 37,000 4.2 130 17,800 2.0 140 8,900 1.0 TJ = 80 ° C Time, Hours TJ = 90 ° C Junction Temperature °C FAILURE RATE OF PLASTIC = CERAMIC UNTIL INTERMETALLICS OCCUR TJ =100° C Device Junction Temperature versus Time to 0.1% Bond Failures TJ =110 ° C VIN TJ =120° C DC Supply Voltage TJ = 130° C VCC NORMALIZED FAILURE RATE Symbol 1 1 10 100 1000 TIME, YEARS Figure 3. Failure Rate vs. Time Junction Temperature DC ELECTRICAL CHARACTERISTICS Symbol Parameter Test Conditions TA = 25°C VCC (V) Min 1.5 2.1 3.15 3.85 Max TA ≤ 85°C Min Max Min Max Minimum High−Level Input Voltage ON/OFF Control Input RON = Per Spec 2.0 3.0 4.5 5.5 VIL Maximum Low−Level Input Voltage ON/OFF Control Input RON = Per Spec 2.0 3.0 4.5 5.5 0.5 0.9 1.35 1.65 0.5 0.9 1.35 1.65 0.5 0.9 1.35 1.65 V IIN Maximum Input Leakage Current ON/OFF Control Input VIN = VCC or GND 0 to 5.5 ±0.1 ±1.0 ±1.0 mA ICC Maximum Quiescent Supply Current VIN = VCC or GND VIO = 0 V 5.5 1.0 20 40 mA RON Maximum ”ON” Resistance VIN = VIH VIS = VCC or GND |IIS| ≤ 5 mA (Figure 4) 3.0 4.5 5.5 60 45 40 70 50 45 100 60 55 W IOFF Maximum Off−Channel Leakage Current VIN = VIL VIS = VCC or GND Switch Off (Figure 5) 5.5 0.1 0.5 1.0 mA 3 1.5 2.1 3.15 3.85 Unit VIH http://onsemi.com 1.5 2.1 3.15 3.85 −55 ≤ TA ≤ 125°C V MC74VHC1G66, NLVHC1G66 ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎ ÎÎÎ Î ÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎ ÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ AC ELECTRICAL CHARACTERISTICS Cload = 50 pF, Input tr/tf = 3.0 ns Symbol tPLH, tPHL tPLZ, tPHZ tPZL, tPZH CIN Parameter VCC (V) TA ≤ 85°C TA = 25°C Typ Max Max Unit 2.0 3.0 4.5 5.5 1 0.6 0.6 0.6 5 2 1 1 6 3 1 1 7 4 2 1 ns 2.0 3.0 4.5 5.5 32 28 24 20 40 35 30 25 45 40 35 30 50 45 40 35 ns 2.0 3.0 4.5 5.5 32 28 24 20 40 35 30 25 45 40 35 30 50 45 40 35 ns ON/OFF Control Input 0.0 3 10 10 10 pF Control Input = GND Analog I/O Feedthrough 5.0 4 4 10 10 10 10 10 10 Test Conditions Maximum Propagation Delay, Input X to Y YA = Open Maximum Propagation Delay, ON/OFF Control to Analog Output RL = 1000 W Maximum Propagation Delay, ON/OFF Control to Analog Output RL = 1000 W Maximum Input Capacitance (Figure 14) (Figure 15) (Figure 15) Min Min −55 ≤ TA ≤ 125°C Max Min Typical @ 25°C, VCC = 5.0 V CPD 18 Power Dissipation Capacitance (Note 6) pF 6. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no−load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC. ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted) Symbol BW ISOoff NOISEfeed THD Test Conditions VCC Limit 25°C Maximum On−Channel Bandwidth or Minimum Frequency Response (Figure 10) fin = 1 MHz Sine Wave Adjust fin voltage to obtain 0 dBm at VOS Increase fin = frequency until dB meter reads −3 dB RL = 50 W 3.0 4.5 5.5 150 175 180 MHz Off−Channel Feedthrough Isolation (Figure 11) fin = Sine Wave Adjust fin voltage to obtain 0 dBm at VIS fin = 10 kHz, RL = 600 W 3.0 4.5 5.5 −80 −80 −80 dB Feedthrough Noise Control to Switch (Figure 12) Vin ≤ 1 MHz Square Wave (tr = tf = 2 ns) 3.0 4.5 5.5 45 60 130 mVPP Total Harmonic Distortion (Figure 13) fin = 1 kHz, RL = 10 kW THD = THDMeasured − THDSource VIS = 3.0 VPP sine wave VIS = 5.0 VPP sine wave Parameter RL = 600 W http://onsemi.com 4 Unit % 3.3 5.5 0.30 0.15 MC74VHC1G66, NLVHC1G66 PLOTTER POWER SUPPLY − DC PARAMETER ANALYZER COMPUTER + VCC VCC 1 VCC 5 1 2 5 2 VCC 3 VIL A 4 3 Figure 4. On Resistance Test Set−Up VCC 4 Figure 5. Maximum Off−Channel Leakage Current Test Set−Up VCC 1 A 5 1 2 N/C VCC 3 2 TEST POINT VIH 5 4 VCC 3 Figure 6. Maximum On−Channel Leakage Current Test Set−Up 4 Figure 7. Propagation Delay Test Set−Up Switch to Position 2 when testing tPLZ and tPZL Switch to Position 1 when testing tPHZ and tPZH VCC TEST POINT VCC VCC 1 1 2 A 5 2 VCC 1 N/C 1 N/C 2 5 RL C L* 3 3 4 4 2 *Includes all probe and jig capacitance. Figure 8. Propagation Delay Output Enable/Disable Test Set−Up Figure 9. Power Dissipation Capacitance Test Set−Up http://onsemi.com 5 MC74VHC1G66, NLVHC1G66 VIS VOS VCC 0.1 mF fin 1 VOS VCC 0.1 mF fin 5 1 2 dB Meter 5 2 3 dB Meter 4 RL 3 *Includes all probe and jig capacitance. *Includes all probe and jig capacitance. Figure 10. Maximum On−Channel Bandwidth Test Set−Up Figure 11. Off−Channel Feedthrough Isolation Test Set−Up (VCC)/2 VCC RL RL 1 5 V VOS IS 2 IN v 1 MHz t r + t + 2 ns f 3 VCC 4 GND *Includes all probe and jig capacitance. Figure 12. Feedthrough Noise, ON/OFF Control to Analog Out, Test Set−Up To Distortion Meter (VCC)/2 VIS VCC 0.1 mF RL 4 fin 1 VOS 5 2 3 4 *Includes all probe and jig capacitance. Figure 13. Total Harmonic Distortion Test Set−Up http://onsemi.com 6 MC74VHC1G66, NLVHC1G66 VCC XA 50% VCC 50% tPLH tPHL VOH YA 50% VCC VOL Figure 14. Propagation Delay, Analog In to Analog Out Waveforms tr Control tf 90% 50% VCC 10% tPZL VCC tPLZ High Impedance 50% VCC 10% Analog Out 90% 50% VCC tPHZ tPZH VOL VOH High Impedance Figure 15. Propagation Delay, ON/OFF Control ORDERING INFORMATION Device MC74VHC1G66DFT1 MC74VHC1G66DFT1G MC74VHC1G66DFT2 MC74VHC1G66DFT2G MC74VHC1G66DTT1 Package Shipping † SC−88A SC−88A (Pb−Free) SC−88A SC−88A (Pb−Free) 3000 / Tape & Reel TSOP−5 MC74VHC1G66DTT1G TSOP−5 (Pb−Free) NLVHC1G66MUR2G UDFN6 (Pb−Free) †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 7 MC74VHC1G66, NLVHC1G66 PACKAGE DIMENSIONS SC−88A, SOT−353, SC−70 CASE 419A−02 ISSUE J A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A−01 OBSOLETE. NEW STANDARD 419A−02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. G 5 4 −B− S 1 2 DIM A B C D G H J K N S 3 D 5 PL 0.2 (0.008) B M M N INCHES MIN MAX 0.071 0.087 0.045 0.053 0.031 0.043 0.004 0.012 0.026 BSC −−− 0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 J C K H SOLDERING FOOTPRINT* 0.50 0.0197 0.65 0.025 0.65 0.025 0.40 0.0157 1.9 0.0748 SCALE 20:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 8 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.80 1.10 0.10 0.30 0.65 BSC −−− 0.10 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 MC74VHC1G66, NLVHC1G66 PACKAGE DIMENSIONS TSOP−5, SOT23−5 CASE 483−02 ISSUE F NOTE 5 2X 0.10 T 2X 0.20 T NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY. D 5X 0.20 C A B 5 1 4 2 3 M B S K L DETAIL Z G A DIM A B C D G H J K L M S DETAIL Z J C 0.05 SEATING PLANE H T MILLIMETERS MIN MAX 3.00 BSC 1.50 BSC 0.90 1.10 0.25 0.50 0.95 BSC 0.01 0.10 0.10 0.26 0.20 0.60 1.25 1.55 0_ 10 _ 2.50 3.00 SOLDERING FOOTPRINT* 0.95 0.037 1.9 0.074 2.4 0.094 1.0 0.039 0.7 0.028 SCALE 10:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 9 MC74VHC1G66, NLVHC1G66 PACKAGE DIMENSIONS UDFN6, 1.2x1.0, 0.4P CASE 517AA−01 ISSUE A PIN ONE REFERENCE 2X 0.10 C NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. A B D ÉÉ ÉÉ ÉÉ E DIM A A1 A3 b D E e L L2 TOP VIEW 2X 0.10 C (A3) 0.10 C MILLIMETERS MIN MAX 0.45 0.55 0.00 0.05 0.127 REF 0.15 0.25 1.00 BSC 1.20 BSC 0.40 BSC 0.30 0.40 0.40 0.50 A 10X 0.08 C SEATING PLANE SIDE VIEW C A1 5X 1 L MOUNTING FOOTPRINT* 3 6X L2 6X 6X 0.42 0.22 b 0.10 C A B 0.05 C 6 4 e NOTE 3 BOTTOM VIEW 0.40 PITCH 1.07 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 10 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC74VHC1G66/D