R5323x SERIES 150mA 2ch LDO REGULATOR NO.EA-089-0607 OUTLINE The R5323x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply current, low dropout, and high ripple rejection. Each of these voltage regulator ICs consists of a voltage reference unit, an error amplifier, resistors for setting Output Voltage, a current limit circuit, and a chip enable circuit. These ICs perform with low dropout voltage due to built-in transistor with low ON resistance, and a chip enable function prolongs the battery life of each system. The line transient response and load transient response of the R5323x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication equipment. The output voltage of these ICs is internally fixed with high accuracy. Since the packages for these ICs are SOT-23-6, PLP1820-6 and WL-CSP-6 package, 2ch LDO regulators are included in each package, high density mounting of the ICs on boards is possible. FEATURES • • • • • • • • • • • • Low Supply Current ...................................................... Typ. 90µA (VR1, VR2) Standby Mode ............................................................... Typ. 0.1µA (VR1, VR2) Low Dropout Voltage..................................................... Typ. 0.22V (IOUT=150mA , Output Voltage Type) High Ripple Rejection ...............................Typ. 75dB(VOUT < = 2.4V) , Typ. 70dB(VOUT < = 2.5V) (f=1kHz) Typ. 65dB(VOUT < = 2.4V) , Typ. 60dB(VOUT < = 2.5V) (f=10kHz) Low Temperature-drift Coefficient of Output Voltage .... Typ. ±100ppm/°C Excellent Line Regulation ............................................. Typ.0.02%/V High Output Voltage Accuracy ......................................±2.0% Small Packages .......................................................... SOT-23-6, PLP1820-6, WL-CSP-6 Output Voltage ..............................................................Stepwise setting with a step of 0.1V in the range of 1.5V to 4.0V is possible Built-in chip enable circuit (A/B: active high) Built-in fold-back protection circuit ................................ Typ. 40mA (Current at short mode) Ceramic Capacitor is recommended. (1.0µF or more) APPLICATIONS • Power source for handheld communication equipment. • Power source for electrical appliances such as cameras, VCRs and camcorders. • Power source for battery-powered equipment. 1 R5323x BLOCK DIAGRAMS R5323xxxxA R1_1 Error Amp. Vref R2_1 Current Limit R1_2 Error Amp. Vref R2_2 Current Limit R5323xxxxB R1_1 Error Amp. Vref R2_1 Current Limit R1_2 Error Amp. Vref R2_2 Current Limit 2 R5323x SELECTION GUIDE The output voltage, mask option, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below; R5323xxxxx-xx-x ←Part Number ↑ ↑ ↑ ↑ ↑ a b c d e Code Contents Designation of Package Type: N : SOT-23-6 K : PLP1820-6 Z : WL-CSP-6 Setting combination of 2ch Output Voltage (VOUT) : Serial Number for Voltage Setting, Stepwise setting with a step of 0.1V in the range of 1.5V to 4.0V is possible for each channel. Designation of Mask Option: A version: without auto discharge function at OFF state. B version: with auto discharge function at OFF state. Designation of Taping Type: Ex. TR (refer to Taping Specifications; TR type is the standard direction.) Designation of composition of plating: −F : Lead free plating (SOT-23-5,WL-CSP-6) None : Au plating (PLP1820-6) a b c d e PIN CONFIGURATION SOT-23-6 PLP1820-6 Top View 6 CE1 5 GND 4 6 5 4 WLCSP-6 Bottom View 4 5 6 1 VDD 2 6 1 VOUT1 GND 5 2 VDD CE2 4 3 VOUT2 CE2 (mark side) VOUT1 CE1 VOUT2 3 1 2 3 3 2 1 3 R5323x PIN DESCRIPTIONS • • SOT-23-6 PLP1820-6 Pin No. Symbol 1 VOUT1 2 VDD 3 Description Pin No. Symbol Description Output Pin 1 1 VOUT2 Input Pin 2 VDD VOUT2 Output Pin 2 3 VOUT1 Output Pin 1 4 CE2 Chip Enable Pin 2 4 GND Ground Pin 5 GND Ground Pin 5 CE1 Chip Enable Pin 1 6 CE1 Chip Enable Pin 1 6 CE2 Chip Enable Pin 2 Output Pin 2 Input Pin * Tab in the parts have GND level. (They are connected to the reverse side of this IC.) Do not connect to other wires or land patterns. WLCSP-6 Pin No. Symbol Description 1 VOUT1 2 VDD 3 VOUT2 Output Pin 2 4 CE2 Chip Enable Pin 2 5 GND Ground Pin 6 CE1 Chip Enable Pin 1 Output Pin 1 Input Pin ABSOLUTE MAXIMUM RATINGS Symbol Item Rating Unit VIN Input Voltage 6.5 V VCE Input Voltage (CE Pin) 6.5 V VOUT Output Voltage −0.3 to VIN + 0.3 V IOUT1 Output Current 1 200 mA IOUT2 Output Current 2 200 mA Power Dissipation (SOT-23-6)*1 420 Power Dissipation (PLP1820-6) *1 880 Power Dissipation (WL-CSP-6) 633 Topt Operating Temperature Range −40 to 85 °C Tstg Storage Temperature Range −55 to 125 °C PD ∗1 For Power Dissipation, please refer to PACKAGE INFORMATION to be described. 4 mW R5323x ELECTRICAL CHARACTERISTICS • R5323xxxxA/B Topt=25°C Symbol Item Conditions Min. VOUT ×0.98 Typ. Max. Unit VOUT ×1.02 V VOUT Output voltage VIN=Set VOUT+1V 1mA < = IOUT < = 30mA IOUT Output Current VIN−VOUT = 1.0V ∆VOUT/∆IOUT Load regulation VIN=Set VOUT+1V 1mA < = IOUT < = 150mA VDIF Dropout Voltage ISS Supply Current VIN=Set VOUT+1V 90 120 µA Supply Current(Standby) VIN=Set VOUT+1V VCE=GND 0.1 1.0 µA Line regulation Set VOUT+0.5V IOUT=30mA 0.02 0.10 %/V Ripple Rejection Ripple 0.5Vp−p VIN=Set VOUT+1V IOUT=30mA (In case that VOUT < = 1.7V, VIN=Set VOUT+1.2V) Istandby ∆VOUT/∆VIN RR VIN ∆VOUT/ ∆Topt 150 15 < = VIN < = Input Voltage 6.0V mV 75 ∗Note1 ∗Note2 2.0 Ilim Short Current Limit VOUT=0V RPD Pull-down resistance for CE pin 0.7 VCEH CE Input Voltage “H” VCEL CE Input Voltage “L” < = dB 65 IOUT=30mA −40°C < = Topt RLOW 40 Refer to the Electrical Characteristics by Output Voltage Output Voltage Temperature Coefficient en mA 85°C 6.0 V ±100 ppm /°C 40 mA 8.0 MΩ 1.5 6.0 V 0.0 0.3 V 2.0 Output Noise BW=10Hz to 100kHz 30 µVrms Low Output Nch Tr. ON Resistance (of B version) VCE=0V 60 Ω ∗Note1: f=1kHz, 70dB as to VOUT > = 2.5V Output type. ∗Note2: f=10kHz, 60dB as to VOUT > = 2.5V Output type. 5 R5323x • Electrical Characteristics by Output Voltage Dropout Voltage VDIF (V) Output Voltage VOUT (V) Typ. Max. VOUT=1.5 Condition 0.38 0.70 VOUT=1.6 0.35 0.65 0.33 0.60 0.32 0.55 VOUT=1.7 IOUT=150mA 1.8V < = VOUT < = 2.0V 2.1V < = VOUT < = 2.7V 0.28 0.50 2.8V < = VOUT < = 4.0V 0.22 0.35 TYPICAL APPLIATION VOUT2 CE2 R5323x Series VDD GND IN C1 CE1 OUT2 C3 OUT1 VOUT1 C2 (External Components) Ceramic Capacitor Type C1,C2,C3 Recommended Ceramic capacitor for Output: GRM219R61A105K (Murata) General Example of External Components Ceramic Capacitors: C1608X5R0J105K (TDK) GRM188R60J105K (Murata) 6 R5323x TEST CIRCUIT CE2 VOUT2 R5323x Series VDD GND VOUT2 C3 CE2 VOUT2 R5323x Series VDD GND IOUT2 V ISS C3 A CE1 C1 VOUT1 C2 V VOUT1 IOUT1 Fig.1 Standard test Circuit CE2 VOUT2 R5323x Series VDD GND C3 CE1 VOUT1 CE2 VOUT2 R5323x Series VDD GND IOUT2 C1 C2 VOUT1 C2 Fig.2 Supply Current Test Circuit Pulse Generator PG CE1 C1 IOUT1 Fig.3 Ripple Rejection, Line Transient Response Test Circuit CE1 VOUT1 C3 IOUT2a IOUT2b IOUT1b IOUT1a C2 Fig.4 Load Transient Response Test Circuit 7 R5323x TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current (Topt=25°C) 1.5V (VR1) 1.5V (VR2) 1.6 VIN=3.5V 1.4 1.2 VIN=1.8V VIN=2.0V 1 0.8 VIN=2.5V 0.6 0.4 0.2 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.6 VIN=3.5V 1.4 1.2 VIN=1.8V VIN=2.0V 1 0.8 VIN=2.5V 0.6 0.4 0.2 0 0 0 100 200 300 0 400 200 2.8V (VR1) 2.5 VIN=3.1V 2 VIN=4.8V 1.5 1 0.5 Output Voltage VOUT(V) 3 0 2.5 VIN=3.1V 2 VIN=4.8V 1.5 1 0.5 0 0 100 200 300 400 0 100 200 300 400 Output Current IOUT(mA) Output Current IOUT(mA) 4.0V (VR1) 4.0V (VR2) 5 5 VIN=6.0V VIN=6.0V Output Voltage VOUT(V) Output Voltage VOUT(V) 400 2.8V (VR2) 3 4 VIN=4.3V 3 2 1 0 4 VIN=4.3V 3 2 1 0 0 100 200 300 Output Current IOUT(mA) 8 300 Output Current IOUT(mA) Output Current IOUT(mA) Output Voltage VOUT(V) 100 400 0 100 200 300 Output Current IOUT(mA) 400 R5323x 2) Output Voltage vs. Input Voltage (Topt=25°C) 1.5V (VR1) 1.5V (VR2) 1.6 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.6 1.5 1.4 1.3 1.2 1mA 30mA 50mA 1.1 1.5 1.4 1.3 1.2 1mA 30mA 50mA 1.1 1 1 1 2 3 4 5 1 6 2 Input Voltage VIN(V) 5 6 2.8V (VR2) 2.9 2.9 2.8 2.8 Output Voltage VOUT(V) Output Voltage VOUT(V) 4 Input Voltage VIN(V) 2.8V (VR1) 2.7 2.6 2.5 2.4 2.3 1mA 30mA 50mA 2.2 2.1 2 2.7 2.6 2.5 2.4 2.3 1mA 30mA 50mA 2.2 2.1 2 1 2 3 4 5 6 1 2 Input Voltage VIN(V) 3 4 5 6 Input Voltage VIN(V) 4.0V (VR1) 4.0V (VR2) 4.2 Output Voltage VOUT(V) 4.2 Output Voltage VOUT(V) 3 4 3.8 3.6 3.4 1mA 30mA 50mA 3.2 4 3.8 3.6 3.4 1mA 30mA 50mA 3.2 3 3 1 2 3 4 Input Voltage VIN(V) 5 6 1 2 3 4 5 6 Input Voltage VIN(V) 9 R5323x 3) Dropout Voltage vs. Temperature 1.5V (VR1) 1.5V (VR2) 0.6 Topt= 85°C 25°C -40°C 0.5 Dropout Voltage VDIF(V) Dropout Voltage VDIF(V) 0.6 0.4 0.3 0.2 0.1 0 Topt= 85°C 25°C -40°C 0.5 0.4 0.3 0.2 0.1 0 0 25 50 75 100 125 0 150 Output Current IOUT(mA) 25 50 2.8V (VR1) Topt= 85°C 25°C -40°C 0.35 0.3 Dropout Voltage VDIF(V) Dropout Voltage VDIF(V) 125 150 0.4 0.25 0.2 0.15 0.1 0.05 0 Topt= 85°C 25°C -40°C 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 25 50 75 100 125 150 0 Output Current IOUT(mA) 25 50 75 100 125 150 Output Current IOUT(mA) 4.0V (VR1) 4.0V (VR2) 0.4 0.4 Topt= 85°C 25°C -40°C 0.35 0.3 Dropout Voltage VDIF(V) Dropout Voltage VDIF(V) 100 2.8V (VR2) 0.4 0.25 0.2 0.15 0.1 0.05 0 Topt= 85°C 25°C -40°C 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 0 25 50 75 100 125 Output Current IOUT(mA) 10 75 Output Current IOUT(mA) 150 0 25 50 75 100 125 Output Current IOUT(mA) 150 R5323x 4) Output Voltage vs. Temperature 1.5V (VR1) 1.54 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 -50 -25 0 25 50 75 VIN=2.5V, IOUT=30mA 1.54 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.5V (VR2) VIN=2.5V, IOUT=30mA 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 -50 100 -25 Temperature Topt(°C) 2.80 2.78 2.76 0 25 50 75 2.82 2.80 2.78 2.76 2.74 -50 100 -25 4.04 4.02 4.00 3.98 3.96 3.94 25 50 75 100 50 Temperature Topt(°C) 75 100 VIN=5.0V, IOUT=30mA 4.08 Output Voltage VOUT(V) Output Voltage VOUT(V) 4.06 0 25 4.0V (VR2) VIN=5.0V, IOUT=30mA -25 0 Temperature Topt(°C) 4.0V (VR1) 3.92 -50 100 2.84 Temperature Topt(°C) 4.08 75 VIN=3.8V, IOUT=30mA 2.86 Output Voltage VOUT(V) Output Voltage VOUT(V) 2.82 -25 50 2.8V (VR2) VIN=3.8V, IOUT=30mA 2.84 2.74 -50 25 Temperature Topt(°C) 2.8V (VR1) 2.86 0 4.06 4.04 4.02 4.00 3.98 3.96 3.94 3.92 -50 -25 0 25 50 75 100 Temperature Topt(°C) 11 R5323x 5) Supply Current vs. Input Voltage (Topt=25°C) 1.5V 2.8V 100 Supply Current ISS(µA) Supply Current ISS(µA) 100 80 60 40 20 VR1 VR2 0 0 1 2 3 4 5 80 60 40 20 VR1 VR2 0 6 0 1 2 Input Voltage VIN(V) 3 4 5 6 Input Voltage VIN(V) 4.0V Supply Current ISS(µA) 100 80 60 40 20 VR1 VR2 0 0 1 2 3 4 5 6 Input Voltage VIN(V) 6) Supply Current vs. Temperature 1.5V (VR1) 1.5V (VR2) VIN=2.5V 80 60 40 20 0 -50 -25 0 25 50 Temperature Topt(°C) 12 75 100 VIN=2.5V 100 Supply Current ISS(µA) Supply Current ISS(µA) 100 80 60 40 20 0 -50 -25 0 25 50 Temperature Topt(°C) 75 100 R5323x 2.8V (VR1) 2.8V (VR2) VIN=3.8V 80 60 40 20 0 -50 -25 0 25 50 75 VIN=3.8V 100 Supply Current ISS(µA) Supply Current ISS(µA) 100 80 60 40 20 0 -50 100 Temperature Topt(°C) -25 80 60 40 20 25 75 100 50 75 VIN=5.0V 100 Supply Current ISS(µA) Supply Current ISS(µA) 100 0 50 4.0V (VR2) VIN=5.0V -25 25 Temperature Topt(°C) 4.0V (VR1) 0 -50 0 80 60 40 20 0 -50 100 Temperature Topt(°C) -25 0 25 50 75 100 Temperature Topt(°C) 7) Dropout Voltage vs. Set Output Voltage (Topt=25°C) VR1 VR2 0.6 10mA 30mA 50mA 150mA 0.5 0.4 Dropout Voltage VDIF(V) Dropout Voltage VDIF(V) 0.6 0.3 0.2 0.1 0 1 2 3 Set Output Voltage Vreg(V) 4 10mA 30mA 50mA 150mA 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 Set Output Voltage Vreg(V) 13 R5323x 8) Ripple Rejection vs. Frequency (Topt=25°C) 1.5V (VR1) 80 70 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=150mA 20 10 0 0.1 1 90 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 90 1.5V (VR2) VIN=2.5V+0.5Vp-p, COUT=Ceramic 1.0µF 10 VIN=2.5V+0.5Vp-p, COUT=Ceramic 1.0µF 80 70 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=150mA 20 10 0 0.1 100 Frequency f(kHz) 60 50 40 30 90 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 70 IOUT=1mA IOUT=30mA IOUT=150mA 0 0.1 1 10 70 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=150mA 20 10 1 10 Frequency f(kHz) 2.8V (VR1) 2.8V (VR2) 70 60 50 40 30 10 80 Frequency f(kHz) 80 20 VIN=2.5V+0.5Vp-p, COUT=Ceramic 2.2µF 0 0.1 100 VIN=3.8V+0.5Vp-p, COUT=Ceramic 1.0µF 0 0.1 IOUT=1mA IOUT=30mA IOUT=150mA 1 10 Frequency f(kHz) 14 90 90 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 80 10 100 1.5V (VR2) VIN=2.5V+0.5Vp-p, COUT=Ceramic 2.2µF 20 10 Frequency f(kHz) 1.5V (VR1) 90 1 100 100 VIN=3.8V+0.5Vp-p, COUT=Ceramic 1.0µF 80 70 60 50 40 30 20 10 0 0.1 IOUT=1mA IOUT=30mA IOUT=150mA 1 10 Frequency f(kHz) 100 R5323x 2.8V (VR1) 70 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=150mA 20 10 0 0.1 90 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 80 1 90 10 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=150mA 20 10 50 40 30 IOUT=1mA IOUT=30mA IOUT=150mA 1 90 10 80 70 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=150mA 20 10 0 0.1 100 4.0V (VR1) 90 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 70 60 50 40 30 IOUT=1mA IOUT=30mA IOUT=150mA 1 10 100 4.0V (VR2) 80 0 0.1 1 Frequency f(kHz) VIN=5.0V+0.5Vp-p, COUT=Ceramic 2.2µF 10 100 VIN=5.0V+0.5Vp-p, COUT=Ceramic 1.0µF Frequency f(kHz) 20 10 4.0V (VR2) 60 90 1 4.0V (VR1) 70 0 0.1 70 Frequency f(kHz) 80 10 80 Frequency f(kHz) VIN=5.0V+0.5Vp-p, COUT=Ceramic 1.0µF 20 VIN=3.8V+0.5Vp-p, COUT=Ceramic 2.2µF 0 0.1 100 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 90 2.8V (VR2) VIN=3.8V+0.5Vp-p, COUT=Ceramic 2.2µF 10 Frequency f(kHz) 100 VIN=5.0V+0.5Vp-p, COUT=Ceramic 2.2µF 80 70 60 50 40 30 20 10 0 0.1 IOUT=1mA IOUT=30mA IOUT=150mA 1 10 100 Frequency f(kHz) 15 R5323x 9) Ripple Rejection vs. Input Voltage (DC bias) COUT = Ceramic 1.0µF (Topt=25°C) 2.8V (VR1) 2.8V (VR2) IOUT=1mA 90 80 70 60 50 40 30 f=1kHz f=10kHz f=100kHz 20 10 0 2.9 3 3.1 3.2 90 80 70 60 50 40 30 0 2.9 3.3 70 60 50 40 30 f=1kHz f=10kHz f=100kHz 3.1 3.2 80 70 60 50 40 30 0 2.9 3.3 70 60 50 40 30 f=1kHz f=10kHz f=100kHz 3.2 Input Voltage VIN(V) 16 3.2 3.3 3.3 IOUT=50mA 100 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 80 3.1 3.1 2.8V (VR2) IOUT=50mA 3 3 Input Voltage VIN(V) 90 0 2.9 f=1kHz f=10kHz f=100kHz 20 10 2.8V (VR1) 20 10 3.3 90 Input Voltage VIN(V) 100 3.2 IOUT=30mA 100 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 80 3 3.1 2.8V (VR2) IOUT=30mA 90 0 2.9 3 Input Voltage VIN(V) 2.8V (VR1) 20 10 f=1kHz f=10kHz f=100kHz 20 10 Input Voltage VIN(V) 100 IOUT=1mA 100 Ripple Rejection RR(dB) Ripple Rejection RR(dB) 100 90 80 70 60 50 40 30 f=1kHz f=10kHz f=100kHz 20 10 0 2.9 3 3.1 3.2 Input Voltage VIN(V) 3.3 R5323x 10) Input Transient Response R5323N001x(2.8V, VR1) 6 2.84 5 VIN 2.83 4 2.82 3 2.81 2 VOUT 2.80 Input Voltage VIN(V) Output Voltage VOUT(V) IOUT=30mA, tr=tf=5µs, COUT=Ceramic 1.0µF 2.85 1 2.79 0 0 10 20 30 40 50 60 70 80 90 100 Time T(µs) R5323N001x(2.8V, VR1) 6 2.84 5 VIN 2.83 4 2.82 3 2.81 2 VOUT 2.80 Input Voltage VIN(V) Output Voltage VOUT(V) Topt=25°C, COUT=Ceramic 2.2µF 2.85 1 2.79 0 0 10 20 30 40 50 60 70 80 90 100 Time T(µs) R5323N001x(2.8V, VR1) 6 2.84 5 VIN 2.83 4 2.82 3 2.81 2 VOUT 2.80 Input Voltage VIN(V) Output Voltage VOUT(V) Topt=25°C, COUT=Ceramic 4.4µF 2.85 1 2.79 0 0 10 20 30 40 50 60 70 80 90 100 Time T(µs) 17 R5323x R5323N001x(2.8V, VR2) 6 2.84 5 VIN 2.83 4 2.82 3 2.81 2 VOUT 2.80 Input Voltage VIN(V) Output Voltage VOUT(V) Topt=25°C, COUT=Ceramic 1.0µF 2.85 1 2.79 0 0 10 20 30 40 50 60 70 80 90 100 Time T(µs) R5323N001x(2.8V, VR2) 6 2.84 5 VIN 2.83 4 2.82 3 2.81 2 VOUT 2.80 Input Voltage VIN(V) Output Voltage VOUT(V) Topt=25°C, COUT=Ceramic 2.2µF 2.85 1 2.79 0 0 10 20 30 40 50 60 70 80 90 100 Time T(µs) R5323N001x(2.8V, VR2) 6 2.84 5 VIN 2.83 4 2.82 3 2.81 2 VOUT 2.80 1 2.79 0 0 10 20 30 40 50 Time T(µs) 18 60 70 80 90 100 Input Voltage VIN(V) Output Voltage VOUT(V) Topt=25°C, COUT=Ceramic 4.4µF 2.85 R5323x 11) Load Transient Response 2.8V (VR2) 150 50 0 VOUT1 2.80 2.75 VOUT2 2.75 IOUT2=30mA 0 5 10 15 50 2.85 2.80 2.75 IOUT1=30mA 2.85 2.80 VOUT2 2.75 20 0 5 2.8V (VR1) 2.95 50 2.85 0 VOUT1 2.80 2.75 2.70 VOUT2 IOUT2=30mA 0 5 10 15 Output Voltage VOUT(V) 3.00 100 Output Current IOUT1(mA) Output Voltage VOUT(V) 150 2.90 2.75 2.70 50 2.85 2.80 2.75 IOUT1=30mA 2.70 2.85 2.80 VOUT2 0 5 10 15 20 Time T(µs) 2.8V (VR2) CIN=Ceramic 1.0µF, COUT=Ceramic 4.4µF 150 3.00 100 2.95 50 2.90 0 VOUT1 2.80 2.75 IOUT1=30mA 2.70 2.85 2.80 VOUT2 0 5 10 Time T(µs) 15 20 Output Voltage VOUT(V) IOUT2 Output Current IOUT2(mA) Output Voltage VOUT(V) 0 VOUT1 2.8V (VR2) 2.85 150 100 2.90 2.75 2.70 20 IOUT2 CIN=Ceramic 1.0µF, COUT=Ceramic 2.2µF 2.95 2.75 2.70 20 CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF Time T(µs) 3.00 15 2.8V (VR2) IOUT1 2.85 2.80 10 Time T(µs) CIN=Ceramic 1.0µF, COUT=Ceramic 4.4µF 2.95 0 VOUT1 Time T(µs) 3.00 100 Output Current IOUT2(mA) 2.85 2.80 150 IOUT2 100 50 2.90 2.85 0 VOUT1 2.80 2.75 IOUT1=30mA 2.70 2.85 2.80 2.75 2.70 150 VOUT2 0 5 10 15 Output Current IOUT2(mA) 2.85 IOUT2 Output Voltage VOUT(V) 100 Output Current IOUT1(mA) Output Voltage VOUT(V) IOUT1 CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF Output Current IOUT2(mA) 2.8V (VR1) CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF 20 Time T(µs) 19 R5323x 12) Minimum Operating Voltage 1.5V Minimum Operating Voltage Range 2.3 2.2 VDD(V) 2.1 2 1.9 1.8 1.7 VDD VIN(MIN) 1.6 1.5 0 75 150 Output Current IOUT(mA) TECHNICAL NOTES When using these ICs, consider the following points: In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, be sure to use a 1.0µF or more capacitance COUT with good frequency characteristics and ESR (Equivalent Series Resistance) of which is in the range described as follows: The relations between IOUT (Output Current) and ESR of Output Capacitor are shown in the typical characteristics above. The conditions when the white noise level is under 40µV (Avg.) are marked as the hatched area in the graph. Test these ICs with as same external components as ones to be used on the PCB. ⋅ Make VDD and GND lines sufficient. When their impedance is high, the noise pick-up or incorrect operation may result. ⋅ Connect the capacitor with a capacitance of 1µF or more between VDD and GND as close as possible. ⋅ Set external components, especially Output Capacitor, as close as possible to the ICs and make wiring as short as possible. 20 R5323x ESR vs. Output Current R5323N/K 1.5V (VR1) R5323N/K 1.5V (VR2) Topt=25°C, CIN=COUT=Ceramic 1.0µF, VIN=25V, f=10Hz to 2MHz(BW=30Hz) 100 100 10 ESR(Ω) 10 ESR(Ω) Topt=25°C, CIN=COUT=Ceramic 1.0µF, VIN=25V, f=10Hz to 2MHz(BW=30Hz) 1 0.1 1 0.1 0.01 0.01 0 50 100 150 0 Output Current IOUT(mA) CIN=COUT=Ceramic 1.0µF, VIN=2.5V, f=10Hz to 2MHz(BW=30Hz) 10 ESR(Ω) ESR(Ω) CIN=COUT=Ceramic 1.0µF, VIN=2.5V, f=10Hz to 2MHz(BW=30Hz) 100 1 0.1 1 0.1 0.01 0.01 0 50 100 150 0 Output Current IOUT(mA) 50 100 150 Output Current IOUT(mA) R5323Z 1.5V (VR1/VR2) R5323Z 2.8V (VR1/VR2) CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF 100 10 ESR(Ω) 10 ESR(Ω) 150 R5323N/K 2.8V (VR2) 10 100 100 Output Current IOUT(mA) R5323N/K 2.8V (VR1) 100 50 1 0.1 1 0.1 0.01 0.01 0 50 100 Output Current IOUT(mA) 150 0 50 100 150 Output Current IOUT(mA) 21 PACKAGE INFORMATION • PE-SOT-23-6-0510 SOT-23-6 (SC-74) Unit: mm PACKAGE DIMENSIONS 2.9±0.2 +0.2 1.1 −0.1 1.9±0.2 (0.95) (0.95) 6 5 0.8±0.1 0 to 0.1 2 +0.1 0.15 −0.05 +0.1 0.4−0.2 0.2 MIN. 1 2.8±0.3 +0.2 1.6 −0.1 4 TAPING SPECIFICATION +0.1 φ1.5 0 4.0±0.1 2.0±0.05 4 1 2 3 2.0MAX. 3.5±0.05 5 3.2 6 8.0±0.3 1.75±0.1 0.3±0.1 3.3 4.0±0.1 ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) 21±0.8 +1 60 0 2±0.5 0 180 −1.5 13±0.2 11.4±1.0 9.0±0.3 PACKAGE INFORMATION PE-SOT-23-6-0510 POWER DISSIPATION (SOT-23-6) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.5mm × 44pcs Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Free Air Power Dissipation 420mW 250mW Thermal Resistance θja=(125−25°C)/0.42W=263°C/W 400°C/W 500 40 On Board 420 400 300 200 40 Power Dissipation PD(mW) 600 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area Unit : mm RECOMMENDED LAND PATTERN 2.4 1.0 0.7 MAX. 0.95 0.95 1.9 (Unit: mm) PACKAGE INFORMATION • PE-PLP1820-6-0611 PLP1820-6 Unit: mm PACKAGE DIMENSIONS 1.6±0.1 1.80 0.20±0.1 B A 4 0.05 M AB 6 0.25±0.1 ×4 0.25±0.1 2.00 1.0±0.1 0.05 INDEX 3 1 0.5 0.6Max. 0.1NOM. 0.3±0.1 Bottom View Attention: Tabs or Tab suspension leads in the parts have VDD or GND level.(They are connected to the reverse side of this IC.) Refer to PIN DISCRIPTION. Do not connect to other wires or land patterns. 0.05 4.0±0.1 2.4 3.5±0.05 2.0±0.05 8.0±0.3 1.5 +0.1 0 0.25±0.1 1.75±0.1 TAPING SPECIFICATION 1.1±0.1 2.2 1.1Max. 4.0±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS REUSE REEL (EIAJ-RRM-08Bc) (1reel=5000pcs) (R5323K,R5325K : 1reel=3000pcs) 11.4±1.0 2±0.5 21±0.8 ∅60 +1 0 0 ∅180 −1.5 ∅13±0.2 9.0±0.3 PACKAGE INFORMATION PE-PLP1820-6-0611 POWER DISSIPATION (PLP1820-6) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.54mm × 30pcs Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Power Dissipation 880mW Thermal Resistance θja=(125−25°C)/0.88W=114°C/W 40 On Board 1000 880 800 600 40 Power Dissipation PD(mW) 1200 400 200 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area Unit : mm RECOMMENDED LAND PATTERN 0.35 0.75 0.45 1.00 0.5 0.5 1.60 0.25 (Unit: mm) PACKAGE INFORMATION • PE-WLCSP-6-P1-0606 WLCSP-6-P1 Unit: mm PACKAGE DIMENSIONS B 1.29 0.5 0.5 A X4 INDEX 0.06 S ∅0.16±0.03 Bottom View 0.08±0.03 0.10 0.40±0.02 0.5 0.79 0.05 S S 2.0 1.38 1.0 2.0±0.05 3.5±0.05 2.0±0.05 ∅0.5±0.1 Dummy Pocket 0.7 0.95 4.0±0.1 1.2MAX. User Direction of Feed TAPING REEL DIMENSIONS (1reel=3000pcs) +1 60 0 2±0.5 21±0.8 0 180 –1.5 13±0.2 11.4±1.0 9.0±0.3 8.0±0.3 4.0±0.1 +0.1 ∅1.5 0 0.88 0.18±0.1 1.75±0.1 TAPING SPECIFICATION(TR: Standard Type) ∅0.05 M S AB PACKAGE INFORMATION PE-WLCSP-6-P1-0606 POWER DISSIPATION (WLCSP-6-P1) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole − Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Power Dissipation 633mW Thermal Resistance θja=(125−25°C)/0.633W=158°C/W 40 On Board 500 400 300 40 Power Dissipation PD(mW) 633 600 200 100 0 0 25 50 75 85 100 Ambient Temperature (°C) Power Dissipation 125 150 Measurement Board Pattern IC Mount Area (Unit : mm) PACKAGE INFORMATION PE-WLCSP-6-P1-0606 RECOMMENDED LAND PATTERN (WLCSP) Solder Mask (resist) Copper Pad Substrate NSMD SMD (Unit : mm) NSMD and SMD Pad Definition Pad definition NSMD (Non-Solder Mask defined) SMD (Solder Mask defined) * * * * Copper Pad 0.20mm Min. 0.30mm Solder Mask Opening Min. 0.30mm 0.20mm Pad layout and size can be modified by customers material, equipment, method. Please adjust pad layout according to your conditions. Recommended Stencil Aperture Size....ø0.3mm Since lead free WL-CSP components are not compatible with the tin/lead solder process, you shall not mount lead free WL-CSP components using the tin/lead solder paste. MARK INFORMATION ME-R5323N-0610 R5323N SERIES MARK SPECIFICATION • SOT-23-6 (SC-74) 1 • 2 3 1 , 2 : Product Code (refer to Part Number vs. Product Code) 3 , 4 : Lot Number 4 Part Number vs. Product Code Part Number Product Code Part Number Product Code Part Number Product Code 1 2 1 2 1 2 R5323N001B N 0 R5323N030B N Z R5323N001A U G R5323N002B N 1 R5323N031B U 0 R5323N002A N 9 R5323N003B N 2 R5323N032B U 1 R5323N003A N A R5323N004B N 3 R5323N033B U 2 R5323N013A N C R5323N005B N 4 R5323N034B U 3 R5323N019A N J R5323N006B N 5 R5323N035B U 4 R5323N020A N L R5323N007B N 6 R5323N036B U 5 R5323N023A N Q R5323N008B N 7 R5323N037B U 7 R5323N024A N S R5323N009B N 8 R5323N038B U 8 R5323N030A N Y R5323N010B N B R5323N039B U 9 R5323N011B U 6 R5323N040B U A R5323N012B N W R5323N041B U B R5323N013B N T R5323N042B U C R5323N014B N D R5323N043B U H R5323N015B N E R5323N044B U J R5323N016B N F R5323N017B N G R5323N018B N H R5323N019B N K R5323N020B N M R5323N021B N N R5323N022B N P R5323N023B N R R5323N024B U D R5323N025B U E R5323N026B N X R5323N027B N U R5323N028B U F R5323N029B N V MARK INFORMATION ME-R5323K-0610 R5323K SERIES MARK SPECIFICATION • PLP1820-6 to 1 5 • 1 2 3 4 5 6 , 4 6 : Product Code (refer to Part Number vs. Product Code) : Lot Number Part Number vs. Product Code Part Number Product Code Part Number Product Code Part Number Product Code 1 2 3 4 1 2 3 4 1 2 3 4 R5323K001B C 0 0 1 R5323K030B C 0 3 4 R5323K001A C 0 5 1 R5323K002B C 0 0 2 R5323K031B C 0 3 5 R5323K002A C 0 1 0 R5323K003B C 0 0 3 R5323K032B C 0 3 6 R5323K003A C 0 1 1 R5323K004B C 0 0 4 R5323K033B C 0 3 7 R5323K013A C 0 1 3 R5323K005B C 0 0 5 R5323K034B C 0 3 8 R5323K019A C 0 1 9 R5323K006B C 0 0 6 R5323K035B C 0 3 9 R5323K020A C 0 2 1 R5323K007B C 0 0 7 R5323K036B C 0 4 0 R5323K023A C 0 2 5 R5323K008B C 0 0 8 R5323K037B C 0 4 2 R5323K024A C 0 2 7 R5323K009B C 0 0 9 R5323K038B C 0 4 3 R5323K030A C 0 3 3 R5323K010B C 0 1 2 R5323K039B C 0 4 4 R5323K011B C 0 4 1 R5323K040B C 0 4 5 R5323K012B C 0 3 1 R5323K041B C 0 4 6 R5323K013B C 0 2 8 R5323K042B C 0 4 7 R5323K014B C 0 1 4 R5323K043B C 0 5 2 R5323K015B C 0 1 5 R5323K044B C 0 5 3 R5323K016B C 0 1 6 R5323K017B C 0 1 7 R5323K018B C 0 1 8 R5323K019B C 0 2 0 R5323K020B C 0 2 2 R5323K021B C 0 2 3 R5323K022B C 0 2 4 R5323K023B C 0 2 6 R5323K024B C 0 4 8 R5323K025B C 0 4 9 R5323K026B C 0 3 2 R5323K027B C 0 2 9 R5323K028B C 0 5 0 R5323K029B C 0 3 0 MARK INFORMATION ME-R5323Z-0505 R5323Z SERIES MARK SPECIFICATION • WLCSP-6-P1 : G (Fixed) 1 1 • 2 3 2 , 3 : Lot Number Product Code vs. Marking Part Number Product Code Part Number 1 Product Code Part Number 1 Product Code Part Number 1 Product Code 1 R5323Z001A G R5323Z021A G R5323Z001B G R5323Z021B G R5323Z002A G R5323Z022A G R5323Z002B G R5323Z022B G R5323Z003A G R5323Z023A G R5323Z003B G R5323Z023B G R5323Z004A G R5323Z024A G R5323Z004B G R5323Z024B G R5323Z005A G R5323Z025A G R5323Z005B G R5323Z025B G R5323Z006A G R5323Z026A G R5323Z006B G R5323Z026B G R5323Z007A G R5323Z027A G R5323Z007B G R5323Z027B G R5323Z008A G R5323Z028A G R5323Z008B G R5323Z028B G R5323Z009A G R5323Z029A G R5323Z009B G R5323Z029B G R5323Z010A G R5323Z030A G R5323Z010B G R5323Z030B G R5323Z011A G R5323Z031A G R5323Z011B G R5323Z031B G R5323Z012A G R5323Z032A G R5323Z012B G R5323Z032B G R5323Z013A G R5323Z033A G R5323Z013B G R5323Z033B G R5323Z014A G R5323Z034A G R5323Z014B G R5323Z034B G R5323Z015A G R5323Z035A G R5323Z015B G R5323Z035B G R5323Z016A G R5323Z036A G R5323Z016B G R5323Z036B G R5323Z017A G R5323Z037A G R5323Z017B G R5323Z037B G R5323Z018A G R5323Z038A G R5323Z018B G R5323Z038B G R5323Z019A G R5323Z039A G R5323Z019B G R5323Z039B G R5323Z020A G R5323Z040A G R5323Z020B G R5323Z040B G R5323Z041A G R5323Z041B G