D a t a S h e e t , V 1 .2 , M a r c h 2007 XC164TM 16-Bit Single-Chip Microcontroller with C166SV2 Core Microcontrollers Edition 2007-03 Published by Infineon Technologies AG 81726 Munich, Germany © 2007 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. D a t a S h e e t , V 1 .2 , M a r c h 2007 XC164TM 16-Bit Single-Chip Microcontroller with C166SV2 Core Microcontrollers XC164TM Derivatives XC164TM Revision History: V1.2, 2007-03 Previous Version(s): V1.1, 2006-08 V1.0, 2005-11 Page Subjects (major changes since last revision) 6 Design steps of the derivatives differentiated. 49 Power consumption of the derivatives differentiated. 50 Figure 9 adapted. 51 Figure 11 adapted. 61 Packages of the derivatives differentiated. 62 Thermal resistances of the derivatives differentiated. all “Preliminary” removed We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Data Sheet V1.2, 2007-03 XC164TM Derivatives Table of Contents Table of Contents 1 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 2.1 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Subsystem and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capture/Compare Unit (CAPCOM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Purpose Timer (GPT12E) Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1) . . . . . . . . . . High Speed Synchronous Serial Channels (SSC0/SSC1) . . . . . . . . . . . . Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 15 17 19 24 25 28 32 34 35 36 37 38 39 40 41 4 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog/Digital Converter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Internal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On-chip Flash Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Clock Drive XTAL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 44 47 52 55 55 59 60 5 5.1 5.2 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Data Sheet 3 V1.2, 2007-03 16-Bit Single-Chip Microcontroller with C166SV2 Core XC166 Family 1 XC164TM Summary of Features For a quick overview or reference, the XC164TM’s properties are listed here in a condensed way. • • • • • • • • High Performance 16-bit CPU with 5-Stage Pipeline – 25 ns Instruction Cycle Time at 40 MHz CPU Clock (Single-Cycle Execution) – 1-Cycle Multiplication (16 × 16 bit), Background Division (32 / 16 bit) in 21 Cycles – 1-Cycle Multiply-and-Accumulate (MAC) Instructions – Enhanced Boolean Bit Manipulation Facilities – Zero-Cycle Jump Execution – Additional Instructions to Support HLL and Operating Systems – Register-Based Design with Multiple Variable Register Banks – Fast Context Switching Support with Two Additional Local Register Banks – 16 Mbytes Total Linear Address Space for Code and Data – 1024 Bytes On-Chip Special Function Register Area (C166 Family Compatible) 16-Priority-Level Interrupt System with up to 63 Sources, Sample-Rate down to 50 ns 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC), 24-Bit Pointers Cover Total Address Space Clock Generation via on-chip PLL (factors 1:0.15 … 1:10), or via Prescaler (factors 1:1 … 60:1) On-Chip Memory Modules – 2 Kbytes On-Chip Dual-Port RAM (DPRAM) – 0/2/4 Kbytes1) On-Chip Data SRAM (DSRAM) – 2 Kbytes On-Chip Program/Data SRAM (PSRAM) – 32/64/1281) Kbytes On-Chip Program Memory (Flash Memory) On-Chip Peripheral Modules – 14-Channel A/D Converter with Programmable Resolution (10-bit or 8-bit) and Conversion Time (down to 2.55 μs or 2.15 μs) – 16-Channel General Purpose Capture/Compare Unit (CAPCOM2) – Multi-Functional General Purpose Timer Unit with 5 Timers – Two Synchronous/Asynchronous Serial Channels (USARTs) – Two High-Speed-Synchronous Serial Channels – On-Chip Real Time Clock, Driven by the Main Oscillator Idle, Sleep, and Power Down Modes with Flexible Power Management Programmable Watchdog Timer and Oscillator Watchdog 1) Depends on the respective derivative. See Table 1 “XC164TM Derivative Synopsis” on Page 6. Data Sheet 4 V1.2, 2007-03 XC164TM Derivatives Summary of Features • • • • • Up to 47 General Purpose I/O Lines, partly with Selectable Input Thresholds and Hysteresis On-Chip Bootstrap Loader On-Chip Debug Support via JTAG Interface 64-Pin Green LQFP Package for the -16F derivatives, 0.5 mm (19.7 mil) pitch (RoHS compliant) 64-Pin TQFP Package for the -4F/8F derivatives, 0.5 mm (19.7 mil) pitch (RoHS compliant) Ordering Information The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies: • • the derivative itself, i.e. its function set, the temperature range, and the supply voltage the package and the type of delivery. For the available ordering codes for the XC164TM please refer to your responsible sales representative or your local distributor. This document describes several derivatives of the XC164TM group. Table 1 enumerates these derivatives and summarizes the differences. As this document refers to all of these derivatives, some descriptions may not apply to a specific product. For simplicity all versions are referred to by the term XC164TM throughout this document. Data Sheet 5 V1.2, 2007-03 XC164TM Derivatives Summary of Features Table 1 XC164TM Derivative Synopsis Derivative1) Temp. Range Program Memory SAF-XC164TM-16F40F SAF-XC164TM-16F20F -40 to 85 °C 128 Kbytes 2 Kbytes DPRAM, Flash 4 Kbytes DSRAM, 2 Kbytes PSRAM ASC0, ASC1, SSC0, SSC1 SAF-XC164TM-8F40F SAF-XC164TM-8F20F -40 to 85 °C 64 Kbytes Flash 2 Kbytes DPRAM, 2 Kbytes DSRAM, 2 Kbytes PSRAM ASC0, ASC1, SSC0, SSC1 SAF-XC164TM-4F40F SAF-XC164TM-4F20F -40 to 85 °C 32 Kbytes Flash 2 Kbytes DPRAM, 2 Kbytes PSRAM ASC0, ASC1, SSC0, SSC1 On-Chip RAM Interfaces 1) This Data Sheet is valid for: devices starting with and including design step BA for the -16F derivatives, and for devices starting with and including design step AA for -4F/8F derivatives. Data Sheet 6 V1.2, 2007-03 XC164TM Derivatives General Device Information 2 General Device Information The XC164TM derivatives are high-performance members of the Infineon XC166 Family of full featured single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 40 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. They also provide clock generation via PLL and various on-chip memory modules such as program Flash, program RAM, and data RAM. VAREF VAGND VDDI/P PORT1 14 bit XTAL1 XTAL2 NMI VSS XC164TM RSTIN Port 5 14 bit Port 3 15 bit Port 9 6 bit TRST MCA05554_XC164TM Figure 1 Data Sheet Logic Symbol 7 V1.2, 2007-03 XC164TM Derivatives General Device Information 2.1 Pin Configuration and Definition NMI RSTIN TRST XTAL2 XTAL1 V SS V DDI V DDP P1L.7/CC22IO P1L.6 P1L.5 P1L.4 P1L.3 P1L.2 P1L.1 P1L.0 The pins of the XC164TM are described in detail in Table 2, including all their alternate functions. Figure 2 summarizes all pins in a condensed way, showing their location on the 4 sides of the package. E* marks pins to be used as alternate external interrupt inputs. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 1 48 47 2 46 3 4 45 44 5 6 43 7 42 8 41 9 40 10 39 38 11 12 37 13 36 14 35 15 34 16 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 XC164TM P5.6/AN6 P5.7/AN7 V AREF V AGN D P5.12/AN12/T6IN P5.13/AN13/T5IN P5.14/AN14/T4EUD P5.15/AN15/T2EUD V SS V DDI VD DP P3.1/T6OUT/RxD1/TCK/E* P3.2/CAPIN/TDI P3.3/T3OUT /TDO P3.4/T3EUD/TMS P3.5/T4IN/TxD1/BRKOUT P1H.0/EX0IN/CC23IO P1H.1/EX1IN/MRST1 P1H.2/EX2IN/MTRS1 P1H.3/EX3IN/T7IN/SCLK1 P1H.4/CC24IO/EX4IN P1H.5/CC25IO/EX5IN VSS V DDP P5.0/AN0 P5.1/AN1 P5.2/AN2 P5.3/AN3 P5.4/AN4 P5.5/AN5 P5.10/AN10/T6EUD P5.11/AN11/T5EUD Figure 2 Data Sheet P9.5/CC21IO P9.4/CC20IO P9.3/CC19IO P9.2/CC18IO/E* P9.1/CC17IO P9.0/CC16IO/E* P3.15/CLKOUT/FOUT V SS V DDP P3.13/SCLK0/E* P3.11/RxD0/E* P3.10/TxD0/E* P3.9/MTSR0 P3.8/MRST0 P3.7/T2IN/BRKIN P3.6/T3IN mc_xc164tm_pinout.vsd Pin Configuration (top view) 8 V1.2, 2007-03 XC164TM Derivatives General Device Information Table 2 Pin Definitions and Functions Symbol Pin Num. Input Function Outp. RSTIN 63 I Reset Input with Schmitt-Trigger characteristics. A low-level at this pin while the oscillator is running resets the XC164TM. A spike filter suppresses input pulses < 10 ns. Input pulses > 100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles. Note: The reset duration must be sufficient to let the hardware configuration signals settle. External circuitry must guarantee low-level at the RSTIN pin at least until both power supply voltages have reached the operating range. NMI 64 I Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU to vector to the NMI trap routine. When the PWRDN (power down) instruction is executed, the NMI pin must be low in order to force the XC164TM into power down mode. If NMI is high, when PWRDN is executed, the part will continue to run in normal mode. If not used, pin NMI should be pulled high externally. Port 9 43-48 IO P9.0 43 P9.1 P9.2 44 45 P9.3 P9.4 P9.5 46 47 48 I/O I I/O I/O I I/O I/O I/O Port 9 is a 6-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 9 is selectable (standard or special). The following Port 9 pins also serve for alternate functions: CC16IO: (CAPCOM2) CC16 Capture Inp./Compare Outp., EX5IN: (Fast External Interrupt 5) Input (alternate pin A) CC17IO: (CAPCOM2) CC17 Capture Inp./Compare Outp., CC18IO: (CAPCOM2) CC18 Capture Inp./Compare Outp., EX4IN: (Fast External Interrupt 4) Input (alternate pin A) CC19IO: (CAPCOM2) CC19 Capture Inp./Compare Outp., CC20IO: (CAPCOM2) CC20 Capture Inp./Compare Outp. CC21IO: (CAPCOM2) CC21 Capture Inp./Compare Outp. Data Sheet Note: At the end of an external reset P9.4 and P9.5 also may input startup configuration values 9 V1.2, 2007-03 XC164TM Derivatives General Device Information Table 2 Pin Definitions and Functions (cont’d) Symbol Pin Num. Input Function Outp. Port 5 9-18, 21-24 I P5.0 P5.1 P5.2 P5.3 P5.4 P5.5 P5.10 P5.11 P5.6 P5.7 P5.12 P5.13 P5.14 P5.15 9 10 11 12 13 14 15 16 17 18 21 22 23 24 I I I I I I I I I I I I I I TRST 62 I Data Sheet Port 5 is a 14-bit input-only port. The pins of Port 5 also serve as analog input channels for the A/D converter, or they serve as timer inputs: AN0 AN1 AN2 AN3 AN4 AN5 AN10 (T6EUD): GPT2 Timer T6 Ext. Up/Down Ctrl. Inp. AN11 (T5EUD): GPT2 Timer T5 Ext. Up/Down Ctrl. Inp. AN6 AN7 AN12 (T6IN): GPT2 Timer T6 Count/Gate Input AN13 (T5IN): GPT2 Timer T5 Count/Gate Input AN14 (T4EUD): GPT1 Timer T4 Ext. Up/Down Ctrl. Inp. AN15 (T2EUD): GPT1 Timer T2 Ext. Up/Down Ctrl. Inp. Test-System Reset Input. For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of RSTIN enables the hardware configuration and activates the XC164TM’s debug system. In this case, pin TRST must be driven low once to reset the debug system. 10 V1.2, 2007-03 XC164TM Derivatives General Device Information Table 2 Pin Definitions and Functions (cont’d) Symbol Pin Num. Port 3 28-39, IO 42 P3.1 28 P3.2 29 P3.3 30 P3.4 31 P3.5 32 P3.6 P3.7 33 34 P3.8 P3.9 P3.10 35 36 37 P3.11 38 P3.13 39 P3.15 42 Data Sheet Input Function Outp. O I/O I I I I O O I I I O O I I I I/O I/O O I I/O I I/O I O O Port 3 is a 13-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 3 is selectable (standard or special).The following Port 3 pins also serve for alternate functions: T6OUT: [GPT2] Timer T6 Toggle Latch Output, RxD1: [ASC1] Data Input (Async.) or Inp./Outp. (Sync.), EX1IN: [Fast External Interrupt 1] Input (alternate pin A), TCK: [Debug System] JTAG Clock Input CAPIN: [GPT2] Register CAPREL Capture Input, TDI: [Debug System] JTAG Data In T3OUT: [GPT1] Timer T3 Toggle Latch Output, TDO: [Debug System] JTAG Data Out T3EUD: [GPT1] Timer T3 External Up/Down Control Input, TMS: [Debug System] JTAG Test Mode Selection T4IN: [GPT1] Timer T4 Count/Gate/Reload/Capture Inp. TxD1: [ASC0] Clock/Data Output (Async./Sync.), BRKOUT: [Debug System] Break Out T3IN: [GPT1] Timer T3 Count/Gate Input T2IN: [GPT1] Timer T2 Count/Gate/Reload/Capture Inp. BRKIN: [Debug System] Break In MRST0: [SSC0] Master-Receive/Slave-Transmit In/Out. MTSR0: [SSC0] Master-Transmit/Slave-Receive Out/In. TxD0: [ASC0] Clock/Data Output (Async./Sync.), EX2IN: [Fast External Interrupt 2] Input (alternate pin B) RxD0: [ASC0] Data Input (Async.) or Inp./Outp. (Sync.), EX2IN: [Fast External Interrupt 2] Input (alternate pin A) SCLK0: [SSC0] Master Clock Output / Slave Clock Input., EX3IN: [Fast External Interrupt 3] Input (alternate pin A) CLKOUT: System Clock Output (= CPU Clock), FOUT: Programmable Frequency Output 11 V1.2, 2007-03 XC164TM Derivatives General Device Information Table 2 Symbol Pin Definitions and Functions (cont’d) Pin Num. Input Function Outp. PORT1 1-6, 49-56 IO P1L.7 P1H.0 56 1 P1H.1 2 P1H.2 3 P1H.3 3 P1H.4 5 P1H.5 6 I/O I I/O I I/O I I/O I I/O I I/O I I/O I PORT1 consists of one 8-bit and one 6-bit bidirectional I/O port P1L and P1H. Each pin can be programmed for input (output driver in high-impedance state) or output. The following PORT1 pins also serve for alt. functions: CC22IO: [CAPCOM2] CC22 Capture Inp./Compare Outp. EX0IN: [Fast External Interrupt 0] Input (default pin), CC23IO: [CAPCOM2] CC23 Capture Inp./Compare Outp. EX1IN: [Fast External Interrupt 1] Input (default pin), MRST1: [SSC1] Master-Receive/Slave-Transmit In/Out. EX2IN: [Fast External Interrupt 2] Input (default pin), MTSR1: [SSC1] Master-Transmit/Slave-Receive Out/Inp. T7IN: [CAPCOM2] Timer T7 Count Input, SCLK1: [SSC1] Master Clock Output / Slave Clock Input, EX3IN: [Fast External Interrupt 3] Input (default pin), CC24IO: [CAPCOM2] CC24 Capture Inp./Compare Outp., EX4IN: [Fast External Interrupt 4] Input (default pin) CC25IO: [CAPCOM2] CC25 Capture Inp./Compare Outp., EX5IN: [Fast External Interrupt 5] Input (default pin) Note: At the end of an external reset P1H.4 and P1H.5 also may input startup configuration values XTAL2 XTAL1 61 60 O I XTAL2: Output of the oscillator amplifier circuit XTAL1: Input to the oscillator amplifier and input to the internal clock generator To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed. Note: Input pin XTAL1 belongs to the core voltage domain. Therefore, input voltages must be within the range defined for VDDI. VAREF VAGND VDDI 19 – Reference voltage for the A/D converter 20 – Reference ground for the A/D converter 26, 58 – Data Sheet Digital Core Supply Voltage (On-Chip Modules): +2.5 V during normal operation and idle mode. Please refer to the Operating Condition Parameters 12 V1.2, 2007-03 XC164TM Derivatives General Device Information Table 2 Pin Definitions and Functions (cont’d) Symbol Pin Num. VDDP 8, 27, – 40, 57 Digital Pad Supply Voltage (Pin Output Drivers): +5 V during normal operation and idle mode. Please refer to the Operating Condition Parameters VSS 7, 25, – 41, 59 Digital Ground Connect decoupling capacitors to adjacent VDD/VSS pin pairs as close as possible to the pins. All VSS pins must be connected to the ground-line or groundplane. Data Sheet Input Function Outp. 13 V1.2, 2007-03 XC164TM Derivatives Functional Description 3 Functional Description The architecture of the XC164TM combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a very well-balanced way. In addition, the on-chip memory blocks allow the design of compact systems-on-silicon with maximum performance (computing, control, communication). The on-chip memory blocks (program code-memory and SRAM, dual-port RAM, data SRAM) and the set of generic peripherals are connected to the CPU via separate buses. Another bus, the LXBus, connects additional on-chip resources (see Figure 3). This bus structure enhances the overall system performance by enabling the concurrent operation of several subsystems of the XC164TM. The following block diagram gives an overview of the different on-chip components and of the advanced, high bandwidth internal bus structure of the XC164TM. PSRAM DPRAM 2 Kbytes 2 Kbytes PMU Flash 32/64/128 Kbytes DMU ProgMem CPU DSRAM 0/2/4 Kbytes C166SV2-Core OCDS Debug Support XTAL Osc / PLL Clock Generation RTC WDT Interrupt & PEC Interrupt Bus Peripheral Data Bus ADC GPT ASC0 ASC1 SSC0 SSC1 8/10-Bit 14 C hannels T2 (U SAR T) (U SAR T) (SPI) CC2 (SPI) T7 T3 T8 T4 T5 T6 Port 9 BR Gen BR Gen BR Gen BR Gen Port 5 6 Port 3 13 14 POR T1 14 mc_xc164tm_block1.vsd Figure 3 Data Sheet Block Diagram 14 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.1 Memory Subsystem and Organization The memory space of the XC164TM is configured in a von Neumann architecture, which means that all internal and external resources, such as code memory, data memory, registers and I/O ports, are organized within the same linear address space. This common memory space includes 16 Mbytes and is arranged as 256 segments of 64 Kbytes each, where each segment consists of four data pages of 16 Kbytes each. The entire memory space can be accessed byte wise or word wise. Portions of the on-chip DPRAM and the register spaces (E/SFR) have additionally been made directly bit addressable. The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment. The Program Management Unit (PMU) handles all code fetches and, therefore, controls accesses to the program memories, such as Flash memory and PSRAM. The Data Management Unit (DMU) handles all data transfers and, therefore, controls accesses to the DSRAM and the on-chip peripherals. Both units (PMU and DMU) are connected via the high-speed system bus to exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM. The system bus allows concurrent two-way communication for maximum transfer performance. 32/64/128 Kbytes of on-chip Flash memory1) store code or constant data. The on-chip Flash memory is organized as four 8-Kbyte sectors and up to three 32-Kbyte sectors. Each sector can be separately write protected2), erased and programmed (in blocks of 128 Bytes). The complete Flash area can be read-protected. A password sequence temporarily unlocks protected areas. The Flash module combines very fast 64-bit onecycle read accesses with protected and efficient writing algorithms for programming and erasing. Thus, program execution out of the internal Flash results in maximum performance. Dynamic error correction provides extremely high read data security for all read accesses. Programming typically takes 2 ms per 128-byte block (5 ms max.), erasing a sector typically takes 200 ms (500 ms max.). 2 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is therefore optimized for code fetches. 0/2/4 Kbytes1) of on-chip Data SRAM (DSRAM) are provided as a storage for general user data. The DSRAM is accessed via the DMU and is therefore optimized for data accesses. DSRAM is not available in the XC164TM-4F derivatives. 2 Kbytes of on-chip Dual-Port RAM (DPRAM) are provided as a storage for user defined variables, for the system stack, general purpose register banks. A register bank 1) Depends on the respective derivative. See Table 1 “XC164TM Derivative Synopsis” on Page 6. 2) Each two 8-Kbyte sectors are combined for write-protection purposes. Data Sheet 15 V1.2, 2007-03 XC164TM Derivatives Functional Description can consist of up to 16 word wide (R0 to R15) and/or byte wide (RL0, RH0, …, RL7, RH7) so-called General Purpose Registers (GPRs). The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR, any location in the DPRAM is bit addressable. 1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are word wide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the XC166 Family. Therefore, they should either not be accessed, or written with zeros, to ensure upward compatibility. Table 3 XC164TM Memory Map Address Area Start Loc. End Loc. Area Size1) Notes Flash register space FF’F000H FF’FFFFH 4 Kbytes 2) Reserved (Acc. trap) F8’0000H FF’FFFFH 508 Kbytes – Reserved for PSRAM E0’0800H F7’FFFFH < 1.5 Mbytes Minus PSRAM Program SRAM E0’0000H E0’07FFH 2 Kbytes – Reserved for pr. mem. C2’0000H DF’FFFFH < 2 Mbytes Minus Flash Program Flash C0’0000H C1’FFFFH 128 Kbytes XC164TM-16F C0’0000H C0’FFFFH 64 Kbytes XC164TM-8F C0’0000H C0’7FFFH 32 Kbytes XC164TM-4F Reserved 20’0000H BF’FFFFH < 10 Mbytes Reserved 01’0000H 1F’FFFFH < 2 Mbytes Minus segment 0 SFR area 00’FE00H 00’FFFFH 0.5 Kbyte – Dual-Port RAM 00’F600H 00’FDFFH 2 Kbytes – Reserved for DPRAM 00’F200H 00’F5FFH 1 Kbyte – ESFR area 00’F000H 00’F1FFH 0.5 Kbyte – XSFR area 00’E000H 00’EFFFH 4 Kbytes – Reserved 00’D000H 00’DFFFH 6 Kbytes – Data SRAM 00’C000H 00’CFFFH 4 Kbytes 3) Reserved for DSRAM 00’8000H 00’BFFFH 16 Kbytes – Reserved 00’0000H 00’7FFFH 32 Kbytes – 1) The areas marked with “<” are slightly smaller than indicated, see column “Notes”. 2) Not defined register locations return a trap code (1E9BH). 3) Depends on the respective derivative. See Table 1 “XC164TM Derivative Synopsis” on Page 6. Data Sheet 16 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.2 Central Processing Unit (CPU) The main core of the CPU consists of a 5-stage execution pipeline with a 2-stage instruction-fetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply and divide unit, a bit-mask generator, and a barrel shifter. PSRAM Flash/RO M PM U CPU P refetch U nit B ranch U nit FIFO CSP VECSEG CPUCON1 CPUCON2 R eturn S tack ID X 0 ID X 1 QX0 QX1 QR0 QR1 + /- + /- M ultiply U nit IP MRW + /- MCW MSW MAH MAL 2-S tage P refetch P ipeline T FR Injection/ Exception Handler 5-S tage P ipeline IFU DPRAM IPIP DPP0 DPP1 DPP2 DPP3 SPSEG SP S TK O V S TK U N ADU D ivisio n U n it B it-M a sk-G e n . M u ltip ly U n it B a rre l-S h ifte r MDC CP RR1515 RR1414 R 15 R 14 R 15 R 14 GPRs GPRs GPRs GPRs RR1 1 RR0 0R 1 R0 R1 R0 RF PSW + /- MDH MDL ZERO S ONES M AC B u ffer ALU WB DSRAM EBC Peripherals DM U m ca04917_x.vsd Figure 4 CPU Block Diagram Based on these hardware provisions, most of the XC164TM’s instructions can be executed in just one machine cycle which requires 25 ns at 40 MHz CPU clock. For Data Sheet 17 V1.2, 2007-03 XC164TM Derivatives Functional Description example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. Also multiplication and most MAC instructions execute in one single cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: for example, a 32-/16-bit division is started within 4 cycles, while the remaining 15 cycles are executed in the background. Another pipeline optimization, the branch target prediction, allows eliminating the execution time of branch instructions if the prediction was correct. The CPU has a register context consisting of up to three register banks with 16 word wide GPRs each at its disposal. One of these register banks is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others. A system stack of up to 32 Kwords is provided as a storage for temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area), and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow. The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient XC164TM instruction set which includes the following instruction classes: • • • • • • • • • • • • • Standard Arithmetic Instructions DSP-Oriented Arithmetic Instructions Logical Instructions Boolean Bit Manipulation Instructions Compare and Loop Control Instructions Shift and Rotate Instructions Prioritize Instruction Data Movement Instructions System Stack Instructions Jump and Call Instructions Return Instructions System Control Instructions Miscellaneous Instructions The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands. Data Sheet 18 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.3 Interrupt System With an interrupt response time of typically 8 CPU clocks (in case of internal program execution), the XC164TM is capable of reacting very fast to the occurrence of nondeterministic events. The architecture of the XC164TM supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC). In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is ‘stolen’ from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source, or the destination pointer, or both. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The XC164TM has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities. A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bit field exists for each of the possible interrupt nodes. Via its related register, each node can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt nodes has a dedicated vector location. Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge, or both edges). Software interrupts are supported by means of the ‘TRAP’ instruction in combination with an individual trap (interrupt) number. Table 4 shows all of the possible XC164TM interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers. Note: Interrupt nodes which are not assigned to peripherals (unassigned nodes), may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR). Data Sheet 19 V1.2, 2007-03 XC164TM Derivatives Functional Description Table 4 XC164TM Interrupt Nodes Source of Interrupt or PEC Service Request Control Register Vector Location1) Trap Number EX0IN CC1_CC8IC xx’0060H 18H / 24D EX1IN CC1_CC9IC xx’0064H 19H / 25D EX2IN CC1_CC10IC xx’0068H 1AH / 26D EX3IN CC1_CC11IC xx’006CH 1BH / 27D EX4IN CC1_CC12IC xx’0070H 1CH / 28D EX5IN CC1_CC13IC xx’0074H 1DH / 29D CAPCOM Register 16 CC2_CC16IC xx’00C0H 30H / 48D CAPCOM Register 17 CC2_CC17IC xx’00C4H 31H / 49D CAPCOM Register 18 CC2_CC18IC xx’00C8H 32H / 50D CAPCOM Register 19 CC2_CC19IC xx’00CCH 33H / 51D CAPCOM Register 20 CC2_CC20IC xx’00D0H 34H / 52D CAPCOM Register 21 CC2_CC21IC xx’00D4H 35H / 53D CAPCOM Register 22 CC2_CC22IC xx’00D8H 36H / 54D CAPCOM Register 23 CC2_CC23IC xx’00DCH 37H / 55D CAPCOM Register 24 CC2_CC24IC xx’00E0H 38H / 56D CAPCOM Register 25 CC2_CC25IC xx’00E4H 39H / 57D CAPCOM Register 26 CC2_CC26IC xx’00E8H 3AH / 58D CAPCOM Register 27 CC2_CC27IC xx’00ECH 3BH / 59D CAPCOM Register 28 CC2_CC28IC xx’00F0H 3CH / 60D CAPCOM Register 29 CC2_CC29IC xx’0110H 44H / 68D CAPCOM Register 30 CC2_CC30IC xx’0114H 45H / 69D CAPCOM Register 31 CC2_CC31IC xx’0118H 46H / 70D CAPCOM Timer 7 CC2_T7IC xx’00F4H 3DH / 61D CAPCOM Timer 8 CC2_T8IC xx’00F8H 3EH / 62D GPT1 Timer 2 GPT12E_T2IC xx’0088H 22H / 34D GPT1 Timer 3 GPT12E_T3IC xx’008CH 23H / 35D GPT1 Timer 4 GPT12E_T4IC xx’0090H 24H / 36D GPT2 Timer 5 GPT12E_T5IC xx’0094H 25H / 37D GPT2 Timer 6 GPT12E_T6IC xx’0098H 26H / 38D Data Sheet 20 V1.2, 2007-03 XC164TM Derivatives Functional Description Table 4 XC164TM Interrupt Nodes (cont’d) Source of Interrupt or PEC Service Request Control Register Vector Location1) Trap Number GPT2 CAPREL Register GPT12E_CRIC xx’009CH 27H / 39D A/D Conversion Complete ADC_CIC xx’00A0H 28H / 40D A/D Overrun Error ADC_EIC xx’00A4H 29H / 41D ASC0 Transmit ASC0_TIC xx’00A8H 2AH / 42D ASC0 Transmit Buffer ASC0_TBIC xx’011CH 47H / 71D ASC0 Receive ASC0_RIC xx’00ACH 2BH / 43D ASC0 Error ASC0_EIC xx’00B0H 2CH / 44D ASC0 Autobaud ASC0_ABIC xx’017CH 5FH / 95D SSC0 Transmit SSC0_TIC xx’00B4H 2DH / 45D SSC0 Receive SSC0_RIC xx’00B8H 2EH / 46D SSC0 Error SSC0_EIC xx’00BCH 2FH / 47D PLL/OWD PLLIC xx’010CH 43H / 67D ASC1 Transmit ASC1_TIC xx’0120H 48H / 72D ASC1 Transmit Buffer ASC1_TBIC xx’0178H 5EH / 94D ASC1 Receive ASC1_RIC xx’0124H 49H / 73D ASC1 Error ASC1_EIC xx’0128H 4AH / 74D ASC1 Autobaud ASC1_ABIC xx’0108H 42H / 66D End of PEC Subchannel EOPIC xx’0130H 4CH / 76D SSC1 Transmit SSC1_TIC xx’0144H 51H / 81D SSC1 Receive SSC1_RIC xx’0148H 52H / 82D SSC1 Error SSC1_EIC xx’014CH 53H / 83D RTC RTC_IC xx’0174H 5DH / 93D Unassigned node – xx’0040H 10H / 16D Unassigned node – xx’0044H 11H / 17D Unassigned node – xx’0048H 12H / 18D Unassigned node – xx’004CH 13H / 19D Unassigned node – xx’0050H 14H / 20D Unassigned node – xx’0054H 15H / 21D Unassigned node – xx’0058H 16H / 22D Unassigned node – xx’005CH 17H / 23D Data Sheet 21 V1.2, 2007-03 XC164TM Derivatives Functional Description Table 4 XC164TM Interrupt Nodes (cont’d) Source of Interrupt or PEC Service Request Control Register Vector Location1) Trap Number Unassigned node – xx’0078H 1EH / 30D Unassigned node – xx’007CH 1FH / 31D Unassigned node – xx’0080H 20H / 32D Unassigned node – xx’0084H 21H / 33D Unassigned node – xx’00FCH 3FH / 63D Unassigned node – xx’0100H 40H / 64D Unassigned node – xx’0104H 41H / 65D Unassigned node – xx’012CH 4BH / 75D Unassigned node – xx’0134H 4DH / 77D Unassigned node – xx’0138H 4EH / 78D Unassigned node – xx’013CH 4FH / 79D Unassigned node – xx’0140H 50H / 80D Unassigned node – xx’0150H 54H / 84D Unassigned node – xx’0154H 55H / 85D Unassigned node – xx’0158H 56H / 86D Unassigned node – xx’015CH 57H / 87D Unassigned node – xx’0160H 58H / 88D Unassigned node – xx’0164H 59H / 89D Unassigned node – xx’0168H 5AH / 90D Unassigned node – xx’016CH 5BH / 91D Unassigned node – xx’0170H 5CH / 92D 1) Register VECSEG defines the segment where the vector table is located to. Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table represents the default setting, with a distance of 4 (two words) between two vectors. Data Sheet 22 V1.2, 2007-03 XC164TM Derivatives Functional Description The XC164TM also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called ‘Hardware Traps’. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts. Table 5 shows all of the possible exceptions or error conditions that can arise during runtime: Table 5 Hardware Trap Summary Trap Vector Vector Trap Trap 1) Location Number Priority RESET RESET RESET xx’0000H xx’0000H xx’0000H 00H 00H 00H III III III NMI STKOF STKUF SOFTBRK NMITRAP STOTRAP STUTRAP SBRKTRAP xx’0008H xx’0010H xx’0018H xx’0020H 02H 04H 06H 08H II II II II UNDOPC PACER PRTFLT BTRAP BTRAP BTRAP xx’0028H xx’0028H xx’0028H 0AH 0AH 0AH I I I ILLOPA BTRAP xx’0028H 0AH I Reserved – – [2CH - 3CH] [0BH 0FH] – Software Traps • TRAP Instruction – – Any Any [xx’0000H - [00H xx’01FCH] 7FH] in steps of 4H Current CPU Priority Exception Condition Trap Flag Reset Functions: • Hardware Reset • Software Reset • W-dog Timer Overflow – Class A Hardware Traps: • Non-Maskable Interrupt • Stack Overflow • Stack Underflow • Software Break Class B Hardware Traps: • Undefined Opcode • PMI Access Error • Protected Instruction Fault • Illegal Word Operand Access 1) Register VECSEG defines the segment where the vector table is located to. Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table represents the default setting, with a distance of 4 (two words) between two vectors. Data Sheet 23 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.4 On-Chip Debug Support (OCDS) The On-Chip Debug Support system provides a broad range of debug and emulation features built into the XC164TM. The user software running on the XC164TM can thus be debugged within the target system environment. The OCDS is controlled by an external debugging device via the debug interface, consisting of the IEEE-1149-conforming JTAG port and a break interface. The debugger controls the OCDS via a set of dedicated registers accessible via the JTAG interface. Additionally, the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU. Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported as well as the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU-halt, a monitor call, a data transfer, or/and the activation of an external signal. Tracing data can be obtained via the JTAG interface. The debug interface uses a set of 6 interface signals (4 JTAG lines, 2 break lines) to communicate with external circuitry. These interface signals are realized as alternate functions on Port 3 pins. Data Sheet 24 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.5 Capture/Compare Unit (CAPCOM2) The CAPCOM unit supports generation and control of timing sequences on up to 16 channels with a maximum resolution of 1 system clock cycle (8 cycles in staggered mode). The CAPCOM unit is typically used to handle high speed I/O tasks such as pulse and waveform generation, pulse width modulation (PWM), Digital to Analog (D/A) conversion, software timing, or time recording relative to external events. Two 16-bit timers (T7/T8) with reload registers provide two independent time bases for the capture/compare register array. The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range of variation for the timer period and resolution and allows precise adjustments to the application specific requirements. In addition, an external count input for CAPCOM timer T7 allows event scheduling for the capture/compare registers relative to external events. The capture/compare register array contains 16 dual purpose capture/compare registers, each of which may be individually allocated to either CAPCOM timer (T7 or T8, respectively), and programmed for capture or compare function. 10 registers of the CAPCOM2 module have each one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event. Table 6 Compare Modes (CAPCOM2) Compare Modes Function Mode 0 Interrupt-only compare mode; Several compare interrupts per timer period are possible Mode 1 Pin toggles on each compare match; Several compare events per timer period are possible Mode 2 Interrupt-only compare mode; Only one compare interrupt per timer period is generated Mode 3 Pin set ‘1’ on match; pin reset ‘0’ on compare timer overflow; Only one compare event per timer period is generated Double Register Mode Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible Single Event Mode Generates single edges or pulses; Can be used with any compare mode When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched (‘captured’) into the capture/compare Data Sheet 25 V1.2, 2007-03 XC164TM Derivatives Functional Description register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event. The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers. When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode. Data Sheet 26 V1.2, 2007-03 XC164TM Derivatives Functional Description Reload Reg. T7REL fC C T7IN T6OUF T7 Input Control Timer T7 CCxIO CCxIO CCxIRQ CCxIRQ Mode Control (Capture or Compare) Sixteen 16-bit Capture/ Compare Registers CCxIO fC C T6OUF T7IRQ CCxIRQ T8 Input Control Timer T8 T8IRQ Reload Reg. T8REL CAPCOM2 provides channels x = 16 … 31. (see signals CCxIO and CCxIRQ) MCB05569_2 Figure 5 Data Sheet CAPCOM2 Unit Block Diagram 27 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.6 General Purpose Timer (GPT12E) Unit The GPT12E unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication. The GPT12E unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module. Each of the three timers T2, T3, T4 of module GPT1 can be configured individually for one of four basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the system clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events. Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the ‘gate’ level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles. The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate e.g. position tracking. In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals, so the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input. Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components. It may also be used internally to clock timers T2 and T4 for measuring long time periods with high resolution. In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention. Data Sheet 28 V1.2, 2007-03 XC164TM Derivatives Functional Description T3CON.BPS1 f GPT 2n:1 Basic Clock Interrupt Request (T2IRQ) Aux. Timer T2 T2IN T2EUD T2 Mode Control U/D Reload Capture Interrupt Request (T3IRQ) T3IN T3 Mode Control T3EUD Core Timer T3 T3OTL T3OUT Toggle Latch U/D Capture T4IN T4EUD T4 Mode Control Reload Aux. Timer T4 U/D Interrupt Request (T4IRQ) MCA05563 Figure 6 Block Diagram of GPT1 With its maximum resolution of 2 system clock cycles, the GPT2 module provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The Data Sheet 29 V1.2, 2007-03 XC164TM Derivatives Functional Description count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD). Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow. The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can additionally be used to clock the CAPCOM2 timers, and to cause a reload from the CAPREL register. The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared after the capture procedure. This allows the XC164TM to measure absolute time differences or to perform pulse multiplication without software overhead. The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3’s inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode. Data Sheet 30 V1.2, 2007-03 XC164TM Derivatives Functional Description T6CON.BPS2 fGPT 2n:1 Basic Clock Interrupt Request (T5IRQ) GPT2 Timer T5 T5IN T5 Mode Control U/D Clear Capture CAPIN T3IN/ T3EUD CAPREL Mode Control GPT2 CAPREL Interrupt Request (CRIRQ) Reload Clear Interrupt Request (T6IRQ) Toggle FF T6IN T6 Mode Control GPT2 Timer T6 T6OTL T6OUT T6OUF U/D MCA05564 Figure 7 Data Sheet Block Diagram of GPT2 31 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.7 Real Time Clock The Real Time Clock (RTC) module of the XC164TM is directly clocked via a separate clock driver with the prescaled on-chip main oscillator frequency (fRTC = fOSCm/32). It is therefore independent from the selected clock generation mode of the XC164TM. The RTC basically consists of a chain of divider blocks: • • • A selectable 8:1 divider (on - off) The reloadable 16-bit timer T14 The 32-bit RTC timer block (accessible via registers RTCH and RTCL), made of: – a reloadable 10-bit timer – a reloadable 6-bit timer – a reloadable 6-bit timer – a reloadable 10-bit timer All timers count up. Each timer can generate an interrupt request. All requests are combined to a common node request. fRTC MUX :8 Interrupt Sub Node RUN PRE CNT INT0 CNT INT1 CNT INT2 RTCINT CNT INT3 REL-Register fCNT T14REL 10 Bits 6 Bits 6 Bits 10 Bits T14 10 Bits 6 Bits 6 Bits 10 Bits T14-Register CNT-Register MCB05568 Figure 8 RTC Block Diagram Note: The registers associated with the RTC are not affected by a reset in order to maintain the correct system time even when intermediate resets are executed. Data Sheet 32 V1.2, 2007-03 XC164TM Derivatives Functional Description The RTC module can be used for different purposes: • • • • System clock to determine the current time and date, optionally during idle mode, sleep mode, and power down mode Cyclic time based interrupt, to provide a system time tick independent of CPU frequency and other resources, e.g. to wake up regularly from idle mode 48-bit timer for long term measurements (maximum timespan is > 100 years) Alarm interrupt for wake-up on a defined time Data Sheet 33 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.8 A/D Converter For analog signal measurement, a 10-bit A/D converter with 14 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable (in two modes) and can thus be adjusted to the external circuitry. The A/D converter can also operate in 8-bit conversion mode, where the conversion time is further reduced. Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read. For applications which require less analog input channels, the remaining channel inputs can be used as digital input port pins. The A/D converter of the XC164TM supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels are sequentially sampled and converted. In the Auto Scan Continuous mode, the prespecified channels are repeatedly sampled and converted. In addition, the conversion of a specific channel can be inserted (injected) into a running sequence without disturbing this sequence. This is called Channel Injection Mode. The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer. After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations. These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter. In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital input stages under software control. This can be selected for each pin separately via register P5DIDIS (Port 5 Digital Input Disable). The Auto-Power-Down feature of the A/D converter minimizes the power consumption when no conversion is in progress. Data Sheet 34 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.9 Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1) The Asynchronous/Synchronous Serial Interfaces ASC0/ASC1 (USARTs) provide serial communication with other microcontrollers, processors, terminals or external peripheral components. They are upward compatible with the serial ports of the Infineon 8-bit microcontroller families and support full-duplex asynchronous communication and halfduplex synchronous communication. A dedicated baudrate generator with a fractional divider precisely generates all standard baud rates without oscillator tuning. For transmission, reception, error handling, and baud rate detection 5 separate interrupt vectors are provided. In asynchronous mode, 8- or 9-bit data frames (with optional parity bit) are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake-up bit mode). IrDA data transmissions up to 115.2 kbit/s with fixed or programmable IrDA pulse width are supported. In synchronous mode, bytes (8 bits) are transmitted or received synchronously to a shift clock which is generated by the ASC0/1. The LSB is always shifted first. In both modes, transmission and reception of data is FIFO-buffered. An autobaud detection unit allows to detect asynchronous data frames with its baudrate and mode with automatic initialization of the baudrate generator and the mode control bits. A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete. Summary of Features • • • • • Full-duplex asynchronous operating modes – 8- or 9-bit data frames, LSB first, one or two stop bits, parity generation/checking – Baudrate from 2.5 Mbit/s to 0.6 bit/s (@ 40 MHz) – Multiprocessor mode for automatic address/data byte detection – Support for IrDA data transmission/reception up to max. 115.2 kbit/s (@ 40 MHz) – Auto baudrate detection Half-duplex 8-bit synchronous operating mode at 5 Mbit/s to 406.9 bit/s (@ 40 MHz) Buffered transmitter/receiver with FIFO support (8 entries per direction) Loop-back option available for testing purposes Interrupt generation on transmitter buffer empty condition, last bit transmitted condition, receive buffer full condition, error condition (frame, parity, overrun error), start and end of an autobaud detection Data Sheet 35 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.10 High Speed Synchronous Serial Channels (SSC0/SSC1) The High Speed Synchronous Serial Channels SSC0/SSC1 support full-duplex and halfduplex synchronous communication. It may be configured so it interfaces with serially linked peripheral components, full SPI functionality is supported. A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling three separate interrupt vectors are provided. The SSC transmits or receives characters of 2 … 16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity. A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit error and receive error supervise the correct handling of the data buffer. Phase error and baudrate error detect incorrect serial data. Summary of Features • • • • • • • Master or Slave mode operation Full-duplex or Half-duplex transfers Baudrate generation from 20 Mbit/s to 305.18 bit/s (@ 40 MHz) Flexible data format – Programmable number of data bits: 2 to 16 bits – Programmable shift direction: LSB-first or MSB-first – Programmable clock polarity: idle low or idle high – Programmable clock/data phase: data shift with leading or trailing clock edge Loop back option available for testing purposes Interrupt generation on transmitter buffer empty condition, receive buffer full condition, error condition (receive, phase, baudrate, transmit error) Three pin interface with flexible SSC pin configuration Data Sheet 36 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.11 Watchdog Timer The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time. The Watchdog Timer is always enabled after a reset of the chip, and can be disabled until the EINIT instruction has been executed (compatible mode), or it can be disabled and enabled at any time by executing instructions DISWDT and ENWDT (enhanced mode). Thus, the chip’s start-up procedure is always monitored. The software has to be designed to restart the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and generates an internal hardware reset. The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/4/128/256. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded and the low byte is cleared. Thus, time intervals between 13 μs and 419 ms can be monitored (@ 40 MHz). The default Watchdog Timer interval after reset is 3.28 ms (@ 40 MHz). Data Sheet 37 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.12 Clock Generation The Clock Generation Unit uses a programmable on-chip PLL with multiple prescalers to generate the clock signals for the XC164TM with high flexibility. The master clock fMC is the reference clock signal and is output to the external system. The CPU clock fCPU and the system clock fSYS are derived from the master clock either directly (1:1) or via a 2:1 prescaler (fSYS = fCPU = fMC / 2). See also Section 4.4.1. The on-chip oscillator can drive an external crystal or accepts an external clock signal. The oscillator clock frequency can be multiplied by the on-chip PLL (by a programmable factor) or can be divided by a programmable prescaler factor. If the bypass mode is used (direct drive or prescaler) the PLL can deliver an independent clock to monitor the clock signal generated by the on-chip oscillator. This PLL clock is independent from the XTAL1 clock. When the expected oscillator clock transitions are missing the Oscillator Watchdog (OWD) activates the PLL Unlock/OWD interrupt node and supplies the CPU with an emergency clock, the PLL clock signal. Under these circumstances the PLL will oscillate with its basic frequency. The oscillator watchdog can be disabled by switching the PLL off. This reduces power consumption, but also no interrupt request will be generated in case of a missing oscillator clock. Data Sheet 38 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.13 Parallel Ports The XC164TM provides up to 47 I/O lines which are organized into three input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of some I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs. The edge characteristics (shape) and driver characteristics (output current) of the port drivers can be selected via registers POCONx. The input threshold of some ports is selectable (TTL or CMOS like), where the special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input threshold may be selected individually for each byte of the respective ports. All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines. Table 7 Summary of the XC164TM’s Parallel Ports Port Control Alternate Functions PORT1 Pad drivers Capture inputs or compare outputs, Serial interface lines Port 3 Pad drivers, Open drain, Input threshold Timer control signals, serial interface lines, System clock output CLKOUT (or FOUT) Port 5 – Analog input channels to the A/D converter, Timer control signals Port 9 Pad drivers, Open drain, Input threshold Capture inputs or compare outputs Data Sheet 39 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.14 Power Management The XC164TM provides several means to control the power it consumes either at a given time or averaged over a certain timespan. Three mechanisms can be used (partly in parallel): • • • Power Saving Modes switch the XC164TM into a special operating mode (control via instructions). Idle Mode stops the CPU while the peripherals can continue to operate. Sleep Mode and Power Down Mode stop all clock signals and all operation (RTC may optionally continue running). Sleep Mode can be terminated by external interrupt signals. Clock Generation Management controls the distribution and the frequency of internal and external clock signals. While the clock signals for currently inactive parts of logic are disabled automatically, the user can reduce the XC164TM’s CPU clock frequency which drastically reduces the consumed power. External circuitry can be controlled via the programmable frequency output FOUT. Peripheral Management permits temporary disabling of peripheral modules (control via register SYSCON3). Each peripheral can separately be disabled/enabled. The on-chip RTC supports intermittent operation of the XC164TM by generating cyclic wake-up signals. This offers full performance to quickly react on action requests while the intermittent sleep phases greatly reduce the average power consumption of the system. Data Sheet 40 V1.2, 2007-03 XC164TM Derivatives Functional Description 3.15 Instruction Set Summary Table 8 lists the instructions of the XC164TM in a condensed way. The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the “Instruction Set Manual”. This document also provides a detailed description of each instruction. Table 8 Instruction Set Summary Mnemonic Description Bytes ADD(B) Add word (byte) operands 2/4 ADDC(B) Add word (byte) operands with Carry 2/4 SUB(B) Subtract word (byte) operands 2/4 SUBC(B) Subtract word (byte) operands with Carry 2/4 MUL(U) (Un)Signed multiply direct GPR by direct GPR (16- × 16-bit) 2 DIV(U) (Un)Signed divide register MDL by direct GPR (16-/16-bit) 2 DIVL(U) (Un)Signed long divide reg. MD by direct GPR (32-/16-bit) 2 CPL(B) Complement direct word (byte) GPR 2 NEG(B) Negate direct word (byte) GPR 2 AND(B) Bitwise AND, (word/byte operands) 2/4 OR(B) Bitwise OR, (word/byte operands) 2/4 XOR(B) Bitwise exclusive OR, (word/byte operands) 2/4 BCLR/BSET Clear/Set direct bit 2 BMOV(N) Move (negated) direct bit to direct bit 4 BAND/BOR/BXOR AND/OR/XOR direct bit with direct bit 4 BCMP Compare direct bit to direct bit 4 BFLDH/BFLDL Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data 4 CMP(B) Compare word (byte) operands 2/4 CMPD1/2 Compare word data to GPR and decrement GPR by 1/2 2/4 CMPI1/2 Compare word data to GPR and increment GPR by 1/2 2/4 PRIOR Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR 2 SHL/SHR Shift left/right direct word GPR 2 Data Sheet 41 V1.2, 2007-03 XC164TM Derivatives Functional Description Table 8 Instruction Set Summary (cont’d) Mnemonic Description Bytes ROL/ROR Rotate left/right direct word GPR 2 ASHR Arithmetic (sign bit) shift right direct word GPR 2 MOV(B) Move word (byte) data 2/4 MOVBS/Z Move byte operand to word op. with sign/zero extension 2/4 JMPA/I/R Jump absolute/indirect/relative if condition is met 4 JMPS Jump absolute to a code segment 4 JB(C) Jump relative if direct bit is set (and clear bit) 4 JNB(S) Jump relative if direct bit is not set (and set bit) 4 CALLA/I/R Call absolute/indirect/relative subroutine if condition is met 4 CALLS Call absolute subroutine in any code segment 4 PCALL Push direct word register onto system stack and call absolute subroutine 4 TRAP Call interrupt service routine via immediate trap number 2 PUSH/POP Push/pop direct word register onto/from system stack 2 SCXT Push direct word register onto system stack and update register with word operand 4 RET(P) Return from intra-segment subroutine (and pop direct word register from system stack) 2 RETS Return from inter-segment subroutine 2 RETI Return from interrupt service subroutine 2 SBRK Software Break 2 SRST Software Reset 4 IDLE Enter Idle Mode 4 PWRDN Enter Power Down Mode (supposes NMI-pin being low) 4 SRVWDT Service Watchdog Timer 4 DISWDT/ENWDT Disable/Enable Watchdog Timer 4 EINIT End-of-Initialization Register Lock 4 ATOMIC Begin ATOMIC sequence 2 EXTR Begin EXTended Register sequence 2 EXTP(R) Begin EXTended Page (and Register) sequence 2/4 EXTS(R) Begin EXTended Segment (and Register) sequence 2/4 Data Sheet 42 V1.2, 2007-03 XC164TM Derivatives Functional Description Table 8 Instruction Set Summary (cont’d) Mnemonic Description Bytes NOP Null operation 2 CoMUL/CoMAC Multiply (and accumulate) 4 CoADD/CoSUB Add/Subtract 4 Co(A)SHR (Arithmetic) Shift right 4 CoSHL Shift left 4 CoLOAD/STORE Load accumulator/Store MAC register 4 CoCMP Compare 4 CoMAX/MIN Maximum/Minimum 4 CoABS/CoRND Absolute value/Round accumulator 4 CoMOV Data move 4 CoNEG/NOP Negate accumulator/Null operation 4 Data Sheet 43 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters 4 Electrical Parameters The operating range for the XC164TM is defined by its electrical parameters. For proper operation the indicated limitations must be respected when designing a system. 4.1 General Parameters These parameters are valid for all subsequent descriptions, unless otherwise noted. Table 9 Absolute Maximum Ratings Parameter Symbol Limit Values Unit Notes Min. Max. TST TJ VDDI -65 150 °C 1) -40 150 °C Under bias -0.5 3.25 V – Voltage on VDDP pins with respect to ground (VSS) VDDP -0.5 6.2 V – Voltage on any pin with respect to ground (VSS) VIN -0.5 VDDP + V 2) Input current on any pin during overload condition – -10 10 mA – Absolute sum of all input currents during overload condition – – |100| mA – Storage temperature Junction temperature Voltage on VDDI pins with respect to ground (VSS) 0.5 1) Moisture Sensitivity Level (MSL) 3, conforming to Jedec J-STD-020C for 260 °C. 2) Input pin XTAL1 belongs to the core voltage domain. Therefore, input voltages must be within the range defined for VDDI. Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (VIN > VDDP or VIN < VSS) the voltage on VDDP pins with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings. Data Sheet 44 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters Operating Conditions The following operating conditions must not be exceeded to ensure correct operation of the XC164TM. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed. Table 10 Operating Condition Parameters Parameter Symbol Limit Values Min. Max. Unit Notes Digital supply voltage for the core VDDI 2.35 2.7 V Active mode, fCPU = fCPUmax1) Digital supply voltage for IO pads VDDP 4.4 5.5 V Active mode2)3) -0.5 – V VDDP - VDDI4) V Reference voltage Supply Voltage Difference ΔVDD Digital ground voltage VSS IOV 0 -5 5 mA Per IO pin5)6) -2 5 mA Per analog input pin5)6) Overload current coupling KOVA factor for analog inputs7) – 1.0 × 10-4 – – 1.5 × 10-3 – Overload current coupling KOVD factor for digital I/O pins7) – 5.0 × 10-3 – – 1.0 × 10-2 – Absolute sum of overload currents Σ|IOV| – 50 mA 6) External Load Capacitance CL – 50 pF Pin drivers in default mode8) Ambient temperature TA 0 70 °C SAB-XC164… -40 85 °C SAF-XC164… -40 125 °C SAK-XC164… Overload current IOV > 0 IOV < 0 IOV > 0 IOV < 0 1) fCPUmax = 40 MHz for devices marked … 40F, fCPUmax = 20 MHz for devices marked … 20F. 2) External circuitry must guarantee low-level at the RSTIN pin at least until both power supply voltages have reached the operating range. 3) The specified voltage range is allowed for operation. The range limits may be reached under extreme operating conditions. However, specified parameters, such as leakage currents, refer to the standard operating voltage range of VDDP = 4.75 V to 5.25 V. 4) This limitation must be fulfilled under all operating conditions including power-ramp-up, power-ramp-down, and power-save modes. Data Sheet 45 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters 5) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: VOV > VDDP + 0.5 V (IOV > 0) or VOV < VSS - 0.5 V (IOV < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1. 6) Not subject to production test - verified by design/characterization. 7) An overload current (IOV) through a pin injects a certain error current (IINJ) into the adjacent pins. This error current adds to the respective pin’s leakage current (IOZ). The amount of error current depends on the overload current and is defined by the overload coupling factor KOV. The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is |ITOT| = |IOZ| + (|IOV| × KOV). The additional error current may distort the input voltage on analog inputs. 8) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (CL). Parameter Interpretation The parameters listed in the following partly represent the characteristics of the XC164TM and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column “Symbol”: CC (Controller Characteristics): The logic of the XC164TM will provide signals with the respective characteristics. SR (System Requirement): The external system must provide signals with the respective characteristics to the XC164TM. Data Sheet 46 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters 4.2 DC Parameters These parameters are static or average values, which may be exceeded during switching transitions (e.g. output current). Table 11 DC Characteristics (Operating Conditions apply)1) Parameter Symbol Limit Values Min. Max. Unit Test Condition Input low voltage TTL (all except XTAL1) VIL SR -0.5 0.2 × VDDP V - 0.1 – Input low voltage XTAL12) VILC SR -0.5 0.3 × VDDI V – Input low voltage (Special Threshold) VILS SR -0.5 0.45 × V 3) Input high voltage TTL VIH (all except XTAL1) SR 0.2 × VDDP + 0.9 VDDP VDDP + 0.5 V – Input high voltage XTAL12) VIHC SR 0.7 × VDDI VDDI + 0.5 V – Input high voltage (Special Threshold) VIHS SR 0.8 × VDDP VDDP + 0.5 V - 0.2 3) Input Hysteresis (Special Threshold) HYS 0.04 × VDDP in [V], Output low voltage VOL V VDDP CC – – Output high voltage6) – VOH Series resistance = 0 Ω3) 1.0 V 0.45 V CC VDDP - 1.0 – VDDP - V – V ±300 nA 0 V < VIN < VDDP, TA ≤ 125 °C ±200 nA 0 V < VIN < VDDP, TA ≤ 85 °C12) ±500 nA 0.45 V < VIN < 0.45 Input leakage current (Port 5)7) Input leakage current (all other8))7) Configuration pull-up current9) Data Sheet IOZ1 CC – IOZ2 CC – 10) ICPUH ICPUL11) – -10 μA -100 – μA 47 IOL ≤ IOLmax4) IOL ≤ IOLnom4)5) IOH ≥ IOHmax4) IOH ≥ IOHnom4)5) VDDP VIN = VIHmin VIN = VILmax V1.2, 2007-03 XC164TM Derivatives Electrical Parameters Table 11 DC Characteristics (Operating Conditions apply)1) (cont’d) Parameter Symbol Limit Values Min. XTAL1 input current Pin capacitance12) (digital inputs/outputs) IIL CIO Unit Test Condition Max. CC – ±20 μA 0 V < VIN < VDDI CC – 10 pF – 1) Keeping signal levels within the limits specified in this table, ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current IOV. 2) If XTAL1 is driven by a crystal, reaching an amplitude (peak to peak) of 0.4 × VDDI is sufficient. 3) This parameter is tested for P3, P9. 4) The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 12, Current Limits for Port Output Drivers. The limit for pin groups must be respected. 5) As a rule, with decreasing output current the output levels approach the respective supply level (VOL → VSS, VOH → VDDP). However, only the levels for nominal output currents are guaranteed. 6) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry. 7) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor KOV. 8) The driver of P3.15 is designed for faster switching, because this pin can deliver the system clock (CLKOUT). The maximum leakage current for P3.15 is, therefore, increased to 1 μA. 9) During a hardware reset this specification is valid for configuration on P1H.4, P1H.5, P9.4 and P9.5. After a hardware reset this specification is valid for NMI. 10) The maximum current may be drawn while the respective signal line remains inactive. 11) The minimum current must be drawn to drive the respective signal line active. 12) Not subject to production test - verified by design/characterization. Table 12 Current Limits for Port Output Drivers Port Output Driver Mode Maximum Output Current (IOLmax, -IOHmax)1) Nominal Output Current (IOLnom, -IOHnom) Strong driver 10 mA 2.5 mA Medium driver 4.0 mA 1.0 mA Weak driver 0.5 mA 0.1 mA 1) An output current above |IOXnom| may be drawn from up to three pins at the same time. For any group of 16 neighboring port output pins the total output current in each direction (ΣIOL and Σ-IOH) must remain below 50 mA. Data Sheet 48 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters Table 13 Power Consumption XC164TM (Operating Conditions apply) Parameter SymLimit Values bol Min. Max. Unit Test Condition Power supply current (active) with all peripherals active IDDI 15 + 2.6 × fCPU mA 10 + 2.6 × fCPU mA – 5 mA 3) – 15 + 1.2 × fCPU mA fCPU in [MHz]2), 10 + 1.2 × fCPU mA 84,000 × e-α mA 128,000 × e-α mA – – Pad supply current Idle mode supply current with all peripherals active IDDP IIDX – Sleep and Power down mode supply current caused by leakage4) IPDL5) – – Sleep and Power down mode IPDM7) – supply current caused by leakage and the RTC running, clocked by the main oscillator4) fCPU in [MHz]1)2), -16F derivatives fCPU in [MHz]1)2), -4F/8F derivatives -16F derivatives fCPU in [MHz]2), -4F/8F derivatives VDDI = VDDImax6) TJ in [°C] α = 4380 / (273 + TJ) -16F derivatives 0.6 + mA 0.02 × fOSC + IPDL α = 4670 / (273 + TJ) -4F/8F derivatives VDDI = VDDImax fOSC in [MHz] 1) During Flash programming or erase operations the supply current is increased by max. 5 mA. 2) The supply current is a function of the operating frequency. This dependency is illustrated in Figure 9. These parameters are tested at VDDImax and maximum CPU clock frequency with all outputs disconnected and all inputs at VIL or VIH. 3) The pad supply voltage pins (VDDP) mainly provides the current consumed by the pin output drivers. A small amount of current is consumed even though no outputs are driven, because the drivers’ input stages are switched and also the Flash module draws some power from the VDDP supply. 4) The total supply current in Sleep and Power down mode is the sum of the temperature dependent leakage current and the frequency dependent current for RTC and main oscillator. 5) This parameter is determined mainly by the transistor leakage currents. This current heavily depends on the junction temperature (see Figure 11). The junction temperature TJ is the same as the ambient temperature TA if no current flows through the port output drivers. Otherwise, the resulting temperature difference must be taken into account. 6) All inputs (including pins configured as inputs) at 0 V to 0.1 V or at VDDP - 0.1 V to VDDP, all outputs (including pins configured as outputs) disconnected. This parameter is tested at 25 °C and is valid for TJ ≥ 25 °C. 7) This parameter is determined mainly by the current consumed by the oscillator switched to low gain mode (see Figure 10). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The given values refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry. Data Sheet 49 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters I [mA] -16F IDDImax 140 -4F/8F -16F 120 IDDItyp -4F/8F 100 80 -16F IIDXmax -4F/8F 60 -16F IIDXtyp -4F/8F 40 20 10 Figure 9 Data Sheet 20 30 40 fCPU [MHz] Supply/Idle Current as a Function of Operating Frequency 50 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters I [mA] 3.0 2.0 IPDMmax IPDMtyp 1.0 4 Figure 10 8 12 16 fOSC [MHz] Sleep and Power Down Supply Current due to RTC and Oscillator Running, as a Function of Oscillator Frequency IPDL [mA] 1.5 -16F 1.0 -4F/8F 0.5 -50 Figure 11 Data Sheet 0 50 100 150 TJ [°C] Sleep and Power Down Leakage Supply Current as a Function of Temperature 51 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters 4.3 Analog/Digital Converter Parameters These parameters describe how the optimum ADC performance can be reached. Table 14 A/D Converter Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Min. Analog reference supply VAREF SR 4.5 Max. Unit Test Condition VDDP V 1) VSS + 0.1 VAREF V – V 2) 20 MHz 3) + 0.1 VAGND Analog input voltage range VAIN Basic clock frequency fBC Conversion time for 10-bit tC10P result4) tC10 Conversion time for 8-bit tC8P 4) result tC8 Calibration time after reset tCAL SR VSS - 0.1 CC 484 11,696 tBC 5) Total unadjusted error TUE CC – ±2 LSB 1) Total capacitance of an analog input CAINT CC – 15 pF 6) Switched capacitance of an analog input CAINS CC – 10 pF 6) Resistance of the analog input path RAIN CC – 2 kΩ 6) Total capacitance of the reference input CAREFT CC – 20 pF 6) Switched capacitance of the reference input CAREFS CC – 15 pF 6) Resistance of the reference input path RAREF 1 kΩ 6) Analog reference ground SR VAGND 0.5 CC 52 × tBC + tS + 6 × tSYS – Post-calibr. on CC 40 × tBC + tS + 6 × tSYS – Post-calibr. off CC 44 × tBC + tS + 6 × tSYS – Post-calibr. on CC 32 × tBC + tS + 6 × tSYS – Post-calibr. off CC – 1) TUE is tested at VAREF = VDDP + 0.1 V, VAGND = 0 V. It is verified by design for all other voltages within the defined voltage range. If the analog reference supply voltage drops below 4.5 V (i.e. VAREF ≥ 4.0 V) or exceeds the power supply voltage by up to 0.2 V (i.e. VAREF = VDDP + 0.2 V) the maximum TUE is increased to ±3 LSB. This range is not subject to production test. The specified TUE is guaranteed only, if the absolute sum of input overload currents on Port 5 pins (see IOV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the respective period of time. During the reset calibration sequence the maximum TUE may be ±4 LSB. Data Sheet 52 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters 2) VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in these cases will be X000H or X3FFH, respectively. 3) The limit values for fBC must not be exceeded when selecting the peripheral frequency and the ADCTC setting. 4) This parameter includes the sample time tS, the time for determining the digital result and the time to load the result register with the conversion result (tSYS = 1/fSYS). Values for the basic clock tBC depend on programming and can be taken from Table 15. When the post-calibration is switched off, the conversion time is reduced by 12 × tBC. 5) The actual duration of the reset calibration depends on the noise on the reference signal. Conversions executed during the reset calibration increase the calibration time. The TUE for those conversions may be increased. 6) Not subject to production test - verified by design/characterization. The given parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) reduced values can be used for calculations. At room temperature and nominal supply voltage the following typical values can be used: CAINTtyp = 12 pF, CAINStyp = 7 pF, RAINtyp = 1.5 kΩ, CAREFTtyp = 15 pF, CAREFStyp = 13 pF, RAREFtyp = 0.7 kΩ. RSource V AIN R AIN, On C AINT - C AINS C Ext A/D Converter CAINS MCS05570 Figure 12 Data Sheet Equivalent Circuitry for Analog Inputs 53 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters Sample time and conversion time of the XC164TM’s A/D Converter are programmable. In compatibility mode, the above timing can be calculated using Table 15. The limit values for fBC must not be exceeded when selecting ADCTC. Table 15 A/D Converter Computation Table1) ADCON.15|14 (ADCTC) A/D Converter Basic Clock fBC ADCON.13|12 (ADSTC) 00 fSYS / 4 fSYS / 2 fSYS / 16 fSYS / 8 00 01 10 11 01 10 11 Sample Time tS tBC × 8 tBC × 16 tBC × 32 tBC × 64 1) These selections are available in compatibility mode. An improved mechanism to control the ADC input clock can be selected. Converter Timing Example: Assumptions: Basic clock Sample time fSYS fBC tS = 40 MHz (i.e. tSYS = 25 ns), ADCTC = ‘01’, ADSTC = ‘00’ = fSYS / 2 = 20 MHz, i.e. tBC = 50 ns = tBC × 8 = 400 ns Conversion 10-bit: With post-calibr. tC10P Post-calibr. off tC10 = 52 × tBC + tS + 6 × tSYS = (2600 + 400 + 150) ns = 3.15 μs = 40 × tBC + tS + 6 × tSYS = (2000 + 400 + 150) ns = 2.55 μs Conversion 8-bit: With post-calibr. tC8P Post-calibr. off Data Sheet tC8 = 44 × tBC + tS + 6 × tSYS = (2200 + 400 + 150) ns = 2.75 μs = 32 × tBC + tS + 6 × tSYS = (1600 + 400 + 150) ns = 2.15 μs 54 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters 4.4 AC Parameters These parameters describe the dynamic behavior of the XC164TM. 4.4.1 Definition of Internal Timing The internal operation of the XC164TM is controlled by the internal master clock fMC. The master clock signal fMC can be generated from the oscillator clock signal fOSC via different mechanisms. The duration of master clock periods (TCMs) and their variation (and also the derived external timing) depend on the used mechanism to generate fMC. This influence must be regarded when calculating the timings for the XC164TM. Phase Locked Loop Operation (1:N) f OSC f MC TCM Direct Clock Drive (1:1) f OSC f MC TCM Prescaler Operation (N:1) f OSC f MC TCM MCT05555 Figure 13 Generation Mechanisms for the Master Clock Note: The example for PLL operation shown in Figure 13 refers to a PLL factor of 1:4, the example for prescaler operation refers to a divider factor of 2:1. Data Sheet 55 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters The used mechanism to generate the master clock is selected by register PLLCON. CPU and EBC are clocked with the CPU clock signal fCPU. The CPU clock can have the same frequency as the master clock (fCPU = fMC) or can be the master clock divided by two: fCPU = fMC / 2. This factor is selected by bit CPSYS in register SYSCON1. The specification of the external timing (AC Characteristics) depends on the period of the CPU clock, called “TCP”. The other peripherals are supplied with the system clock signal fSYS which has the same frequency as the CPU clock signal fCPU. Bypass Operation When bypass operation is configured (PLLCTRL = 0xB) the master clock is derived from the internal oscillator (input clock signal XTAL1) through the input- and outputprescalers: fMC = fOSC / ((PLLIDIV + 1) × (PLLODIV + 1)). If both divider factors are selected as ‘1’ (PLLIDIV = PLLODIV = ‘0’) the frequency of fMC directly follows the frequency of fOSC so the high and low time of fMC is defined by the duty cycle of the input clock fOSC. The lowest master clock frequency is achieved by selecting the maximum values for both divider factors: fMC = fOSC / ((3 + 1) × (14 + 1)) = fOSC / 60. Phase Locked Loop (PLL) When PLL operation is configured (PLLCTRL = 11B) the on-chip phase locked loop is enabled and provides the master clock. The PLL multiplies the input frequency by the factor F (fMC = fOSC × F) which results from the input divider, the multiplication factor, and the output divider (F = PLLMUL+1 / (PLLIDIV+1 × PLLODIV+1)). The PLL circuit synchronizes the master clock to the input clock. This synchronization is done smoothly, i.e. the master clock frequency does not change abruptly. Due to this adaptation to the input clock the frequency of fMC is constantly adjusted so it is locked to fOSC. The slight variation causes a jitter of fMC which also affects the duration of individual TCMs. The timing listed in the AC Characteristics refers to TCPs. Because fCPU is derived from fMC, the timing must be calculated using the minimum TCP possible under the respective circumstances. The actual minimum value for TCP depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCP is lower than for one single TCP (see formula and Figure 14). Data Sheet 56 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible. The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler (K = PLLODIV+1) to generate the master clock signal fMC. Therefore, the number of VCO cycles can be represented as K × N, where N is the number of consecutive fMC cycles (TCM). For a period of N × TCM the accumulated PLL jitter is defined by the deviation DN: DN [ns] = ±(1.5 + 6.32 × N / fMC); fMC in [MHz], N = number of consecutive TCMs. So, for a period of 3 TCMs @ 20 MHz and K = 12: D3 = ±(1.5 + 6.32 × 3 / 20) = 2.448 ns. This formula is applicable for K × N < 95. For longer periods the K × N = 95 value can be used. This steady value can be approximated by: DNmax [ns] = ±(1.5 + 600 / (K × fMC)). Acc. jitter DN K = 12 K=8 K = 15 K = 10 ns ±8 K=6 K=5 ±7 ±6 ±5 ±4 10 MHz 20 MHz ±3 ±2 ±1 0 40 MHz 0 1 5 10 15 20 25 N MCD05566 Figure 14 Approximated Accumulated PLL Jitter Note: The bold lines indicate the minimum accumulated jitter which can be achieved by selecting the maximum possible output prescaler factor K. Data Sheet 57 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters Different frequency bands can be selected for the VCO, so the operation of the PLL can be adjusted to a wide range of input and output frequencies: Table 16 VCO Bands for PLL Operation1) PLLCON.PLLVB VCO Frequency Range Base Frequency Range 00 100 … 150 MHz 20 … 80 MHz 01 150 … 200 MHz 40 … 130 MHz 10 200 … 250 MHz 60 … 180 MHz 11 Reserved 1) Not subject to production test - verified by design/characterization. Data Sheet 58 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters 4.4.2 On-chip Flash Operation The XC164TM’s Flash module delivers data within a fixed access time (see Table 17). Accesses to the Flash module are controlled by the PMI and take 1+WS clock cycles, where WS is the number of Flash access waitstates selected via bitfield WSFLASH in register IMBCTRL. The resulting duration of the access phase must cover the access time tACC of the Flash array. The required Flash waitstates depend on the actual system frequency. The Flash access waitstates only affect non-sequential accesses. Due to prefetching mechanisms, the performance for sequential accesses (depending on the software structure) is only partially influenced by waitstates. In typical applications, eliminating one waitstate increases the average performance by 5% … 15%. Table 17 Flash Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Min. tACC CC – Programming time per 128-byte block tPR CC – tER CC – Erase time per sector Flash module access time Unit Typ. Max. – 501) ns 22) 5 ms 2002) 500 ms 1) The actual access time is influenced by the system frequency, see Table 18. 2) Programming and erase time depends on the system frequency. Typical values are valid for 40 MHz. Example: For an operating frequency of 40 MHz (clock cycle = 25 ns), the Flash accesses must be executed with 1 waitstate: ((1+1) × 25 ns) ≥ 50 ns. Table 18 indicates the interrelation of waitstates and system frequency. Table 18 Flash Access Waitstates Required Waitstates Frequency Range 0 WS (WSFLASH = 00B) fCPU ≤ 20 MHz fCPU ≤ 40 MHz 1 WS (WSFLASH = 01B) Note: The maximum achievable system frequency is limited by the properties of the respective derivative, i.e. 40 MHz (or 20 MHz for XC164TM-xF20F devices). Data Sheet 59 V1.2, 2007-03 XC164TM Derivatives Electrical Parameters 4.4.3 External Clock Drive XTAL1 These parameters define the external clock supply for the XC164TM. Table 19 External Clock Drive Characteristics (Operating Conditions apply) Parameter Symbol tOSC t1 t2 t3 t4 Oscillator period High time2) Low time 2) Rise time 2) Fall time2) Limit Values Unit Min. Max. SR 25 2501) ns SR 6 – ns SR 6 – ns SR – 8 ns SR – 8 ns 1) The maximum limit is only relevant for PLL operation to ensure the minimum input frequency for the PLL. 2) The clock input signal must reach the defined levels VILC and VIHC. t3 t1 t4 V IHC V ILC 0.5 V DDI t2 t OSC MCT05572 Figure 15 External Clock Drive XTAL1 Note: If the on-chip oscillator is used together with a crystal or a ceramic resonator, the oscillator frequency is limited to a range of 4 MHz to 16 MHz. It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier. When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is verified by design only (not subject to production test). Data Sheet 60 V1.2, 2007-03 XC164TM Derivatives Package and Reliability 5 Package and Reliability In addition to the electrical parameters, the following information ensures proper integration of the XC164TM into the target system. 5.1 Packaging These parameters describe the housing rather than the silicon. Package Outlines Figure 16 Data Sheet PG-LQFP-64-4 (Plastic Green Low Profile Quad Flat Package), valid for the -16F derivatives 61 V1.2, 2007-03 XC164TM Derivatives +0.07 2) 0.6 ±0.15 C 7.5 7˚ MAX. H 0.5 0.2 -0.03 0.15 +0.03 -0.06 1.6 MAX. 1.4 ±0.05 0.1 ±0.05 Package and Reliability 0.08 0.08 M A-B D C 64x 12 0.2 A-B D 4x 10 1) 0.2 A-B D H 4x D 12 B 10 1) A 64 1 Index Marking 1) Does not include plastic or metal protrusion of 0.25 max. per side 2) Does not include dambar protrusion of 0.08 max. per side Figure 17 PG-TQFP-64-8 (Plastic Thin Quad Flat Package), valid for the -4F/8F derivatives You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products Dimensions in mm. Table 20 Package Parameters Parameter Symbol Limit Values Min. Max. Unit Notes PG-LQFP-64-4 Thermal resistance junction to case RΘJC – 8 K/W – Thermal resistance junction to leads RΘJL – 23 K/W – Thermal resistance junction to case RΘJC – 9 K/W – Thermal resistance junction to leads RΘJL – 19 K/W – PG-TQFP-64-8 Data Sheet 62 V1.2, 2007-03 XC164TM Derivatives Package and Reliability 5.2 Flash Memory Parameters The data retention time of the XC164TM’s Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed. Table 21 Flash Parameters Parameter Data retention time Symbol tRET Flash Erase Endurance NER Data Sheet Limit Values Unit Notes 103 erase/program cycles Min. Max. 15 – years 20 × 103 – cycles Data retention time 5 years 63 V1.2, 2007-03 w w w . i n f i n e o n . c o m B158-H8891-G1-X-7600 Published by Infineon Technologies AG