STMICROELECTRONICS ST3M01

ST3M01
TRIPLE VOLTAGE REGULATOR
■
■
■
■
■
■
ONLY TWO CELL NEED AS INPUT
THREE REGULATED OUTPUT
1) HIGH EFFICENCY PFM DC/DC
CONVERTER 3.3V AT 200mA (87%
EFFICENCY)
2) VERY LOW NOISE AND VERY LOW
DROP VREG (3V AT 20mA)
3) VERY LOW NOISE AAND VERY LOW
DROP VREG (1.9V AT 20mA)
LOGIC CONTROLLED ELECTRONIC
SHUTDOWN
LOW BATTERY DETECTOR
VIRTUAL GND PIN
TEMPERATURA RANGE: -40 TO 85°C
SO-14
SCHEMATIC DIAGRAM
Vin
150 µF
150 µF
15 µH
Lx
IN_SW
OUT DC/DC
Linear A
DC/DC
DC/DC
OUT LA
1 µF
IN_Linear
OUT LB
Linear B
1 µF
On-Mode
Virtual GND
-
SHDN
+
Off-Mode
LBO
Vref
Ref
Ref
100 nF
1 KΩ
November 2000
GND_SW
GND_Signal
1/11
ST3M01
ABSOLUTE MAXIMUM RATINGS
Symbol
VIN
Parameter
DC Input Voltage (Both IN_Linear and IN_SW)
Value
Unit
-0.3 to 7
V
-0.3 to VIN+0.3
V
Switch Voltage
-0.3 to 7
V
Low Battery Output Voltage
-0.3 to 7
V
Vvirtual_GND Virtual GND Output Voltage
VSHDN
VLX
VLBO
Shutdown Input Voltage
-0.3 to 7
V
Low Battery Output Maximum Current
30
mA
Ivirtual_GND Virtual GND Output Maximum Current
30
mA
ILBO
Tstg
Storage Temperature Range
-65 to +150
°C
Top
Operating Junction Temperature Range
-40 to +85
°C
Value
Unit
160
°C/W
THERMAL DATA
Symbol
Rthj-amb
Parameter
Thermal Resistance Junction-ambient (*)
ORDER CODES
2/11
Type
Package
Comment
ST3M01D
ST3M01DTR
SO-14
SO-14 (Tape & Reel)
50 parts per tube / 20 tube per box
2500 parts per reel
ST3M01
CONNECTION DIAGRAM (top view)
PIN DESCRIPTION
Pin N°
Symbol
Name and Function
1
2
3
GND SW
GND SW
Virtual GND
4
LBO
5
VREF
Switching Ground. Must be low impedance; solder directly to GND plane
Switching Ground. Must be low impedance; solder directly to GND plane
Virtual GND. Open Drain N-Cnannel MOSFET: must be high impedance when the
Low Battery condition is detected.
Low Battery Output. Open Drain N-Cnannel MOSFET: sinks current when the
input voltage drops below 2V typically.
Reference Voltage Output. Bypass with 0.1 µF to improve the linears VREF
thermal noise performance.
6
7
IN Linear
OUT LB
8
SHDN
9
10
GND Signal
OUT LA
Signal GND. Must be connected togheter with the Switching Ground.
Linear A Output port. 3V typically.
11
12
13
14
OUT DC/DC
IN SW
LX
LX
DC/DC Output Port: 3.3V typically.
SMPS Input. Must be connected togheter with IN_Linear to the input supply.
1.5A N-Channel Power MOSFET Drain.
1.5A N-Channel Power MOSFET Drain.
Linear Input. Must be connected togheter with IN SW to the input supply.
Linear B Output port. 1.9V typically.
Shutdown Input. Disables the SMPS and LA output, but the LB, the
referencevoltage and the low batery comparator remain active.
3/11
ST3M01
ELECTRICAL CHARACTERISTICS (Unless otherwise specified, please refer to the typical operating
circut of the pag 1 for the external components values and connections. Unless otherwise noted
VSHDN=HIGH)
Symbol
VI
VO(DC/DC)
ν
Parameter
Test Conditions
Operating Input Voltage
DC/DC Converter Output
Voltage (Test Circuit A)
Min.
Typ.
1.9
2.24<VIN<3.3V;
0<IO(LA)<20mA;
-40 < TJ < 85 °C
0<IO(DC/DC)<200mA;
0<IO(LB)<20mA;
3.2
DC/DC Converter Efficency VIN=2.4V;
IO(DC/DC)=100mA;
IO(LA)=0mA; IO(LB)=0mA; TJ = 25°C
3.3
Max.
Unit
3.3
V
3.415
V
87
%
VO(LA)
Linear A Output Voltage
(Test Circuit A)
2.24<VIN<3.3V;
0<IO(LA)<20mA;
-40 < TJ < 85°C
0<IO(DC/DC)<200mA;
0<IO(LB)<20mA;
2.93
3
3.09
V
VO(LB)
Linear B Output Voltage
(Test Circuit A)
2.24<VIN<3.3V;
0<IO(LA)<20mA;
-40 < TJ < 85°C
0<IO(DC/DC)<200mA;
0<IO(LB)<20mA;
1.86
1.9
1.955
V
eN(LA)
Linear A Thermal Output
Noise Voltage (Note 2)
VIN=2.4V;
VO(DC/DC)=3.5V;
IO(LA)=20mA;
10 < f < 80KHz;
CO(LA)=1µF; CREF=0.1µF; TJ = 25°C
60
µVrms
eN(LB)
Linear B Thermal Output
Noise Voltage (Note 2)
VIN=2.4V;
VO(DC/DC)=3.5V;
IO(LB)=20mA;
10 < f < 80KHz;
CO(LB)=1µF; CREF=0.1µF; TJ = 25°C
35
µVrms
Iq(OFF)
Quiescent Current OFF
Mode DC/DC & LA OFF LB
ON) (Test Circuit E)
Quiescent Current OFF
Mode (DC/DC & LA OFF LB
ON) (Test Circuit F)
DC/DC Supply Current
(Test Circuit B)
Linear A Quiescent Current
(Test Circuit C)
VIN=3.3V;
TJ = 25°C
No Load;
VSHDN=LOW;
75
µA
VIN=1.9V;
TJ = 25°C
No Load;
VSHDN=HIGH;
50
µA
VIN=2.24V;
No Load;
TJ = 25°C
100
µA
VIN=2.24V; VO(DC/DC)=3.5V;
IO(LA)=10mA; TJ = 25°C
220
µA
Linear B Quiescent Current VIN=2.24V; VO(DC/DC)=3.5V;
(Test Circuit C)
IO(LB)=10mA; TJ = 25°C
75
µA
Iq(OFF)
IS(DC/DC)
Iq(LA)
Iq(LB)
Low Battery Detection
Range
VBATT(HYS) Low Battery Detection
Hysteresys
RON(LBO)
LBO RDSON
VBATT
VSHDN=HIGH with falling edge
VIN=1.9V;
ID=5mA;
TJ = 25°C
2
2.04
V
150
200
mV
Control Input Logic Low
VIN>2.24V;
-40 < TJ < 85°C
Vil
Control Input Logic High
VIN>2.24V;
-40 < TJ < 85°C
Ton
Timer On Response Time
on DC/DC
VIN=2.4V;
CO=100µF; TJ = 25°C
IO(DC/DC)=200mA
VSHDN=from GND to VSHDN(MAX)
0.6
VIN>2.24V;
10
ID=5mA;
TJ = 25°C
Note 1: For VIN < 1.9V the VO(LB) is out of regulation because of under dropout condition
Note 2: VO(DC/DC) = 3.5V force for an external DC source to avoid switching noise
Ω
10
Vih
RON(V_GND) Virtual GND RDSON
4/11
1.96
0.4
1.5
V
V
9
ms
Ω
ST3M01
DC/DC CONVERTER BLOCK DIAGRAM
LINEAR VREG BLOCK DIAGRAM
5/11
ST3M01
TEST CIRCUIT A
Vin
150 µF
150 µF
15 µH
Lx
IN_SW
V
OUT DC/DC
DC/DC
DC/DC
Linear A
OUT LA
V
IN_Linear
OUT LB
Linear B
V
On-Mode
1 µF
Virtual GND
-
SHDN
1 µF
+
Off-Mode
LBO
Vref
Ref
Ref
0.1 µF
1 KΩ
GND_SW
GND_Signal
TEST CIRCUIT B
(Isup)DC/DC
Vin
A
47 µF
150 µF
15 µH
Lx
IN_SW
OUT DC/DC
DC/DC
DC/DC
Linear A
OUT LA
1 µF
IN_Linear
OUT LB
Linear B
47 µF
1 µF
Virtual GND
-
+
SHDN=HIGH
LBO
Vref
Ref
Ref
0.1 µF
1 KΩ
6/11
GND_SW
GND_Signal
ST3M01
TEST CIRCUIT C (Iq)Ia=(Iin)Ia-(Iout)Ia
(Iin)la
(Vin)DC/DC Floating
A
47 µF
(Vout)DC/DC=3.5V
15 µH
Lx
IN_SW
OUT DC/DC
DC/DC
DC/DC
Linear A
(Iout)la
OUT LA
(Vin)Lin=2.24V
1 µF
IN_Linear
OUT LB
Linear B
47 µF
1 µF
Virtual GND
-
+
SHDN=HIGH
LBO
Vref
Ref
Ref
0.1 µF
1 KΩ
GND_SW
GND_Signal
TEST CIRCUIT D (Iq)Ib=(Iin)Ib-(Iout)Ib
(Vin)DC/DC Floating
47 µF
(Vin)Lin=3.3V
150 µF
15 µH
Lx
IN_SW
(Iin)lb
OUT DC/DC
DC/DC
DC/DC
Linear A
OUT LA
1 µF
A
IN_Linear
(Iout)lb
OUT LB
Linear B
47 µF
1 µF
Virtual GND
-
+
SHDN=LOW
LBO
Vref
Ref
Ref
0.1 µF
1 KΩ
GND_SW
GND_Signal
7/11
ST3M01
TEST CIRCUIT E
Vin = 3.3V
A
150 µF
Iq = off
150 µF
15 µH
Lx
IN_SW
OUT DC/DC
DC/DC
DC/DC
Linear A
OUT LA
1 µF
IN_Linear
OUT LB
Linear B
1 µF
Virtual GND
-
+
SHDN= LOW
LBO
Vref
Ref
Ref
0.1 µF
1 KΩ
GND_SW
GND_Signal
TEST CIRCUIT F
Vin = 1.9V
A
150 µF
Iq = off
150 µF
15 µH
Lx
IN_SW
OUT DC/DC
DC/DC
DC/DC
Linear A
OUT LA
1 µF
IN_Linear
OUT LB
Linear B
1 µF
+
SHDN=HIGH
Vref
Virtual GND
-
LBO
Ref
Ref
0.1 µF
1 KΩ
8/11
GND_SW
GND_Signal
ST3M01
DEMOBOARD CIRCUIT
L
22 µH
D
STPS320U
IN
DC
C1
150 µF
12
IN_SW
ON
SH
OFF
13,14
LX
C2
150 µF
11
OUT_DC/DC
SHDN
OUT_LA
8
A
10
C4
1 µF
ST3M01
IN_Linear
6
Virtual_GND
3
4
LBO
OUT_LB
B
7
GND_SW
1,2
GND_Signal
C5
1 µF
Vref
9
5
VG
LBO
C3
100 nF
R1
1KOhm
VR
PC BOARD LAYOUT
9/11
ST3M01
SO-14 MECHANICAL DATA
mm
DIM.
MIN.
TYP.
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.068
0.2
a2
MAX.
0.003
0.007
1.65
0.064
b
0.35
0.46
0.013
0.018
b1
0.19
0.25
0.007
0.010
C
0.5
0.019
c1
45 (typ.)
D
8.55
8.75
0.336
0.344
E
5.8
6.2
0.228
0.244
e
1.27
0.050
e3
7.62
0.300
F
3.8
4.0
0.149
0.157
G
4.6
5.3
0.181
0.208
L
0.5
1.27
0.019
0.050
M
S
0.68
0.026
8 (max.)
P013G
10/11
ST3M01
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com
11/11