TS2937 500mA Ultra Low Dropout Voltage Regulator TO-220 TO-263 2 (D PAK) TO-252 (DPAK) SOT-223 Pin Definition: 1. Input 2. Ground 3. Output General Description TS2937 of fixed-voltage monolithic micro-power voltage regulators is designed for a wide range of applications. This device excellent choice of use in battery-power application. Furthermore, the quiescent current increases on slightly at dropout, which prolongs battery life. This series of fixed-voltage regulators features very low ground current (200uA Typ.) and very low drop output voltage (Typ. 60mV at light load and 600mV at 500mA). This includes a tight initial tolerance of 2%, extremely good line regulation of 0.05% typ., and very low output temperature coefficient. Features ● ● ● ● ● ● ● Dropout voltage typically 0.6V @ Io=500mA Output voltage trimmed before assembly -18V Reverse peak voltage +30V Input over voltage protection +60V Transient peak voltage Internal current limit Thermal shutdown protection Block Diagram Ordering Information Part No. Package Packing TS2937CZxx C0 TO-220 50pcs / Tube TS2937CMxx RN TO-263 800pcs / 13” Reel TS2937CPxx RO TO-252 2.5Kpcs / 13” Reel TS2937CWxx RP SOT-223 2.5Kpcs / 13” Reel Note: Where xx denotes voltage option, available are 12= 12V 10= 10V 50= 5V 33= 3.3V Contact factory for additional voltage options. Absolute Maximum Rating Parameter Input Supply Voltage Operation Input Supply Voltage Power Dissipation Operating Junction Temperature Range Symbol Limit Unit VIN -18 ~ +60 V VOPR 26 V PD Internally Limited TJ Storage Temperature Range TSTG 1/10 W -40 ~ +125 o -65 ~ +150 o C C Version: C11 TS2937 500mA Ultra Low Dropout Voltage Regulator Electrical Characteristics ( VIN=VOUT+1V, IL=5mA, CO=10uF, TA=25oC, unless otherwise noted) Parameter Conditions Output Voltage Min 0.980|Vo| 5mA ≤ IL ≤ 500mA, Typ 12 / 10 Max Unit 1.020|Vo| V 0.970|Vo| 5.0 / 3.3 1.030|Vo| V Input Supply Voltage -- -- 26 V Output Voltage Temperature Coefficient -- 50 150 ppm/ C Output Voltage Vo+1V ≤ VIN≤ 26V o Line Regulation Vo+1V ≤ VIN ≤ 26V -- 0.05 0.5 % Load Regulation 5mA ≤ IL ≤ 500mA -- 0.2 1.0 % IL=100mA -- 100 300 IL=300mA -- 400 500 IL=500mA -- 600 700 IL=100uA -- 200 -- uA IL=300mA -- 12 -- mA IL=500mA -- 25 -- mA VOUT =0 -- -- 1.3 A CL=2.2uF -- 500 -- CL=3.3uF -- 350 -- CL=33uF -- 120 -- Dropout Voltage (Note 4) Quiescent Current (Note 5) Short Circuit Current (Note 6) Output Noise, 10Hz to 100KHz, IL=10mA mV uVrms Thermal Performance Condition Package type Typ TO-220 60 Thermal Resistance TO-263 80 Junction to Ambient TO-252 150 Unit o C/W SOT-223 170 Note 1: Absolute Maximum Rating is limits beyond which damage to the device may occur. For guaranteed specifications and test conditions see the electrical characteristics. Note 2: Maximum positive supply voltage of 60V must be limited duration (<100mS) and duty cycle (<1%). Note 3: The maximum allowable power dissipation is a function of the maximum junction temperature, Tj, the junction to ambient thermal resistance, θja, and the ambient temperature, Ta. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown. The effective value of θja can be reduced by using a heatsink. Note 3: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential. Note 4: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the ground pin current and output load current. Note 5: Output current will decrease with increasing temperature, but it will be not dropped below 500mA at the maximum specified temperature. 2/10 Version: C11 TS2937 500mA Ultra Low Dropout Voltage Regulator Application Information The TS2937 series is a high performance with low dropout voltage regulator suitable for moderate to high current and voltage regulator application. Its 600mV(typ) dropout voltage at full load and over temperature makes it especially valuable in battery power systems and as high efficiency noise filters in post regulator applications. Unlike normal NPN transistor design, where the base to emitter voltage drop and collector to emitter saturation voltage limit the minimum dropout voltage, dropout performance of the PNP output of these devices is limited only by low Vce saturation voltage. The TS2937 series is fully protected from damage due to fault conditions. Linear current limiting is provided. Output current during overload conditions is constant. Thermal shutdown the device when the die temperature exceeds the maximum safe operating temperature. Transient protection allows device survival even when the input voltage spikes above and below nominal. The output structure of these regulators allows voltages in excess of the desired output voltage to be applied without reverse current flow. Typical Application Circuit Output Capacitor The TS2937 series requires an output capacitor to maintain stability and improve transient response. Proper capacitor selection is important to ensure proper operation. The output capacitor selection is dependent upon the ESR of the output capacitor the maintain stability. When the output capacitor is 10uF or greater, the output capacitor should have an ESR less than 2 ohm. This will improve transient response as well as promoted stability. Ultra low ESR capacitors (<100mohm), such as ceramic chip capacitors may promote instability. These very low ESR levels may cause an oscillation and/or under damped transient response. A low ESR solid tantalum capacitor works extremely well and provides good transient response and stability over temperature. Aluminum electrolytic can also be used, as long as the ESR of the capacitor is <2ohm. The value of the output capacitor can be increased without limit. Higher capacitance values help to improved transient response and ripple rejection and reduce output noise. Minimum Load Current The TS2937 series is specified between finite loads. If the output current is too small leakage currents dominate and the output voltage rises. A 1mA minimum load current is necessary for proper regulation. Input Capacitor An input capacitor of 1uF or greater is recommended when the device is more that 4 inches away from the bulk AC supply capacitance or when the supply is a battery. Small and surface mount ceramic chip capacitors can be used for bypassing. Larger values will help to improve ripple rejection by bypassing the input to the regulator, further improving the integrity of the output voltage. 3/10 Version: C11 TS2937 500mA Ultra Low Dropout Voltage Regulator Application Information (Continue) Thermal Characteristics A heatsink may be required depending on the maximum power dissipation and maximum ambient temperature of the application. Under all possible operating conditions, the junction temperature must be within the range specified under absolute maximum ratings. To determine if the heatsink is required, the power dissipated by the regulator, PD must be calculated. The below formula shows the voltages and currents for calculating the PD in the regulator: IIN = IL / IG PD = (VIN-VOUT) * IL + (VIN) * IG Ex. PD = (3.3V-2.5V) * 0.5A + 3.3V * 11mA = 400mW + 36mW = 436mW Remark: IL is output load current, IG is ground current. VIN is input voltage VOUT is output voltage The next parameter which must be calculated is the maximum allowable temperature rise. TR(max) is calculated by the using to formula: TR(max) = TJ(max) – TA(max) o Where: TJ(max) is the maximum allowable junction temperature, which is 125 C for commercial grade parts. TA(max) is the maximum ambient temperature which will be encountered in the application. Using the calculated values for TR(max) and PD, the maximum allowable value for the junction to ambient thermal resistance, θja, can now be found: θja = TR(max) / PD o o IMPORTANT: if the maximum allowable value for is found to be ≥6 C /W for the TO-220 package, ≥80 C/W for the o o TO-263 package, ≥150 C/W for the TO-252 package, or ≥170 C /W for the SOT-223 package, no heatsink is needed since the package alone will dissipate enough heat to satisfy these requirements. If the calculated value for θja falls below these limits, a heatsink is required. 4/10 Version: C11 TS2937 500mA Ultra Low Dropout Voltage Regulator Application Information (Continue) 2 Figure 1 – D PAK Thermal Resistance and Maximum Power Dissipation vs. P.C.B Copper Length Figure 2 – DPAK Thermal Resistance and Maximum Power Dissipation vs. P.C.B Copper Length Figure 3 – SOT-223 Thermal Resistance and Maximum Power Dissipation vs. P.C.B Copper Length 5/10 Version: C11 TS2937 500mA Ultra Low Dropout Voltage Regulator TO-220 Mechanical Drawing DIM A B C D E F G H I J K L M N O P TO-220 DIMENSION MILLIMETERS INCHES MIN MAX MIN MAX 10.000 10.500 0.394 0.413 3.740 3.910 0.147 0.154 2.440 0.381 2.345 4.690 12.700 8.382 14.224 3.556 0.508 27.700 2.032 0.255 5.842 2.940 6.350 1.106 2.715 5.430 14.732 9.017 16.510 4.826 1.397 29.620 2.921 0.610 6.858 0.096 0.015 0.092 0.092 0.500 0.330 0.560 0.140 0.020 1.060 0.080 0.010 0.230 0.116 0.250 0.040 0.058 0.107 0.581 0.355 0.650 0.190 0.055 1.230 0.115 0.024 0.270 Marking Diagram Y M L XX = Year Code = Month Code (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec) = Lot Code = Voltage Code (3.3=3.3V, 5.0=5V, 10=10V, 12=12V) 6/10 Version: C11 TS2937 500mA Ultra Low Dropout Voltage Regulator TO-263 Mechanical Drawing DIM A B C D E F G H I J TO-263 DIMENSION MILLIMETERS INCHES MIN MAX MIN MAX 10.000 10.500 0.394 0.413 14.605 15.875 0.575 0.625 0.508 0.991 0.020 0.039 2.420 2.660 0.095 0.105 4.064 4.830 0.160 0.190 1.118 1.400 0.045 0.055 0.450 0.730 0.018 0.029 8.280 8.800 0.325 0.346 1.140 1.400 0.044 0.055 1.480 1.520 0.058 0.060 Marking Diagram Y M L XX = Year Code = Month Code (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec) = Lot Code = Voltage Code (3.3=3.3V, 5.0=5V, 10=10V, 12=12V) 7/10 Version: C11 TS2937 500mA Ultra Low Dropout Voltage Regulator TO-252 Mechanical Drawing DIM A A1 B C D E F G G1 G2 H I J K L M TO-252 DIMENSION MILLIMETERS INCHES MIN MAX MIN MAX 2.3BSC 0.09BSC 4.6BSC 0.18BSC 0.264 0.295 6.70 7.49 0.209 0.245 5.30 6.22 0.248 0.265 6.30 6.73 0.083 0.098 2.10 2.50 0.012 0.00 0.30 0.189 0.215 4.80 5.46 0.026 0.041 0.65 1.05 0.016 0.035 0.40 0.89 0.50 0.019 0.90 1.50 0.035 0.059 2.20 2.80 0.087 0.110 0.50 1.10 0.020 0.043 0.90 1.50 0.035 0.059 1.30 1.70 0.051 0.67 Marking Diagram Y M L XX = Year Code = Month Code (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec) = Lot Code = Voltage Code (3.3=3.3V, 5.0=5V, 10=10V, 12=12V) 8/10 Version: C11 TS2937 500mA Ultra Low Dropout Voltage Regulator SOT-223 Mechanical Drawing DIM A B C D E F G H I J K SOT-223 DIMENSION MILLIMETERS INCHES MIN MAX MIN MAX 6.350 6.850 0.250 0.270 2.900 3.100 0.114 0.122 3.450 3.750 0.136 0.148 0.595 0.635 0.023 0.025 4.550 4.650 0.179 0.183 2.250 2.350 0.088 0.093 0.835 1.035 0.032 0.041 6.700 7.300 0.263 0.287 0.250 0.355 0.010 0.014 10° 16° 10° 16° 1.550 1.800 0.061 0.071 Marking Diagram Y M L XX = Year Code = Month Code (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec) = Lot Code = Voltage Code (3.3=3.3V, 5.0=5V, 10=10V, 12=12V) 9/10 Version: C11 TS2937 500mA Ultra Low Dropout Voltage Regulator Notice Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies. Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC’s terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale. 10/10 Version: C11