DATA SHEET MICRONAS VSP 94x2A PRIMUS Powerful Scan-Rate Converter including Multistandard Color Decoder Version B13/B14 Edition Aug. 16, 2004 6251-552-1DS MICRONAS VSP 94x2A DATA SHEET Contents Page Section Title 4 5 1. 1.1. Introduction Features 7 7 7 7 8 9 9 12 13 14 14 15 15 15 16 16 16 16 16 16 17 17 17 19 19 21 21 21 22 24 24 25 26 26 26 27 27 28 28 29 30 30 30 32 2. 2.1. 2.1.1. 2.1.2. 2.1.3. 2.1.4. 2.1.5. 2.1.6. 2.2. 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.6. 2.2.7. 2.2.8. 2.2.9. 2.2.10. 2.2.11. 2.3. 2.3.1. 2.3.2. 2.3.3. 2.3.4. 2.4. 2.4.1. 2.4.1.1. 2.4.2. 2.5. 2.5.1. 2.5.2. 2.5.3. 2.5.4. 2.5.5. 2.5.5.1. 2.5.5.2. 2.5.5.3. 2.5.5.4. 2.5.5.5. 2.5.6. 2.5.7. 2.6. 2.6.1. Functional Description CVBS Front-end Source Select Signal Levels and Gain Control Clamping Synchronization Chroma Decoder Luminance Processing RGB Front-end Source Select Signal Magnitudes and Gain Control Clamping Digital Prefiltering RGB → YUV Matrix Contrast, Brightness and Saturation Control of Input Signal Soft Mix Static Switch mode Static Mixer mode Dynamic Mixer mode FBL Activity and Overflow Detection Input Processing Horizontal Prescaler Noise Reduction Noise Measurement Letterbox Detection Output Processing Horizontal Postscaler Panorama Mode Operation Modes Display Processing Peaking Digital Color Transition Improvement (DCTI) Coarse and Fine Delay Oversampling and DAC Output-Sync Controller HOUT Generator VOUT Generator BLANK Generator Background Generator Window Function Digital 656 Input Digital 656 Output Clock Concept Line-locked Clock Generator 2 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Contents, continued Page Section Title 34 34 34 40 46 52 3. 3.1. 3.1.1. 3.1.2. 3.1.3. 3.1.4. I2C Bus Interface I2C Bus Slave Address I2C Bus Format I2C Bus List in Alphabetical Order I2C Bus Command Table I2C Bus Command Description 105 105 106 109 110 112 114 114 117 119 119 121 4. 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.6.1. 4.6.2. 4.6.3. 4.6.3.1. 4.6.3.2. Specifications Outline Dimensions Pin Connections and Short Descriptions for VSP 9402 and VSP 94121) Differing Pin Connections and Short Descriptions for VSP 9412 Pin Configurations Pin Circuits Electrical Characteristics Absolute Maximum Ratings Recommended Operating Conditions Characteristics General Characteristics I2C Bus Characteristics 123 125 5. 5.1. Application Circuit Application Overview 126 6. Data Sheet History Micronas Aug. 16, 2004; 6251-552-1DS 3 VSP 94x2A DATA SHEET Powerful Scan-Rate Converter including Multistandard Color Decoder Release Note: Revision bars indicate significant changes to the previous edition. 1. Introduction The VSP 94x2A (PRIMUS) is a new component of the Micronas MEGAVISION® IC set in a CMOS embedded DRAM technology. The VSP 94x2A comprises all main functions of a digital featurebox in one monolithic IC. The number of features is limited in favor of a lowcost solution, but no trade-off has been made concerning picture quality. The family is ideally suited to work in conjunction with the deflection processors SDA 9380 (9402/32) and DDP 3315C (9412/42). In combination with the ’digital TV decoder’ MDE 9500, double-scan iDTV is possible. The package is upward pin-compatible to other medium-range and high-end devices of the VSP 94xy family. A 50/60 Hz derivative is also available (9432, 9442). The device comprises a digital multistandard color decoder, an RGB interface with fast-blank capability (SCART), digital ITU656 input, scaling units including panorama, embedded DRAM for upconversion, picture improvements, temporal noise reduction, as well as A/D and D/A converters. Table 1–1: PRIMUS’ versions Version Scan Rate Conversion Digital Input Digital Output Analog Output 9402A (B13) 100i/120i (✓)1) (✓)1) ✓ 9412A (B14) 100i/120i ✓ ✓ 1) Input and output cannot be used at same time (pin sharing) Table 1–2: Hardware Compatibility and Suited Backend ICs Hardware Compatible 1) Suited Backend IC DDP 3315C SDA 9380 VSP 9402A, ✓ ✓ VSP 9405B, VSP 9435B (No ITU656 input possible) VSP 9407B, VSP 9437B VSP 9412A, ✓ VSP 9415B, VSP 9445B VSP 9417B, VSP 9447B VSP 9425B, VSP 9427B 1) 4 ✓ ✓ With some restrictions. Please refer to pin description and/or respective application note Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET 1.1. Features – Integrated video matrix switch • Up to seven CVBS inputs, up to two Y/C inputs, • Three CVBS outputs (Y/C inputs signals are combined to CVBS output format) • 9 bit amplitude resolution for CVBS, Y/C A/D converter • AGC (Automatic Gain Control) – Multi-standard color decoder • PAL/NTSC/SECAM including all substandards • Automatic recognition of chroma standard • Only one crystal necessary for all standards – RGB-FBL or YUV-H-V input • 8 bit amplitude resolution for RGB or YUV • 8 bit amplitude resolution for FBL or H – ITU656 support (version dependent, refer to next chapter) • ITU656 input/output • DS656 output (double-scan ‘656-like’ output) – Letterbox detection – Noise reduction • Temporal noise reduction • Field-based temporal noise reduction for luminance and chrominance • Different motion detectors for luminance and chrominance or identical • Flexible programming of the temporal noise reduction parameters • Automatic measurement of the noise level – Horizontal scaling of the 1fH signal • Split-screen possible with additional PiP or Text processor – Scan-rate-conversion • Simple interlaced modes (100/120 Hz): AABB, AAAA, BBBB (9402A/9412A only) • No scan-rate-conversion modes (50/60 Hz): AB, AA, BB (9432A/9442A only) – Flexible output sync controller • Flexible positioning of the output signal • Flexible programming of the output sync raster • ‘Blank signal’ generation – Signal manipulations • Still field • Insertion of colored background • Windowing • Vertical chrominance shift for improved VCR picture quality – Sharpness improvement • Digital color transition improvement (DCTI) • Peaking (luminance) – Three D/A converters • 9 bit amplitude resolution for Y, -(R-Y), -(B-Y) output • 72 MHz clock frequency • Two-fold oversampling for anti-imaging • Simplification of external analog postfiltering – 1920 active pixel/per line in default configuration – I2C-bus control (400 kHz) • Selectable I2C address – 1.8 V ±5% and 3.3 V ±5% supply voltages – PMQFP80-1 package – Flexible digital horizontal scaling of the 2fH signal • Scaling factors: 3, ..., 0.75 including 16:9 compatibility • 5 zone panorama generator – Embedded memory • On-chip memory controller • Embedded DRAM core for field memory • SRAM for PAL/SECAM delay line – Data format 4:2:2 – Flexible clock and synchronization concept • Horizontal line-locked or free-running mode • Vertical locked or free-running mode Micronas Aug. 16, 2004; 6251-552-1DS 5 46 rin2 38 Aug. 16, 2004; 6251-552-1DS 656io7 10 656io6 15 656io5 16 656io4 21 656io3 22 656io2 30 656io1 31 656io0 32 656clk 9 fbl2 bin2 48 gin2 47 37 fbl1 Source Select 74 (41) 8 ITU656 Decoder (20) (15) (23) Clamping Correction (27) (25) or Bypass YUV RGB 1H Delay (PAL/SECAM) (7) v 14 H V BLANK BLANEN tclk 71 7 tms (55) TestController, Memory Bist adr/tdi 19 scl 13 (56) 6 sda I²C Interface U,V Saturation (26) Y Brightness Contrast F V U Y (28) 4:2:2 4:4:4 2 Down Sampling (8) Y Delay FB U,V Y U,V Y Clamped, filterd sync signal clamping signals to ADCs PRIMUS (B13/B14) VSP 94x2A CLKB36 Anti-alias, Deskew GAIN ADCF (19) (22) Anti-alias, Deskew Clamping Correction (18) (21) (17) Anti-alias, Deskew Clamping Correction Anti-alias, Deskew YCSEL (5) Delay Control (6) Color Decoder Sync 20 v50 (4) AGC generator 18 h50 Notch Deskew (14) 656hin/ 656vin/ clkf20 blank CLKF2PAD CLKF20 CLAMP (16) C CVBS/Y 24 reset GAIN ADCB (13) GAIN ADCG ADCR GAIN (3) ADC2 GAIN (2) ADC1 GAIN gin1 40 61 bin1 41 39 CLAMP (1) Source Select 62 cvbso2 cvbso3 (12) rin1 cvbs7 58 cvbs6 57 cvbs5 56 cvbs4 55 cvbs3 54 cvbs2 53 cvbs1 52 63 (30) (42) (44) Pixel Mixer Hpostscaler (46) DCTI (45) Peaking (33) Background Generator (57) Acquisition (34) UVin Yin Input Sync 8 (49) 4:4:4 Coarse Delay Divider Divider Hprescaler Noise Measure ment (32) (58) H/V- 216 MHz clk Line-locked Letterbox Detection (10) 648 MHz DTO 648 MHz clk Panorama Generator (43) Channel Mux (31) (11) LL-PLL (9) Line-locked or Freerunning (29) Offset, Gain Soft-mix Insert Main 70 xin xtal Oscillator 69 xout Freerunning Clocks (51) ITU656 Encoder Fine Delay (50) 8:8:8 (37) UV Noise Reduction (38) Y Noise Reduction (55) Output Data Controller (36, 72 MHz) Line-locked Clocks (20.25, 40.5 MHz) Read Control eDRAM (39) Memory Controller BLANK (40) Output Sync Controller Output Sync data buffer 6 data buffer cvbso1 OFFSET V DAC (54) GAIN OFFSET U DAC (53) GAIN OFFSET Y DAC (52) GAIN to 656decoder vout hout 23 17 76 79 2 3 2 1 80 79 78 avout auout ayout 940xA, only i656i7 i656i6 i656i5 i656i4 i656i3 i656i2 i656i1 i656i0 76 77 i656iclk 75 941xA, only clkout 27 VSP 94x2A DATA SHEET Fig. 1–1: Block Diagram Micronas VSP 94x2A DATA SHEET 2. Functional Description All I2C bus registers mentioned are printed in bold and italics (e.g. YCDEL). 2.1. CVBS Front-end The CVBS front-end consists of the color decoding circuit itself, a sync processing circuit for generation of H/ V signals out of the CVBS signal, and the luminance processing. The main task of the luminance processing is to remove the color carrier by means of a notch filter. For PAL and SECAM operation a baseband delay line is used for U and V signals. This can be used as comb filter in NTSC operation (only for chrominance). The RGB input can either be used as an overlay for the CVBS channel (RGB+FBL) or as a full master channel (RGB+H/V). The overlay is done by means of a softmix and can be used e.g. for ‘SCART’ connector. This block contains a matrix (for RGB signals) which is switched off for YUV (e.g. YPbPr) input signals. A CBS (contrast, brightness, saturation) control makes the input signal adjustable. can be looped back to output CVBSO1-3 (CVBOSEL1, CVBOSEL2, CVBOSEL3). A signal addition is performed to output a CVBS signal even when separate Y/C signals are used at input. Inputs that are not used are roughly clamped to fit in the allowed voltage region. For stand-by operation (powerdown mode), A/D and D/A converter are switched off by STANDBY keeping the source-selector operational. 2.1.2. Signal Levels and Gain Control To adjust to different CVBS input voltages a digitally working automatic gain control is implemented. Input voltages in the range between 0.6 to 1.8 Vpp can be applied to the CVBS inputs. For best signal-to-noise ratio the maximum available CVBS amplitude is recommended. The AGC behavior can be chosen from four possible modes (AGCMD) (see Table 2–1). Table 2–1: AGC Modes 2.1.1. Source Select AGCMD AGC Operation Mode Fig. 2–1 shows the analog front-end. The analog CVBS signal can be fed to the inputs CVBS1...7 of VSP 94x2A (amplitude 0.5...1.5 Vpp). One signal is selected via CVBSEL1 and fed to the first ADC. A second signal is selected via CVBSEL2 and fed to the other ADC. CVBS4&5 or CVBS6&7 are intended to be use as separate Y/C inputs (YCSEL). After clamping to the back porch both signals are AD-converted with an amplitude resolution of 9 bit. The AD conversion is done using a 20.25 MHz freerunning stable crystal clock. Before the A to D conversion the signals are lowpass filtered to avoid antialias effects. Three inputs 00 AGC uses the height of the sync pulse as a reference and additionally reduces amplification when ADC overflows 01 AGC uses the height of the sync pulse as a reference 10 AGC uses only ADC overflows 11 AGC is disabled and the ADC fits to the values given in AGCADJ1 CVBS 1 C CVBS 2 C CVBS 3 C CVBS 4 / Y1 C CVBS 5 / C1 C CVBS 6 / Y2 C CVBS 7 / C2 C Clamping pulse of ADC_CVBS1 or ADC_CVBS2. Shifting of signal to required input voltage range for CVBSO1..3 1 / 9 1 / 9 1 / 9 1 / 9 1 / 9 Filter Filter Buffer Buffer C Buffer ADC_CVBS1 ADC_CVBS2 CVBSO1 CVBSO2 CVBSO3 Fig. 2–1: Input Selection Micronas Aug. 16, 2004; 6251-552-1DS 7 VSP 94x2A 511 DATA SHEET 511 upper headroom upper headroom 446 442 100% chroma 75% chroma 64 16 0 burst 256 SRC(0.89 V nom.) 144 CR (1.2V nom.) black burst SRY(1V nom.) white lower headroom 0 Fig. 2–2: CVBS, Y and C Amplitude Characteristics. When using the sync height based AGC mode, the A/D gain increases or decreases depending on the incoming signal. When using overflow detection only, the gain is set to maximum and is reduced whenever an ’overflow’ occurs. The signal is low pass filtered so that chrominance and noise are not used for detection. The threshold can be adjusted by PWTHD. A setting of ’11’ equals 511 and means an overflow of the ADC. Other settings react for a lower level. The gain only becomes higher when a change of the channel is detected or is manually reset by AGCRES. AGCFRZE holds the current AGC value. A manual setting of the ADCs gain control is possible using the parameters AGCADJ1 and AGCADJ2. The conversion range (CR) is bigger than the signal range (SRY, SRC) leaving a headroom for overshoots (see Fig. 2–2). 2.1.3. Clamping The timing of the clamping (pulse) control signals for the analog inputs are derived from its corresponding CVBS input signal. The clamping algorithm works with a split measurement pulse and a clamping pulse. The measurement pulse is used to detect the clamping error. The clamping pulse is used to enable current sources for reducing the detected clamping errors. The start and length of the measurement signals are independently adjustable for both channels (CLMPST1, CLMPD1, CLMPST2, CLMPD2). The same applies for the clamping signals (CLMPST1S, CLMPD1S, CLMPST2S, CLMPD2S). Clamping and measurement signals for RGB channel are not separate. Clamping for these ADC are controlled by CLMPST2S and CLMPD2S only. Clamping can be suppressed for some lines by CLMPLOW and CLMPHIGH to ignore copyprotection information. No external sync signals are required. . Gain Control Characteristic 1.9 1.8 1.7 1.6 Conversion Range [V] 1.5 CLMPST1 1.4 CLMPD1 Measurement ADC1 1.3 CLMPST1S 1.2 Clamping ADC1 CLMPD1S 1.1 1 0.9 0.8 0.7 CLMPST2 CLMPD2 Measurement ADC2 0.6 0.5 0 8 16 24 32 40 48 56 64 CLMPST1S CLMPD2S AGCADJ1, AGCADJ2 (I²C) Fig. 2–3: CVBS ADC Characteristic 8 Measurement and Clamping RGBF Clamping ADC2 Fig. 2–4: Clamping Signals Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 2–2: Clamping Adjustment Signal Description CLMPST1 Measurement pulse start for ADC1 CLMPD1 Measurement pulse duration for ADC1 CLMPST1S Clamping pulse start for ADC1 CLMPD1S Clamping pulse duration for ADC1 CLMPST2 (Measurement pulse start for ADC2) CLMPD2 (Measurement pulse duration for ADC2) CLMPST2S Measure and clamp start for RGBF-ADC (clamping start for ADC2) CLMPD2S Measure and clamp duration for RGBF-ADC (clamping duration for ADC2 2.1.4. Synchronization 2.1.5. Chroma Decoder After elimination of the high frequent components of the CVBS signal by a low pass filter, horizontal and vertical sync pulses are separated. Horizontal sync pulses are generated by a digital phase locked loop. The time constant can be adjusted between fast and slow behavior in four steps (PLLTC) to accommodate different input sources (e.g. VCR). The time-constant can be changed during normal operation without visible picture degradation. A fine tuning of the PLL time constant can be done by NSRED. The digital multistandard chroma decoder is able to decode NTSC and PAL signals with a subcarrier frequency of 3.58 MHz and 4.43 MHz (PAL B*/N/ 60†,NTSC M/4.4) as well as SECAM signals with automatic standard detection. Alternatively a standard can be forced. The demodulation is done with a regenerated color-carrier. To enable a factory adjustment of the crystal frequency, the frequency of the regenerated subcarrier can be adjusted via SCADJ. For this purpose the crystal deviation (SCDEV) can be read out via I2C after chroma PLL locking (indicated by SCOUTEN) and can be stored in µC ROM for SCADJ. For test purposes, CPLLOF allows the opening of the chroma PLL loop. Additional weak input signals from a satellite dish (’fish’) become more stable when SATNR is enabled. Vertical sync pulses are separated by integration of equalizing pulses. A vertical flywheel mode improves vertical sync separation for weak signals (VFLYWHL, VFLYWHLMD). Additionally, v-syncs may be gated by VTHRL and VTHRH to reject invalid v-syncs (independently adjustable for 50 and 60 Hz sources) if no input signal is connected the device switches to a freeruning mode. The device can be configured to switch-on background color when no or only a weak signal is applied (NOSIGB). 50 Hz or 60 Hz operation for sync separation may be forced separately or selected to work automatically (FLNSTRD). For adjustment to the specific operational area an automatic norm detection is selectable. Available 50 Hz color standards are PAL B, PAL N and SECAM. Available 60 Hz color standards are NTSC M, PAL M, PAL60 and NTSC44. For each line standard, one or more color standards can be enabled for automatic chroma standard detection. Please refer to Table 2– 3: and Table 2–4: for allowed combinations. The standard detection process can be set to slow or fast behavior (LOCKSP). In slow behavior, 25 fields are used to detect the standard, whereas 15 fields are used in fast behavior. If the detection was not successful during this time frame, the system will switch to the next enabled TV Standard. * PAL B is representative for PAL B/G/H/I/N † PAL60 and NTSC44 are nonstandard signals which are generated by some VCR or DVD player Micronas Aug. 16, 2004; 6251-552-1DS 9 VSP 94x2A DATA SHEET Table 2–3: Allowed combinations for color-standard search (50 Hz) Standard ACCFRZ holds the current ACC value. The maximum amplification of the ACC can be limited by ACCLIM. This results a smooth attenuation of color intensity for weak color carrier (see Fig. 2–5). CSTAND (50 Hz) D2 D1 D0 None 0 0 0 U,V PAL N 0 0 1 +0dB PAL B 0 1 0 SECAM 1 0 0 Automatic PAL BG / SECAM 1 1 0 CON color off Table 2–4: Allowed combinations for color-standard search (60 Hz) +6dB -4dB CKILL ACCLIM Standard CSTAND attenuation of color-carrier PAL, NTSC operation (60 Hz) D6 D5 D4 D3 PAL M 0 0 1 0 NTSC M 0 1 0 0 NTSC44 1 0 0 0 Automatic PAL M / NTSC M 0 1 1 0 Automatic NTSC M / NTSC44/PAL60 1 1 0 0(!) U,V CONS +0dB color off +6dB -4dB CKILLS In addition, a standard can be forced as well. AMSTD50 selects whether PAL B or SECAM is tried first in the automatic routine. AMSTD60 selects whether NTSC44/PAL60 or NTSC M is tried first. Both bits can also be set for automatic detection, then the last detected chroma standard will be used. For SECAM detection, a choice between different recognition levels is possible (SCMIDL, SCMREL) and the evaluated burst position is shiftable (BGPOS). attenuation of color-carrier SECAM operation Fig. 2–5: Color Killer Adjustment Color standard (STDET), line standard (LNSTDRD) and color killer status (CKSTAT) can be read out. An Automatic Chroma Control (ACC) produces a stable output for input chroma variations from (approximately) -30 dB to +6 dB compared to nominal burst value. The ACC reference value is programmable for NTSC and PAL independently (NTSCREF, PALREF) to ensure correct color saturation. With ACCFIX, the ACC is disabled and a constant value (dependent on NTSCREF and PALREF) is used instead. 10 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET The delay between Y and C is well aligned and can also be adjusted in steps of 50 ns (YCDEL). No picture shifting occurs when switching between different color standards (e.g. SECAM -> PAL). A delay-line is implemented for PAL and SECAM signals. It acts as a simple chrominance comb-filter for NTSC and can be disabled by COMB. This improves the vertical chroma resolution, but cross-color remains. 0 5 Damping (dB) The output of the color decoder can be set to UV or CrCb data by CRCB. For NTSC only, the color impression (tint) can be adjusted by the Hue Control between -88° and 90° in steps of 0.7° (HUE). Low chrominance values (+/- 1...3 LSB) may be deleted by UV-coring (UVCOR). The Chroma bandwidth can be adjusted by CHRF. The setting value of CHRF has no linear impact to the chroma bandwidth. The frequency response of the Chroma bandfilter are shown in Figure 2-7. Also a filter with asymmetrical characteristic around the color carrier is available (IFCOMP) (Figure 2–7). For SECAM mode, the de-emphasis filter can be adjusted by DEEMPFIR and DEEMPIIR. The bell filter can be adjusted by BELLFIR and BELLIIR. Chroma filter 5 10 15 CHRF=’001000’ 20 CHRF=’001100’ 25 CHRF=’001001’ 30 35 40 CHRF=’001110’ CHRF=’111001’ 0 0.5 1 1.5 2 2.5 3 3.5 4 Frequency (MHz) Fig. 2–6: Chroma Filter Characteristics IF Prefilter 10 3.58 4.433 5 IFCOMP=’100’ 0 IFCOMP=’000’ Damping (dB) If the chrominance signal is below an adjustable threshold (CKILL (PAL; NTSC) or CKILLS (SECAM)) the color is switched off. To prevent on / off switching, a hysteresis is given by CON or CONS which is the value of switching on the color. COLON switches on the color under any circumstance. 5 IFCOMP=’011’ 10 15 IFCOMP=’001’ 20 IFCOMP=’010’ 25 30 0 1 2 3 4 5 6 Frequency (MHz) Fig. 2–7: IF Prefilter Micronas Aug. 16, 2004; 6251-552-1DS 11 VSP 94x2A DATA SHEET 2.1.6. Luminance Processing For PAL and Secam the respective notch filters have 5 different characteristics each. The luminance notch filter for NTSC can be set to 4 different filter response curves. They can be selected by NTCHSEL. Alternatively, no notch should be used for Y/C input (NOTCHOFF). The filter characteristics can be found in Figure 2–8. In SECAM operation, the notch filter can be fixed to one frequency or toggle between 4.4 MHz and 4.25 MHz depending on the transmitted color (Dr, Db) (SECNTCH). characteristic for SECAM (4.25 MHz) 5 4.25 0 NTCHSEL= 5 attenuation [dB] A luminance notch filter is implemented to separate the chroma information from the luminance. Depending on the color standard, one out of three different notch characteristics is chosen (‘PAL’, ‘NTSC’, ‘SECAM’) automatically. ’100’ ’000’ 10 ’001’ 15 ’010’ 20 ’011’ 25 30 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 frequency [MHz] Fig. 2–10: Filter Characteristics for SECAM (SECNTCH=’01’, 4.25 MHz) A simple lowpass-filter can be enabled by LPPOST to further reduce high-frequency noise component from the CVBS signal. characteristic for Y/C 5 LPPOST=0 0 LPPOST=1 5 NTCHSEL= 3.58 0 attenuation [dB] characteristic for NTSC 5 ’x00’ ’x01’ ’x10’ attenuation [dB] 5 10 15 20 ’x11’ 25 10 30 15 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 frequency [MHz] 20 Fig. 2–11: Filter Characteristics for Y/C mode. 25 30 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 frequency [MHz] Fig. 2–8: Filter Characteristics for NTSC, PAL M and PAL N The black level can be shifted by the parameter LMOFST. This is required to compensate 7.5 IRE offsets in some input signals (e.g. NTSC) The positive or negative offset is added to the Y signal before scaling. BLANKING characteristic for PAL 5 4.43 0 LMOFST='10' LMOFST='00' LMOFST='11' LMOFST='01' NTCHSEL= ’000’ BLACK LMOFST='10' LMOFST='00' LMOFST='11' LMOFST='01' ’100’ 5 attenuation [dB] BLANKING BLACK Input signals without 7.5IRE offset Input signals with 7.5IRE offset 10 ’010’ 15 Fig. 2–12: Adjustment of ‘Black’ to ‘Blankingvalue’ at Analog Output. ’011’ 20 ’001’ 25 30 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 frequency [MHz] Fig. 2–9: Filter Characteristics for PAL B/G, NTSC44, PAL60 12 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET 2.2. RGB Front-end YUV including sync or H/V signals. This can be used, for example, for a DVD player or set-top-box. When using H sync from a non CVBS input (e.g. separate Hsync) this must be indicated by HINP. The usage of separate V sync must be set by VINP. An analog RGB input port for an external RGB or YUV source is available. The incoming signal is clamped to the back porch by a clamping pulse. As the memory is only able to store a 4:2:2 picture, the YUV input signal is downconverted to 4:2:2. There are two operation modes available. The first one uses this input as an overlay input (soft mix). The RGB or YUV signal must then be synchronized to the main CVBS/YC signal. The second so called independent mode uses RGB / The delay of luminance and fast-blank can be adjusted by YFDEL, and chrominance can be delay adjusted by UVDEL. If necessary, a fine adjustment of the fast blank can be set by the parameter FBLDEL. Table 2–5: Possible input signals for RGB Front-end Input Signal FBLIN Hinp Vinp RGB CVBS1) Sync on CVBS 1 0 YUV CVBS1) Sync on CVBS 1 0 RGB H1) V Sync on H E.g. set-top-box 1 1 YUV H1) V Sync on H E.g. set-top-box 1 1 RGB FBL Synchron to CVBS/YC Soft mix 0 0 YUV FBL Synchron to CVBS/YC Soft mix 0 0 RGB (incl. sync) Sync on G (maybe on R/B) No external sync 1 0 YUV (incl. sync) Sync on Y No external sync e.g. DVD 1 0 1) VIN Sync Separation Remark Instead of FBL input, CVBS input can be used when Hinp=0 from VINP pin from CVBS Source select ADC2 AGCADJ2 256 AGCADJ1 HINP Data 2 AGCMD 0 Sync processing 1 from CVBS Source select ADC1 CLMPV1 CLAMPSIGNALS 1 VINP ADCSEL from RGB Source select ADCR AGCADJR CLMPVRB 0 1 DATAR R Processing to soft-mix RBOFFSET CLAMPSIGNALS2 from RGB Source select from RGB Source select ADCG ADCB AGCADJG CLMPVG AGCADJB CLMPVRB DATAG G Processing to soft-mix GOFFSET DATAB B Processing to soft-mix RBOFFSET from RGB Source select ADCF AGCADJF DCLMPF DATAF F Processing to soft-mix Fig. 2–13: Signal and Clamping Organization Micronas Aug. 16, 2004; 6251-552-1DS 13 VSP 94x2A DATA SHEET 2.2.1. Source Select 2.2.2. Signal Magnitudes and Gain Control Two inputs are available. The choice between the first or second input is made by RGBSEL. The gain adjustment of the four ADCs can be done with the parameters AGCADJR, AGCADJG, AGCADJB, AGCADJF 255 229 CRY = 0.84 Vpp 16 0 lower headroom CRUV = 0.8 Vpp 16 0 SRY = 0.7 Vpp 80 upper headroom CRY = 1.2 Vpp SRY = 1 Vpp upper headroom SRUV = 0.7 Vpp 255 229 lower headroom Fig. 2–14: Y/RGBF Amplitude Characteristics (with or without sync) 255 240 212 255 240 212 upper headroom 128 75% U 44 16 0 CRUV = 0.8 Vpp SRUV = 0.7 Vpp 100% U upper headroom 100% V 75% V 128 44 16 0 lower headroom lower headroom Fig. 2–15: UV Amplitude Characteristics DC Gain Control Characteristic Gain Control Characteristic 1.6 1.5 1.4 1.2 Conversion Range [V] Conversion Range [V] 1.3 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0 8 16 24 32 40 48 56 64 AGCADJR, AGCADJG, AGCADJB, AGCADJF (I²C) ADC output=255 conversion range ADC output=0 0 8 16 24 32 40 48 56 64 AGCADJF (I²C) Fig. 2–16: RGB ADC Characteristic, Fast-blank ADC with Clamping (DCLMPF=0) 14 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2 Fig. 2–17: Fast-blank ADC Characteristic without Clamping (DCLMPF=1) Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 2–6: Configurations of input signals Mode CLMPVG CLMPVRB GOFST RBOFST DCLMPF YUV, sync on Y 80 128 64 128 Don’t care YUV, sync on H,V 16 128 0 128 0 (clamping enabled) RGB, sync on G 80 16 64 0 Don’t care RGB, sync on RGB 80 80 64 64 Don’t care RGB, sync on H,V 16 16 0 0 0 (clamping enabled) RGB with fast-blank, synchron to CVBS 16 16 0 0 1 (clamping disabled) YUV with fast-blank, synchron to CVBS 16 128 0 128 1 (clamping disabled) 2.2.3. Clamping RGB-prefiltering 10 3 0 attenuation [dB] When using the dynamic softmix-mode with fast-blank, clamping of fast-blank input must be disabled by DCLMPF. The analog clamping value of red and blue input (V and U resp.) can be adjusted by CLMPVRB. The analog clamping value of green input (Y resp.) can be adjusted by CLMPVG. Depending on the input signal format (YUV, RGB, sync signal or not) these bits must be set accordingly. On the digital side, a correction of the analog clamping value must be performed to reconstruct the blacklevel. This is achieved by RBOFST and GOFST. (see Table 2–6 on page 15) 10 20 30 40 0 5 10 15 20 Frequency [MHz] 2.2.4. Digital Prefiltering A digital prefiltering can be enabled. A band limitation is required, because the following deskewing filter performs best at frequencies of below 14 MHz. The filtering is performed in all four channels and can be disabled by AABYP. For signal conversion to 4:2:2, an additional chrominance lowpass can be enabled by CHRSF. The deskewing filter can be disabled by SKEWSEL. This is necessary when using the H50-pin in connection with a Micronas picture-in-picture device (e.g. SDA 938x, SDA 948x, SDA 958x). In this application, the RGB input (in1, in2, in3) of the PiP can not be used for other RGB/YUV signals (e.g. ‘SCART’ is not possible). As there is a pixel skew on H50, this pin is NOT suited to synchronize any IC, except for the above mentioned PiP ICs Fig. 2–18: Digital Prefiltering of RGB Input 2.2.5. RGB → YUV Matrix RGB or YUV signals are selected by YUVSEL. The matrix coefficients are set according to ITU recommendations. Y R 0,299 0,587 0,114 U = G ⋅ – 0,147 – 0,289 0,436 V B 0,615 – 0,515 – 0,100 Fig. 2–19: RGB to YUV Matrix Micronas Aug. 16, 2004; 6251-552-1DS 15 VSP 94x2A DATA SHEET 2.2.6. Contrast, Brightness and Saturation Control of Input Signal The YUV signal can be manipulated in order to fit to the main channel. The contrast can be adjusted between 0 and 1.97 in 64 steps (CONADJ). The brightness is adjustable in 255 steps (BRTADJ). Due to the independent chroma adjustment of U and V (64 steps each, USATADJ, VSATADJ), UV as well as CrCb input signals can both be displayed correctly. k = MIXGAIN ⋅ ( 31 – FBLOFFST ) + 32 All necessary limitation and rounding operations are built-in to fit the range: 0 ≤ k ≤ 128 Considering MIXGAIN=3, k is obtained by k = 158 – 3 ⋅ FBLOFFST [κ limited to 0 and 128] 2.2.7. Soft Mix The soft-mixer circuit consists of a Fast Blank (FB) processing block supplying a mixing factor k (0... 128) achieving the output function: YUV main ⋅ ( 128 – k ) + YUV inserted ⋅ k YUVmix = -------------------------------------------------------------------------------------------128 k= ‘0’ means that only the main signal is fed through to the output. k= ‘128’ means that only the inserted signal becomes visible. The soft mixer supports four modes that are selected by MIXOP and SMOP. SMOP Soft Mix mode 00 0 Dynamic Soft Mix (DECTWO must be set to ’1’) 00 1 In the static mixer mode as well as in the previously mentioned static switch mode, the softmixer operates independently of the analog fast blank input. 2.2.10. Dynamic Mixer mode In the dynamic mixer mode, the mixer is controlled by the Fast Blank signal. The VSPA provides a linear mixing coefficient MIXGAIN ( FB – FBLOFFST ⋅ 2 ) k = ------------------------------------------------------------------------------------ + 64 2 Table 2–7: RGB operation modes MIXOP The mixing is only controlled by FBLOFFST. Static Soft Mix The dynamic mode is used for mixing which is dependent on FB input. FB is the preprocessed digitized fastblank input in the range from 0...127. FBL manipulation is done both for luminance and chrominance FBL signal. (DECTWO must be set to ’1’) 01 x Only RGB/YUV path visible 10 x Only CVBS path visible 11 x (Reserved) Fast blank is delay adjustable by FBLDEL in the range of -2...4 clock cycles. 2.2.11. FBL Activity and Overflow Detection 2.2.8. Static Switch mode In its simplest and most common application the softmixer is used as a static switch between YUVmain and YUVinsert. This for instance the adequate way to handle a DVD component signal. By using MIXOP, k is internally set to 0 or 128 respectively. It is important to know whether the FBL input is used or not. Therefore a detection circuit gives information via the I2C bus to the microcontroller. The circuit uses the FBL value as input. If it is greater than a threshold for one or five clock cycles (FBLCONF), the I2C register FBLACTIVE is set. This register is reset after a read access by the microcontroller. PFBL, PG, PR, PB indicate an overflow of the corresponding ADC (upper limit: ADC= 255) exceeding 5 clock cycles duration. 2.2.9. Static Mixer mode The signal YUVmain and the component signal YUVinsert may also be statically mixed. In this environment, k is manually controlled via FBLOFFSET and MIXGAIN. 16 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET 2.3. Input Processing UV decimation filter 5 3 0 HSYNC VSYNC Complete picture area ALPFIP (Active lines input) Active picture Attenuation (dB) 5 NALPFIP (not active lines input) 10 15 20 25 30 35 40 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Frequency (MHz) NAPPLIP (not active pixel per line input) Fig. 2–22: UV-decimation Filter Characteristic for Standard Operation (Decimation=1.5) APPLIP (active pixel per line input) 2.3.2. Noise Reduction Fig. 2–20: Image Format before Memory 2.3.1. Horizontal Prescaler The main application of the horizontal prescaler is the conversion of the number of pixels coming form the 40.5/20.25 MHz pixel clock domain down to the number of pixels stored in the memory (factor 2/3). Generally the number of incoming pixels can be decimated by a factor between 1 and 64 in a granularity of 2 output pixels. The horizontal scaler reduces the number of incoming pixels by subsampling. To prevent the introduction of alias distortion low pass filters are used for luminance and chrominance processing (Fig. 2–22). In case of ITU656 input, the lowpass filter must be disabled by HAAPRESC. The horizontal prescaler consists of two main subsampling stages. The first stage is a scaler for rational decimation factors in a range of 1 to 2, controlled by HSCPRESC. The second stage decimates in integer steps (1,2,3,4...32), controlled by HDCPRESC. The Fig. 2–23 shows a block diagram of the temporal noise reduction. The structure of the temporal motion adaptive noise reduction is the same for luminance as for chrominance signal. Noise reduction is enabled by NRON. The output of the motion detector is weighted using the parameters TNRCLC and TNRCLY. The look-up table input value range is separated into 8 segments. It is possible to freely program different behavior of the noise reduction by using predefined curve characteristic for each segment. The curve characteristics can be programmed by the parameters TNRSxY for luminance and TNRSxC for chrominance. The curve-start is defined by TNRSSY (TNRSSC) at the end of the last segment (Figure 2–24). The overall curve is now constructed by connecting the end of segment 6 to the beginning of segment 7 and so on. Negative values of Ky (Kc) are not possible and clipped to zero. For chrominance, the result of the luminance motion detector or a separate chorminance motion detector can be used (TNRSEL). Y-decimation filter 5 0 Attenuation [dB] 5 10 15 20 25 30 35 40 0 1.25 2.5 3.75 5 6.25 7.5 8.75 10 Frequency [MHz] Fig. 2–21: Y-decimation Filter Characteristics for Standard Operation (Decimation=1.5) Micronas Aug. 16, 2004; 6251-552-1DS 17 VSP 94x2A Yin Ydelay DATA SHEET Motion Detection Y Yin Ky LUT Y Ydelay TNRCLY Noise Reduction Y Yout Noise Reduction C UVout TNRSxY TNRABS NRON TNRCLC TNRSxC TNRSEL UVin UVdelay Motion Detection C UVin Kuv LUT C Kc UVdelay Fig. 2–23: Temporal Noise Reduction TNRSx=0000 TNRSx=0001 TNRSx=0010 TNRSx=0011 TNRSx=0100 TNRSx=0101 TNRSx=0110 TNRSx=0111 TNRSx=1000 TNRSx=1001 TNRSx=1010 TNRSx=1011 TNRSx=1100 TNRSx=1101 TNRSx=1110 TNRSx=1111 Fig. 2–24: Segments of LUT 18 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET segment 4 segment 5 segment 6 segment 7 Ky/Kc segment 0 segment 1 segment 2 segment 3 15 14 13 TNRSSY, 12 TNRSSC 11 10 9 8 7 6 5 4 3 TNRSY 2 0001 1111 1111 0100 0100 0100 0000 0000 , 1 TNRSC 0 0 4 8 12 20 28 36 48 64 motion Fig. 2–25: Predefined Curve Characteristics for LUT 2.3.3. Noise Measurement The noise measurement algorithm can be used to change the parameters of the temporal noise reduction processing depending on the actual noise level of the input signal. This is done by the TV- microcontroller which reads the noise level (NOISEME), and sends different parameter sets to the temporal noise reduction registers of the VSP 94x2A depending on this value (0 = no noise, 126 = strong noise). Value 127 indicates an overflow status which means that the measurement failed. The value is determined by averaging over several fields. The line taken for noise measurement is selected by NMLINE. When NOISEME contains updated data which were not read so far, NMSTATUS is set. NMSTATUS is reset when read. The measurement position can be adjusted (NMPOS) as well as the sensitivity (NMSENSE). 2.3.4. Letterbox Detection A drawback of wide screen 16:9 TV sets are the black bars at the left and the right side on the screen, if displaying a 4:3 source on a 16:9 screen with correct aspect ratio. In case of letterbox source material also 4:3 Letterbox Picture black bars at the top and bottom exist. With the help of an expansion algorithm it is possible to expand the letterbox picture vertically and horizontally in such a way, that the letterbox picture will fill the complete screen without loosing information. To do so, the information about the active part of the letterbox picture is necessary. Active part means the information about the first active line and the last active line of the letterbox picture. The figure below shows the principle of this idea. The WSS (Wide Screen Signal) signal contains some information about the picture format (4:3 or 14:9 or 16:9), but not all existing formats are covered and not all signals contain WSS. Therefore a separate algorithm is necessary which delivers the necessary information. The figure below shows the concept of the letterbox detection algorithm. One part of the algorithm is dedicated hardware and located in the VSP 94x2A another part is software and located in the RAM of the TV microcontroller. The part located in VSP 94x2A is called measurement part. The measurement part delivers 5 signals to the controller part.Based on the delivered information the controller part calculates an expansion and a vertical pan factor and sends these values back to the VSP 94x2A for manipulation of the video signal. Expanded Letterbox Picture Fig. 2–26: Handling of Letterbox Pictures on 16:9 Tubes Micronas Aug. 16, 2004; 6251-552-1DS 19 VSP 94x2A DATA SHEET Software Hardware (940x) LBSLAA Y Measurement Part Controller part LBELAA LBFORMAT LBSUBTITLE LBTOPTITLE zooming parameters YUVin Horizontal and/or Vertical Resizing YUVout In principle the input picture is separated in one upper and one lower part. The measurement windows are defined by the parameters LBVWSTUP, LBVWENDUP (upper vertical measurement window), LBVWSTLO, LBVWENDLO (lower measurement window) and LBHWST, LBHWEND (horizontal measurement window). 2* LBVWENDLO 2*LBVWSTLO 2*LBVWSTUP The letterbox detection block works only at a data rate of 13.5 MHz. Due to the fact, that the input data rate at channel-mux output can be 13.5 MHz, 20.25 MHz or 40.5 MHz, the input signal has to be downsampled. Depending on the I2C bus register LBSUB different modes are possible (Downsample 1, 1.5, 3). As digital 656input data are already in 13.5 MHz format, no downsampling should be used (LBSUB=0). For CVBS, YUV and RGB signals (if DECTWO=1) a downsampling of 1.5 (LBSUB=2) is required. 2* LBVWENDUP Fig. 2–27: HW/SW Partitioning 4*LBHWST 4* LBHWEND Fig. 2–28: Measurement Windows A controller software and its description is available upon request. 20 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET 2.4. Output Processing 2.4.1.1. Panorama Mode 2.4.1. Horizontal Postscaler The picture can be geometrically distorted in horizontal direction for an improved impression in the case of expansions of 4:3 pictures to a 16:9 ratio tube. It is enabled by HPANON. The idea behind this panorama mode is to keep the middle part of the picture in a 4:3 ratio and to stretch the left and the right to fill the entire width of the 16:9 screen. For the adjustment of the expansion process, the picture is divided into 5 segments. For each of these segments the increment value for the expansion factor can be defined separately. Each end of a segment can be defined individually in a granularity of two output pixels. For every segment an increment value can be defined (HINC0...HINC4) which indicates the amount of decimation/expansion. One LSB is equivalent to an offset of 0.125 to HSCPRESC per double pixel. This means that with HINC, HSCPRESC is altered in the range from −32...31.875 per double pixel. The segments are distributed among the maximum number of pixels, which is adjusted by PPLOP. The first four segments are defined by (HSEG1...HSEG4). The last one goes from HSEG4 to PPLOP. After main memory, the display processing is performed using a different clock. In this way a decoupling of input and output clocks is achieved. The conversion to the display clock is done by an interpolation filter. This can be used for horizontal expansion in the range of 1...4 in steps of 2 pixels (HSCPOSC). Due to increased clock frequency in the backend part, the realized horizontal scaling factor depends on backend clock frequency. Usually (36 MHz operation), the horizontal expansion factors result as 0.75...16. This ensures that the factor 0.75 gives no loss of resolution (to show a 4:3 picture on a 16:9 tube). When using DS656 output, neither horizontal compression nor horizontal panorama is possible due to 27 MHz clock. Table 2–8: Horizontal expansion factors HSCPOSC Horizontal Filter Expansion Overall Expansion CLKB36= 27 MHz CLKB36= 36 MHz 1024 (min.) 4 4 3 3072 1.33 1.33 1 4095 1 1 0.75 INC_VAL 31.875 HINC0 HINC1 HINC2 output pixels 0 HINC3 HINC4 Because of the nonlinear characteristic and integer number of pixel, sometimes different HSCPOSC values result in the same decimation factors. -32 0 HSEG1 HSEG2 HSEG3 HSEG4 max. HSCALE 4095 Horizontal Postscaler 3.5 4095 3 1024 compression 3072 3 Overall Expansion expansion 2.5 HSCPOSC (I²C) 2 1024 1.5 0 HSEG2 HSEG3 HSEG4 max. output pixels 0.75 1 0.5 HSEG1 Fig. 2–30: Visualization of Panorama Segments 0 1000 2000 3000 4000 HSCPOSC(I²C) Fig. 2–29: Expansion Factor of Horizontal Postscaler Dependent on HSCPOSC Micronas Aug. 16, 2004; 6251-552-1DS 21 VSP 94x2A DATA SHEET Table 2–9: Examples of Panorama Mode Function Panorama Extreme Pan. Lens HSCPOSC 2099d 1023d 3999d HSEG1 96d 96d 96d HSEG2 192d 192d 192d HSEG3 288d 288d 288d HSEG4 384d 384d 384d HINC0 40d 85d 472d HINC1 20d 43d 492d HINC2 000d 000d 000d HINC3 492d 469d 20d HINC4 472d 427d 40d APPLOP 960d 960d 960d Table 2–9 on page 22) describes the different scan rate conversion algorithms of VSP 94x2A and the corresponding raster sequences. Fig. 2–32 on page 23 explains the 50/60 Hz interlaced to the 100/120 Hz interlaced conversion including the field signal, the raster organization and the memory timing for AABB. A still field can be displayed using FREEZE command. For the improvement of VCR signals, the chrominance can be shifted one line upwards by CHRSHFT FRAME/FIELD FRAME FIELD A odd lines FIELD B even lines Content of picture DISPLAY LINE-SCANNING PATTERN 2.4.2. Operation Modes Display line-scanning pattern TV Display raster The interlaced input signal (e.g. 50 Hz PAL or 60 Hz NTSC) is composed of a field A (odd lines) and a field B (even lines). even lines Display line-scanning pattern fieldras01 There are four operation modes defined. The first mode is simple AABB, where each stored field in the memory is displayed double times on the TV screen. The second and third mode are AAAA and BBBB, in which only one field phase will be displayed on the TV screen. There is also a fourth mode AAAA mode with αβαβ raster possible. Fig. 2–31 explains the picture and the display raster. odd lines Tube, Display raster Fig. 2–31: Explanation of Field and Display Linescanning Pattern An - Input signal, field A at time n, Bn - Input signal, field B at time n The field information describes the picture content. The output signal, which could contain different picture contents (e.g. field A, field B), can be displayed with the display raster α or β. (An,α) - Output signal, field A at time n, displayed as raster α, (An,β) - Output signal, field A at time n, displayed as raster β, 22 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 2–10: Operation modes for scan-rate conversion Input Field A Input Field B STOPMODE Scan-Rate Conversion Output Field Phase 0 Output Field Phase 1 Output Field Phase 2/0 Output Field Phase 3/1 00 AABB mode An,α An,α Bn,β Bn,β 01 AAAA mode An,α An,α An,α An,α 10 AAAA mode An,α An,β An,α An,β 11 BBBB mode Bn-1,β Bn-1,β Bn,β Bn,β An Line number of memory Bn An+1 Write time An OPDEL An Bn Bn An+1 An+1 Read raster_org n n n n n+1 n+1 field Fig. 2–32: 50/60 Hz Interlaced to 100/120 Hz Interlaced Conversion (AABB) Micronas Aug. 16, 2004; 6251-552-1DS 23 VSP 94x2A DATA SHEET 2.5. Display Processing The peaking filter clock frequency is CLKB36=36 MHz (27 MHz). The maximum signal frequency of the picture stored in the memory is 6.75 MHz. Due to a peaking after postscaler, the frequency range of the peaking filter varies with the expansion factor of the postscaler. The display processing part contains an integrated triple 9-bit DAC and performs digital enhancements and manipulations of the digital video component signal. Fig. 2–35 shows the block diagram of the display processing part. 2.5.1. Peaking Peaking filter characteristic 15 The luminance peaking filter improves the overall frequency response of the luminance channel. It consists of two filters working in parallel. They have high pass (HP) and band pass (BP) characteristics. Their gain factors are programmable separately (BCOF, HCOF). Values greater than 4 peak the signal, whereas values less than 4 attenuate the signal. The high pass and the band pass filters are equipped with a common coring algorithm. It is optimized to achieve a smooth display of grey scales, not to improve the signal-to-noise ratio. Therefore no artifacts are produced. Coring can be switched off (YCOR). The Fig. 2–34 shows the block diagram of the peaking block. BCOF HCOF gain[dB] 10 5 0 5 0 0.1 0.2 0.3 0.4 0.5 normalized Frequency (B) Fig. 2–33: Peaking Filter: Bandpass and Highpass filter BP GAINB coring HP GAINH AP Peak_in Peak_out Fig. 2–34: Block Diagram Peaking 9402/9432 only YCOR, HCOF, BCOF Yin Peaking COARSEDEL Delay Y U Cin DCTI CHROMAMP Fine Delay Coarse Delay PKLY, PKLU, PKLV, DAC ayout DAC auout DAC avout 8:8:8 4:4:4 V THRESHC, ASCENTCTI FINEDEL 8 ITU656 Encoder 656out 656clk SHIFTUV, DPOUT656 Fig. 2–35: Block Diagram of Display Processing 24 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 2–11: Conversion table between HCOF/BCOF and GAINHP/GAINBP BCOF GAINBP HCOF GAINHP 0 −1 0 −1 1 −0.75 1 −0.75 2 −0.50 2 −0.50 3 −0.25 3 −0.25 4 0.00 4 0.00 5 0.25 5 0.25 6 0.50 6 0.50 7 0.75 7 0.75 8 1.00 8 1.00 9 1.25 9 1.25 10 1.50 10 1.50 11 1.75 11 1.75 12 2.00 12 2.00 13 2.50 13 2.50 14 3.00 14 3.00 15 4.00 15 4.00 2.5.2. Digital Color Transition Improvement (DCTI) A digital algorithm is implemented to improve horizontal transitions of the chrominance signals resulting in a better picture sharpness. A correction signal proportional to the slope of the detected horizontal transition of the input signal is added to the original input signal. The amplitude of the correction signal is adjustable by the I2C bus parameter ASCENTCTI. The I²C bus parameter THRESHC modifies the sensitivity of the DCTI circuit. High values of THRESHC result in an improvement of significant color transitions only. Table 2–12: Peaking filter adaption for 36 MHz or 27 MHz operation Expansion Factor of Postscaler Corresponding Frequency of Input Signal for Center Frequency Bandpass (B=0.25) Corresponding Frequency of Input Signal for Center Frequency Highpass (B=0.5) CLKB36=36 MHz/27 MHZ CLKB36=36 MHz/27 MHZ 0.75 3.375 MHz / 2.5 MHz 6.75 MHz / 5.06 MHz ... ... ... 1 4.5 MHz / 3.375 MHz 9 MHz / 6.75 MHz ... ... ... 3 13.5 MHz / 10.125 MHz 27 MHz / 20.25 MHz Micronas Aug. 16, 2004; 6251-552-1DS 25 VSP 94x2A DATA SHEET 2.5.3. Coarse and Fine Delay PKLY 240 LSB normal signal range 'black' 16 LSB 2.5.4. Oversampling and DAC 9 bit conversion range max. 0.9 V 128 LSB upper headroom for peaking max. 1.9 V Before digital-to-analog conversion an adjustment of the phase of the luminance is performed. A coarse delay from −8 to +7 in steps of 1 pixel CLKB36 (~28 ns) is possible (COARSEDEL). FINEDEL shifts the luminance one CLKB72 (~14 ns) pixel. This can be used to compensate delays, if the external processing of Y and UV produces different delays (e.g. external lowpass filtering). 128 LSB lower headroom for peaking PKLU PLLV CHROMAMP=0 'no color' 9 bit conversion range CHROMAMP=1 max. 0.95 V 8 bits of the luminance D/A converter are used for the entire signal. The 9th bit is used for over- and undershoots caused by the peaking to prevent or reduce clipping artifacts. As the CTI block seldomly produces such overshoots, a full-scale operation can be activated by CHROMAMP. The output voltages may be calculated by: 0V max. 1.9 V After conversion into 8:8:8 format (CLKB72=72 MHz), three 9-bit digital-to-analog converters are used for analog YUV output. This twofold-oversampling generates 1920 active pixels per line (when using recommended settings) and simplifies the external postfiltering. The output voltage is determined by PKLY, PKLU and PKLV and can be set in a range of 0.4 V ...1.9 V (fullscale). Fig. 2–36: DAC Output Signals PKLY VoltageY = 1.56V ⋅ --------------- + 0.36V ⋅ signalY 256 2.5.5. Output-Sync Controller The output sync controller generates horizontal and vertical synchronization signals for the scanrate-converted output signal. 160....400 signalY = -----------------------512 [for unpeaked signals max.] signalY = 0....511 -----------------512 [for peaked signals max.] PKLU, V VoltageU, V = 1.56V ⋅ ----------------------- + 0.36V ⋅ CHROMAMP ⋅ signalUV 256 signalUV = 128....384 -----------------------512 26 The number of pixels per line is 4*PPLOP. The default value of 288 results in 1152 pixels/line. With CLKB= 36 MHz, the horizontal output frequency is 31.25 kHz, which is twice the PAL horizontal frequency. Out of these pixels, 16*APPLOP are displayed as active picture area, which are 960 by default. The position on the screen depends on the NAPPLOP. It marks the picture area not active in horizontal direction and moves the active picture in horizontal direction. The number of lines per field is 2*LPFOP. This value is only used in the vertical freeruning mode. In vertical locked mode, the number of lines per field is derived from the CVBS signal itself and not adjustable. The active and non-active picture areas are marked by ALPFOP and NALPFOP, respectively. Both generators have a so called ‘locked-mode’ and ‘freeruning-mode’. Not all combinations of these modes make sense. Table 2–13 on page 27 shows ingenious configurations. Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET derived from the CVBS signal, to enable a soft transition to locked mode (PDGSR, LPFOPFF). This synchronization is only possible when the number of CVBS input lines corresponds to the programmed value of LPFOP. HSYNC VSYNC Complete picture area Active picture NALPFOP (not active lines output) ALPFOP (Active lines output) LPFOP (lines output) APPLOP (active pixel per line output) PPLOP When no or very weak signal is connected to the CVBS input, the IC can be configured to automatically switch into freerunning mode. This stabilizes the display which may contain OSD information, e.g. during channel-tune. The configuration, whether the IC switches to H-freerun, V-freerun or both can be configured by AUTOFRRN 2.5.5.1. HOUT Generator (pixel per line output) Fig. 2–37: Image Format behind Memory For freerun mode the backend part works stand alone without analyzing the input signals. The clock domains, input data part and output data part of the IC, are not synchronized to each other. If the output processing works in the freerun mode, the output signals of the OSC are generated depending on I2C-bus settings. For locked mode the backend part works with a line locked clock. This means that the front-end and the backend of the IC are synchronized to each other. The generation of the controlling signals depends on output signals from the front-end. This mode will be the default and the most used mode for standard TV applications. With activated vertical freerun mode the phase of the generated vsync signal has no correlation to the incoming vsync signal. A hard switch from freerun mode to locked mode would therefore cause visible synchronization problems in the deflection unit of the TV set concerning the vertical picture positioning. To avoid these problems a circuit is implemented which synchronizes the freerunning vsync signal to the vsync The HOUT generator has two operation modes, which can be selected by the parameter HOUTFR. The HOUT signal is active high for 64 clock cycles (CLKB36). In the freerunning-mode the HOUT signal is generated depending on the PPLOP parameter. In the locked-mode the HOUT signal is locked on the incoming H-Sync signal derived from CVBS. The polarity of the HOUT signal is programmable by the parameter HOUTPOL. 2.5.5.2. VOUT Generator The VOUT generator has two operation modes, which can be selected by the parameter VOUTFR. In the freerunning-mode (VOUTFR=1) the VOUT signal is generated depending on the LPFOP parameter. In the locked-mode the VOUT signal is synchronized by the incoming V-Sync signal derived from CVBS, delayed by some lines (OPDEL). During one incoming V-Sync signal, two VOUT pulses have to be generated. The polarity of the VOUT signal is programmable by the parameter VOUTPOL. The VOUT signal is active high for two output lines.. Table 2–13: Ingenious configurations of the HOUT and VOUT generator Mode HOUTFR VOUTFR ‘H-and-V-locked’ mode 0 0 ‘H-freerunning / V-locked’ mode 1 0 ‘H-and V freerunning’ mode 1 1 Micronas Aug. 16, 2004; 6251-552-1DS 27 VSP 94x2A DATA SHEET 2.5.5.3. BLANK Generator The BLANK signal is used to horizontally and vertically mark active picture area. It is enabled by BLANEN and its polarity can be chosen by BLANPOL and VBLANPOL. Referred to hsync, the start is given by BLANDEL and its length is given by BLANLEN, both adjustable with 4 pixel resolution. Referred to vsync, the start is given by VBLANDEL and its length is given by VBLANLEN, both adjustable in 1 lines resolution. 2.5.5.4. Background Generator This generator is able to realize an automatic closing and opening of the displayed picture. This means that with every picture the displayed colored background, defined by UBORDER, VBORDER and YBORDER will get bigger or smaller. The original picture data will be replaced by the background values and vice versa. There is also the possibility to realize a fixed border via the I²C bus (BORDPOSH and BORDPOSV). 4096 different colors are available. BORDPOSH and BORDPOSV also influence the window generation. This means the automatic opening and closing of the picture will start or end at the position which is defined with these values. The border is calculated with the following formula: The horizontal border on the left side of the TV screen is 2*BORDPOSH and 2*BORDPOSH on the right side of the TV screen. This means, that 4*BORDPOSH pixels are overwritten with border values. The same applies to the vertical direction. 4*BORDPOSV lines in total are overwritten with background values. BORDERV decides whether upper or lower or both borders are displayed. BORDERH decides whether left or right or both borders are displayed. Table 2–14: Display line scanning pattern sequence Display Line Scanning Pattern Sequence 1. to 2. 2. to 3. 3. to 4. 4. to 5.(1.) aaaa 312 313 312 313 bbbb 313 312 313 312 aabb 312 312.5 313 312.5 abab 312.5 312.5 312.5 312.5 28 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET 2.5.5.5. Window Function Fig. 2–38 shows the functionality of the horizontal window function. The window can be closed or opened. The windowing feature can be enabled by the WINDHON parameter. The WINDHST and the WINDHDR parameter determine, what status (opened or closed) the window has, and what can be done with the window (open or close). With each enabling of the window function by the WINDHON parameter, the status of the window will be as defined by WINDHST and WINDHDR. To change from „close“ to „open“ or vice versa only the WINDHDR parameter has to be toggled. The speed of the window can be defined by the WINDHSP parameter. Fig. 2–39 shows the functionality of the vertical window function. All settings are also available in vertical direction. All I2C parameters exist for both directions (e.g. WINDHON and WINDVON for horizontal and vertical window enabling). Combinations of both window functions (horizontal and vertical) are also possible. Fig. 2–38: Horizontal Windowing close window open window Fig. 2–39: Vertical Windowing close window open window Fig. 2–40: Horizontal and Vertical Windowing Micronas Aug. 16, 2004; 6251-552-1DS 29 VSP 94x2A DATA SHEET 2.5.6. Digital 656 Input 2.5.7. Digital 656 Output The IC decodes a digital 8 bit@27 MHz data stream according to ITU.BT656 standard. The configuration is set by EN_656. and DPOUT656. Dependent on version (single- or double-scan), the output data format corresponds to CCIR 656 (8-bit bus at a data rate of 27 MHz) or has double-scan format (8-bit bus at a data rate of 54 MHz). There all frequencies and data-rates are doubled compared to standard CCIR656 specification. Double scan format is intended to be used with a suited backend device, e.g. DDP3315C. Timing reference codes (SAV, EAV) are inserted according to the specification. The output can be enabled by DPOUT656. The output should be set to 720 pixels per line (APPLOP) and the display clock should be set to 27/54 MHz (refer to Chapter 2.6.). The chrominance information can be inverted by CHRMSIG656. HOUT and VOUT pins may be used in parallel. Table 2–15: 656 input / output selection EN_656 DPOUT656 656 Operation 0 0 Input disabled/ output disabled 0 1 Input disabled/ output enabled 1 0 Input enabled/ output disabled 1 1 Input enabled/ output disabled (9412A only) Four input modes are supported: Table 2–16: 656 modes IMODE 656 Operation 00 Full ITU mode (automatic) Information about active picture is taken from data-stream 01 Full ITU mode (manual) Information about active picture is taken from APPLIPI, NAPPLIPI, ALPFIPI, NALPFIPI 10 ITU656 only data, H/V-sync according PAL/NTSC 11 ITU656 only data, H/V-sync according ITU656 To adjust the input to sources, which deviate from the standard, the field information may be inverted (F_POL) and the chrominance format can be chosen between unsigned and 2’s complement format (CFORMAT). The polarity of H an V can be inverted by H_POL and V_POL respectively. Dependent on version, the digital input must be selected by ITUPRTSEL (pins i656i or 656io). 30 2.6. Clock Concept A single 20.25 MHz crystal at fundamental mode is used as clock reference. All other clocks are derived from this source. The CVBS front-end works with 20.25 MHz, the RGB front-end works with 40.5 MHz, the oversampling DACs use CLKB72 and the memory and all parts behind the memory are clocked with CLKB36. The frequency of CLKB36 and CLKB72 is adjustable and depends on application. With analog output, CLKB72 is usually 72 MHz and with digital output, CLKB72 is usually 54 MHz. CLKB72 is always twice of CLKB36. Three different clock concepts are supported. The difference is the behavior in clocking the memory output. The front-end part of the VSP 94x2A uses a freeruning but crystal-stable clock (CLKF). After deskewing, an orthogonal picture is written into the memory. The read out is done using the (CLKB) clock. The horizontal sync-signal output (HOUT) is derived from a counter running with CLKB. The VOUT is directly derived from the input vertical signal, which is generated by the sync-separation block. This ‘H-freerunning-V-locked mode’ is only possible together with a DC coupled deflection controller. In ‘H-and-V-locked mode’ CLKB is line-locked to the incoming signal. The freerunning YUV picture data and the internal H signal are converted to the linelocked domain. Now HOUT and the sync signal in the 1fH domain are directly coupled. In case of ‘H-and-V-freerunning mode’ the HOUT and VOUT signals are derived from counters running with CLKB. There is no connection to the incoming signal. This mode can be used for stable pictures when no signal is applied (e.g. channel search with OSD insertion). Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET with this sampling clock. The clock output can be disabled by CLKOUTON. Additionally a 20.25 MHz clock can be output to pin 74 (656hin/clkf20) to supply other ICs (e.g. PiP) with the same clock (CLKF2PAD). When enabled, 656-input with separate H/V-sync is not possible. For 656-output operation, CLKB36 is given to pin 9 (656clk). The selection between freerunning and locked clocks may be forced or selected to be dependent on PLL conditions. Please refer to Fig. 2–41 A clock output of 27 MHz (single-scan version:13.5 MHz) is possible (pin 27:clkout). This clock is 3/4 of CLKB36. HOUT and VOUT are in line Table 2–17: Clock system Name Clock Nominal Frequency ‘H-/Vlocked’ Mode ‘H-freerunningV-locked’ Mode ‘H-/Vfreerunning’ Mode CLKF20 CVBS front-end 20.25 MHz FR FR FR CLKF40 RGB front-end, input processing 40.5 MHz FR FR FR CLKB36 Output and display processing 9402: 36 MHz (analog out) 9412: 27 MHz (digital out) LL FR FR CLKB72 Oversampling, DAC 9402: 72 MHz 9412: 54 MHz LL FR FR CLKB27 CLKOUT-pin 9402: 27 MHz 9412: 20.25 MHz LL FR FR Front-end PLL CVBS Freerun Generator STAB=0 and AUTOFREERUN=1x freerunning clocks SETSTABLL 0 1 0 1 LL-PLL locked clocks HOUTFR 1 yes 0 no CLKBxx STABLL (indicates PLL stability) Fig. 2–41: Conditions for Freerunning/Locked Switching Micronas Aug. 16, 2004; 6251-552-1DS 31 VSP 94x2A DATA SHEET 2.6.1. Line-locked Clock Generator A freerunning frequency is also generated which may be selected alternatively. The freerunning frequency for the 100/120 Hz version dependent on FRINC is The clock generation system derives all clocks from one 20.25 MHz crystal oscillator clock source. An internal PLL multiplies this oscillator frequency by 32, generating a clock of 648 MHz which is used as reference for all clocks needed. f displayfr = FRINC ⋅ 103Hz Line-locked horizontal sync pulses are generated by a digital phase locked loop. The time constant can be adjusted between fast and slow behavior (KPL, KIL) to accommodate different backend ICs. The PLL control can be frozen up to 15 lines before V-sync (FION) for a duration up to 15 lines (FILE). This may be used to reduce disturbances by h-phase errors which are produced by VCR’s. The output frequency for the 100/120 Hz version dependent on IICINCR is Normally, IICINCR and FRINC are equal or nearly the same. The value is internally divided by two for the 50/ 60 Hz versions. The number of pixels generated by the PLL is given by PPLIP. For line-locked clock generation the following equation must be fulfilled: PPLIP = 2 ⋅ PPLOP f displayll = IICINCR ⋅ 103Hz 20.25 MHz xtal oscillator CLKF40 frequency divider CLKF20 FRINC PLL 648MHz FR-DTO frequency divider M U X ADC interpolation syncseparation phase detector loop filter LL-DTO CLKB27 CLKB36 CLKB72 frequency divider analog CVBS IICINCR line-locked locked or freerunning selection Fig. 2–42: Line-locked Clock Ceneration nominal 50Hz operation (analog out) 13.5 / 18 27 / 36 MHz nominal 50Hz operation (digital out) nominal 100Hz operation (analog out) nominal 100Hz operation (digital out) Fig. 2–43: Allowed Operation Area for Clock Generation 32 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET The PLL settings for different operation modes can be seen in Table 2–18. Dependent on input signal (50 Hz or 60 Hz), the linelocked clock is changing slightly (e.g. from 27 MHz to 27.18 MHz). To have no artifacts when switching between locked and freerun operation, it is possible to change the FRINC parameter, after the input TV standard has been detected safely. In case the IC is operating in horizontal locked OR freerunning mode only, this adaptivity is not required. Table 2–18: Recommended LL-PLL settings for normal TV-application Operation Input PPLIP*4 PPLOP*4 IICINCR FRINCR CLKB36 [MHz] fH[kHz] 100/120 Hz (analog out) 50 Hz 2304 1152 349525 349525 36 31.250 351953 36.25 31.468 100/120 Hz (digital out) 50 Hz 262144 27 31.250 263892 27.18 31.468 50/60 Hz (analog out) 50 Hz 349525 18 15.625 351953 18.125 15.734 50/60 Hz (digital out) 50 Hz 262144 13.5 15.625 263892 13.59 15.734 Micronas 60 Hz 1728 864 262144 60 Hz 2304 1152 349525 60 Hz 1728 864 262144 60 Hz Aug. 16, 2004; 6251-552-1DS 33 VSP 94x2A DATA SHEET 3. I2C Bus Interface The transmitted data is internally stored in registers. The registers are located in four different clock domains. The Table 3–5 on page 35 shows the four different clock domains of the VSP 94x2A. The clock domains are called CP - CVBS processing block (20.25 MHz domain, clkf20), FP - Front end processing block (40.5 MHz domain, clkf40), BP - Back end processing block (36.0 MHz domain, clkb36) and PP PLL processing block (36.0 MHz domain, clkf36). 3.1. I2C Bus Slave Address When pin 19 (adr/tdi) is connected to Vss, the VSP 94x2A reacts on the first I2C address (B0h for write access and B1h for read access). The second address (B2h and B3h) is active, when pin 19 is connected to Vdd. The registers themselves are grouped in an I2C bus interface block, one in each domain. The transmitted data is received by the I2C bus kernel. The I2C bus kernel itself is located in the CP domain. This means that the working frequency is 20.25 MHz. The data is transmitted to the I2C bus interface blocks via an internal serial bus. 2 Table 3–1: I C bus slave addresses B0h and B1h Write Address1: B0h Read Address1: B1h 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 For the write process, the I2C bus master has to write a ‘don’t care’ byte to the subaddress FFh (store command). This makes the register values available to the four I2C bus interface blocks (except for the not-takeover registers, which are used immediately). Table 3–2: I2C bus slave addresses B2h and B3h Write Address2: B2h Read Address2: B3h 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 In order to have a defined time step for the several blocks in the different domains, the data are made valid with internal V-syncs, depending on the different clock domains. 3.1.1. I2C Bus Format The VSP 94x2A I2C bus interface acts as a slave receiver and a slave transmitter and provides two different access modes (write, read). All modes run with a subaddress auto increment. The interface supports the normal 100 kHz transmission speed as well as the high speed 400 kHz transmission. The subaddresses, where the data are made valid with the V-sync signal of the 20.25 MHz domain are indicated in the overview of the subaddresses with “V20“. The others are called “V40”, “V36F” and “V36B” accordingly. Table 3–3: Write S 1 0 1 1 0 0 x 0 A Subaddress A Data Byte A ***** A P S: Start condition SR: Repeated Start condition A: Acknowledge P: Stop condition NA: Not Acknowledge 34 0 1 1 0 0 x 0 A A SR 1 0 1 1 Aug. 16, 2004; 6251-552-1DS 0 0 x 1 A A Data Byte 1 Data Byte S Subaddress Table 3–4: Read NA P Micronas VSP 94x2A DATA SHEET ferent blocks, the data is made valid with the same VSync related signals mentioned above for the write process. Table 3–5: I2C bus clock domains Domain CP FP PP BP Description Clock CP-CD CVBS frontend CLKF20 CP-PP LL-PLL CLKF20 CP-I2C I2C read CLKF20 FP-PRE Prescaler CLKF40 FP-MC Memory-controller CLKF40 FP-RGB RGB Frontend CLKF40 FP-TNR Temporal noise reduction CLKF40 FP-I2C I2C read CLKF40 PP LL-PLL CLKF36 PP-I2C I2C read CLKF36 BP-DP Display processing CLKB36 BP-PM Pixel-Mixer CLKB36 BP-ODC Output data control CLKB36 BP-ODC/MC Output data control/ memory-controller CLKB36 BP-POS Postscaler CLKB36 BP-DAC DAC processing CLKB72 BP-I2C I2C read CLKB36 The I2C parameter V20STAT, V40STAT and V36BSTAT reflect the state of the register values. If these bits are read as ‘1’, then the store command was sent, but the data is not made available yet. If these bits are ‘0’ then the data was made valid and a new write or read cycle can start. The bits V20STAT, V40STAT and V36BSTAT may be checked before writing or reading new data, otherwise data can be lost by overwriting. No V36FSTAT register exist. To make the register values available to the four I2C bus interface immediately after sending, the I2C bus master has to write a ‘don’t care’ byte to the subaddress FEh (store command). For the read process, the I2C bus master must not send a store command. In order to have a defined time step for the I2C bus interface blocks in the different domains, where the data will be available from the dif- Micronas The VSP 94x2A distinguishes between two different types of read-registers. The behavior of the “normal” read registers does not differ from the behavior of the write registers. Only the direction of the data flow is opposite. The “rs typ” read registers behave differently. They can be only set (means value 1) by the internal blocks using the rising edge of a corresponding signal. After reading by the I2C bus master, the registers will be automatically reset (means value 0) by the I2C bus kernel/interface. For example the register NMSTATUS belongs to the “rs typ” read registers. NMSTATUS signalizes a new value for NOISEME. So if NMSTATUS is read as ‘0’ the current noise measurement has not been updated. If the NMSTATUS is read as ‘1’ a new noise measurement value can be read. All other “rs typ” read registers work in the same way. The “rs typ” read registers will be marked in the overview with the short cut “rstyp” or will have the additional hint “Note: reset automatically when read/write” in the detailed I2C bus command description. By default all registers are made valid by the internal VSync related signals and, in addition, a store command has to be sent for write registers. The registers, which should also be made available immediately as for writing and reading, are marked with the short cut NTO (No take over mechanism). Registers which need a hand-shake mechanism between the I2C bus interface and the different blocks are marked with the shortcut HS (Hand shake mechanism). This means that all bits of the registers are used when the last register is written. After PPLIP9-2 is written, PPLIP1-0 must be written to allow these bits to have effect. The registers for the write parameter STOPMODE are directly connected to the read registers of the parameter SMMIRROR. So it is possible to check the I2C bus protocol by writing and reading to the register STOPMODE and SMMIRROR, respectively. The transmitted data is internally stored in registers. Writing to or reading from a non-existant register is permitted and does not generate a fault by the IC. After switching on the IC, all bits of the VSP 94x2A are set to defined states, (refer to Table 3–6). POR is set after reset to pin 24. It stays ‘1’, until it is cancled via software PORCNCL. This can be used to decide during TV operation, whether to program all registers (e.g. after power failure reset) or only altered ones (normal TV operation). Aug. 16, 2004; 6251-552-1DS 35 VSP 94x2A DATA SHEET sda scl cvbs1 cvbs2 cvbs3 cvbs4 cvbs5 cvbs6 cvbs7 cvbso1 cvbso2 cvbso3 b/u1 g/y1 r/v1 fbl/hin1 b/u2 g/y2 r/v2 fbl/hin2 vin S o u r c e S e l e c t S o u r c e S e l e c t xin xout 36.0F MHz 72,0 MHz PP (PLL processing block) ADC AGC ADC 27,0 MHz 36,0B MHz vout hout 40,5 MHz 20,25 MHz OUT 27.0 I²C CP (CVBS CD processing block) HPRESCALE ODC TNR M C FP (Front end processing block) 1 RGB OSC M C BP - (Back end processing block) 2 HPOSTSCALE PICIMPROVE ADC O u t 7 2 DAC DAC DAC ayout auout avout DELAY ADC ADC VSP 94x2A ADC hout50 vout50 Fig. 3–1: I2C Bus Clock Domains Table 3–6: I2C bus characterization Subaddress Default R/W Take-over Subaddress Default R/W Take-over 00h AAh W V40 1Dh 44h W V40 01h CAh W V40 1Eh 00h W V40 02h B0h W V40 1Fh FFh W V40 03h C8h W V40 20h 1Fh W V40 04h 16h W V40 21h F4h W V40 05h 10h W V40 22h 44h W V40 06h 20h W V40 23h 00h W V40 07h 01h W V40 24h FFh W V40 08h F0h W V40 25h AAh W NTO 09h 3Eh W V40 26h AAh W NTO 0Ah 00h W V40 27h 05h W NTO/HS 0Bh A0h W V40 28h 00h W NTO/rstyp 0Ch 00h W V40 29h 60h W NTO 0Dh 90h W V40 2Ah 60h W NTO 0Eh 80h W V40 2Bh 90h W NTO 0Fh 00h W V40 2Ch 00h W NTO/HS 10h 20h W V40 2Dh 04h W NTO 36 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–6: I2C bus characterization, continued Subaddress Default R/W Take-over Subaddress Default R/W Take-over 11h 20h W V40 2Eh 00h W NTO 12h 00h W V40 2Fh 00h W V36B 13h 00h W V40 30h 2Dh W V36B 14h 00h W V40 31h 44h W V36B 15h 00h W V40 32h 94h W V36B 16h 00h W V40 33h 20h W V36B 17h 00h W V40 34h 00h W V36B 18h 16h W V40 35h 00h W V36B 19h 00h W V40 36h 01h W V36B 1Ah 03h W V40 37h 00h W V36B 1Bh 1Fh W V40 38h E0h W V36B 1Ch F4h W V40 39h 01h W V36B 3Ah 00h W V36B 58h 80h W V36B 3Bh 00h W V36B 59h 80h W V36B 3Ch 26h W V36B 5Ah 80h W V36B 3Dh 3Ch W V36B 5Bh 44h W V20 3Eh 01h W V36B 5Ch 40h W V20 3Fh 00h W V36B 5Dh C0h W V20 40h 04h W V36B 5Eh 5Ch W V20 41h 40h W V36B 5Fh 66h W V20 42h 20h W V36B 60h 40h W V20 43h 9Ch W V36B 61h 40h W V20 44h AAh W V36B 62h 00h W V20 45h 00h W V36B 63h 00h W V20 46h 18h W V36B 64h A5h W V20 47h 0Bh W V20 65h 5Fh W V20 48h 00h W V36B 66h 0Fh W V20 49h 00h W V36B 67h 00h W V20 4Ah 00h W V36B 68h 00h W V20 4Bh 00h W V36B 69h 3Ch W V20 4Ch 00h W V36B 6Ah 03h W V20 Micronas Aug. 16, 2004; 6251-552-1DS 37 VSP 94x2A DATA SHEET Table 3–6: I2C bus characterization, continued Subaddress Default R/W Take-over Subaddress Default R/W Take-over 4Dh 00h W V36B 6Bh 07h W V20 4Eh 55h W V36B 6Ch 07h W V20 4Fh 0Bh W V36B 6Dh 1Ch W V20 50h 00h W V36B 6Eh 5Ch W V20 51h 00h W V36B 6Fh 00h W V20 52h 00h W V36B 70h 00h W V20 53h 00h W V36B 71h E4h W V20 54h 00h W V36B 72h 00h W V20 55h 00h W V36B 73h 00h W V20 56h 3Fh W V36B 74h 00h W V20 57h 3Fh W V36B 75h 7Fh W V20 76h 00h W V20 B2h 40h W V20 77h 00h W V20 B3h 00h W V20 78h 1Ch W V20 B4h FFh W V20 79h 1Ch W V20 B5h(no autoincrement) 43h W V20 7Ah FCh W V20 B6h (spare) 7Bh 77h W V20 B7h 00h W V40 7Ch 02h W V20 B8h 00h W V40 7Dh 6Ch W V20 B9h 00h W V40 7Eh 00h W V20 BAh 00h W V40 7Fh 15h W V20 BBh (spare) 80h 00h W V20 BCh AAh W NTO 81h 00h W V20 BDh AAh W NTO 82h (no autoincrement) 00h W V20 BEh 05h W NTO 83h R NTO BFh (spare) 84h (no autoincrement) R NTO C0h 00h W V40 85h R no/rstyp C1h 00h W V40 86-93h R NTO D0h 00h W V36 D1h 00h W V36 D2h 00h W V36 E0h 00h W V40 94h-95h (spare) 96h 97h 38 R (spare) V40 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–6: I2C bus characterization, continued Subaddress Default R/W Take-over Subaddress Default R/W Take-over 98h R V36B E1h 00h W V40 99h R V20 E2h 00h W V40 A0h 00h W NTO E3h 00h W V40 A1h 00h W NTO E4h 00h W V40 A2h FFh W NTO E5h 00h W V40 A3h FFh W NTO E6h 00h W V40 A4h 00h W NTO E7h 00h W V40 B0h 10h W V20 E8h 00h W V40 B1h 00h W V20 E9h 00h W V40 EAh 00h W V40 EBh 00h W V40 ECh 00h W V40 EDh 00h W V40 EEh 00h W V40 EFh 00h W V40 R NTO F0-F6h F7h-FDh (spare) FEh W FFh W Take-over mechanism Register types NTO No take-over mechanism W Write register V20 Take-over with V-sync in 20 MHz domain R Read register V40 Take-over with V-sync in 40 MHz domain Rrstyp Reset register after reading V36B Take-over with V-sync in back-end 36.0 MHz domain HS Handshake mechanism required Micronas Aug. 16, 2004; 6251-552-1DS 39 VSP 94x2A DATA SHEET 3.1.2. I2C Bus List in Alphabetical Order Name Subaddress Name Subaddress BCOF 31h AABYP 0Ch BELLFIR 7Dh ACCFIX 5Bh BELLIIR 7Dh ACCFRZ 5Bh BGPOS 47h ACCLIM 7Ah BLANDEL 07h ADCSEL 0Ch BLANEN 36h ADLCK 81h BLANLEN 08h ADLCKCC 81h BLANPOL 36h ADLCKSEL 81h BORDERH 45h AFPROC 4Dh BORDERV 45h AGCADJ1 67h BORDPOSH 35h AGCADJ2 68h BORDPOSV 34h AGCADJB 16h BRTADJ 0Ah AGCADJCV 90h CDELHPOS 4Fh AGCADJF 17h CFORMAT 18h AGCADJG 15h CHRF 5Eh AGCADJR 14h CHRMSIG656 55h AGCFRZE 68h CHROMAMP 57h AGCMD 67h CHROMSIGN 57h AGCRES 68h CHRSF 0Bh AGCTHD B0h CHRSHFT 3Dh ALPFIP 05h CKILL 60h ALPFIPI B8h CKILLS 61h ALPFOP 32h CKSTAT 88h AM50O 90h CLKF2PAD 16h AM60O 90h CLKOUTINV 4Fh AMSTD50 B1h CLKOUTON 30h AMSTD60 B1h CLKOUTSEL 4Fh APENSEL 05h CLKOUTSEL72 4Dh APPLIP 01h CLKT 2Eh APPLIPI B9h CLMPD1 6Bh APPLOP 3Dh CLMPD1S 7Bh ASCENTCTI 30h CLMPD2 6Ch AUTOFRRN 32h CLMPD2S 7Bh 40 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Name Subaddress Name Subaddress CLMPHIGH 69h DISRES 27h CLMPLOW 6Ah DPOUT656 56h CLMPST1 6Dh EIA770 7Ch CLMPST1S 78h EN_656 18h CLMPST2 6Eh ENLIM 7Eh CLMPST2S 79h F_POL 18h CLMPVG 10h FBLACTIVE 83h CLMPVRB 0Dh FBLCONF 0Dh CLPSTGY 6Bh FBLDEL 0Dh CLRANGE 5Dh FBLOFFST 0Ch COARSEDEL 32h FEMAG B1h COLON 5Bh FHDET 6Ch COMB 5Fh FHFRRN 71h CON 5Ch FIELDBINV 54h CONADJ 0Bh FILE 2Eh CONS 5Bh FINEDEL 32h CPLLOF 82h FIOFFOFF 54h CPLLRES 80h FION 2Dh CRCB 5Bh FKOI 2Ch CSTAND 5Fh FKOIHYS 2Ch CVBOSEL1 6Ah FLDINV 6Bh CVBOSEL2 70h FLINE 6Bh CVBOSEL3 70h FLNSTRD 7Eh CVBSEL1 6Fh FMOD 29h CVBSEL2 6Fh FOFFST C1h DCLMPF 10h FREEZE 3Fh DECTWO 0Bh FREQSEL 7Ch DEEMPFIR B5h FRFIX 1Ah DEEMPIIR B5h FRINC BCh DEEMPSTD 82h FSWFTL D0h DETHPOL 88h GOFST 0Eh DETVPOL 88h GRADELAA F3h DISALLRES 80h GRADISSTABLE F2h DISCHCH 6Ch H_POL 18h Micronas Aug. 16, 2004; 6251-552-1DS 41 VSP 94x2A DATA SHEET Name Subaddress Name Subaddress HAAPRESC 09h INT 89h HCOF 31h ISHFT 7Eh HDCPRESC 05h ITUPRTSEL 16h HDTOTEST 2Eh KD2 29h HINC0 48h KIL A1h HINC1 49h KINL A1h HINC2 4Ah KOIH 2Ah HINC3 4Bh KOIWID 2Ah HINC4 4Ch KPL A0h HINCREXT 29h KPNL A0h HINP 6Dh LB43SENS E9h HORPOS 3Ah LBACTIVITY ECh HORWIDTH 38h LBASDEL EFh HOUTDEL 3Eh LBELAA F0h HOUTFR 41h LBFORMAT F2h HOUTPOL 41h LBFS E6h HPANON 4Fh LBGFBDEL EDh HPOL 6Ch LBGRADDET E0h HRES 28h LBGRADRST EAh HSCPOSC 4Eh LBGSDEL EEh HSCPRESC 01h LBHISTBLA E4h HSEG1 50h LBHIWHITE E3h HSEG2 51h LBHSDEL EAh HSEG3 52h LBHWEND E2h HSEG4 53h LBHWST E7h HSPPL C0h LBNGFEN E9h HSWIN 29h LBSLAA F0h HTESTW 2Ah LBSTABILITY E9h HUE 63h LBSTATUS 85h HWID 2Eh LBSUB EAh IFCOMP 7Ah LBSUBTITLE F2h IFCOMSTR 82h LBTHDNBNG E9h IICINCR 25h LBTHDNBNHA EBh IMODE 18h LBTOPTITLE F2h 42 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Name Subaddress Name Subaddress LBVWENDLO E1h NMLINE 19h LBVWENDUP E6h NMPOS 1Ah LBVWSTLO E5h NMSENSE 1Ah LBVWSTUP E8h NMSTATUS 85h LIMEN 2Ch NOGRADFOUND F2h LIMII A3h NOISEME 84h LIMIP A2h NOSIGB 6Dh LIMLR A4h NOSYNC 3Ch LMOD 29h NOTCHOFF 5Ch LMOFST 5Dh NRON 1Ah LNL 2Dh NRPIXEL 8Bh LNSTDRD 89h NSRED 72h/7Eh LOCKSP 47h NTCHSEL 80h LPBLACK F5h NTSCREF 64h LPCDEL 72h OPDEL 44h LPFIPMD 2Fh OSCPD 7Ch LPFLD 8Ah PALDEL 47h LPFOP 43h PALDET 8Ch LPFOPFF 3Ch PALID 88h LPPOST 62h PALIDL0 75h LPWHITE F5h PALIDL1 74h MINV 92h PALIDL2 82h MIXGAIN 0Fh PALINC1 82h MIXOP 0Dh PALINC2 82h MLL 09h PALREF 65h MVP B2h PB 85h MVPG B2h PDGSR 3Fh NALPFIP 04h PFBL 85h NALPFIPI BAh PG 85h NALPFOP 45h PKLU 59h NAPIPPHI 17h PKLV 5Ah NAPPLIP 02h PKLY 58h NAPPLIPI B7h PLLTC 6Eh NAPPLOP 3Fh POR 8Ch Micronas Aug. 16, 2004; 6251-552-1DS 43 VSP 94x2A DATA SHEET Name Subaddress Name Subaddress PORCNCL 80h SETSTABLL 2Ch PPLIP 2Bh SHAPERDIS 7Ch PPLOFF 3Ch SHIFTUV 56h PPLOP 41h SKEWSEL 0Eh PR 85h SLLTHD 66h PWADJCNT 93h SLLTHDV B1h PWTHD 5Dh SLLTHDVP 78h RBOFST 0Eh SLS 8Fh/F6h RDCTRLDIS 45h SMMIRROR 87h REFRON 41h SMOP 0Eh REFRPER 41h STAB 8Ch REFTRIM 76h STABLL 86h REFTRIMCV 77h STANDBY 11h REFTRIMCVRD 8Eh STDET 88h REFTRIMEN 72h STOPMODE 3Fh REFTRIMRD 8Dh SUBTITLE F2h REFTRIMRGB 77h SWITCHTO43 F2h REFTRIMRGBRD 8Eh SYNFTHD 82h REV F6h THRESHC 30h RGBSEL 0Fh THRSEL 78h SATNR 72h TNRABS 1Ah SCADJ 66h TNRCLC 24h SCDEV 89h TNRCLY 24h SCMIDL 79h TNRS0C 20h SCMREL 7Fh TNRS0Y 1Bh SCOUTEN 88h TNRS1C 20h SDB B2h TNRS1Y 1Bh SDR 5Eh TNRS2C 21h SECACC 7Fh TNRS2Y 1Ch SECACCL 81h TNRS3C 21h SECDIV 7Fh TNRS3Y 1Ch SECINC1 7Fh TNRS4C 22h SECINC2 7Fh TNRS4Y 1Dh SECNTCH 5Ch TNRS5C 22h 44 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Name Subaddress Name Subaddress TNRS5Y 1Dh VFLYWHLMD 81h TNRS6C 23h VINMTHD 2Fh TNRS6Y 1Eh VINP 72h TNRS7C 23h VLENGTH 91h TNRS7Y 1Eh VLP 7Eh TNRSEL 1Ah VOUTFR 41h TNRSSC 1Fh VOUTPOL 41h TNRSSY 1Fh VPOL 62h TOPTITLE F2h VSATADJ 11h TRAPBLU 80h VSHIFT 73h TRAPRED 80h VSIGNAL 18h TSTSHAPERI 7Ch VSLPF C1h UBORDER 37h VTHRH50 75h UPBLACK F5h VTHRH60 B4h UPWHITE F5h VTHRL50 74h USATADJ 10h VTHRL60 B3h UVCOR 5Ch WINDHDR 3Bh UVDEL 13h WINDHON 3Bh V_POL 18h WINDHSP 3Bh V20STAT 99h WINDHST 3Bh V36BSTAT 98h WINDVDR 39h V40STAT 96h WINDVON 39h V656DEL 4Dh WINDVSP 39h VBLANDEL D0h WINDVST 39h VBLANLEN D0h WRCTRLDIS 09h VBLANPOL D0h Y2RGB 12h VBORDER 37h YBORDER 36h VDEL_EN 55h YCDEL 62h VDELF_EN 03h YCOR 30h VDETIFS 5Dh YCSEL 6Bh VDETITC B2h YFDEL 12h VERSION 8Fh/F6h YUVSEL 0Eh VFLYMD 8Ch VFLYWHL 7Dh Micronas Aug. 16, 2004; 6251-552-1DS 45 VSP 94x2A DATA SHEET 3.1.3. I2C Bus Command Table Table 3–7: I2C register overview Sub add (Hex) Data Byte D7 D6 D5 D4 D3 D2 D1 D0 Input Processing 00h APPLIP[8:1] 01h APPLIP[0] 02h HSCPRESC[4:0] 03h VDELF_EN 04h NALPFIP 05h APENSEL 06h ALPFIP[7:0] 07h BLANDEL 08h BLANLEN 09h HSCPRESC [11:5] NAPPLIP[9:7] NAPPLIP6[6:0] NALPFIP8 ALPFIP[9:8] HDCPRESC WRCTRLDIS HAAPRESC MLL RGB Front-end 0Ah BRTADJ 0Bh DECTWO CHRSF CONADJ 0Ch ADCSEL AABYP FBLOFFST 0Dh CLMPVRB1 CLMPVRB0 FBLDEL 0Eh YUVSEL SMOP SKEWSEL 0Fh RGBSEL MIXGAIN 10h CLMPVG DCLMPF USATADJ 11h STANDBY1 STANDBY0 VSATADJ 12h Y2RGB MIXOP RBOFST FBLCONF GOFST YFDEL 13h UVDEL 14h AGCADJR 15h AGCADJG 16h ITUPRTSEL CLKF2PAD AGCADJB 17h NAPIPPHI1 NAPIPPHI0 AGCADJF 18h IMODE VSIGNAL CFORMAT F_POL H_POL V_POL EN_656 TNRABS NRON TNRSEL Noise Reduction 19h NMLINE [7:0] 1Ah NMPOS 1Bh TNRS0Y TNRS1Y 1Ch TNRS2Y TNRS3Y 1Dh TNRS4Y TNRS5Y 1Eh TNRS6Y TNRS7Y 1Fh TNRSSY TNRSSC 46 NMSENSE NMLINE [8] Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–7: I2C register overview, continued Sub add (Hex) Data Byte D7 D6 D5 D4 D3 20h TNRS0C TNRS1C 21h TNRS2C TNRS3C 22h TNRS4C TNRS5C 23h TNRS6C TNRS7C 24h TNRCLY TNRCLC D2 D1 D0 Line-locked Clock PLL 25h IICINCR[18:11] 26h IICINCR[10:3] DISRES 27h IICINCR[2:0] 28h HRES 29h HSWIN 2Ah KOIWID 2Bh PPLIP[9:2] 2Ch SETSTABLL 2Dh FION 2Eh CLKT KD2 KOIH HINCREXT LMOD FKOIHYS PPLIP[1:0] FMOD HTESTW FRFIX LIMEN FKOI LNL HWID HDTOTEST FILE 2Fh LPFIPMD VINMTHD Display Processing 30h YCOR 31h HCOF 32h AUTOFRRN 33h ALPFOP[7:0] 34h BORDPOSV 35h BORDPOSH [7:0] 36h BLANPOL 37h UBORDER 38h HORWIDTH[7:0] 39h WINDVSP 3Ah HORPOS 3Bh WINDHSP1 WINDHSP0 3Ch NOSYNC PPLOFF 3Dh CHRSHFT APPLOP 3Eh HOUTDEL 3Fh NAPPLOP[9:8] 40h NAPPLOP 41h PPLOP[9:8] 42h PPLOP[7:0] 43h LPFOP Micronas CLKOUTON THRESHC ASCENTCTI BCOF BLANEN ALPFOP[9:8] FINEDEL BORDPOSH[9:8] YBORDER COARSEDEL VBORDER WINDVST WINDVDR WINDVON HORWIDTH[10:8] WINDHST WINDHDR WINDHON HORPOS[10:8] LPFOPFF PDGSR FREEZE STOPMODE REFRPER REFRON HOUTPOL Aug. 16, 2004; 6251-552-1DS HOUTDEL[9:8] VOUTPOL HOUTFR VOUTFR 47 VSP 94x2A DATA SHEET Table 3–7: I2C register overview, continued Sub add (Hex) Data Byte D7 44h OPDEL[7:0] 45h BORDERV 46h NALPFOP D6 D5 D4 BORDERH D3 D2 D1 D0 RDCTRLDIS LPFOP8 NALPFOP8 OPDEL[8] HINC1 [8] HINC0 [8] ACCFIX ACCFRZ Panorama Scaler 47h PALDEL.1 PALDEL.0 LOCKSP BGPOS AFPROC CLKOUTSEL272 HINC4 [8] HINC3 [8] CLKOUTSEL CLKOUTINV HPANON HSCPOSC [11:8] 48h HINC0 [7:0] 49h HINC1 [7:0] 4Ah HINC2 [7:0] 4Bh HINC3 [7:0] 4Ch HINC4 [7:0] 4Dh V656DEL 4Eh HSCPOSC [7:0] 4Fh CDELHPOS 50h HSEG1 51h HSEG2 52h HSEG3 53h HSEG4 54h FIOFFOFF FIELDBINV HSEG2 [10:8] HSEG1 [10:8] 55h CHRMSIG656 VDEL_EN HSEG4 [10:8] HSEG3 [10:8] HINC2 [8] DAC Control 56h SHIFTUV DPOUT656 57h CHROMSIGN CHROMAMP 58h PKLY 59h PKLU 5Ah PKLV CVBS Front-end 5Bh CONS COLON 5Ch CON UVCOR 5Dh PWTHD CLRANGE 5Eh SDR CHRF 5Fh COMB 60h CKILL 61h CKILLS 62h VPOL 63h HUE 64h NTSCREF 65h PALREF 66h SLLTHD 48 CRCB NOTCHOFF LMOFST SECNTCH VDETIFS CSTAND LPPOST YCDEL SCADJ Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–7: I2C register overview, continued Sub add (Hex) Data Byte D7 D6 D5 D4 D3 67h AGCMD 68h AGCRES 69h CLMPHIGH 6Ah CVBOSEL1 6Bh FLINE FLDINV CLPSTGY YCSEL CLMPD1 6Ch HPOL1 HPOL0 FHDET DISCHCH CLMPD2 6Dh NOSIGB HINP CLMPST1 6Eh PLLTC 6Fh CVBSEL2 CVBSEL1 70h CVBOSEL2 CVBOSEL3 71h FHFRRN 72h REFTRIMEN 73h VSHIFT 74h PALIDL1 VTHRL50 75h PALIDL0 VTHRH50 76h REFTRIM 77h REFTRIMCV 78h SLLTHDVP 79h SCMIDL 7Ah ACCLIM 7Bh CLMPD2S D1 D0 FREQSEL1 FREQSEL0 AGCADJ1 AGCFRZE AGCADJ2 CLMPLOW CLMPST2 SATNR VINP NSRED LPCDEL REFTRIMRGB THRSEL CLMPST1S CLMPST2S IFCOMP CLMPD1S 7Ch EIA770 SHAPERDIS BELLFIR 7Dh D2 7Eh FLNSTRD 7Fh SECACC SECDIV 80h PORCNCL NTCHSEL 81h ADLCK ADLCKSEL 82h SYNFTHD OSCPD TSTSHAPERI BELLIIR ENLIM ISHFT SECINC1 VFLYWHL NSRED2 SECINC2 CPLLRES ADLCKCC VFLYWHLMD IFCOMSTR PALIDL2 VLP SCMREL DISALLRES TRAPBLU TRAPRED PALINC1 PALINC2 SECACCL CPLLOF DEEMPSTD Read Register 83h FBLACTIVE 84h NOISEME 85h LBSTATUS PFBL PG PB PR 86h NMSTATUS STABLL 87h SMMIRROR 88h DETHPOL DETVPOL STDET 89h LNSTDRD INT SCDEV 8Ah LPFLD 8Bh NRPIXEL Micronas SCOUTEN Aug. 16, 2004; 6251-552-1DS PALID CKSTAT 49 VSP 94x2A DATA SHEET Table 3–7: I2C register overview, continued Sub add (Hex) Data Byte D7 8Ch POR 8Dh REFTRIMRD 8Eh REFTRIMCVRD D6 D5 D4 VFLYMD STAB SLS AM50O 91h 92h D2 D1 D0 PALDET REFTRIMRGBRD 8Fh 90h D3 AM60O VERSION AGCADJCV VLENGTH MINV PWADJCNT 93h 96h V40STAT 97h 98h V36BSTAT 99h V20STAT PP A0h KPNL[3:0] KPL[3:0] A1h KINL[3:0] KIL[3:0] A2h LIMIP A3h LIMII A4h KPNL[4] KPL[4] KINL[4] KIL[4] LIMLR CVBS Front-end B0h AGCTHD B1h SLLTHDV B2h AMSTD60 MVPG SDB B3h VTHRL60 B4h VTHRH60 B5h FEMAG MVP AMSTD50 VDETITC DEEMPFIR DEEMPIIR ITU Input B7h NAPPLIPI B8h ALPFIPI B9h APPLIPI [7:0] BAh APPLIPI[8] NALPFIPI LL-PLL BCh FRINC[18:11] BDh FRINC[10:3] BEh FRINC[2:0] C0h HSPPL C1h FOFFST 50 VSLPF Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–7: I2C register overview, continued Sub add (Hex) Data Byte D7 D0h VBLANDEL [9:8] D1h VBLANDEL [7:0] D2h VBLANLEN [7:0] D6 D5 D4 D3 D2 D1 FSWFTL VBLANLEN [9:8] TOPTITLE SUBTITLE NOGRADFOUND SWITCHTO43 LPBLACK UPBLACK LPWHITE UPWHITE VBLANPOL D0 Letterbox Detection E0h LBGRADDET E1h LBVWENDLO E2h LBHWEND E3h LBHIWHITE E4h LBHISTBLA E5h LBMASLA LBVWSTLO E6h LBFS LBVWENDUP E7h LBVISUON LBHWST E8h LBVWSTUP E9h LBSTABILITY LB43SENS LBNGFEN LBTHDNBNG EAh LBSUB1 LBSUB0 LBGRADRST LBHSDEL EBh LBTHDNBNHA ECh LBACTIVITY EDh LBGFBDEL EEh LBGSDEL EFh LBASDEL Letterbox Read F0h LBSLAA F1h LBELAA F2h LBFORMAT LBSUBTITLE F3h GRADELAA[8] GRADSLAA F4h GRADELAA[7:0] LBTOPTITLE GRADISSTABLE F5h F6h VERSION FEh take-over-indication (immediately) FFh take-over-indication (after V-pulse) Micronas SLS REV Aug. 16, 2004; 6251-552-1DS 51 VSP 94x2A DATA SHEET 3.1.4. I2C Bus Command Description Underlined values are initialized at power-on. Some bits are intended to not be user adjustable. Mandatory and recommended settings are available from Micronas in a separate document (Application Note: I2C Settings). Table 3–8: I2C bus command description Bit Name Description Subaddress 00h D7-D0 APPLIP8-1 [FP-PRE] Active Pixel Per Line Number of pixels to be stored in memory Granularity: 2 pixel ‘000000000’: 0 pixel ‘101010101’: 682 pixel ‘111111111’: 1022 pixel Subaddress 01h D7 APPLIP0 [FP-PRE] Belongs to 00h D6-D0 HSCPRESC11-5 [FP-PRE] Control Signal For HSCALE In Horizontal Pre-scaler ‘000000000000’: subsampling factor by scaler stage is 1 ‘100000000000’: subsampling factor is 1.5 (720 pixel) ‘100101010110’: subsampling factor is 1.583 (682 pixel) ‘111111111111’: subsampling factor is 2 (540 pixel) Subaddress 02h D7-D3 HSCPRESC4-0 [FP-PRE] Belongs to 01h D2-D0 NAPPLIP9-7 [FP-PRE] Not Active Pixel Per Line Granularity: 2 clock cycles (~50 ns) ‘0000000000’: 0 clock cycles ‘0001001000’: 144 clock cycles (~7.2 µs) ‘1111111111’: 2046 clock cycles (~51 µs) Subaddress 03h D7 VDELF_EN [FP-PRE] Vertical pulse delay frontend ‘0’: no delay ‘1’: delayed D6-D0 NAPPLIP6-0 [FP-PRE] Belongs to 02h Subaddress 04h D7-D0 52 NALPFIP7-0 [FP-PRE] Not Active Lines Per Field (Input Processing) ‘000000000’: 0 lines ‘000010110’: 22 lines ‘111111111’: 511 lines Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 05h D7 APENSEL [FP-PRE] Active Pixel Enable Select 0: count clock cycles (recommended for CVBS/RGB input) 1: count active pixels (recommended for ITU656 input) D6 NALPFIP8 [FP-PRE] Belongs to 04h D5-D4 ALPFIP9-8 [FP-PRE] Active Lines Per Field ‘0000000000’: no active line ‘0100100000’: 288 active lines ‘1111111111’: 1023 active lines D3-D0 HDCPRESC Horizontal Pre-Scaler Decimates By ‘0000’: 1 ‘0001’: 2 ‘0010’: 3 ‘0011’: 4 ‘0100’: 6 ‘0101’: 8 ‘0110’: 12 ‘0111’: 16 ‘1000’: 24 ‘1001’: 32 Subaddress 06h D7-D0 ALPFIP7-0 Belongs to 05h Subaddress 07h D7-D0 BLANDEL Blanking signal delay Delay in pixels from hsync to active edge of blank signal: Blank_start=4*BLANDEL ‘00000000’: no delay ‘00000001’: 4 pixel delay ‘11111111’: 1020 pixel delay Subaddress 08h D7-D0 Micronas BLANLEN Blanking signal length Length in pixels from start of active blank signal: Blank_length=4*BLANLEN ‘00000000’: no pixel ‘11110000’: 960 pixel ‘11111111’: 1020 pixel length Aug. 16, 2004; 6251-552-1DS 53 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 09h D6 WRCTRLDIS [FP-MC] Memory Write Control Circuit Disable ‘0’: enabled ‘1’: disabled D5-D4 HAAPRESC [FP-MC] Horizontal Anti Alias Filter ‘00’: filter bypassed ‘01’: force characteristic weak ‘10’: force characteristic strong ‘11’: automatic characteristic (weak or strong) Note: For normal CVBS/RGB full-screen, filter should be set to weak or automatic characteristic. For ITU656 full-screen input, filter should be bypassed. Strong characteristic is for split-screen and PiP only. D3-D0 MLL [FP-MC] Minimum Line Length effective number of clock periods: 600 + MLL*128 1110: corresponds to 2392 clock periods Subaddress 0Ah D7-D0 BRTADJ [FP-RGB] Brightness Adjustment of RGB/YUV input ‘10000000’: −128 LSB (darkest picture) ‘00000000’: 0 ‘01111111’: +127 LSB (brightest picture) Subaddress 0Bh D7 DECTWO [FP-RGB] Decimation by 2 decimation of RGB/YUV signal before soft-mix ‘0’: no decimation ‘1’: decimation by 2 D6 CHRSF [FP-RGB] Additional Chroma subsampling filter ‘0’: disabled ‘1’: enabled D5-D0 CONADJ [FP-RGB] Contrast Adjustment of RGB/YUV input ‘000000’: 0 ‘000001’: 1/32 ‘100000’: 1 ‘111111’: 63/32 Subaddress 0Ch D7 ADCSEL [FP-RGB] Select ADC for sync signal conversion ‘0’: use ADC_G ‘1’: use ADC_FBL D6 AABYP [FP-RGB] Bypass RGB/YUV Antialiasfilter ‘0’: use filter ‘1’: bypass D5-D0 FBLOFFST [FP-RGB] Fast Blank Offset Correction ‘000000’: 0 LSB offset ‘111111’: 63 LSB offset 54 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 0Dh D7-D6 CLMPVRB [FP-RGB] Clamping Value Red and Blue ADC ‘00’: 16 (B/R signal without sync) ‘01’: 80 (B/R signal with sync) ‘10’: 128 (U/V signal) ‘11’: (reserved) D5-D3 FBLDEL [FP-RGB] Fast Blank Delay vs. RGB/YUV Input granularity: 25 ns ‘000’: −50 ns delay ‘010’: no delay ‘110’: +100 ns delay ‘111’: (reserved) D2-D1 MIXOP [FP-RGB] Mixing Configuration ‘00’: enable Soft-Mix ‘01’: only RGB path visible ‘10’: only CVBS path visible ‘11’: (reserved) D0 FBLCONF [FP-RGB] Configuration of FBLACTIVE signal ‘0’: react after one clock (25 ns) active FBL input ‘1’: react after 5 clock (125 ns) active FBL input Subaddress 0Eh D7 YUVSEL [FP-RGB] YUV or RGB Input Selection ‘0’: YUV expected ‘1’: RGB expected D6 SMOP [FP-RGB] Softmix Operation Mode ‘0’: dynamic ‘1’: static D5 SKEWSEL [FP-RGB] SKEW Correction for RGB/YUV Channel ‘0’: SKEW correction enabled ‘1’: SKEW correction disabled (for PiP3, PiP4 only) D4-D2 RBOFST [FP-RGB] Clamping Correction for R/B ADC ‘000’: 0 (R/B, no pedestal offset visible) ‘001’: 16 ‘010’: 64 (R/B with sync, no pedestal offset visible) ‘011’: 80 ‘100’: 127 (UV negative pedestal offset) ‘101’: 128 (UV) ‘110’: 129 (UV positive pedestal offset) ‘111’: (reserved) D1-D0 GOFST [FP-RGB] Clamping correction for G ADC ‘00’: 0 (G/Y, no pedestal offset visible) ‘01’: 16 ‘10’: 64 (G/Y with sync, no pedestal offset visible) ‘11’: 80 Micronas Aug. 16, 2004; 6251-552-1DS 55 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 0Fh D7 RGBSEL [FP-RGB] Input selection ‘0’: use RGB/YUV input1 ‘1’: use RGB/YUV input2 D6-D0 MIXGAIN [FP-RGB] Gain of Fast Blank Signal ‘1000000’: −64 ‘0000000’: 0 ‘0111111’: +63 Note: For proper operation in dynamic softmix mode, absolute value of MIXGAIN must be bigger than 2 (e.g. 3) Subaddress 10h D7 CLMPVG [FP-RGB] Clamping Value G ADC ‘0’: 16 ‘1’: 80 D6 DCLMPF [FP-RGB] Clamping Fast Blank input ‘0’: enable clamping ‘1’: disable clamping (DC coupling) D5-D0 USATADJ [FP-RGB] U Saturation Adjustment ‘000000’: 0 ‘000001’: 1/32 ‘100000’: 1 ‘111111’: 63/32 Subaddress 11h D7-D6 STANDBY [FP-RGB] Standby Mode ‘00’: all analog cores active ‘01’: RGB/FBL ADCs in Stand-By mode ‘10’: RGB/FBL and CVBS ADCs and DACs in Stand-By mode ‘11’: DACs in Stand-By mode D5-D0 VSATADJ [FP-RGB] V Saturation Adjustment ‘000000’: 0 ‘000001’: 1/32 ‘100000’: 1 ‘111111’: 63/32 Subaddress 12h D7 Y2RGB [FP-RGB] Y to RGB (for YUV mode) 0: use Y from green ADC 1: use Y from CVBS ADC D5-D0 YFDEL [FP-RGB] Y/FBL Delay Adjustment Granularity: 50 ns ‘000000’: no delay ‘111111’: 3.15 µs 56 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 13h D5-D0 UVDEL [FP-RGB] UV Delay Adjustment Granularity: 50 ns ‘000000’: no delay ‘111111’: 3.15 µs Subaddress 14h D5-D0 AGCADJR [FP-RGB] Conversion Range Adjustment Red ‘000000’: 0.5 V input signal ‘111111’: 1.5 V input signal Subaddress 15h D5-D0 AGCADJG [FP-RGB] Conversion Range Adjustment Green ‘000000’: 0.5 V input signal ‘111111’: 1.5 V input signal Subaddress 16h D7 ITUPRTSEL [FP-RGB] ITU port selection 0: first input (656io) 1: second input (i656i) D6 CLKF2PAD [FP-RGB] Frontend clock is given to pin 74 ‘0’ pin 74 is used as h-input for ITU656 ‘1’: CLKF20 (20.25 MHz) is given to pin 74 D5-D0 AGCADJB [FP-RGB] Conversion Range Adjustment Blue ‘000000’: 0.5 V input signal ‘111111’: 1.5 V input signal Subaddress 17h D7-D6 NAPIPPHI [FP-RGB] CbYCrY-phase shift ‘0’: no phase shift D5-D0 AGCADJF [FP-RGB] Conversion Range Adjustment Fast Blank ‘000000’: 0.5 V input signal ‘111111’: 1.5 V input signal Micronas Aug. 16, 2004; 6251-552-1DS 57 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 18h D7-D6 IMODE [FP-RGB] Input format ‘00’: full ITU mode (automatic) ‘01’: full ITU mode (manual) ‘10’: ITU656 only data, H/V-sync according PAL/NTSC ‘11’: ITU656 only data, H/V-sync according ITU656 D5 VSIGNAL [FP-RGB] Input signal ‘0’: interlaced ‘1’: non interlaced D4 CFORMAT [FP-RGB] Chrominance data format ‘0’: unsigned ‘1’: 2s complement D3 F_POL [FP-RGB] Field polarity ‘0’: Field A=0, Field B=1 ‘1’: Field A=1, Field B=0 D2 H_POL [FP-RGB] H656 polarity ‘0’: H656 active low ‘1’: H656 active high D1 V_POL [FP-RGB] V656 polarity ‘0’: V656 active low ‘1’: V656 active high D0 EN_656 [FP-RGB] ITU656-Input Interface ‘0’: analog input enabled (CVBS/RGB) ‘1’: ITUI enabled Subaddress 19h D7-D0 58 NMLINE7-0 [FP-TNR] Line For Noise Measurement 0d: line 2 1d: line 3 311d: line 1 (PAL) 261d: line 1 (NTSC) lines 3-260 are not standard dependent Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 1Ah D7-D6 NMPOS [FP-TNR] Noise Measurement analyze window position 00: 6.3 µs 01: 12.6 µs 10: 18.9 µs 11: 23.7 µs D5-D4 NMSENSE [FP-TNR] Noise Measurement sensitivity 00: *1 01: *2 10: *4 11: *8 D3 NMLINE8 [FP-TNR] Belongs to 19h D2 TNRABS [FP-TNR] Motion Detector Works on Absolute Values: ‘0’: absolute values not calculated ‘1’: absolute values calculated D1 NRON [FP-TNR] Temporal Noise Reduction ‘0’: disabled ‘1’: enabled D0 TNRSEL [FP-TNR] Chrominance Motion Values From: ‘0’: luminance motion detector ‘1’: separate chrominance motion detector Subaddress 1Bh D7-D4 TNRS0Y [FP-TNR] TNR Curve Characteristic of Luma Segment 0 default value: 0001 D3-D0 TNRS1Y [FP-TNR] TNR Curve Characteristic of Luma Segment 1 default value: 1111 Subaddress 1Ch D7-D4 TNRS2Y [FP-TNR] TNR Curve Characteristic of Luma Segment 2 default value: 1111 D3-D0 TNRS3Y [FP-TNR] TNR Curve Characteristic of Luma Segment 3 default value: 0100 Subaddress 1Dh D7-D4 TNRS4Y [FP-TNR] TNR Curve Characteristic of Luma Segment 4 default value: 0100 D3-D0 TNRS5Y [FP-TNR] TNR Curve Characteristic of Luma Segment 5 default value: 0100 Subaddress 1Eh D7-D4 TNRS6Y [FP-TNR] TNR Curve Characteristic of Luma Segment 6 default value: 0000 D3-D0 TNRS7Y [FP-TNR] TNR Curve Characteristic of Luma Segment 7 default value: 0000 Micronas Aug. 16, 2004; 6251-552-1DS 59 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 1Fh D7-D4 TNRSSY [FP-TNR] TNR Start Value of Luma LUT default value: 1111 D3-D0 TNRSSC [FP-TNR] TNR Start Value of Chroma LUT default value: 1111 Subaddress 20h D7-D4 TNRS0C [FP-TNR] TNR Curve Characteristic of Chroma Segment 0 default value: 0001 D3-D0 TNRS1C [FP-TNR] TNR Curve Characteristic of Chroma Segment 1 default value: 1111 Subaddress 21h D7-D4 TNRS2C [FP-TNR] TNR Curve Characteristic of Chroma Segment 2 default value: 1111 D3-D0 TNRS3C [FP-TNR] TNR Curve Characteristic of Chroma Segment 3 default value: 0100 Subaddress 22h D7-D4 TNRS4C [FP-TNR] TNR Curve Characteristic of Chroma Segment 4 default value: 0100 D3-D0 TNRS5C [FP-TNR] TNR Curve Characteristic of Chroma Segment 5 default value: 0100 Subaddress 23h D7-D4 TNRS6C [FP-TNR] TNR Curve Characteristic of Chroma Segment 6 default value: 0000 D3-D0 TNRS7C [FP-TNR] TNR Curve Characteristic of Chroma Segment 7 default value: 0000 Subaddress 24h D7-D4 TNRCLY [FP-TNR] TNR Luminance Classification ‘0000’: strong noise reduction ‘1111’: slight noise reduction D3-D0 TNRCLC [FP-TNR] TNR Chrominance Classification ‘0000’: strong noise reduction ‘1111’: slight noise reduction Subaddress 25h D7-D0 60 IICINCR18-11 [PP] Set HDTO frequency Granularity=103 Hz 33981d (minimum: nominal pixel clock= 3.5 MHz) 349525d (nominal pixel clock= 36 MHz) 388362d (maximum: nominal pixel clock= 40 MHz) Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 26h D7-D0 IICINCR10-3 [PP] Belongs to 25h Subaddress 27h D3 DISRES [PP] Reset of LL-PLL watchdog ‘0’: reset disabled ‘1’: reset enabled D2-D0 IICINCR2-0 [PP] Belongs to 25h Subaddress 28h D0 HRES [PP] Reset of LL-HPLL ‘0’: no reset ‘1’: reset Note: reset automatically when written Subaddress 29h D7-D4 HSWIN [PP] Width of Noise Suppression Window of LL-HPLL ‘0000’: ±28 µs ‘0001’: ±24 µs ‘0010’: ±20 µs ‘0011’: ±16 µs ‘0100’: ±12 µs ‘0101’: ±8 µs ‘0110’: ±4 µs ‘0111’: dynamic windowing. ‘1000’: ±30 µs ‘1001’: ±27 µs ‘1010’: ±26 µs ‘1011’: ±22 µs ‘1100’: ±18 µs ‘1101’: ±14 µs ‘1110’: ±10 µs ‘1111’: ±6 µs D3 KD2 [PP] Phase Detector Steepness ‘0’: steepness for normal TV operation mode ‘1’: steepness for operations where PPLIP is less than 288d D2 HINCREXT [PP] HDTO testmode ‘0’: normal mode ‘1’: line-locked-clocks derived from frontend line-length D1 LMOD [PP] Selects line locked mode ‘0’: line locked-clocks derived from HPLL ‘1’: line-locked-clocks derived from frontend line-length D0 FMOD [PP] Selects freerun mode ‘0’: freerun-clocks derived from crystal ‘1’: freerun-clocks derived from HDTO Adjustable frequency is only possible when set to ‘1’. When set to ‘0’, Backend clock is always 36 MHz (9432/42: 18 MHz) Micronas Aug. 16, 2004; 6251-552-1DS 61 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 2Ah D7-D6 KOIWID [PP] Window-Width of coincidence detector ‘00’: ±32 pixel (= ±0.9 µs for TV application) ‘01’: ±64 pixel (= ±1.8 µs for TV application) ‘10’: ±128 pixel (= ±3.6 µµs for TV application) ‘11’: ±256 pixel (= ±7.2 µs for TV application) D5-D4 KOIH [PP] Hysteresis of coincidence detector ‘00’: 0 lines ‘01’: 8 lines ‘10’: 16 lines ‘11’: 32 lines D3-D0 HTESTW [PP] Test bits for HPLL 00: default Subaddress 2Bh D7-D0 PPLIP9-2 [PP] Pixel per Line Input (Input-Processing) Granularity=4 pixel ‘175d’: 700 (minimum) ‘576d’: 2304 ‘963d’: 3852 (maximum) Subaddress 2Ch D7 SETSTABLL [PP] Stability Signal of LL_HPLL ‘0’: STABLL is generated by the HPLL ‘1’: STABLL is forced to 1 D6 FRFIX [PP] Freerunning clocks ‘0’: from fixed clock divider ‘1’: from freerunning DTO (adjustable clocks) D4 LIMEN [PP] Limiter enable ‘0’: A32 behavior for LIMIP and LIMII ‘1’: normal LIMII and LIMIP characteristic D3 FKOI [PP] Force Coincidence Bit ‘0’: coincidence bit dynamically changed ‘1’: coincidence bit forced to 1 D2 FKOIHYS [PP] Force coincidence hysteresis bit ‘0’: coincidence hysteresis bit dynamically changed ‘1’: coincidence hysteresis bit forced to 1 D1-D0 PPLIP1-0 [PP] Belongs to 2Bh Subaddress 2Dh D7-D4 FION [PP] Increment Freeze before V-sync ‘0’: no freeze ‘15’: freeze starts 15 lines before V-sync D0 LNL [PP] Dynamic Time Constant Control ‘0’: linear mode ‘1’: non linear mode 62 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 2Eh D7-D6 CLKT [PP] Switch clkf20 and clkf40 to pads cvbs1 or bin2 (test only) ‘00’: no clock ‘01’: cvbs1 is output of clkf40 ‘10’: bin2 is output of clkf20 ‘11’: cvbs1 is output of clkf40 and bin2 is output of clkf20 D5 HWID [PP] Minimum width of H-sync ‘0’: 60*Tclkllf36 ‘1’: 15*Tclkllf36 D4 HDTOTEST [PP] Test-bit for HPLL ‘0’: normal mode ‘1’: test mode D3-D0 FILE [PP] Increment Freeze duration ‘0’: no freeze ‘15’: increment is frozen for 15 lines Subaddress 2F D1 LPFIPMD [BP-DP] Lines per field method 0: backend 1: frontend D0 VINMTHD [BP-DP] Vertical ODC line counting 0: field delay 1: frame delay Subaddress 30h D7-D6 YCOR [BP-DP] Luminance Coring ‘00’: off ‘01’: 2 ‘10’: 4 ‘11’: 8 D5 CLKOUTON [BP-DP] Clkout Pad: ‘0’: off (tristate) ‘1’: on D4-D2 THRESHC [BP-DP] Slope of DCTI function ‘000’: 255 (DCTI off) ‘001’: 2 ‘010’: 3 ‘011’: 4 ‘100’: 6 ‘101’: 8 ‘110’: 10 ‘111’: 12 D1-D0 ASCENTCTI [BP-DP] Gain of DCTI function ‘00’: 1/4 ‘01’: 1/2 ‘10’: 1 ‘11’: 2 Micronas Aug. 16, 2004; 6251-552-1DS 63 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 31h D7-D4 HCOF [BP-DP] Peaking: High-Pass Filter Adjustments ‘0000’: 0 ‘0001’: 1/4 ... ‘0100’: 1 ... ‘1100’: 12/4 ‘1101’: 14/4 ‘1110’: 16/4 ‘1111’: 20/4 D3-D0 BCOF [BP-DP] Peaking: Band-Pass Filter Adjustments ‘0000’: 0 ‘0001’: 1/4 ... ‘0100’: 1 ... ‘1100’: 12/4 ‘1101’: 14/4 ‘1110’: 16/4 ‘1111’: 20/4 Subaddress 32h D7-D6 AUTOFRRN [BP-DP] Automatic freerun when sync-separartion not stable ‘00’: disabled (keep H/V locked, if selected) ‘01’: use vertical freerun ‘10’: use horizontal freerun ‘11’: use horizontal and vertical freerun D5-D4 ALPFOP9-8 [BP-DP] Active Lines Per Field Output ‘0000000000’: 0 (minimum) ‘0100100000’: 288 (default) ‘1111111111’: 1023 (maximum) D3 FINEDEL [BP-DP] Luminance Fine Delay output ‘0’: no delay ‘1’: +1 CLKB72 (13.9 ns for TV signal) D2-D0 COARSEDEL [BP-DP] Luminance Coarse Delay output Granularity: 1 CLKB36 (27.8 ns for TV signal) ‘000’: −4 CLKB36 ‘100’: no delay ‘111’: +3 CLKB36 Subaddress 33h D7-D0 ALPFOP7-0 [BP-PM] Belongs to 32h Subaddress 34h D7-D0 64 BORDPOSV [BP-PM] Borderposition Vertical Granularity: 2 lines ‘00000000’: no border ‘11111111’: border at 512 lines at top and bottom Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 35h D7-D0 BORDPOSH7-0 [BP-PM] Borderposition Horizontal Granularity: 2 pixel ‘0000000000’: no border ‘1111111111’: border at 2048 pixel on left and right Subaddress 36h D7 BLANPOL [BP-PM] Blanking signal polarity ‘0’: active high ‘1’: active low D6 BLANEN [BP-PM] Blanking signal enable ‘0’: disabled (pin 8 can be used as 656vin) ‘1’: enabled D5-D4 BORDPOSH 9-8 [BP-PM] Belongs to 35h D3-D0 YBORDER [BP-PM] Luminance Value for Border ‘0000’: sub black ‘0001’: black ‘1111’: white Subaddress 37h D7-D4 UBORDER [BP-PM] Chrominance (U) Value for Border ‘1000’: ‘0000’: ‘no color’ U ‘0111’: D3-D0 VBORDER [BP-PM] Chrominance (V) Value for Border ‘1000’: ‘0000’: ‘no color’ V ‘0111’: Subaddress 38h D7-D0 Micronas HORWIDTH7-0 [BP-PM] Horizontal Picture Width Granularity: 2 pixel ‘00000000000’: no display ‘00111100000’: 960 pixel ‘11111111111’: 4094 pixel Note: Should be set equal to APPLOP (3Dh) Aug. 16, 2004; 6251-552-1DS 65 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 39h D7-D6 WINDVSP [BP-PM] Vertical Windowing: Speed ‘00’: slow ‘01’: medium ‘10’: fast ‘11’: very fast D5 WINDVST [BP-PM] Vertical Windowing: Start ‘0’: window is closed ‘1’: window is open D4 WINDVDR [BP-PM] Vertical Windowing: Direction ‘0’: open the vertical window ‘1’: close the vertical window D3 WINDVON [BP-PM] Vertical Windowing: Enable ‘0’: off ‘1’: on D2-D0 HORWIDTH 10-8 [BP-PM] Belongs to 38h Subaddress 3Ah D7-D0 HORPOS7-0 [BP-PM] Horizontal Position inside active picture area Granularity: 2 pixel ‘00000000000’: most left display position ‘11111111111’: most right display position Subaddress 3Bh D7-D6 WINDHSP [BP-PM] Horizontal Windowing: Speed ‘00’: slow ‘01’: medium ‘10’: fast ‘11’: very fast D5 WINDHST [BP-PM] Horizontal Windowing: Start ‘0’: window is closed ‘1’: window is open D4 WINDHDR [BP-PM] Horizontal Windowing: Direction ‘0’: open the horizontal window ‘1’: close the horizontal window D3 WINDHON [BP-PM] Horizontal Windowing: Enable ‘0’: off ‘1’: on D2-D0 HORPOS10-8 [BP-PM] Belongs to 3Ah 66 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 3Ch D7 NOSYNC [BP-ODC] No horizontal synchronization ‘0’: horizontal synchronization ‘1’: no horizontal synchronization D6-D4 PPLOFF [BP-ODC] Synchronization offset (for switching from hor. freerun mode to locked mode) Granularity: 4 pixel ‘000’: 0 (disabled) ‘010’: 8 ‘111’: 28 D3-D0 LPFOPFF [BP-ODC] Lines per field offset: (for switching from vertical freerun mode to locked mode) Granularity: 2 lines ‘0000’: 0 (disabled) ‘0110’:12 ‘1111’: 31 Subaddress 3Dh D7 CHRSHFT [BP-O/M] Chrominance Shift shifts the chrominance signal ‘0’: no shift ‘1’: one line upward D6-D0 APPLOP [BP-O/M] Active Pixel Per Line Output: Granularity: 16 pixel ‘0000000’: 0 pixel ‘0111100’: 960 pixel ‘1111111’: 2032 pixel Subaddress 3Eh D7-D0 Micronas HOUTDEL7-0 [BP-ODC] H Sync output Delay: Granularity: 4 pixel ‘0000000000’: no delay ‘0000000001’: 4 pixel delay ‘1111111111’: 4092 pixel delay Aug. 16, 2004; 6251-552-1DS 67 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 3Fh D7-D6 NAPPLOP9-8 [BP-O/M] Not Active Pixel Per Line Output: Granularity: 4 pixel ‘0000000100’: 16 not active pixel ‘1111111111’: 4092 not active pixel D5 PDGSR [BP-O/M] Switch for Vsync transfer algorithm: ‘0’: Vsync transfer algorithm is enabled ‘1’: Vsync transfer algorithm is disabled D4 FREEZE [BP-O/M] Freeze picture ‘0’: live ‘1’: frozen (data writing disabled) D3-D2 STOPMODE [BP-O/M] Operation mode for scan rate conversion: ‘00’: AABB (Raster ααββ) ‘01’: AAAA (Raster αααα) ‘10’: AAAA (Raster αβαβ) ‘11’: BBBB (Raster ββββ) D1-D0 HOUTDEL9-8 [BP-O/M] Belongs to 3Eh Subaddress 40h D7-D0 68 NAPPLOP7-0 [BP-ODC] Belongs to 3Fh Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 41h D7-D6 PPLOP9-8 [BP-O/M] Pixel Per Line Output: Granularity:4 ‘0000000000’: 0 pixel ‘0100100000’: 1152 pixel ‘1111111111’: 4092 pixel D5 REFRPER [BP-O/M] Refresh period of the memory ‘0’: ~5 ms ‘1’: ~2,5 ms D4 REFRON [BP-O/M] Refresh on ‘0’: no memory refresh ‘1’: memory refresh active D3 HOUTPOL [BP-O/M] HOUT polarity: ‘0’: high active ‘1’: low active D2 VOUTPOL [BP-O/M] VOUT polarity: ‘0’: high active ‘1’: low active D1 HOUTFR [BP-O/M] HOUT freerun ‘0’: locked mode ‘1’: freerun mode D0 VOUTFR [BP-O/M] VOUT freerun ‘0’: locked mode ‘1’: freerun mode Subaddress 42h D7-D0 PPLOP7-0 [BP-O/M] Belongs to 41h Subaddress 43h D7-D0 LPFOP7-0 [BP-ODC] Lines Per Field Output: Only used for freerun mode Granularity: 2 lines ‘000000000’: no lines ‘010011100’: 312 lines ‘111111111:’ 1022 lines Subaddress 44h D7-D0 Micronas OPDEL7-0 [BP-ODC] V delay for output operation: ‘000000000’: no delay ‘010101010’: 170 lines ‘111111111’: 511 lines Aug. 16, 2004; 6251-552-1DS 69 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 45h D7-D6 BORDERV [BP-O/M] Border V ‘00’: both borders are displayed ‘01’: only lower border is displayed ‘10’: only upper border is displayed ‘11’: (reserved) D5-D4 BORDERH [BP-O/M] Border H ‘00’: both borders are displayed ‘01’: only right border is displayed ‘10’: only left border is displayed ‘11’: (reserved) D3 RDCTRLDIS [BP-O/M] Memory read control circuit disable ‘0’: enabled ‘1’: disabled D2 LPFOP8 [BP-O/M] Belongs to 43h D1 NALPFOP8 [BP-O/M] Not Active Lines Output NALPFOP-1 lines are not active lines. ‘000000001’: all lines active ‘000011001’: 24 lines not active ‘111111111’: 510 lines not active D0 OPDEL8 [BP-O/M] Belongs to 44h Subaddress 46h D7-D0 NALPFOP7-0 [BP-ODC] Belongs to 45h Subaddress 47h D6-D5 PALDEL [CP-CD] PAL/NTSC delay vs. SECAM (chrominance) ‘00’: PAL/NTSC most left ‘11’: PAL/NTSC most right D4-D3 LOCKSP [CP-CD] Duration Of Chroma PLL Search ‘00’: 25 fields ‘01’: 20 fields ‘10’: 17 fields ‘11’: 15 fields D2-D0 BGPOS [CP-CD] Burstgate Delay (SECAM only) Granularity: 200 ns ‘000’: most left (−400 ns) ‘011’: 200 s delay ‘111’: most right (+1 us) Subaddress 48h D7-D0 70 HINC0_7-0 [BP-POS] Horizontal Post-Scaler Increment 0 ‘100000000’: −32 pixel ‘000000000’: 0 pixel ‘011111111’: 31.875 pixel Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 49h D7-D0 HINC1_7-0 [BP-POS] Horizontal Post-Scaler Increment 1 ‘100000000’: −32 pixel ‘000000000’: 0 pixel ‘011111111’: 31.875 pixel Subaddress 4Ah D7-D0 HINC2_7-0 [BP-POS] Horizontal Post-Scaler Increment 2 ‘100000000’: −32 pixel ‘000000000’: 0 pixel ‘011111111’: 31.875 pixel Subaddress 4Bh D7-D0 HINC3_7-0 [BP-POS] Horizontal Post-Scaler Increment 3 ‘100000000’: −32 pixel ‘000000000’: 0 pixel ‘011111111’: 31.875 pixel Subaddress 4Ch D7-D0 HINC4_7-0 [BP-POS] Horizontal Post-Scaler Increment 4 ‘100000000’: -32 pixel ‘000000000’: 0 pixel ‘011111111’: 31.875 pixel Subaddress 4Dh D7 V656DEL [BP-POS] V656 delay 0: identical delay for modification 1: field 0 is one line shorter Note: has only effect when AFPROC=1 D6 AFPROC [BP-POS] Active Field Processing for 656V generation 0: inverted active field used as v-sync output 1: v-sync modifies end of active video D5 CLKOUTSEL72 [BP-POS] Output clock select 0: CLKOUT depends on CLKOUTSEL 1: CLKOUT is identical to clkb72 D4 HINC4_8 [BP-POS] Belongs to 4Ch D3 HINC3_8 [BP-POS] Belongs to 4Bh D2 HINC2_8 [BP-POS] Belongs to 4Ah D1 HINC1_8 [BP-POS] Belongs to 49h D0 HINC0_8 [BP-POS] Belongs to 48h Micronas Aug. 16, 2004; 6251-552-1DS 71 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 4Eh D7-D0 HSCPOSC7-0 [BP-POS] Horizontal Scaling Factor For Post Scaler ‘010000000000’: factor is 4 ‘101101010101’: factor is 1.407 (682 → 960) ‘110000000000’: factor is 4/3 (720 → 960) ‘111111111111’: factor is 1 Subaddress 4Fh D7 CDELHPOS [BP-POS] Chrominance delay 0: no delay 1: half-pixel delay D6 CLKOUTSEL [BP-POS] Output clock select 0: CLKOUT is identical to clkb27 1: CLKOUT is identical to clkb36 Note: HSYNC, VSYNC, BLANK are transferred to selected clock D5 CLKOUTINV [BP-POS] CLKOUT inversion 0: no inverted CLKOUT 1: inverted CLKOUT D4 HPANON [BP-POS] Panorama Mode enable ‘0’: panorama mode disabled ‘1’: panorama mode enabled D3-D0 HSCPOSC 11-8 [BP-POS] Belongs to 4Eh Subaddress 50h D7-D0 HSEG1_7-0 [BP-POS] Beginning of Segment 1 for Panorama Mode Granularity: 2 pixel ‘00000000000’: 0 pixel behind picture start ‘11111111111’: 4094 pixel behind picture start Subaddress 51h D7-D0 HSEG2_7-0 [BP-POS] Beginning of Segment 2 for Panorama Mode Granularity: 2 pixel ‘00000000000’: 0 pixel behind picture start ‘11111111111’: 4094 pixel behind picture start Subaddress 52h D7-D0 HSEG3_7-0 [BP-POS] Beginning of Segment 3 for Panorama Mode Granularity: 2 pixel ‘00000000000’: 0 pixel behind picture start ‘11111111111’: 4094 pixel behind picture start Subaddress 53h D7-D0 72 HSEG4_7-0 [BP-POS] Beginning of Segment 4 for Panorama Mode Granularity: 2 pixel ‘00000000000’: 0 pixel behind picture start ‘11111111111’: 4094 pixel behind picture start Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 54h D7 FIOFFOFF [BP-POS] Fieldoffset for ITU656 NTSC signals ‘0’: disabled ‘1’: enabled D6 FIELDBINV [BP-POS] Backend field inversion ‘0’: no inversion ‘1’: inversion D5-D3 HSEG2_10-8 [BP-POS] Belongs to 51h D2-D0 HSEG1_10-8 [BP-POS] Belongs to 50h Subaddress 55h D7 CHRMSIG656 [BP-POS] Chrominance format for 656 output ‘0’: (R−Y), (B−Y) output ‘1’: −(R−Y), −(B−Y) output D6 VDEL_EN [BP-POS] Vertical pulse delay backend (test only) ‘0’: no delay ‘1’: delayed D5-D3 HSEG4_10-8 [BP-POS] Belongs to 53h D2-D0 HSEG3_10-8 [BP-POS] Belongs to 52h Subaddress 56h D7 SHIFTUV [BP-DAC] Shift UV subsampling at digital output ‘0’: take first UV couple ‘1’: take second UV couple VSP9432/42 only D6 DPOUT656 [BP-DAC] Enable digital 656 Output ‘0’: disable output ‘1’: enable output Subaddress 57h D7 CHROMSIGN [BP-DAC] Chrominance sign ‘0’: (R−Y), (B−Y) output ‘1’: −(R−Y), −(B−Y) output D6 CHROMAMP [BP-DAC] Chrominance amplification ‘0’: amplification=1 ‘1’: amplification=2 Subaddress 58h D7-D0 Micronas PKLY [BP-DAC] Voltage Level for Y DAC Output ‘00000000’: 0.4 V ‘10000000’: 1.0 V ‘11111111’: 1.9 V including peaking overshoots. 0.9 V for white max. Aug. 16, 2004; 6251-552-1DS 73 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 59h D7-D0 PKLU [BP-DAC] Voltage Level for U DAC Output ‘00000000’: 0.4 V ‘10000000’: 1.0 V ‘11111111’: 1.9 V Subaddress 5Ah D7-D0 PKLV [BP-DAC] Voltage Level for V DAC Output ‘00000000’: 0.4 V ‘10000000’: 1.0 V ‘11111111’: 1.9 V Subaddress 5Bh D7-D5 CONS [CP-CD] Color Switched On (SECAM) at level=CKILLS+CONS ‘000’: min value ‘010’: default ‘111’: max value D4 COLON [CP-CD] Force Color On ‘0’: color depends on color decoder status ‘1’: color always on D3-D2 CRCB [CP-CD] Choice of UV or CrCb output 00: UV color space 01: CrCb color space 10: modified CrCb color space (SECAM only; PAL & NTSC: same as setting ‘01’) D1 ACCFIX [CP-CD] Fix ACC to Nominal Value ‘0’: ACC is working ‘1’: ACC is fixed D0 ACCFRZ [CP-CD] Freeze ACC ‘0’: ACC is working ‘1’: ACC is frozen 74 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 5Ch D7-D5 CON [CP-CD] Color Switched On (PAL/NTSC) at level=CKILL+CON ‘000’: min value ‘010’: default ‘111’: max value D4-D3 UVCOR [CP-CD] Chrominance coring ‘00’: off ‘01’: ±1LSB ‘10’: ± 2LSB ‘11’: ± 3LSB D2 NOTCHOFF [CP-CD] Luminance notch-filter ‘0’: notch-filter enabled ‘1’: notch-filter bypassed D1-D0 SECNTCH [CP-CD] Selection of Notch filter behavior in SECAM mode ‘00’: 4.406 MHz ‘01’: 4.250 MHz ‘10’: 4.33 MHz ‘11’: 4.406 / 4.25 dependent on transmitted color Subaddress 5Dh D7-D6 PWTHD [CP-CD] Selection Of ‘Peak-White’ Threshold ‘00’: 448 ‘01’: 470 ‘10’: 500 ‘11’: 511 D5-D4 CLRANGE [CP-CD] Chroma lock-range ‘00’: ± 425 Hz ‘01’: ± 463 Hz ‘10’: ± 505 Hz ‘11’: ± 550 Hz D3-D2 LMOFST [CP-CD] Luminance Offset in color decoder during visible picture ‘00’: no offset ‘01’: −32 LSB ( −7.5 IRE) ‘10’:+32 LSB (+7.5 IRE) ‘11’: −16 LSB (−3.75 IRE) Note: A 7.5 IRE offset is added during blanking in display processing. When choosing ‘10’, the luminance offset is equal to the offset of the CVBS input as in both picture and blanking the same 7.5 IRE offset is used. D1 VDETIFS [CP-CD] Vertical Sync-Detection Slope ‘0’: normal ‘1’: slow Micronas Aug. 16, 2004; 6251-552-1DS 75 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 5Eh D7-D6 SDR [CP-CD] Secam Dr adjustment 00: 191 01: 194 10: 197 11: 200 D5-D0 CHRF [CP-CD] Chroma Bandwidth selects chroma bandwidth ‘011100’: nominal bandwidth Subaddress 5Fh D7 COMB [CP-CD] Delay Line ‘0’: use delay line ‘1’: do not use delay line (only suited for NTSC) D6-D0 CSTAND [CP-CD] Color Standard Assignment ‘0000000’: no color standard chosen ‘0000001’: PAL N ‘0000010’: PAL B ‘0000100’: SECAM ‘0001000’: PAL 60 ‘0010000’: PAL M ‘0100000’: NTSC M ‘1000000’: NTSC 44 For allowed combinations please refer to chapter (see Section 2.1.5. on page 9) ‘1100110’: PALB/SECAM/NTSCM/NTSC44/PAL60 Subaddress 60h D7-D0 CKILL [CP-CD] Chroma Level For Color Off (PAL/NTSC) ‘00000000’: high burst amplitude ‘01000000’: default ‘11111111’: low burst amplitude Subaddress 61h D7-D0 76 CKILLS [CP-CD] Chroma Level For Color Off (SECAM) ‘00000000’: low burst amplitude ‘01000000’: default ‘11111111’: high burst amplitude Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 62h D7-D6 VPOL [CP-CD] V Polarity at VINP ‘00’: use Vsync ‘01’: use inverted Vsync ‘10’: autodetect polarity ‘11’: (reserved) D5 LPPOST [CP-CD] Additional Filtering of Luminance ‘0’: no filtering ‘1’: filtering D4-D0 YCDEL [CP-CD] Luminance Delay ‘10000’: 800 ns ‘0000’: no delay ‘01111’: −700 ns Subaddress 63h D7-D0 HUE [CP-CD] Hue Control (Tint) ‘10000000’: −89° ‘00000000’: 0° ‘01111111’: +88° Subaddress 64h D7-D0 NTSCREF [CP-CD] ACC Reference Adjustment (NTSC) ‘00000000’: low reference value ‘10100101’: nominal value ‘11111111’: high reference value Subaddress 65h D7-D0 PALREF [CP-CD] ACC Reference Adjustment (PAL) ‘00000000’: low reference value ‘01011111’: nominal value ‘11111111’: high reference value Subaddress 66h D7-D6 SLLTHD [CP-CD] Slicing Level Threshold H ‘00’: no offset ‘01’: small negative ‘10’: small positive ‘11’: large positive (adaptive) D5-D0 SCADJ [CP-CD] Subcarrier Adjustment ‘000000’: −262 ppm ‘001111’: 0 ppm ‘111111’: 840 ppm Micronas Aug. 16, 2004; 6251-552-1DS 77 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 67h D7-D6 AGCMD [CP-CD] AGC method ‘00’: sync amplitude and peak white ‘01’: sync amplitude only ‘10’: peak white only ‘11’: fixed to value AGCADJ1 D5-D0 AGCADJ1 [CP-CD] Automatic Gain Adjustment ADC1 ‘000000’: 0.6 V input signal ‘111111’: 1.8 V input signal Subaddress 68h D7 AGCRES [CP-CD] AGC reset ‘0’: no reset ‘1’: reset D6 AGCFRZE [CP-CD] freeze AGC (ADC_CVBS) ‘0’: normal operation ‘1’: freeze AGC at current value D5-D0 AGCADJ2 [CP-CD] Automatic Gain Adjustment ADC2 ‘000000’: 0.6 V input signal ‘111111’: 1.8 V input signal Subaddress 69h D7-D0 CLMPHIGH [CP-CD] Vertical End Of Clamping Pulse Granularity: 2 ‘00000000’: line 256 ‘00111100’: line 376 ‘11111111’: line 766 Subaddress 6Ah D7-D4 CVBOSEL1 [CP-CD] Output select 1 for pin cvbso1 ‘0000’: CVBS1 ‘0001’: CVBS2 ‘0010’: CVBS3 ‘0011’: CVBS4 or Y1 ‘0100’: CVBS5 or C1 ‘0101’: CVBS6 or Y2 ‘0110’: CVBS7 or C2 ‘0111’: Y1 + C1 ‘1000’: Y2 + C2 D3-D0 CLMPLOW [CP-CD] Vertical Start Of Clamping Pulse ‘0000’: line 0 ‘0011’: line 6 ‘1111‘: line30 78 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 6Bh D7 FLINE [CP-CD] Mode Selection ‘0’: interlace input ‘1’: progressive input D6 FLDINV [CP-CD] Field Inversion ‘0’: no inversion ‘1’: inversion D5 CLPSTGY [CP-CD] Clamping strategy ‘0’: back-porch clamping ‘1’: sync-tip-clamping D4 YCSEL [CP-CD] Y/C select ‘0’: CVBS input ‘1’: Y/C input D3-D0 CLMPD1 [CP-CD] Measurement duration ADC1 Granularity: 200 ns ‘0000’: 0 µs ‘0111’: 1.4 µs ‘1111’: 3 µs Subaddress 6Ch D7-D6 HPOL [CP-CD] H Polarity at HINP ‘00’: use Hsync ‘01’: use inverted Hsync ‘10’: autodetect polarity ‘11’: (reserved) D5 FHDET [CP-CD] Automatic Multisync capability ‘0’: disabled ‘1’: enabled D4 DISCHCH [CP-CD] Channel-change signal for color decoder ‘0’: color-decoder not reset after channel-change ‘1’: color-decoder reset after channel-change D3-D0 CLMPD2 [CP-CD] Measurement duration ADC2 Granularity: 200 ns ‘0000’: 0 µs ‘0111’: 1.4 µs ‘1111’: 3 µs Micronas Aug. 16, 2004; 6251-552-1DS 79 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 6Dh D7 NOSIGB [CP-CD] No signal behavior ‘0’: noisy screen when out of sync ‘1’: colored background insertion instead D6 HINP [CP-CD] Horizontal Pulse Detection ‘0’: from CVBS ADC1 ‘1’: from RGBF ADC D5-D0 CLMPST1 [CP-CD] Measurement start ADC1 ‘000000’: 0 µs ‘011100’: 5.6 µs ‘111111’: 12.8 µs Subaddress 6Eh D7-D6 PLLTC [CP-CD] Time constant HPLL (VCR...TV) ‘00’: very fast ‘01’: fast ‘10’: slow ‘11’: very slow D5-D0 CLMPST2 [CP-CD] Measurement start ADC2 ‘000000’: 0 µs ‘011100’: 5.6 µs ‘111111’: 12.8 µs Subaddress 6Fh D7-D4 CVBSEL2 [CP-CD] Input select for ADC2 ‘0000’: CVBS1 ‘0001’: CVBS2 ‘0010’: CVBS3 ‘0011’: CVBS4 or Y1 ‘0100’: CVBS5 or C1 ‘0101’: CVBS6 or Y2 ‘0110’: CVBS7 or C2 ‘0111’: Y1 + C1 ‘1000’: Y2 + C2 ‘1111’: disabled D3-D0 CVBSEL1 [CP-CD] Input select for ADC1 ‘0000’: CVBS1 ‘0001’: CVBS2 ‘0010’: CVBS3 ‘0011’: CVBS4 or Y1 ‘0100’: CVBS5 or C1 ‘0101’: CVBS6 or Y2 ‘0110’: CVBS7 or C2 ‘0111’: Y1 + C1 ‘1000’: Y2 + C2 ‘1111’: disabled 80 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 70h D7-D4 CVBOSEL2 [CP-CD] Output select for pin cvbso2 ‘0000’: CVBS1 ‘0001’: CVBS2 ‘0010’: CVBS3 ‘0011’: CVBS4 or Y1 ‘0100’: CVBS5 or C1 ‘0101’: CVBS6 or Y2 ‘0110’: CVBS7 or C2 ‘0111’: Y1 + C1 ‘1000’: Y2 + C2 D3-D0 CVBOSEL3 [CP-CD] Output select for pin cvbso3 ‘0000’: CVBS1 ‘0001’: CVBS2 ‘0010’: CVBS3 ‘0011’: CVBS4 or Y1 ‘0100’: CVBS5 or C1 ‘0101’: CVBS6 or Y2 ‘0110’: CVBS7 or C2 ‘0111’: Y1 + C1 ‘1000’: Y2 + C2 Subaddress 71h D7-D0 Micronas FHFRRN [CP-CD] Free Running Frequency Of Horizontal PLL ‘00000000’: 384 clocks (52.7 kHz) ‘11100100’: 1296 clocks (15.625 kHz) ‘11111111’: 1404 clocks (14.423 kHz) Aug. 16, 2004; 6251-552-1DS 81 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 72h D7 REFTRIMEN [CP-CD] Reference Value enable ‘0’: use fuses ‘1’: uses programmed value D6 SATNR [CP-CD] Noise reduction for satellite signal ‘0’: disabled ‘1’: enabled D5 VINP [CP-CD] Vertical Pulse Detection ‘0’: from CVBS signal ‘1’: from V-input pin D4-D3 NSRED1-0 [CP-CD] Noise Reduction For Horizontal PLL ‘000’: 1/16 ‘001’: 1/8 ‘010’: 1/4 ‘011’: 1/2 ‘100’: 1 ‘101’: 2 ‘110’: 4 ‘111’: 8 MSB is at address 7Eh, D2 D2-D0 LPCDEL [CP-CD] Window Shift For Fine Error Calculation ‘100’: −4 clock cycles ‘000’: no offset ‘011’: +3 clock cycles Subaddress 73h D7-D0 VSHIFT [CP-CD] Field Detection Window Shift ‘00000000’: no shift ‘11111111’: shifted by 2048 Subaddress 74h D7 PALIDL1 [CP-CD] PAL/NTSC Identification Level 1 ‘0’: less sensitive (192) ‘1’: more sensitive (64) D6-D0 VTHRL50 [CP-CD] Vertical Window Noise Suppression Opening Opening= 4*VTHRL50 0000000: opening in first line 1111111: opening in line 508 Subaddress 75h D7 PALIDL0 [CP-CD] PAL/NTSC Identification Level 0 ‘0’: less sensitive ‘1’: more sensitive D6-D0 VTHRH50 [CP-CD] Vertical Window Noise Suppression Closing Closing= 312+4*VTHRH50 0000000: closing in line 312 1111111: closing in line 820 When VINP (72h) is set, 50 Hz values are taken for opening and closing values. 82 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 76h D7-D0 REFTRIM [CP-CD] Reference Value Bandgap ‘01000000’: low reference ‘00000000’: medium reference ‘01111111’: high reference ‘1XXXXXXX’: reference disabled, resistor used Subaddress 77h D7-D4 REFTRIMCV [CP-CD] Reference Value ADC CVBS (antialiasfilter) ‘0000’: narrow ‘1111’: wide D3-D0 REFTRIMRGB [CP-CD] Reference Value ADC RGBF (antialiasfilter) ‘0000’: narrow ‘1111’: wide Subaddress 78h D7 SLLTHDVP [CP-CD] Vertical Slicing Level Threshold Polarity ‘0’: positive ‘1’: negative D6 THRSEL [CP-CD] H Slicing level threshold ‘0’: 50 % ‘1’: 37 % D5-D0 CLMPST1S [CP-CD] Clamping start for ADC1 ‘000000’: 0 µs ‘011100’: 5.6 µs ‘111111’: 12.8 µs Subaddress 79h D7-D6 SCMIDL [CP-CD] SECAM identification level ‘00’: 128 ‘01’: 64 ‘10’: 96 ‘11’: 80 D5-D0 CLMPST2S [CP-CD] Clamping start ADC2 ‘000000’: 0 µs ‘011100’: 5.6 µs ‘111111’: 12.8 µs Micronas Aug. 16, 2004; 6251-552-1DS 83 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 7Ah D7-D3 ACCLIM [CP-CD] ACC-limitation for weak signals ‘00000’: strong limitation ‘11111’: no limitation D2-D0 IFCOMP [CP-CD] IF compensation filter ‘000’: pal prefiltering ‘001’: pal prefiltering + IF ‘010’: prefiltering ‘011’: IF 6dB ‘100’: flat Note: ‘000’ or ‘001’ are not suited for 3.58 MHz subcarrier color standards (PAL M, PAL N, NTSC M) Subaddress 7Bh D7-D4 CLMPD2S [CP-CD] Clamping duration for ADC2 Granularity: 200 ns ‘0000’: 0 µs ‘0111’: 1.4 µs ‘1111’: 3.0 µs D3-D0 CLMPD1S [CP-CD] Clamping duration for ADC1 Granularity: 200 ns ‘0000’: 0 µs ‘0111’: 1.4 µs ‘1111’: 3.0 µs Subaddress 7Ch D5 EIA770 [CP-CD] EIA 770 support ‘0’: standard TV signals expected ‘1’: progressive signals expected timing according to EIA 770.1 or EIA 770.2 when ‘1’ D4 SHAPERDIS [CP-PP] Power Down Of Crystal Oscillator Shaper ‘0’: normal operation ‘1’: power down active D3 OSCPD [CP-PP] Power Down Of Crystal Oscillator Amplifier ‘0’: normal mode ‘1’: power down mode D2 TSTSHAPERI [CP-PP] Testmode Control Of Crystal Oscillator ‘0’: normal operation (shaper active) ‘1’: external clock input (shaper replaced) D1-D0 FREQSEL [CP-PP] Amplifier Current Setting Of Oscillator Pad ‘00’: 100 µA ‘01’: 590 µA ‘10’: 235 µA ‘11’: 1730 µA 84 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 7Dh D6-D4 BELLFIR [CP-CD] Bell filter FIR component ‘000’: −116 ‘001’: −113 ‘010’: −110 ‘011’: −108 ‘100’: −106 ‘101’: −104 ‘110’: −102 ‘111’: −100 D3-D1 BELLIIR [CP-CD] Bell filter IIR component ‘000’: 8 ‘001’: 9 ‘010’: 10 ‘011’: 11 ‘100’: 12 ‘101’: 13 ‘110’: 14 ‘111’: 16 D0 VFLYWHL [CP-CD] Vertical Flywheel ‘0’: disabled ‘1’: enabled Subaddress 7Eh D7-D6 FLNSTRD [CP-CD] Force line standard at CVBS/RGB frontend ‘00’: automatic ‘01’: force 50 Hz ‘10’: force 60 Hz ‘11’: (reserved) D5 ENLIM [CP-CD] Enable limiter ‘0’: disabled ‘1’: enabled D4-D3 ISHFT [CP-CD] I-adjustment for horizontal PLL ‘00’: *1 ‘01’: *2 ‘10’: *4 ‘11’: *8 D2 NSRED2 [CP-CD] Belongs to 72h D1-D0 VLP [CP-CD] Lowpass for vertical sync-separation ‘00’: none ‘01’: weak ‘10’: medium ‘11’: strong Micronas Aug. 16, 2004; 6251-552-1DS 85 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 7Fh D7 SECACC [CP-CD] Secam acceptance ‘0’: disabled ‘1’: enabled D6 SECDIV [CP-CD] Secam Divider ‘0’: divide by 4 ‘1’: divide by 2 D5-D4 SECINC1 [CP-CD] Secam increment 1 ‘00’: 2 ‘01’: 3 ‘10’: 4 ‘11’: 5 D3-D2 SECINC2 [CP-CD] Secam increment 2 ‘00’: 1 ‘01’: 2 ‘10’: 3 ‘11’: 4 D1-D0 SCMREL [CP-CD] Secam rejection level ‘00’: 320 ‘01’: 384 ‘10’: 352 ‘11’: 1024 86 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 80h D7 PORCNCL [CP-CD] Reset control bit cancel ‘0’: no operation ‘1’: reset POR bit (8Ch) after use, PORCNCL must be set to ‘0’ again D6-D4 NTCHSEL [CP-CD] Luminance Notch selection ‘000’: sharp notch ‘001’: medium 1 ‘010’: medium 2 ‘011’: broad notch ‘100’: broad steep notch (PAL, SECAM only) D3 CPLLRES [CP-CD] Force Chroma PLL reset ‘0’: no reset ‘1’: reset chroma PLL after use, CPLLRES must be set to ‘0’ again D2 DISALLRES [CP-CD] Disable all chroma resets ‘0’: resets allowed ‘1’: resets disabled may only be used if ONE color standard is selected D1 TRAPBLU [CP-CD] Notchfrequency for 4,250 MHz ‘0’: 4.25 MHz ‘1’: 4.2 MHz has only effect in SECAM mode D0 TRAPRED [CP-CD] Notchfrequency for 4,406 MHz ‘0’: 4.406 MHz ‘1’: 4.356 MHz has only effect in SECAM mode Micronas Aug. 16, 2004; 6251-552-1DS 87 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 80h D7 PORCNCL [CP-CD] Reset control bit cancel ‘0’: no operation ‘1’: reset POR bit (8Ch) after use, PORCNCL must be set to ‘0’ again D6-D4 NTCHSEL [CP-CD] Luminance Notch selection ‘000’: sharp notch ‘001’: medium 1 ‘010’: medium 2 ‘011’: broad notch ‘100’: broad steep notch (PAL, SECAM only) D3 CPLLRES [CP-CD] Force Chroma PLL reset ‘0’: no reset ‘1’: reset chroma PLL after use, CPLLRES must be set to ‘0’ again D2 DISALLRES [CP-CD] Disable all chroma resets ‘0’: resets allowed ‘1’: resets disabled may only be used if ONE color standard is selected D1 TRAPBLU [CP-CD] Notchfrequency for 4,250 MHz ‘0’: 4.25 MHz ‘1’: 4.2 MHz Note: has only effect in SECAM mode D0 TRAPRED [CP-CD] Notchfrequency for 4,406 MHz ‘0’: 4.06 MHz ‘1’: 4.356 MHz Note: has only effect in SECAM mode 88 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 81h D7 ADLCK [CP-CD] Additional lock-detection ‘0’: no used ‘1’: used D6 ADLCKSEL [CP-CD] Additional lock-detection selection ‘0’: PALID ‘1’: PALDET D5 ADLCKCC [CP-CD] Additional lock-detection color-killer ‘0’: do not use lock signal ‘1’: use lock-signal D4-D3 VFLYWHLMD[CPCD] Vertical Flywheel Mode ‘00’: CHECK FOR CORRECT STANDARD ‘01’: 3 lines deviation allowed ‘10’: 4 lines deviation allowed, no check for interlace ‘11’: 5 lines deviation allowed, no check for interlace D2-D0 SECACCL [CP-CD] Secam Acceptance level ‘000’: 100 ‘001’: 84 ‘010’: 64 ‘011’: 32 ‘100’: 70 ‘101’: 76 ‘110’: 90 Note: must be enabled by SECACC (7Fh) to have an effect Micronas Aug. 16, 2004; 6251-552-1DS 89 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 82h (no auto-increment) D7-D6 SYNCFTHD [CP-CD] SYNCF threshold 00: 4 lines 01: 3 lines 10: 2 lines 11: 1 line D5 IFCOMPSTR [CP-CD] 2nd IF compensation filter ‘0’: disabled ‘1’: enabled D4 PALIDL2 [CP-CD] PAL/NTSC identifikation level 2 ‘0’: less sensitive ‘1’: more sensitive D3 CPLLOF [CP-CD] Chroma PLL Open ‘0’: normal operation ‘1’: chroma PLL opened D2 DEEMPSTD [CP-CD] Deemphase Filtering For Standard Detection ‘0’: weak ‘1’: strong D1 PALINC1 [CP-CD] PAL/NTSC Detection: Increment 1 ‘0’: +3 ‘1’: +2 D0 PALINC2 [CP-CD] PAL/NTSC Detection: Increment 2 ‘0’: −1 ‘1’: −2 do not use PALINC2=1 in combination with PALINC1=1 Subaddress 83h (Read-only) D0 FBLACTIVE [CP-I2C] Activity At FBL Input ‘0’: no activity ‘1’: activity reset automatically when read Subaddress 84h (Read-only, no auto-increment)) D6-D0 90 NOISEME [FP-TNR] Noise level of the input signal 0000000: no noise 1111110: strong noise 1111111: strong noise or measurement failed Note: no autoincrement possible Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 85h (Read-only) D5 LBSTATUS [FP-TNR] Status bit for letter box detection: 0: No new value available 1: New value from Letter Box Detection available Note: reset automatically when read D4 PFBL [FP-TNR] Indicates Overflow at FBL Input ‘0’: no overflow ‘1’: overflow Note: reset automatically when read D3 PG [FP-TNR] Indicates Overflow at GREEN Input ‘0’: no overflow ‘1’: overflow Note: reset automatically when read D2 PB [FP-TNR] Indicates Overflow at BLUE Input ‘0’: no overflow ‘1’: overflow Note: reset automatically when read D1 PR [FP-TNR] Indicates Overflow at RED Input ‘0’: no overflow ‘1’: overflow Note: reset automatically when read D0 NMSTATUS [FP-TNR] Indicates New Value of the Noise Measurement 0: NOISEME has not been updated 1: New value of NOISEME available Note: reset automatically when read Subaddress 86h (Read-only) D0 STABLL [PP] Shows LL-HPLL Lock Status ‘0’: LL_HPLL is not locked ‘1’: LL_HPLL is locked Subaddress 87h (Read-only) D1-D0 Micronas SMMIRROR [BP-O/M] Operation mode for scan rate conversion: ‘00’: AABB (Raster ααββ) ‘01’: AAAA (Raster αααα) ‘10’: AAAA (Raster αβαβ) ‘11’: BBBB (Raster ββββ) Aug. 16, 2004; 6251-552-1DS 91 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 88h (Read-only) D7 DETHPOL [CP-CD] Detected Polarity Of HSync ‘0’: negative ‘1’: positive D6 DETVPOL [CP-CD] Detected Polarity Of V Sync ‘0’: negative ‘1’: positive D5-D3 STDET [CP-CD] Detected Color Standard ‘000’: non standard or standard not detected ‘001’: NTSC M ‘010’: PAL M ‘011’: NTSC44 ‘100’: PAL60 ‘101’: PAL N ‘110’: SECAM ‘111’: PAL B/G D2 SCOUTEN [CP-CD] SCDEV valid indication ‘0’: SCDEV not valid ‘1’: SCDEV valid D1 PALID [CP-CD] PAL identification (algorithm 1) ‘0’: not PAL ‘1’: PAL D0 CKSTAT [CP-CD] Colorkill status ‘0’: color off ‘1’: color on Subaddress 89h (Read-only) D7 LNSTDRD [CP-CD] Line Standard detection ‘0’: 60 Hz ‘1’: 50 Hz D6 INT [CP-CD] Interlace Detection ‘0’: progressive input ‘1’: interlace input D5-D0 SCDEV [CP-CD] Deviation Of Clock System or Color Carrier ‘100000’: max. negative deviation ‘000000’: no deviation ‘011111’: max. positive deviation Subaddress 8Ah (Read-only) D7-D0 92 LPFLD [CP-CD] Nr. of lines per field for input signal lines= 256+LPFLD*2 ‘00000000’: 256 lines or less ‘11111111’: 766 lines or more Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 8Bh (Read-only) D7-D0 NRPIXEL [CP-CD] Pixel number of input signal Granularity: 4 ‘00000000’: 384 or less ‘11111111’: 1404 or more PIXEL=4*NRPIXEL+384 Subaddress 8Ch (Read-only) D7 POR [CP-CD] Reset indication a reset at pin 24 (reset) sets POR. POR is reset with PORCNCL (80h) ‘0’: no reset appeared ‘1’: reset appeared D3 VFLYMD [CP-CD] Vertical Flywheel mode locked 0: unlocked 1: locked VFLYWHL must be enabled to give a result D2 STAB [CP-CD] Status of horizontal synchronization ‘0’: sync separation not locked ‘1’: sync separation locked and stable D0 PALDET [CP-CD] PAL identification (algorithm 2) ‘0’: not PAL ‘1’: PAL Subaddress 8Dh (Read-only) D7-D0 REFTRIMRD [CP-CD] Reference Value Bandgap ‘01000000’: low reference ‘00000000’: medium reference ‘01111111’: high reference ‘1XXXXXXX’: reference disabled, resistor used Note: contains fused value only when REFTRIMEN (72h)=0. Subaddress 8Eh (Read-only) D7-D4 REFTRIMCVRD [CP-CD] Reference Value CVBS ADC ‘0000’: narrow ‘1111’: wide Note: contains fused value only when REFTRIMEN (72h)=0. D3-D0 REFTRIMRGBRD [CP-CD] Reference Value RGB ADC ‘0000’: narrow ‘1111’: wide Note: contains fused value only when REFTRIMEN (72h)=0. Micronas Aug. 16, 2004; 6251-552-1DS 93 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 8Fh (Read-only, NOT compatible to 940X family) D3 SLS [CP-I2C] Line Standard At Device Output ‘0’: 100 Hz (VSP 9402A, VSP 9412A) ‘1’: 50 Hz (VSP 9432A, VSP 9442A) D2-D0 VERSION [CP-I2C] Version Of VSP 94XX Family ‘001’: VSP 94x5B ‘010’: VSP 94x2A ‘011’: VSP 94x7B ‘101’: VSP 94x9C others: reserved Subaddress 90h (Read-only) D7 AM50O [CP-I2C] Last detected Standard 50 Hz ‘0’: PAL or none ‘1’: SECAM D6 AM60O [CP-I2C] Last detected Standard 60 Hz ‘0’: NTSC M or none ‘1’: NTSC44 or PAL60 D5-D0 AGCADJCV [CP-I2C] AGC value for ADC1 000000: smallest input range 111111: biggest input range Subaddress 91h (Read-only) D6-D0 VLENGTH [CP-I2C] Length of vertical pulse 0000000: short v 1111111: long v Subaddress 92h (Read-only) D7-D0 MINV [CP-I2C] Measured sync amplitude 00000000: smallest sync 11111111: largest sync Subaddress 93h (Read-only) D4-D0 PWADJCNT [CP-I2C] Peak White adjust counter 00000: no PW reduction 11111: largest PW reduction Subaddress 96h (Read-only) D0 V40STAT [FP-I2C] V Status bit of 40.5 MHz domain ‘0’: New write or read cycle can start ‘1’: No new write or read cycle can start Subaddress 98h (Read-only) D0 94 V36BSTAT [BP-I2C] V Status bit of backend 36 MHz domain ‘0’: New write or read cycle can start ‘1’: No new write or read cycle can start Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress 99h (Read-only) D0 V20STAT [CP-I2C] V Status bit of 20.25 MHz domain ‘0’: New write or read cycle can start ‘1’: No new write or read cycle can start Subaddress A0h D7-D4 KPNL [PP] Proportional factor for loop filter if HPLL is not locked same values as in locked condition (KPL) D3-D0 KPL [PP] Proportional factor for loop filter if HPLL is locked) 00000: 0 00001: 1 00010: 2 00011: 4 00100: 8 00101: 16 00110: 32 00111: 64 01000: 128 01001: 256 01010: 512 01011: 1024 01100: 2048 01101: 4096 01110: 8192 01111:16384 10000: 0.5 10001: 1.5 10010: 2.5 10011: 3 10100: 3.5 10101: 4.5 10110: 5 10111: 6 11000: 7 Micronas Aug. 16, 2004; 6251-552-1DS 95 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress A1h D7-D4 KINL [PP] Integrational factor for loop filter if HPLL is not locked same values as in locked condition (KIL) D3-D0 KIL [PP] Integrational factor for loop filter if HPLL is locked 00000: 0 00001: 1 00010: 2 00011: 4 00100: 8 00101: 16 00110: 32 00111: 64 01000: 128 01001: 256 01010: 512 01011: 1024 01100: 2048 01101: 4096 01110: 8192 01111:16384 10000: 0.5 10001: 1.5 10010: 2.5 10011: 3 10100: 3.5 10101: 4.5 10110: 5 10111: 6 11000: 7 Subaddress A2h D7-D0 LIMIP [PP] Limiter Control for P-part for increased dynamic range LIMIT_P= ±16*LIMIP ‘00000000’: ±0 ‘11111110’: ±4064 ‘11111111’: no limitation Subaddress A3h D7-D0 96 LIMII [PP] Limiter Control for I-part for increased dynamic range LIMIT_I= ±16*LIMII ‘00000000’: ±0 ‘11111110’: ±4064 ‘11111111’: no limitation Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress A4h D7 KPNL4 [PP] Refer to A0h D6 KPL4 [PP] Refer to A0h D5 KINL4 [PP] Refer to A1h D4 KIL4 [PP] Refer to A1h D3-D0 LIMLR [PP] Limit LL-PLL lock-in range 0000: full lock-in range of ±5.85 % 0001: lock in range limited to ±3.8 % 0010: lock in range limited to ±2.55 % 0011: lock in range limited to ±1.27 % 0100: ock in range limited to ±0.63 % 0101: lock in range limited to ±0.32 % 0110: lock in range limited to ±0.19 % 0111: lock in range limited to ±0.13 % 1000: lock in range limited to ±5 % 1001: lock in range limited to ±4.5 % 1010: lock in range limited to ±3.1 % 1011: lock in range limited to ±2.1 % 1100: lock in range limited to ±1.5 % 1101: lock in range limited to ±1 % 1110: (reserved) 1111: (reserved) Subaddress B0 D6-D5 AGCTHD [CP-CD] AGC hysterisys 00: broad 01: medium 1 10: medium 2 11: small D4-D0 FEMAG [CP-CD] Fine Error characteristic 00000: smallest gain 10000: default (equal to A32 version) 11111: largest gain Micronas Aug. 16, 2004; 6251-552-1DS 97 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress B1 D6-D4 SLLTHDV [CP-CD] Slicing Level Threshold V ‘000’: no offset ‘001’: 4 ‘010’: 8 ‘011’:12 ‘101’: adaptive (limited to ±4) ‘110’: adaptive (limited to ±8) ‘111’: adaptive (limited to ±12) polarity is selected by SLLTHDVP (78h) D3-D2 AMSTD60 [CP-CD] Automatic standard detection priority 60 Hz 00: NTSC M 01: NTSC44/PAL60 10: (reserved) 11: automatic D1-D0 AMSTD50 [CP-CD] Automatic standard detection priority 50 Hz 00: PAL B 01: SECAM 10: (reserved) 11: automatic Subaddress B2 D7-D6 SDB [CP-CD] Secam Db adjustment 00: −55 01: −58 10: −61 11: −64 D4 MVPG [CP-CD] Vertical Pulse gating 0: disabled 1: enabled D3 MVP [CP-CD] Vertical length measurement with vertical pulse detection 0: disabled 1: enabled D2-D0 VDETITC [CP-CD] Vertical Detection Integration Time Constant 000: 400 clock cycles 001: 375 clock cycles 010: 350 clock cycles 011: 300 clock cycles 100: 250 clock cycles 101: 225 clock cycles 110: 200 clock cycles 111: automatic Subaddress B3 D6-D0 98 VTHRL60 [CP-CD] Vertical Window Noise Suppression Opening Opening=4*VTHRL60M 0000000: opening in first line 1111111: opening in line 508 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress B4 D6-D0 VTHRH60 [CP-CD] Vertical Window Noise Suppression Closing Closing=262+4*VTHRH60M 0000000: closing in line 262 1111111: closing in line 770 Subaddress B5 D7-D5 DEEMPIIR [CP-CD] Deemphase filter IIR component ‘000’: 5 ‘001’: 6 ‘010’: 7 ‘011’: 8 ‘100’: 9 ‘101’: 10 ‘110’: (reserved) ‘111’: (reserved) D3-D0 DEEMPFIR [CP-CD] Deemphase filter FIR component ‘0000’: 16 ‘0101’: 21 ‘1111’: 31 Subaddress B7 D7-D0 NAPPLIPI [FP-RGB] Not active pixels from HSYNC to input data for ITU Delay=NAPPLIPI * 2 + NAPIPPHI Subaddress B8 D7-D0 ALPFIPI [FP-RGB] Active lines per field for ITU Active lines=ALPFIPI * 2 (int) 144: 288 active lines Subaddress B9 D7-D0 APPLIPI [FP-RGB] Active pixels per line for ITU Active pixels=APPLIPI * 2 (int) 360=720 lines Subaddress BA D7 APPLIPI[8] [FP-RGB] Active pixels per line for ITU Active pixels=APPLIPI * 2 (int) 360=720 lines D6 NALPFIPI [FP-RGB] Not active lines per field for ITU (int) 20= 20 lines Subaddress BCh D7-D0 Micronas FRINC18-11 [PP] Set HDTO freerunning frequency Granularity=103 Hz 33981d (minimum: nominal pixel clock= 3.5 MHz) 349525d (nominal pixel clock= 36 MHz) 388362d (maximum: nominal pixel clock= 40 MHz) Aug. 16, 2004; 6251-552-1DS 99 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress BD D7-D0 FRINC10-3 [PP] Belongs to BCh Subaddress BE D2-D0 FRINC2-0 [PP] Belongs to BCh Subaddress C0 D7-D0 HSPPL [FP-RGB] Hsync shift shift=HSPPL * 4 00000000: default Subaddress C1 D7 FOFST [FP-RGB] Offset of active field at interlaced mode (line offset): 0: NALPFIPI+1 at field A, NALPFIPI at field B 1: NALPFIPI at field A, NALPFIPI+1 at field B D2-D0 VSLPF [FP-RGB] Vsync shift shift=VSLPF * 4 0000000: default Subaddress D0 D7-D6 VBLANDEL [BP-PM] Refer to D1h D5 VBLANPOL [BP-PM] Vertikal Blank Signal Polarity 0: positive 1: negative D2 FSWFTL [BP-PM] Stability Signal of LL_HPLL ‘0’: STABLL is generated accoding to SETSTABLL ‘1’: STABLL is forced to 1 (hout synchronization enabled) D1-D0 VBLANLEN [BP-PM] Refer to D2h Subaddress D1 D7-D0 VBLANDEL[7:0] [BP-PM] Vertical Delay in lines from vsync to active edge of blank signal: Blank_start=1*VBLANDEL ‘0000000000’: no delay ‘1111111111’: 1023 lines delay Subaddress D2 D7-D0 VBLANLEN [BP-PM] Vertical Length in lines from start of active blank signal: Blank_length=4*VBLANLEN ‘00000000’: no line ‘11111111’: 1020 lines Subaddress E0 D7-D0 100 LBGRADDET [FP-RGB] Threshold for gradient detected (int) 50: default Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress E1 D7-D0 LBVWENDLO [FP-RGB] Vertical measure window lower end (int) 150: default, [in lines (*2) related to VSYNC] Subaddress E2 D7-D0 LBHWEND [FP-RGB] Horizontal measure window end (int) 180: default, [in active pixels (*4) related to HSYNC] Subaddress E3 D7-D0 LBHIWHITE [FP-RGB] Histogram white (int) 50: default Subaddress E4 D7-D0 LBHISTBLA [FP-RGB] Histogram black (int) 25: default Subaddress E5 D7 LBMASLA [FP-RGB] Set to 1 D6-D0 LBVWSTLO [FP-RGB] Vertical measure window lower start (int) 96: default], [in lines (*2) related to VSYNC] Subaddress E6 D7 LBFS [FP-RGB] Field subsampling mode 0: A+B fields 1: only A field D6-D0 LBVWENDUP [FP-RGB] Vertical measure window upper end (int) 73: default], [in lines (*2) related to VSYNC] Subaddress E7 D7 LBVISUON [FP-RGB] Visualisation of letter box results 0: disabled 1: enabled D6-D0 LBHWST [FP-RGB] Horizontal measure window start (int) 36: default, [in active pixels (*4) related to HSYNC] Subaddress E8 D5-D0 Micronas LBVWSTUP [FP-RGB] Vertical measure window upper start (int) 20: default], [in lines (*2) related to VSYNC] Aug. 16, 2004; 6251-552-1DS 101 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress E9 D7 LBSTABILITY [FP-RGB] Stability flag 0: continuous format update 1: Format update only once D6 LB43SENS [FP-RGB] Sensitivity to 4:3 switch 0: off 1: on D5 LBNGFEN [FP-RGB] No gradient found 0: disabled 1: enabled D4-D0 LBTHDNBNG [FP-RGB] Threshold for darkness-brightness, gradient only (int) 15: default] Subaddress EA D7-D6 LBSUB [FP-RGB] Subsampling mode 0x: 13.5 MHz (1, e.g. digital 656 input) 10: 20.25 MHz source (1.5, for CVBS, YUV and RGB) 11: 40.5 MHz source (3) D5 LBGRADRST [FP-RGB] Reset of gradient method 0: no reset 1: reset D4-D0 LBHSDEL [FP-RGB] Histogram stability delay (int)10=default Subaddress EB D4-D0 LBTHDNBNHA [FP-RGB] Threshold for darkness-brightness, histogram, activity (int)30=default Subaddress EC D4-D0 LBACTIVITY [FP-RGB] Activity (int) 5: default] Subaddress ED D4-D0 LBGFBDEL [FP-RGB] Gradient fall back delay value (int) 11: default] Subaddress EE D4-D0 LBGSDEL [FP-RGB] Gradient stability delay value (int) 10: default] Subaddress EF D4-D0 102 LBASDEL [FP-RGB] Activity stability delay (int) 10: default] Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress F0 (read only) D7 LBELAA [FP-RGB] Refer to F1h D6-D0 LBSLAA [FP-RGB] Letter box detection: Start line of active area LBSLAA is measured in relation to VSYNC Subaddress F1 (read only) D7-D0 LBELAA [FP-RGB] Letter box detection: End line of active area LBELAA is measured in relation to VSYNC Subaddress F2 (read only) D7 LBFORMAT [FP-RGB] Letter box detection: Format 0: 4:3 format 1: other format (letter box) D6 LBSUBTITLE [FP-RGB] Letter box detection: Subtitle flag 0: no subtitle 1: subtitle available D5 LBTOPTITLE [FP-RGB] Letter box detection: Toptitle flag 0: no toptitle 1: toptitle available D4 GRADISSTABLE [FP-RGB] Letter box detection: gradient is stable internal value, only for test purposes D3 TOPTITLE [FP-RGB] LBD: upper area contains high activity internal value, only for test purposes D2 SUBTITLE [FP-RGB] LBD: lower area contains high activity internal value, only for test purposes D1 NOGRADFOUND [FP-RGB] LBD: no gradient found internal value, only for test purposes D0 SWITCHTO43 [FP-RGB] LBD: switch to 4:3 format internal value, only for test purposes Subaddress F3 (read only) D7 GRADELAA [FP-RGB] Refer to F4h D6-D0 GRADSLAA [FP-RGB] LBD: Gradient start line of active area internal value, only for test purposes Subaddress F4 (read only) D7-D0 Micronas GRADELAA [FP-RGB] LBD: Gradient end line of active area internal value, only for test purposes Aug. 16, 2004; 6251-552-1DS 103 VSP 94x2A DATA SHEET Table 3–8: I2C bus command description, continued Bit Name Description Subaddress F5 (read only) D3 LPBLACK [FP-RGB] LBD: lower area contains medium brightness level internal value, only for test purposes D2 UPBLACK [FP-RGB] LBD: upper area contains medium brightness level internal value, only for test purposes D1 LPWHITE [FP-RGB] LBD: lower area contains high brightness level internal value, only for test purposes D0 UPWHITE [FP-RGB] LBD: upper area contains high brightness level internal value, only for test purposes Subaddress F6h (Read-only, compatible to 940X family) D7-D5 VERSION [CP-I2C] Version Of VSP 94xxX Family: ‘001’: VSP 94x5B ‘010’: VSP 94x2A ‘011’: VSP 94x7B ‘101’: VSP 94x9C others: reserved D4 SLS [CP-I2C] Line Standard At Device Output ‘0’: 100 Hz (VSP 9402A, VSP 9412A) ‘1’: 50 Hz (VSP 9432A, VSP 9442A) D3-D1 REV [CP-I2C] Revision of VSP94x2A ‘000’: A23 or below ‘001’: A31 or A32 ‘010’: B13 or B14 Subaddress FEh FE Any value to this subaddress executes previous I2C protocolls immediately Subaddress FFh FF 104 Any value to this subaddress executes previous I2C protocolls according to the take-over-mechanism (dedicated v-pulse, V20, V40, V36) Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET 4. Specifications 4.1. Outline Dimensions Fig. 4–1: PMQFP80-1: Plastic Metric Quad Flat Package, 80 leads, 14 × 14 × 2 mm3 Ordering code: VK Weight approximately 0.96 g Micronas Aug. 16, 2004; 6251-552-1DS 105 VSP 94x2A DATA SHEET 4.2. Pin Connections and Short Descriptions for VSP 9402 and VSP 94121) 1) For VSP 9412, the pin connections differ for pins: 1, 2, 3, 75, 76, 77, 78, 79 ,80 (see Section 4.3. on page 109). Pin No. Pin Name Type 1 VDDDACY S/I DAC (Y) 2 AYOUT O/I Y output 3 VSSDACY S/I DAC (Y) 4 VSSD2 S Supply voltage for digital (0 V digital) 5 VDDD2 S Supply voltage for digital (1.8 V digital) 6 SDA I/O I2C-Bus data 7 TMS I Testmode select (Connected to vdd33) 8 656VIN/BLANK1) I/O Connect to Vss and disable blank Separate V input for 656 / BLANK output 9 656CLK I/O Leave open Digital input / output clock 10 656IO7 I/O Leave open Digital input / output (MSB) 11 VSSP2 S Supply voltage for digital (0 V pad) 12 VDDP2 S Supply voltage for digital (3.3 V pad) 13 SCL I I2C-Bus clk 14 V2) I Connect to Vss Vertical pulse for RGB input 15 656IO6 I/O Leave open Digital input / output 16 656IO5 I/O Leave open Digital input / output 17 HOUT O Leave open Horizontal output (Single or double scan, dependent on version) 18 H503) O Leave open Hout 50 Hz (with skew) 19 ADR / TDI I 20 V504) O Leave open Vout 50 Hz 21 656IO4 I/O Leave open Digital input / output 22 656IO3 I/O Leave open Digital input / output 23 VOUT O Leave open Vertical output (Single or double scan, dependent on version) 24 RESET I Reset input (Reset when low) 25 VDDP3 S Supply voltage for digital (0 V pad) 26 VSSP3 S Supply voltage for digital (3.3 V pad) 106 Connection (If not used) Short Description I2C address / test data in Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Pin No. Pin Name Type Connection Short Description 27 CLKOUT O Leave open Output clock (27 MHz nom.) 28 VDDD3 S Supply voltage for DRAM (1.8 V digital) 29 VSSD3 S Supply voltage for digital (0 V digital) 30 656IO2 I/O Leave open Digital input / output 31 656IO1 I/O Leave open Digital input / output 32 656IO0 I/O Leave open Digital input / output (LSB) 33 VSSD4 S Supply voltage for digital (0 V digital) 34 VDDD4 S Supply voltage for digital 1.8 V digital 35 VDDAFBL S Supply voltage for FBL (1.8 V) 36 VSSAFBL S Supply voltage for FBL (0 V) 37 FBL1 I Connect to Vss Fast Blank input 1 (H1) (Analog input) 38 FBL2 I Connect to Vss Fast Blank input 2 (H2) (Analog input) 39 RIN1 I Connect to Vss R or V in1 (Analog input) 40 GIN1 I Connect to Vss G or Y in1 (Analog input) 41 BIN1 I Connect to Vss B of U in1 (Analog input) 42 VDDARGB S Supply voltage for RGB (1.8 V) 43 VSSARGB S Supply voltage for RGB (0 V) 44 VDD33RGB S Supply voltage RGB (3.3 V) 45 VSS33RGB S Supply voltage RGB (0 V) 46 RIN2 I Connect to Vss R or V in2 (Analog input) 47 GIN2 I Connect to Vss G or Y in2 (Analog input) 48 BIN2 I Connect to vss B of U in2 (Analog inpu) 49 VSSD55) S Connect to Vss Supply voltage for digital (0 V) 50 VDDAC1 S Supply voltage CVBS1 (1.8 V) 51 VSSAC1 S Supply voltage CVBS1 (0 V) 52 CVBS1 I Micronas (If not used) Connect to Vss CVBS input (Analog input) Aug. 16, 2004; 6251-552-1DS 107 VSP 94x2A DATA SHEET Pin No. Pin Name Type Connection Short Description 53 CVBS2 I Connect to Vss CVBS input (Analog input) 54 CVBS3 I Connect to Vss CVBS input (Analog input) 55 CVBS4 I Connect to Vss CVBS input or Y1 (Analog input) 56 CVBS5 I Connect to Vss CVBS input or C1 (Analog input) 57 CVBS6 I Connect to Vss CVBS input or Y2 (Analog input) 58 CVBS7 I Connect to Vss CVBS input or C2 (Analog input) 59 VDD33C S Supply voltage CVBS (3.3 V) 60 VSS33C S Supply voltage CVBS (0 V) 61 CVBSO3 O Leave open CVBS output 3 (Analog output) 62 CVBSO2 O Leave open CVBS output 2 (Analog output) 63 CVBSO1 O Leave open CVBS output 1 (Analog output) 64 VDDAC2 S Supply voltage CVBS2 (1.8 V) 65 VSSAC2 S Supply voltage CVBS2 (0 V) 66 VDDD1 S Supply voltage for digital (1.8 V digital) 67 VSSD1 S Supply voltage for digital (0 V digital) 68 VDDAPLL S Supply voltage for PLL (1.8 V) 69 XOUT O Crystal connection 2 70 XIN I Crystal connection 1 71 TCLK I Testclock 72 VDDP1 S Supply voltage for digital (3.3 V pad) 73 VSSP1 S Supply voltage for digital (0 V pad) 74 656HIN/CLKF20 I/O Connect to Vss and disable clock Separate H input for 656 / 20.25 clock output 75 VDDDACV S/I Leave open DAC (V) (27 MHz nom.) 76 AVOUT O/I Leave open V output 77 VSSDACV S/I Leave open DAC (V) 78 VDDDACU S/I DAC (U) 79 AUOUT O/I U output 108 (If not used) Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET Pin No. Pin Name Type 80 VSSDACU S/I Connection (If not used) Short Description DAC (U) 1) 2) 3) 4) 5) In VSP 9402, A31 (and higher) and in VSP 94xxA/B/C, this pin is shared by 656vin and blank. In VSP 94xxB and VSP 94xxC, this pin is shared by v and intr (C800 controller output). In VSP 94xxB and VSP 94xxC, this pin is shared by h50 and irq (Data-slicer-interrupt). In VSP 94xxB and VSP 94xxC, this pin is shared by v50 and blank. This pin is not used and not bonded in VSP 9402A. The use of this pin in VSP 94xxB/C will be VSS. For upgradability, it is recommended to not leave this pin open. 4.3. Differing Pin Connections and Short Descriptions for VSP 9412 Pin No. Pin Name Type Connection Short Description 1 I656I5 S/I Leave open 656 input 2 I656I6 O/I 656 input 3 I656I7 S/I 656 input (MSB) 75 I656ICLK S/I 656 input clock 76 I656I0 O/I 656 input (LBS) 77 I656I1 S/I 656 input 78 I656I2 S/I 656 input 79 I656I3 O/I 656 input 80 I656I4 S/I 656 input Micronas (If not used) Aug. 16, 2004; 6251-552-1DS 109 VSP 94x2A DATA SHEET 4.4. Pin Configurations VSSAC1 CVBS1 VDDAC1 VSSD5 CVBS2 BIN2 CVBS3 GIN2 CVBS4 RIN2 CVBS5 VSS33RGB CVBS6 VDD33RGB CVBS7 VSSARGB VDD33C VDDARGB VSS33C BIN1 CVBSO3 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 61 40 GIN1 CVBSO2 62 39 RIN1 CVBSO1 63 38 FBL2 VDDAC2 64 37 FBL1 VSSAC2 65 36 VSSAFBL VDDD1 66 35 VDDAFBL VSSD1 67 34 VDDD4 VDDAPLL 68 33 VSSD4 XOUT 69 32 656IO0 XIN 70 31 656IO1 TCLK 71 30 656IO2 VDDP1 72 29 VSSD3 VSSP1 73 28 VDDD3 656HIN/CLKF20 74 27 CLKOUT VDDDACV 75 26 VSSP3 AVOUT 76 25 VDDP3 VSSDACV 77 24 RESET VDDDACU 78 23 VOUT AUOUT 79 22 656IO3 21 10 11 12 13 14 15 16 17 18 19 20 656IO4 VSSDACU 80 1 VSP 9402 A 2 3 4 5 6 7 8 9 V50 VDDACY AYOUT ADR/TDI VSSDACY H50 VSSD2 HOUT VDDD2 656IO5 SDA 656IO6 TMS V 656VIN/BLANK SCL 656CLK 656IO7 VDDP2 VSSP2 Fig. 4–2: PMQFP80-1 Package (Version VSP 9402A) 110 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET VSSAC1 CVBS1 VDDAC1 VSSD5 CVBS2 BIN2 CVBS3 GIN2 CVBS4 RIN2 CVBS5 VSS33RGB CVBS6 VDD33RGB CVBS7 VSSARGB VDD33C VDDARGB VSS33C BIN1 CVBSO3 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 61 40 GIN1 CVBSO2 62 39 RIN1 CVBSO1 63 38 FBL2 VDDAC2 64 37 FBL1 VSSAC2 65 36 VSSAFBL VDDD1 66 35 VDDAFBL VSSD1 67 34 VDDD4 VDDAPLL 68 33 VSSD4 XOUT 69 32 656IO0 XIN 70 31 656IO1 TCLK 71 30 656IO2 VDDP1 72 29 VSSD3 VSSP1 73 28 VDDD3 656HIN/CLKF20 74 27 CLKOUT I656ICLK 75 26 VSSP3 I656I0 76 25 VDDP3 I656I1 77 24 RESET I656I2 78 23 VOUT I656I3 79 22 656IO3 I656I4 80 1 21 10 11 12 13 14 15 16 17 18 19 20 656IO4 VSP 9412 A 2 3 4 5 6 7 8 9 V50 I656I5 I656I6 ADR/TDI I656I7 H50 VSSD2 HOUT VDDD2 656IO5 SDA 656IO6 TMS V 656VIN/BLANK SCL 656CLK 656IO7 VDDP2 VSSP2 Fig. 4–3: PMQFP80-1 Package (Version VSP 9412A) Micronas Aug. 16, 2004; 6251-552-1DS 111 VSP 94x2A DATA SHEET 4.5. Pin Circuits VDDP VSSP PIN OUT PIN VSSB Fig. 4–4: Supply Pins (Ground): VSSDACY, VSSDACU, VSSDACV, VSS33C, VSS33RGB, VSSP1, VSSP2, VSSP3 Fig. 4–8: Digital Output Pins: H50, V50, CLKOUT, HOUT, VOUT VDDP PIN VDDP PIN IN VSSB Fig. 4–5: Supply Pins (Power 3.3 V): VDDDACY, VDDDACU, VDDACV, VDD33C, VDD33RGB, VDDP1, VDDP2, VDDP3 Fig. 4–9: Digital Input Pins: V, TMS, ADR/TDI, RESET VDDP OSCCLK REF (int.) IN OUT XIN XOUT PIN Fig. 4–6: Input/Output Pins (Crystal connection): XIN, XOUT VDD PIN Fig. 4–10: I2C bus Pins: SDA, SCL VDDP VSS PIN 500 OUT IN VSSB Fig. 4–7: Supply Pins (Power 1.8 V and Ground): VDDAC1, VSSAC1, VDDAC2, VSSAC2, VDDARGB,VSSARGB, VDDAFBL, VSSAFBL, VDDAPLL, VDDD1, VSSS1, VDDD2, VSSS2, VDDD3, VSSS3, VDDD4, VSSS4 112 PIN Fig. 4–11: Digital Input/Output Pins: 656IOX,656CLK, 656HIN/CLKF20, 656VIN/BLANK Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET VDDDACx VDD display DAC PIN 300k 500 PIN 150 1V Fig. 4–12: Analog Output Pins: AYOUT, AUOUT, AVOUT Fig. 4–14: Analog Input Pins: CVBS1...CVBS7 (if cvbsx is not connected to any ADC) VDD VDD PIN OUT 500 500 IN Fig. 4–13: Analog Input Pins: RIN1, RIN2, GIN1, GIN2, BIN1, BIN2, FBL1, FBL2, CVBS1...CVBS7 (if cvbsx is connected to any ADC) Micronas PIN Fig. 4–15: Analog Output Pins: CVBSO1...CVBSO3 Aug. 16, 2004; 6251-552-1DS 113 VSP 94x2A DATA SHEET 4.6. Electrical Characteristics Abbreviations tbd = to be defined vacant= not applicable positive current values means current flowing into the chip 4.6.1. Absolute Maximum Ratings Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only. Functional operations of the device at these conditions in not implied Exposure to absolute maximum rating conditions for extended periods will affect device reliability. This device contains circuitry to protect the inputs and outputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than absolute maximum-rated voltages to this high-impedance circuit. All voltages listed are referenced to ground except where noted. All GND pins must be connected to a low-resistive ground plane close to the IC. Table 4–1: Absolute Maximum Ratings Symbol Parameter Pin Name Limit Values Min Max Unit TA1) Ambient Temperature PMQFP80-1 −10 70 2) °C TC Case Temperature PMQFP80-1 −10 105 °C TS Storage Temperature −65 125 °C PMAX Maximum Power Dissipation 3) PMQFP80-1 1500 mW VDD1 Supply Voltages1 VDDDx, VDDAFBL VDDARGB VDDAC1 VDDAC2 VDDAPLL -0.3 24) 5) V LDD2 Supply Voltages2 VDDPx, VDD33C, VDD33RGB, VDDACU, VDDACV -0.3 3.64) 5) V ∆VSUP Internally Conected Power Supplies have to be connected externally with an impedance of less than 0.05 Ω Groups of internally conected power supply pins: {VSSDx, VSSPx}, {VDDDx}, {VDDPx}, {VDDACU/V} 114 Aug. 16, 2004; 6251-552-1DS V Micronas VSP 94x2A DATA SHEET Table 4–1: Absolute Maximum Ratings Symbol ∆VSUP Parameter Pin Name Voltage Differences between not internally connected supply pins of the same nominal supply voltage Groups of independant grounds: {VSSDx; VSSPx}, {VSSARGB, VSSAFBL, VSS33RGB}, {VSSAC1, VSSAC2, VSS33C}, {VSSDACx}, Limit Values Unit Min Max -0.3 0.3 V Groups of independant 1.8 V supply voltages: {VDDDx}, {VDDAC1, VDDAC2}, {VDDARGB, VDDAFBL}, {VDDAPLL} Groups of independant 3.3 V supply voltages {VDDPx}, {VDDACU/V}, {VDD33C}, {VDD33RGB} VI Input Voltage 2) All input pins with reference to their relevant VDD -0.3 VDD+0.3 V II_low Input Current at 0.4 V All digital inputs with pull-up 55 157 µA II_high Input Current at 2.4 V All digital inputs with pull-down 57 230 µA VO Output Voltage 3) All output pins with reference to their relevant VDD -0.3 VDD2+0.3 V IO_low (I2C) Output Sink Current (at 0.4 V) I2C pads 10.3 36 mA IO_high(I2C) Output Source Current (at 2.4 V) I2C pads (open drain) mA IO_low Output Sink Current (at 0.4 V) Digital outputs 58.8 mA Micronas Aug. 16, 2004; 6251-552-1DS 30.1 115 VSP 94x2A DATA SHEET Table 4–1: Absolute Maximum Ratings Symbol IO_high Parameter Pin Name Output Source Current (at 2.4 V) Digital outputs Limit Values Min Max 31.7 97.1 Unit mA 1) Measured on Micronas typical 2-layer (1s1p) board based on JESD - 51.2 Standard with maximum power consumption allowed for this package 2) A power-optimized board layout is recommended. The case temperature mentioned in the “Absolute Maximum Ratings” must not be exceeded at worst case conditions of the application. 3) Package limit 4) VDD2 (3.3 V nom.) must always be higher than VDD1 (1.8 V nom.) −0.3 V (even during power-up) 5) The deviation among all VDD1 or VDD2 supplies may never exceed 0.3 V. 116 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET 4.6.2. Recommended Operating Conditions Functional operation of the device beyond those indicated in the “Recommended Operating Conditions/Characteristics” is not implied and may result in unpredictable behaivior, reduce reliability and lifetime of the device. All voltage listed are referenced to ground except where noted. Do not insert the device into a live socket. Instead, apply power by switching on the external power supply. Symbol Parameter Pin Name Limit Values Unit Min Typ Max 0 25 70 1) °C 35 85 °C 700 mW TA Ambient Operating Temperature PMQFP80-1 TC Case Operating Temperature PMQFP80-1 PMAX Maximum Power Dissipation PMQFP80-1 VDDxx Supply voltages (3.3 V) VDDP1, VDDP2, VDDP3, VDDACY, VDDACU, VDDACV, VDD33C, VDD33RGB 3.14 3.3 3.47 V VDDxx Supply voltages (1.8 V) VDDAC1, VDDAC2, VDDARGB, VDDAFBL, VDDAPLL; VDDD1; VDDD2;VDDD3; VDDD4 1.71 1.8 1.89 V Vin,L Input voltage low 1.0 V Vin,H Input voltage high TMS, ADR/TDI, V, TCLK, RESET, 656VIN/BLANK, 656HIN/, 656IOX, 656CLK, I656IX, I656ICLK tRES Active time reset RL Load resistance CL Load capacitance Micronas 1.7 V RESET 1.3 µs AYOUT, AUOUT, AVOUT 10 kΩ tbd pF Aug. 16, 2004; 6251-552-1DS 117 VSP 94x2A Symbol DATA SHEET Parameter Vi,CVBS Analog CVBS input voltage Vi,RGB Analog RGB input voltage Vi,FBL Analog FBL input voltage Pin Name Analog chroma input voltage (burst) Input coupling capacitors CVBS Input coupling capacitors RGB/FBL Source resistance CVBS1, CVBS2, CVBS3, CVBS4, CVBS5, CVBS6, CVBS7, RIN1, RIN2, GIN1, GIN2, BIN1, BIN2, FBL1, FBL2 Limit Values Unit Min Typ Max 0.6 1.2 1.8 V 0.5 1.2 1.5 V 0.5 1.2 1.5 V 0.3 V 100 nF 47 nF 0.1 kΩ Crystal Specification fxtal Frequency (fundamental)3) ∆fmax/fxtal Maximum permissible frequency deviation3) ∆f/fxtal Recommended permissible frequency deviation4) CL Load capacitance 13 RS Series resistance tbd C1 Motional capacitance C0 Parallel capacitance 7 pF CL,EXT External load capacitance to ground 13 pF XIN, XOUT 20.248 20.25 −100 −40 0 20 20.252 MHz 100 ppm 40 ppm pF 25 W 30 fF 1) A power-optimized board layout is recommended. The Case Operating Temperature mentioned in the Recommended Operating Conditions must not be exceeded at worst case conditions of the application 2) PMAX variation: User-determined by application circuit for I/O’s 3) Values outside this range may cause color decoding failures. 4) After (subcarrier) adjustment // including temperature and aging deviations 118 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET 4.6.3. Characteristics For Min./Max. values: at TA = 0 to 70°C, fCLOCK =20.25MHz, VSUP3.3V = 3.14 to 3.47 V, VSUP1.8V = 1.71 to 1.89V For typical values: at TA = 25°C, fCLOCK = 20.25MHz, VSUP3.3V = 3.14 to 3.47 V, VSUP1.8V = 1.71 to 1.89V 4.6.3.1. General Characteristics Symbol Parameter LImit Values Pin Name Min. Typ. Unit Test Conditions Max. IDDtot 1.8 V Average total supply current 220 mA IDDtot 3.3 V Average total supply current 65 mA IDDPD 1.8 V Average supply current in power-down-mode 74 mA STANDBY= ‘10’ IDDPD 3.3 v Average supply current in power-down-mode 36 mA STANDBY= ‘10’ Ptot Total power dissipation 0.61 PtotPD Total power dissipation in power-down-mode 0.27 W 7 pF 0.8 W STANDBY= ‘10’ Digital Inputs CI Input capacitance Input leakage current TMS, ADR/TDI, V, TCLK, RESET, 656VIN/ BLANK, 656HIN/, 656IOX, 656CLK, I656IX, I656ICLK −10 10 µA 2.5 Vdd2 V 0.6 V Incl. leakage current of SDA output stage Digital Outputs VOH Output voltage high VOL Output voltage low IOH Output current high IOL Output current low H50, V50, CLKOUT, HOUT, VOUT mA mA Clock Outputs t CLKOUT cycle time CLKOUT CLKOUT duty cycle t 656CLK cycle time 656CLK duty cycle Micronas 37 40 656CLK ns 60 37 40 Aug. 16, 2004; 6251-552-1DS % ns 60 % 119 VSP 94x2A Symbol Parameter DATA SHEET LImit Values Pin Name Min. Typ. Unit Test Conditions nA Clamping inactive Max. Analog CVBS Front-end Input leakage current CI Input capacitance Input clamping error CVBS1, CVBS2, CVBS3, CVBS4, CVBS5, CVBS6, CVBS7 −100 100 7 −1 pF 1 LSB Settled state µA Dependent on clamping error |ICLP| Input clamping current DNL Differential nonlinearity -0.5 0.5 LSB Nominal conditions INL Integral nonlinearity -1 1 LSB Nominal conditions CT Crosstalk between CVBS inputs -50 dB fsig<5 MHz BW Bandwidth 7 MHz -3 dB Vin Input voltage 0.6 Acvbso CVBS output amplification 1.2 1.8 CVBSO1, CVBSO2, CVBSO3 0.9 1.1 RIN1, RIN2, BIN1, BIN2, GIN1, GIN2, FBL1, FBL2 −100 100 V Analog RGBF Front-end Input leakage current CI CVBS input capacitance Input clamping error 7 −1 nA Clamping inactive pF 1 LSB Settled state µA Dependent on clamping error |ICLP| Input clamping current DNL Differential nonlinearity −0.5 0.5 LSB Nominal conditions INL Integral nonlinearity −1 1 LSB Nominal conditions CT Crosstalk between RGB inputs -50 dB BW Bandwidth 10 MHz Vin Input voltage 0.5 1.2 −3 dB 1.5 V −1 1 LSB Nominal conditions −2 2 LSB Nominal conditions Digital To Analog Converters DNL Differential nonlinearity INL Integral nonlinearity UOL Full range output voltage 0.4 V Nominal conditions PKLY/ U/V=min UOH Full range output voltage 1.9 V Nominal conditions PKLY/ U/V=max Output matching 120 AUOUT, AUOUT, AVOUT −3 Aug. 16, 2004; 6251-552-1DS 3 % Micronas VSP 94x2A DATA SHEET Symbol Parameter LImit Values Pin Name Min. Typ. Unit Test Conditions % Based on 15625 kHz Max. Color Decoder/Synchronization and Luminance Processing ∆fHf ±4.9 Horizontal PLL pull-in-range ∆fSC ACC range −30 +6 dB AGC range −7.5 +2 dB ±500 Chroma PLL pull-in-range Hz Nominal crystal frequency The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at TA = 25 °C and the given supply voltage. 4.6.3.2. I2C Bus Characteristics Symbol Parameter Pin Name Min. Typ. Max. Unit 400 pF 300 ns Test Conditions 2 Fast I C Bus (All Values are Referred to Min(VIH) and Max(VIL)) Cb Capacitive load/bus line tR, tF SDA/SCL rise/fall times 20+$ tBUF Inactive time before start of transmission 1300 fSCL I2C clock frequency tLOW SCL low time 1300 ns tHIGH SCL high time 600 ns tSU;STA Set-up time start condition 600 ns tHD;STA Hold time start condition 600 ns tSU;DAT Set-up time DATA 100 ns tHD;DAT Hold time DATA 0 tSU;STO Set-up time stop condition 600 SDA/SCL SCL SDA $=0.1 Cb/pF ns 0 400 900 kHz ns ns I2C Bus pins VIHr Threshold rise VIL Threshold fall Micronas SDA, SCL 2.08 V 1.8 V Aug. 16, 2004; 6251-552-1DS 121 VSP 94x2A DATA SHEET t f tR t HIGH t LOW t SU;STO SU;STA SDA IN tHD;STA t SU;DAT t HD;DAT t SP tAA t BUF t AA SDA OUT Fig. 4–16: I2C bus timing data I²C selectable analog output VSP 940xA VSP 940xA VSP 940xB VSP 943xB VSP 940xB VSP 943xB analog output single-scan 656 input (port 1) single-scan 656 output (943x) or double-scan 656 output (940x) Fig. 4–17: Signal Flow 940x VSP 941xA VSP 941xB VSP 944xB single-scan 656 input (port 2) single-scan 656 output (944x) or double-scan 656 output (941x) Fig. 4–18: Signal flow 941x, 944x, 942x 122 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET 5. Application Circuit L1 10 H 34 +1V8 C37 100nF C36 100nF C39 10 F L2 10 H +1V8 C35 100nF C38 10 F C34 100nF 33 28 29 5 4 66 67 42 C33 100nF C32 100nF 20.25MHz J1 C31 100nF 656HIN 43 68 64 65 50 51 35 +3.3V J2 BLANK J3 B2h I2C Address 656VIN C30 100nF B0h 36 71 19 7 74 R21...R27: 8x 75 8 RIN2 GIN2 BIN2 C29 47nF 46 C28 47nF 47 C27 47nF 48 38 FBL2 RIN1 GIN1 BIN1 HIN1/FBL1 C25 47nF 39 C24 47nF 40 C23 47nF 41 C22 -- / 47 nF 37 14 VIN1 CVBS7 CVBS6 CVBS5 CVBS4 CVBS3 CVBS2 CVBS1 C21 100 nF 58 C20 100 nF 57 C19 100 nF 56 C18 100 nF 55 C17 100 nF 54 C16 100 nF 53 C15 100 nF 52 13 6 24 R1...R7: 7x 75 vddd4 vddp3 vssd4 vssp3 vddd3 vddp2 vssd3 vssp2 vddd2 vddp1 vssd2 vssp1 vddd1 vdd33c vssd1 vss33c vddargb vdd33rgb vssargb vss33rgb vddapll vdddacy vddac2 vssdacy vssac2 vdddacu vddac1 vssdacu vssac1 vdddacv vddafbl IC1 (reserved) vssafbl tclk adr/tdi tms vssdacv R8 3k3 T1 SN7002 T2 SDA 12 11 72 73 59 60 44 45 1 3 78 80 75 77 49 C45 100nF C44 100nF +3.3 V C49 10 F L4 10 H C48 10 F +3.3 V C43 100nF C42 100nF 656ICLK C41 100nF 656IN7 C40 100nF 656IN5 656IN6 656IN4 656IN3 656IN1 656IN0 656vin/blank 656clk rin2 656io7 MQFP80 gin2 656io6 bin2 656io5 fbl2 656io4 rin1 656io3 gin1 stepping 656io2 B13 bin1 fbl1 v 656io1 656io0 clkout cvbs7 hout cvbs6 vout cvbs5 ayout cvbs4 auout cvbs3 avout cvbs2 cvbso3 cvbs1 cvbso2 scl cbbso1 sda h50 xin 70 xout 69 v50 9 C5 22pF* 15 656OUT6 16 656OUT5 21 656OUT4 22 656OUT3 30 656OUT2 31 656OUT1 32 656OUT0 27 CLKOUT 17 HOUT 23 VOUT 2 79 76 61 CVBSO3 62 CVBSO2 63 CVBSO1 18 H50 20 C6 22pF* *values are PCB and crystal dependent 656OCLK 656OUT7 10 Q1 20M25 R9 3k3 C47 100nF C46 100nF 656IN2 +3V3 SCL 26 VSP 9402A 656hin/clkf20 reset L3 10 H 25 V50 +5V R20 51 R19 51 R21 51 C52 33 F C53 33 F C54 33 F SN7002 Y100 U100 V100 only for 5V I²C master RESET T3 T4 T5 3*BC807 buffer not necessary when short connection to backend-processor Fig. 5–1: VSP 9402A Micronas Aug. 16, 2004; 6251-552-1DS 123 VSP 94x2A DATA SHEET L1 10 H 34 +1V8 C37 100nF C36 100nF C39 10 F L2 10 H +1V8 C35 100nF C38 10 F C34 100nF 33 28 29 5 4 66 67 42 C33 100nF C32 100nF 20.25MHz J1 C31 100nF 656HIN 43 68 64 65 50 51 35 +3.3V J2 BLANK J3 B2h I2C Address 656VIN C30 100nF B0h 36 71 19 7 74 R21...R27: 8x 75 8 RIN2 GIN2 BIN2 C29 47nF 46 C28 47nF 47 C27 47nF 48 38 FBL2 RIN1 GIN1 BIN1 HIN1/FBL1 C25 47nF 39 C24 47nF 40 C23 47nF 41 C22 -- / 47 nF 37 14 VIN1 C21 100 nF CVBS7 C20 100 nF CVBS6 CVBS5 CVBS4 CVBS3 CVBS2 CVBS1 58 57 C19 100 nF 56 C18 100 nF 55 C17 100 nF 54 C16 100 nF 53 C15 100 nF 52 13 6 24 R1...R7: 7x 75 vddd4 vddp3 vssd4 vssp3 vddd3 vddp2 vssd3 vssp2 vddd2 vddp1 vssd2 vssp1 vddd1 vdd33c vssd1 vss33c vddargb vdd33rgb vssargb vss33rgb vddapll vdddacy vddac2 vssdacy vssac2 vdddacu vddac1 vssdacu vssac1 vdddacv vddafbl IC1 vssafbl tclk adr/tdi tms vssdacv (reserved) 656vin/blank R8 3k3 T1 SN7002 T2 SDA 12 11 72 73 59 60 44 45 1 3 78 80 75 77 49 C47 100nF C46 100nF C45 100nF C44 100nF C49 10 F +3.3 V L4 10 H C48 10 F +3.3 V C43 100nF C42 100nF C41 100nF C40 100nF rin2 MQFP80 gin2 656OCLK 656OUT7 656io7 10 656io6 15 656OUT6 656io5 16 656io4 21 656OUT5 656OUT4 656io3 22 656io2 30 bin2 fbl2 rin1 stepping gin1 B14 bin1 fbl1 v vout 23 i656iclk 75 i656i7 3 cvbs6 cvbs5 i656i6 2 i656i5 1 cvbs4 cvbs3 i656i4 80 cvbs2 i656i3 79 cvbs1 i656i2 78 scl i656i1 77 i656i0 76 sda xin 70 656OUT2 656OUT1 656OUT0 clkout 27 hout 17 cvbs7 656OUT3 656io1 31 656io0 32 CLKOUT HOUT VOUT 656ICLK 656IN7 656IN6 656IN5 656IN4 656IN3 656IN2 656IN1 656IN0 xout 69 +3V3 SCL 26 VSP 9412A 656clk 9 656hin/clkf20 reset L3 10 H 25 Q1 20M25 R9 3k3 C5 22pF* C6 22pF* *values are PCB and crystal dependent SN7002 only for 5V I²C master RESET Fig. 5–2: VSP 9412A 124 Aug. 16, 2004; 6251-552-1DS Micronas VSP 94x2A DATA SHEET 5.1. Application Overview RGB H, V RGB YUV DVD YC Camcorder SDA 9402 PRIMUS CLK CVBS VCR RGB YUV Tuner IF SDA 9380 EDDC CVBS H, V CVBS, YC M U X HD, VD, EW CVBS SDA 6000 M2 SDA 5550 TVTPro RGB, FBL, COR Fig. 5–3: Application Overview with SDA 9380 RGB H, V MPEG digital656 RGB YUV DVD YC Camcorder VSP 9412A PRIMUS CLK CVBS VCR RGB DS656 Tuner IF CVBS H, V DDP 3315C/ HD, VD, DDP 3316C EW CVBS, YC CVBS SDA 6000 M2 SDA 5550 TVTPro RGB, FBL, COR Fig. 5–4: Application Overview with DDP 3315C/DDP 3316C Micronas Aug. 16, 2004; 6251-552-1DS 125 VSP 94x2A DATA SHEET 6. Data Sheet History 1. Preliminary Data Sheet: “VSP 94x2A-B13/B14 Powerful Scan-Rate Converter including Multistandard Color Decoder”, July 26, 2002, 6251-552-4PD. Fourth release of the preliminary data sheet. Mayor changes: – New I2C registers added 2. Data Sheet: “VSP 94x2A-B13/B14 Powerful Scan-Rate Converter including Multistandard Color Decoder”, Aug. 16, 2004, 6251-552-1DS. First release of the data sheet. Major changes: – Version VSP 9432A and VSP 9442A omitted – Section 4. Specification updated – Application diagrams updated – Subadress 7Bh updated Micronas GmbH Hans-Bunte-Strasse 19 D-79108 Freiburg (Germany) P.O. Box 840 D-79008 Freiburg (Germany) Tel. +49-761-517-0 Fax +49-761-517-2174 E-mail: [email protected] Internet: www.micronas.com Printed in Germany Order No. 6251-552-1DS 126 All information and data contained in this data sheet are without any commitment, are not to be considered as an offer for conclusion of a contract, nor shall they be construed as to create any liability. Any new issue of this data sheet invalidates previous issues. Product availability and delivery are exclusively subject to our respective order confirmation form; the same applies to orders based on development samples delivered. By this publication, Micronas GmbH does not assume responsibility for patent infringements or other rights of third parties which may result from its use. Further, Micronas GmbH reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or transmitted without the express written consent of Micronas GmbH. Aug. 16, 2004; 6251-552-1DS Micronas