DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 DS90UA101-Q1 Multi-Channel Digital Audio Link Check for Samples: DS90UA101-Q1 FEATURES APPLICATIONS • • • • • 1 • • • • • • • • • • • • • • Digital Audio Serializer Flexible Digital Audio Inputs, supporting I2S (Stereo) or TDM (Multi-Channel) Formats Coaxial or Single Differential Pair Interconnect High Speed Serial Output Interface Very Low Latency (<15µs) Bidirectional Control Interface Channel with I2C-Compatible Serial Control Bus Supports up to 8 Stereo I2S or TDM Audio Inputs Supports Audio System Clocks from 10MHz to 50MHz Single 1.8V Supply 1.8V or 3.3V I/O Interface 4/4 Dedicated General Purpose Inputs/Outputs AC-Coupled STP or Coaxial Cable up to 15m DC-Balanced & Scrambled Data w/ Embedded Clock Automotive Grade Product: AEC-Q100 Grade 2 Qualified Temperature Range: -40°C to 105°C ISO 10605 and IEC 61000-4-2 ESD Compliant Automotive Infotainment Systems Active Noise Cancellation Systems Distributed Multi-Channel Audio Systems DESCRIPTION The DS90UA101-Q1 Serializer, in conjunction with the DS90UA102-Q1 Deserializer, provides a solution for distribution of digital audio in multi-channel audio systems. It transmits a high-speed serialized interface with an embedded clock over a single shielded twisted pair or coaxial cable. The serial bus scheme supports high speed forward data transmission and low speed bidirectional control channel over the link. Consolidation of digital audio, general-purpose IO, and control signals over a single differential pair reduces the interconnect size and weight, while also reducing design challenges related to skew and system latency. The DS90UA101-Q1 Serializer embeds the clock and level shifts the signals to high-speed low-voltage differential signaling. The device serializes up to eight digital audio data inputs, word/frame sync, bit clock, and system clock. Four dedicated general purpose input pins and four general purpose output pins allow flexible implementation of control and interrupt signals to and from remote devices. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2013, Texas Instruments Incorporated DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com Applications Diagrams OSC Digital Audio Interface Digital Audio Interface VDDIO VDD (1.8V) (1.8V or 3.3V) VDD (1.8V) Serial Interface 50Q Coaxial, AC-Coupled SCK LRCK BCK DIN[7:0] DOUT+ SCK LRCK BCK DOUT[7:0] RIN+ OEN OSS_SEL PDB DS90UA102-Q1 Deserializer LOCK PASS SCL SDA IDx PDB SCL SDA IDx Digital Audio Interface Digital Audio Interface VDD VDDIO (1.8V or 3.3V) (1.8V) VDD VDDIO (1.8V or 3.3V) (1.8V) Analog In [3:0] 4-Channel Audio ADC Analog In [3:0] TDM I2S/TDM DIN[7] DOUT[7:0] Audio DACs Power Amplifiers I2S DIN[6] Forward Channel FPD-Link III DIN[5] DOUT+ RIN+ DOUTI2S/TDM DSP DS90UA101-Q1 LRCK BCK SCK GPI[3:0] GPO[3:0] RIN- Bi-Directional Bidirectional Back Channel Control Channel DIN[4:0] DS90UA102-Q1 OEN OSS_SEL PDB LRCK BCK SCK GPO[3:0] GPIO[3:0] «««« I2S «««« 4-Channel Audio ADC LRCK BCK SCK Audio DAC or DSP GPO[3:0] GPIO[3:0] GPI[3:0] GPO[3:0] DS90UA101-Q1 Serializer I2S Interface Audio Controller or DSP I2S Interface VDDIO (1.8V or 3.3V) LOCK PASS PDB IDx SCL SDA IDx SCL SDA Figure 1. Applications Diagrams 2 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 Serializer BCK LRCK Encoder GPI DIN Input Latch Block Diagram RT RT DOUT- GPO PLL PDB IDx SET Encoder Decoder SCL Timing and Control I2C Controller SDA Clock Gen FIFO SCK DOUT+ Figure 2. Block Diagram Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 3 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com DIN6 DIN7 GPI0 GPI1 GPI2 GPI3 GPO0 GPO1 24 23 22 21 20 19 18 17 DS90UA101-Q1 Pin Diagram VDDIO 25 16 GPO2 DIN5 26 15 GPO3 DIN4 27 14 VDDCML VDDD 28 13 DOUT+ DIN3 29 12 DOUT- DIN2 30 11 VDDT DIN1 31 10 VDDPLL 9 PDB DAP = GND 1 2 3 4 5 6 7 8 LRCK SCK SCL SDA IDx RES0 SET 32 BCK DIN0 DS90UA101-Q1 (Top View) Figure 3. DS90UA101-Q1 — Top View Pin Descriptions Pin Name Pin # I/O, Type Description Digital Audio Interface SCK 3 Input, LVCMOS w/ System clock input. pull down Forward channel audio data is clocked from this pin. LRCK 2 Input, LVCMOS w/ Word clock input. pull down BCK 1 Input, LVCMOS w/ Bit clock input. pull down DIN[7:0] 23, 24, 26, 27, 29, 30, 31, 32 Inputs, LVCMOS w/ pull down Digital audio data inputs. Each input can be in I2S, TDM, LJ, or RJ format. Inputs, LVCMOS w/ pull down General purpose inputs. LVCMOS Parallel Interface GPI[3:0] 19, 20, 21, 22 GPO[3:0] 15, 16, 17, 18 Outputs, LVCMOS General purpose outputs. Control and Configuration SCL 4 Input/Output, Open I2C clock line. Drain Must have an external pull-up to VDDIO. DO NOT FLOAT. Recommended pull-up: 4.7 kΩ. SDA 5 Input/Output, Open I2C data input/output line. Drain Must have an external pull-up to VDDIO. DO NOT FLOAT. Recommended pull-up: 4.7 kΩ. IDx 6 Input, Analog Device I2C address select. The IDx pin on the Serializer is used to assign its I2C device address. See Table 2. DO NOT FLOAT. SET 8 Input, Analog Device SET. Connect to external 10 kΩ pull-up to 1.8V rail and 100kΩ pull-down to GND. DO NOT FLOAT. 4 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com Pin Name SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 Pin # PDB I/O, Type Description 9 Input, LVCMOS w/ Power down mode input pin. pull down PDB = H, device is enabled and is ON. PDB = L, device is powered down. When the device is in the powered down state, the transmitter outputs are both HIGH, the PLL is shutdown, and IDD is minimized. Control registers are RESET. DOUT+ 13 Input/Output, LVDS True serial interface output. The interconnection must be AC-coupled to this pin with a 0.1 µF capacitor. DOUT- 12 Input/Output, LVDS Inverting serial interface output. The interconnection must be AC-coupled to this pin with a 0.1 µF capacitor. Serial Interface Power and Ground VDDPLL 10 Power 1.8V (±5%) PLL power. VDDT 11 Power 1.8V (±5%) analog core power. VDDCML 14 Power 1.8V (±5%) CML driver power. VDDIO 25 Power LVCMOS I/O power. 1.8V (±5%) or 3.3V (±10%). VDDD 28 Power 1.8V (±5%) digital power. DAP Ground DAP is the large metal contact located at the bottom center of the LLP package. Connect to the GND plane with at least 9 vias. 7 Reserved GND Other RES0 Reserved. Connect to GND. These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 5 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com ABSOLUTE MAXIMUM RATINGS (1) −0.3V to +2.5V Supply Voltage – VDDn (1.8V) −0.3V to +4.0V Supply Voltage – VDDIO −0.3V to + (VDDIO + 0.3V) LVCMOS I/O Voltage −0.3V to +(VDDCML + 0.3V) CML Driver I/O Voltage (VDDCML) Junction Temperature +150°C Storage Temperature −65°C to +150°C Maximum Package Power Dissipation Capacity 1/θJA °C/W above +25° Package Derating: DS90UA101-Q1 32L WQFN θJA(based on 16 thermal vias) 38.4°C/W θJC(based on 16 thermal vias) 6.9°C/W ESD Rating (IEC 61000-4-2) RD = 330Ω, CS = 150pF Air Discharge (DOUT+, DOUT-) ≥±25 kV Contact Discharge (DOUT+, DOUT-) ≥±7 kV ESD Rating (ISO10605) RD = 330Ω, CS = 150/330pF ESD Rating (ISO10605) RD = 2KΩ, CS = 150/330pF Air Discharge (DOUT+, DOUT–) ≥±15 kV Contact Discharge (DOUT+, DOUT-) ≥±8 kV ESD Rating (HBM) ≥±8 kV ESD Rating (CDM) ≥±1 kV ≥±250 V ESD Rating (MM) For soldering specifications: (1) see product folder at www.ti.com and www.ti.com/lit/an/snoa549c/snoa549c.pdf “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional; the device should not be operated beyond such conditions. RECOMMENDED OPERATING CONDITIONS Min Nom Max Units Supply Voltage (VDDn) 1.71 1.8 1.89 V LVCMOS Supply Voltage (VDDIO) OR 1.71 1.8 1.89 V LVCMOS Supply Voltage (VDDIO) 3.0 3.3 3.6 V VDDn (1.8V) 25 mVp-p VDDIO (1.8V) 25 mVp-p VDDIO (3.3V) 50 mVp-p Supply Noise (1) Operating Free Air Temperature (TA) –40 +105 °C SCK Clock Frequency (STP Cable) 10 50 MHz SCK Clock Frequency (Coaxial Cable) 25 50 MHz (1) 6 +25 Supply noise testing was done with minimum capacitors (as shown on Figure 32 and Figure 33 on the PCB. A sinusoidal signal is AC coupled to the VDDn (1.8V) supply with amplitude = 25 mVp-p measured at the device VDDn pins. Bit error rate testing of input to the Ser and output of the Des with 10 meter cable shows no error when the noise frequency on the Ser is less than 1 MHz. The Des on the other hand shows no error when the noise frequency is less than 750 kHz. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 ELECTRICAL CHARACTERISTICS Over recommended operating supply and temperature ranges unless otherwise specified. (1) (2) (3) Symbol Parameter Conditions Min Typ Max Units LVCMOS DC SPECIFICATIONS 3.3V I/O (SER INPUTS, GPI, GPO, CONTROL INPUTS AND OUTPUTS) VIH High Level Input Voltage VIN = 3.0V to 3.6V 2.0 VIN V VIL Low Level Input Voltage VIN = 3.0V to 3.6V GND 0.8 V IIN Input Current VIN = 0V or 3.6V VIN = 3.0V to 3.6V -20 +20 µA VOH High Level Output Voltage VDDIO = 3.0V to 3.6V IOH = −4 mA 2.4 VDDIO V VOL Low Level Output Voltage VDDIO = 3.0V to 3.6V IOL = +4 mA GND 0.4 V IOS Output Short Circuit Current VOUT = 0V Serializer GPO Outputs IOZ TRI-STATE Output Current PDB = 0V, VOUT = 0V or VDD LVCMOS Outputs ±1 -15 -20 mA +20 µA LVCMOS DC SPECIFICATIONS 1.8V I/O (SER INPUTS, GPI, GPO, CONTROL INPUTS AND OUTPUTS) VIH High Level Input Voltage VIN = 1.71V to 1.89V VIL Low Level Input Voltage IIN 0.65 VIN VIN VIN = 1.71V to 1.89V GND 0.35 VIN Input Current VIN = 0V or 1.89V VIN = 1.71V to 1.89V -20 VOH High Level Output Voltage VDDIO = 1.71V to 1.89V IOH = −4 mA IOS Output Short Circuit Current VOUT = 0V Serializer GPO Outputs IOZ TRI-STATE Output Current PDB = 0V, VOUT = 0V or VDD LVCMOS Outputs V ±1 VDDIO 0.45 +20 µA VDDIO V -11 -20 mA +20 µA 340 412 mV 50 mV CML DRIVER DC SPECIFICATIONS (DOUT+, DOUT-) |VOD| Output Differential Voltage RL = 100Ω (Figure 8) ΔVOD Output Differential Voltage Unbalance RL = 100Ω 1 VOS Output Differential Offset Voltage RL = 100Ω (Figure 8) VDD VOD/2 ΔVOS Offset Voltage Unbalance RL = 100Ω 1 IOS Output Short Circuit Current DOUT± = 0V RT Differential Internal Differential across DOUT+ and DOUTTermination Resistance 80 100 120 Single-ended DOUT+ or DOUT– Termination Resistance 40 50 60 (1) (2) (3) 268 V 50 -26 mV mA Ω The Electrical Characteristics tables list verified specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not verified. Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground except VOD, ΔVOD, VTH and VTL which are differential voltages. Typical values represent most likely parametric norms at 1.8V or 3.3V, TA = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not verified. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 7 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com ELECTRICAL CHARACTERISTICS (continued) Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3) Symbol Parameter Conditions Min Typ Max Units VDDIO = 1.89V f = 50 MHz Default Registers 1.5 3 VDDIO = 3.6V f = 50 MHz Default Registers 5 8 VDDIO = 1.8V f = 24.576 MHz Default Registers 1.5 VDDIO 1.8V f = 12.288 MHz Default Registers 1.5 VDDIO = 3.3V f = 24.576 MHz Default Registers 5 VDDIO = 3.3V ƒ = 12.288 MHz Default Registers 5 RL = 100Ω WORST CASE Pattern (Figure 5) VDDn = 1.89V, VDDIO = 3.6V f = 50 MHz Default Registers 61 RL = 100Ω Random Pattern VDDn = 1.8V, VDDIO = 3.3V f = 24.576 MHz Default Registers 51 VDDn = 1.8V, VDDIO = 3.3V f = 12.288 MHz Default Registers 49 VDDIO = 1.89V Default Registers 300 1000 µA VDDIO = 3.6V Default Registers 300 1000 µA VDDIO = 1.89V Default Registers 15 100 µA VDDIO = 3.6V Default Registers 15 100 µA SUPPLY CURRENT, DIGITAL, PLL, AND ANALOG VDD IDDIOT Serializer (Tx) VDDIO Supply Current (includes load current) RL = 100Ω WORST CASE Pattern (Figure 5) RL = 100Ω Random Pattern IDDT IDDTZ IDDIOTZ 8 Serializer (Tx) VDDn Core Supply Current Serializer (Tx) Supply Current Power-down Serializer (Tx) VDDIO Supply Current Powerdown PDB = 0V; All other LVCMOS Inputs = 0V PDB = 0V; All other LVCMOS Inputs = 0V Submit Documentation Feedback mA 80 mA Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 ELECTRICAL CHARACTERISTICS: Recommended Timing for SCK Over recommended operating supply and temperature ranges unless otherwise specified. (1) (2) (3) (4) Symbol tTCP Parameter Transmit Clock Period Min Typ Max STP Cable Conditions SCK Pin 20 T 100 Coaxial Cable SCK 20 T 40 0.4 0.5 0.6 T 0.4 0.5 0.6 T 0.05 0.25 0.3 T tTCIH Transmit Clock Input High Time ƒ = 10 MHz – 50 MHz SCK tTCIL Transmit Clock Input Low Time ƒ = 10 MHz – 50 MHz SCK tCLKT SCK Input Transition Time ƒ = 10 MHz – 50 MHz (Figure 9) SCK tJIT0 SCK Input Jitter SCK (1) (2) (3) (4) Refer to Jitter freq>ƒ/40, ƒ = 10 MHz – 50 MHz Units 0.1 ns T The Electrical Characteristics tables list verified specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not verified. Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground except VOD, ΔVOD, VTH and VTL which are differential voltages. Typical values represent most likely parametric norms at 1.8V or 3.3V, TA = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not verified. Recommended Input Timing Requirements are input specifications and not tested in production. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 9 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com ELECTRICAL CHARACTERISTICS: Serializer Switching Characteristics Over recommended operating supply and temperature ranges unless otherwise specified. (1) (2) (3) Typ Max Units tLHT Symbol CML Low-to-High Transition Time Parameter RL = 100Ω (Figure 6) 150 330 ps tHLT CML High-to-Low Transition Time RL = 100Ω (Figure 6) 150 330 ps tDIS Data Input Setup to SCK tDIH Data Input Hold from SCK Serializer Data Inputs (Figure 10) tPLD Serializer PLL Lock Time tSD Serializer Delay tJIND (5) Serializer Output Deterministic Jitter Conditions RL = 100Ω Min 2 ns 2 ns (4) (5) , (Figure 11) RT = 100Ω Register 0x03h b[0] (TRFB = 1) (Figure 12) Serializer output intrinsic deterministic jitter . Measured (cycle-cycle) with PRBS-7 test pattern 11.75T 1 2 ms 13T 15T ns 0.13 UI 0.04 UI 0.396 UI (3) (6) tJINR tJINT Serializer Output Random Jitter Serializer output intrinsic random jitter (cycle-cycle). Alternating-1,0 pattern. Peak-to-peak Serializer Output Jitter Serializer output peak-to-peak jitter includes deterministic jitter, random jitter, and jitter transfer from Serializer input. Measured (cycle-cycle) with PRBS-7 test pattern. (3) (6) (3) (6) λSTXBW Serializer Jitter Transfer Function -3 dB Bandwidth (7) SCK = 50MHz 2.2 δSTX Serializer Jitter Transfer Function (Peaking) (7) SCK = 50MHz 1.16 δSTXf Serializer Jitter Transfer Function (Peaking Frequency) (7) SCK = 50MHz 600 (1) (2) (3) (4) (5) (6) (7) 10 MHz dB kHz The Electrical Characteristics tables list verified specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not verified. Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground except VOD, ΔVOD, VTH and VTL which are differential voltages. Typical values represent most likely parametric norms at 1.8V or 3.3V, TA = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not verified. tPLD and tDDLT is the time required by the Serializer and Deserializer to obtain lock when exiting power-down state with an active SCK. Specification is verified by design. UI – Unit Interval is equivalent to one ideal serialized data bit width. The UI scales with SCK frequency. Specification is by characterization and is not tested in production. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 BIDIRECTIONAL CONTROL BUS TIMING SPECIFICATIONS Bidirectional Control Bus: AC Timing Specifications (SCL, SDA) - I2C Compliant Over recommended supply and temperature ranges unless otherwise specified. (Figure 4) Symbol Parameter Conditions Min Typ Max Units Standard Mode 100 kHz Fast Mode 400 kHz Recommended Input Timing Requirements fSCL SCL Clock Frequency tLOW SCL Low Period Standard Mode 4.7 µs Fast Mode 1.3 µs Standard Mode 4.0 µs tHIGH SCL High Period Fast Mode 0.6 µs tHD:STA Hold time for a start or a repeated start condition Standard Mode 4.0 µs Fast Mode 0.6 µs tSU:STA Set Up time for a start or a repeated start condition Standard Mode 4.7 µs Fast Mode 0.6 tHD:DAT Data Hold Time tSU:DAT Data Set Up Time tSU:STO Set Up Time for STOP Condition tBUF Bus Free time between Stop and Start tr SCL & SDA Rise Time tf SCL & SDA Fall Time µs Standard Mode 0 3.45 µs Fast Mode 0 900 ns Standard Mode 250 Fast Mode 100 ns ns Standard Mode 4.0 µs Fast Mode 0.6 µs Standard Mode 4.7 µs Fast Mode 1.3 µs Standard Mode 1000 ns Fast Mode 300 ns Standard Mode 300 ns Fast Mode 300 ns Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 11 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com Bidirectional Control Bus: DC Timing Specifications (SCL, SDA) - I2C Compliant (1) Over recommended supply and temperature ranges unless otherwise specified. Symbol Parameter Conditions Min Typ Max Units VDDIO V Recommended Input Timing Requirements VIH Input High Level SDA and SCL 0.7*VDDIO VIL Input Low Level SDA and SCL GND VHY Input Hysteresis VOL Output Low Level SDA, IOL=0.5mA IIN Input Current SDA or SCL, VIN=VDDIO OR GND tR SDA Rise Time-READ 430 ns tF SDA Fall Time-READ SDA, RPU = 10kΩ, Cb ≤ 400pF(Figure 4) 20 ns tSU;DAT (Figure 4) 560 ns tHD;DAT (Figure 4) 615 ns tSP CIN (1) 12 0.3*VDDIO >50 SDA or SCL 0 -10 V mV 0.4 V 10 µA 50 ns <5 pF Specification is verified by design. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 TIMING AND CIRCUIT DIAGRAMS SDA tf tHD;STA tLOW tBUF tr tf tr SCL tSU;STA tHD;STA tHIGH tSU;STO tSU;DAT tHD;DAT START STOP REPEATED START START Figure 4. Bidirectional Control Bus Timing T SCK (RFB = H) DIN[7:0] Figure 5. "Worst Case" Test Pattern 80% Vdiff 80% 20% Vdiff = 0V 20% tLHT tHLT Vdiff = (DOUT+) - (DOUT-) Figure 6. Serializer CML Output Transition Times 0.1 µF DOUT+ 50Q ZDiff = 100Q SCOPE BW 8 4.0 GHz 100Q 50Q DOUT- 0.1 µF Figure 7. Serializer CML Output Load Single-Ended § DOUTV V VOD OD+ VOS OD- DOUT+ Differential V OD+ (DOUT+) - (DOUT-) 0V V OD- Figure 8. Serializer VOD and Differential Diagram Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 13 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com 80% VDD 80% SCK 20% 20% tCLKT 0V tCLKT Figure 9. Serializer Input Clock Transition Times tTCP SCK VDDIO/2 tDIS VDDIO/2 VDDIO/2 tDIH VDDIO DIN[7:0] VDDIO/2 Setup Hold VDDIO/2 0V Figure 10. Serializer Setup/Hold Times PDB VDDIO/2 SCK tPLD DOUT± Output Active TRI-STATE TRI-STATE SYMBOL N+2 SYMBOL N+3 § § SYMBOL N+1 § § SYMBOL N § § DIN[7:0] § § Figure 11. Serializer PLL Lock Time tSD VDDIO/2 SYMBOL N-2 SYMBOL N-1 § § § § SYMBOL N 0V § § SYMBOL N-3 § § § § § § SYMBOL N-4 DOUT± § § SCK Figure 12. Serializer Delay Ew VOD (+) EH 0V EH VOD (-) tBIT (1 UI) Figure 13. CML Output Driver 14 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 DS90UA101-Q1 REGISTER INFORMATION The table below contains information on the DS90UA101-Q1 control registers. These registers are accessible locally via the I2C control interface, or remotely via the Bidirectional Control Channel. Addresses not listed are reserved. Fields listed as reserved should not be changed from the listed default value. Addr (Hex) Name Bits Field R/W Default (Hex) 0x00 I2C Device ID 7:1 DEVICE ID RW 0xB0 0 SER ID SEL RW 7 RSVD 6 RDS RW Digital output drive strength. 1: High drive strength. 0: Low drive strength. 5 VDDIO Control RW Auto voltage control. 1: Enable (auto-detect mode). 0: Disable. 4 VDDIO Mode RW VDDIO voltage set. 1: Sets VDDIO mode to 3.3V. 0: Sets VDDIO mode to 1.8V. 3 ANAPWDN RW This register can be set only through local I2C access. 1: Analog power-down: Powers down the analog block in the Serializer. 0: Analog power-up: Powers up the analog block in the Serializer. 2 RSVD 1 Digital Reset 1 RW 1: Resets the digital block except for register values. This bit is self-clearing. 0: Normal operation. 0 Digital Reset 0 RW 1: Resets the entire digital block including all register values. This bit is self-clearing. 0: Normal operation. 0x01 Power and Reset Description 7-bit address of Serializer. 0x58'h (0101_100X'b) default. 0: Serializer DEVICE ID is from IDx. 1: Register I2C DEVICE ID overrides IDx. 0x30 Reserved. Reserved. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 15 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 Addr (Hex) 0x03 0x06 16 www.ti.com Bits Field General Configuration 7 RX CRC Checker RW Enable 6 TX Parity RW Generator Enable Forward channel Parity Generator enable. 1: Enable. 0: Disable. 5 CRC Error Reset Clear CRC error counters. This bit is NOT self-clearing. 1: Clear counters. 0: Normal operation. 4 I2C Remote Write RW Auto Acknowledge Automatically acknowledge I2C remote writes. This mode should only be used when the system is LOCKED. 1: Enable: When enabled, I2C writes to the Deserializer (or any remote I2C slave, if I2C Pass All is enabled) are immediately acknowledged without waiting for the Deserializer to acknowledge the write. The accesses are then remapped to the address specified in 0x06. 0: Disable. 3 I2C Pass All RW Pass-through all I2C transactions. For an explanation of I2C pass-through, refer to I2C Pass-Through and Multiple Device Addressing. 1: Enable pass-through of all I2C accesses to I2C IDs that do not match the Serializer I2C ID. The I2C accesses are then remapped to the address specified in register 0x06. 0: Enable pass-through only of I2C accesses to I2C IDs matching either the remote Deserializer I2C ID or the remote slave I2C ID. 2 I2C Pass-Through RW I2C pass-through mode. 1: Pass-through enabled. Refer to I2C Pass-Through and Multiple Device Addressing. 0: Pass-through disabled. 1 RSVD RW Reserved. 0 TRFB RW SCK clock edge select. 1: Parallel interface data is strobed on the rising clock edge. 0: Parallel interface data is strobed on the falling clock edge. 7:1 Deserializer Device ID RW This field stores the 7-bit I2C address of the remote Deserializer. If an I2C transaction (originating from the Serializer side) is addressed to DES Alias, the transaction will be remapped to this address before it is passed across the Bidirectional Control Channel to the remote Deserializer. This field is automatically configured by the Bidirectional Control Channel once RX LOCK has been detected. Software may overwrite this value, but the Freeze Device ID bit should also be asserted to prevent overwriting by the Bidirectional Control Channel. A value of 0 in this field disables I2C access to the remote Deserializer. Refer to I2C Pass-Through and Multiple Device Addressing. 0 Freeze Device ID RW Freeze Deserializer Device ID. 1: Prevents auto-loading of the Deserializer Device ID from the back channel. The ID will be frozen at the value written. 0: Allows auto-loading of the Deserializer Device ID from the back channel. DES ID R/W Default (Hex) Name RW 0xC5 Description Back channel CRC Checker enable. 1:Enable. 0:Disable. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 Addr (Hex) Name Bits Field R/W Default (Hex) 0x07 DES Alias 7:1 Deserializer Alias ID RW 0x00 0 RSVD 0x08 Slave ID 7:1 Slave ID RW 0x00 0 RSVD 7:1 Slave Alias ID Description This field stores a 7-bit I2C address. Once set, it configures the Serializer to accept any transaction designated for the I2C address stored in this field. The transaction will then be remapped to the I2C address specified in the DES ID register. A value of 0 in this field disables I2C access to the remote Deserializer. Refer to I2C Pass-Through and Multiple Device Addressing. Reserved. This field stores the 7-bit I2C address of the remote slave attached to the remote Deserializer. If an I2C transaction (originating from the Serializer side) is addressed to Slave Alias, the transaction will be remapped to this address before it is passed across the Bidirectional Control Channel to the remote Deserializer, where it is then passed to the remote slave. A value of 0 in this field disables I2C access to the remote slave. Refer to I2C Pass-Through and Multiple Device Addressing. Reserved. RW 0x00 This field stores a 7-bit I2C address. Once set, it configures the Serializer to accept any transaction designated for the I2C address stored in this field. The transaction will then be remapped to the I2C address specified in the Slave ID register. A value of 0 in this field disables I2C access to the remote slave. Refer to I2C Pass-Through and Multiple Device Addressing. 0x09 Slave Alias 0 RSVD 0x0A CRC Errors 7:0 CRC Error Byte 0 R 0x00 Number of back-channel CRC errors during normal operation. Least significant byte. 0x0B CRC Errors 7:0 CRC Error Byte 1 R 0x00 Number of back-channel CRC errors during normal operation. Most significant byte. 0x0C General Status 7:5 Rev-ID R Revision ID. 0x00: Production. 4 RX Lock Detect R 1: RX LOCKED. 0: RX not LOCKED. 3 BIST CRC Error Status R 1: CRC errors in BIST mode. 0: No CRC errors in BIST mode. 2 SCK Detect R 1: Valid SCK detected. 0: Valid SCK not detected. 1 DES Error R 1: CRC error is detected during communication with the Deserializer. This bit is cleared upon loss of link or assertion of CRC Error Reset bit in register 0x03[5]. 0: No errors detected. 0 Link Detect R 1: Cable link detected. 0: Cable link not detected. This includes any of the following faults: — Cable open. — '+' and '-' shorted. — Short to GND. — Short to battery. Reserved. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 17 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 Addr (Hex) 0x0D 0x0E 18 www.ti.com Name Bits Field R/W Default (Hex) GPO3 and GPO2 Configuration 7 GPO2 Output Value RW 0x55 6 GPO2 Remote Enable RW Remote GPO2 control: 1: Enable GPO2 control from the remote Deserializer. The GPO2 pin needs to be an output, and the value is received from the remote Deserializer. 0: Disable GPO2 control from the remote Deserializer. 5 GPO2 Direction RW Local GPO2 direction: 1: Input. 0: Output. 4 GPO2 Enable RW GPO2 enable: 1: Enable GPO2 operation. 0: TRI-STATE. 3 GPO3 Output Value RW Local GPO3 Output Value. This value is output on the GPO3 pin when GPO3 is enabled, the local GPO3 direction is set to output, and remote GPO3 control is disabled. 2 GPO3 Remote Enable RW Remote GPO3 control: 1: Enable GPO3 control from the remote Deserializer. The GPO3 pin needs to be an output, and the value is received from the remote Deserializer. 0: Disable GPO3 control from the remote Deserializer. 1 GPO3 Direction RW Local GPO3 direction: 1: Input. 0: Output. 0 GPO3 Enable RW GPO3 enable: 1: Enable GPO3 operation. 0: TRI-STATE. 7 GPO0 Output Value RW 6 GPO0 Remote Enable RW Remote GPO0 control: 1: Enable GPO0 control from the remote Deserializer. The GPO0 pin needs to be an output, and the value is received from the remote Deserializer. 0: Disable GPO0 control from the remote Deserializer. 5 GPO0 Direction RW Local GPO0 direction: 1: Input. 0: Output. 4 GPO0 Enable RW GPO0 enable: 1: Enable GPO0 operation. 0: TRI-STATE. 3 GPO1 Output Value RW Local GPO1 Output Value. This value is output on the GPO1 pin when GPO1 is enabled, the local GPO1 direction is set to output, and remote GPO1 control is disabled. 2 GPO1 Remote Enable RW Remote GPO1 control: 1: Enable GPO1 control from the remote Deserializer. The GPO1 pin needs to be an output, and the value is received from the remote Deserializer. 0: Disable GPO1 control from the remote Deserializer. 1 GPO1 Direction RW Local GPO1 direction: 1: Input. 0: Output. 0 GPO1 Enable RW GPO1 enable: 1: Enable GPO1 operation. 0: TRI-STATE. GPO1 and GPO0 Configuration 0x35 Description Local GPO2 Output Value. This value is output on the GPO2 pin when GPO2 is enabled, the local GPO2 direction is set to output, and remote GPO2 control is disabled. Local GPO0 Output Value. This value is output on the GPO0 pin when GPO0 is enabled, the local GPO0 direction is set to output, and remote GPO0 control is disabled. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 Addr (Hex) Name 0x0F I2C Master Config 7:5 0x10 I2C Control Bits Field R/W RSVD Default (Hex) 0x00 Description Reserved. 4:3 SDA Output Delay RW SDA output delay. This field configures the output delay on the SDA output. Setting this value will increase the output delay in units of 50ns. Nominal output delay values for SCL to SDA are: 00: 350 ns 01: 400 ns 10: 450 ns 11: 500 ns 2 Local Write Disable RW Disable remote writes to local registers. Setting this bit to 1 will prevent remote writes to local device registers from across the control channel. This prevents writes to the Serializer registers from an I2C Master attached to the Deserializer. Setting this bit does not affect remote access to I2C slaves at the Serializer. 1 I2C Bus Timer Speed Up RW Speed up I2C bus Watchdog Timer. 1: Watchdog Timer expires after approximately 50 microseconds. 0: Watchdog Timer expires after approximately 1 second. 0 I2C Bus Timer Disable RW The I2C Watchdog Timer may be used to detect when the I2C bus is free or hung up following an invalid termination of a transaction. If SDA is high and no signaling occurs for approximately 1 second, the I2C bus is assumed to be free. If SDA is low and no signaling occurs, the device will attempt to clear the bus by driving 9 clocks on SCL. 1. Disable the I2C bus Watchdog Timer. 0: Enable the I2C bus Watchdog Timer. 7 RSVD 0x17 2 Reserved. 6:4 I C SDA Hold Time RW Internal SDA hold time. This field configures the amount of internal hold time provided for the SDA input relative to the SCL input. Units are 50ns. 3:0 I2C Filter Depth RW I2C glitch filter depth. This field configures the maximum width of glitch pulses on the SCL and SDA inputs that will be rejected. Units are 10 ns. 0x11 SCL High Time 7:0 SCL High Time RW 0x82 I2C Master SCL high time. This field configures the high pulse width of the SCL output when the Serializer is the Master on the local I2C bus. Units are 50 ns for the nominal oscillator clock frequency. The default value is set to satisfy a minimum (4µs + 1µs of rise time for cases where rise time is very fast) SCL high time with the internal oscillator clock running at 26 MHz rather than the nominal 20MHz. 0x12 SCL Low Time 7:0 SCL Low Time RW 0x82 I2C Master SCL low time. This field configures the low pulse width of the SCL output when the Serializer is the Master on the local I2C bus. This value is also used as the SDA setup time by the I2C slave for providing data prior to releasing SCL during accesses over the Bidirectional Control Channel. Units are 50 ns for the nominal oscillator clock frequency. The default value is set to satisfy a minimum (4.7µs + 0.3µs of fall time for cases where fall time is very fast) SCL low time with the internal oscillator clock running at 26 MHz rather than the nominal 20MHz. 0x13 General Purpose Control 7:0 GPCR[7:0] RW 0x00 Scratch register. Used to write and read 8 bits. 0x14 BIST Control 7:3 RSVD 0x00 Reserved. Clock Source RW Allows the choosing of different internal oscillator clock frequencies for forward channel frame. The internal oscillator clock frequency is used when SCK is idle or missing. See Table 1 for these settings. RSVD RW Reserved. 2:1 0 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 19 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 Addr (Hex) 0x1E 0x2A 20 www.ti.com Name Bits Field BCC Watchdog Control 7:1 BCC Watchdog Timer RW 0 BCC Watchdog Timer Disable RW 7:0 BIST Mode CRC Errors Count R CRC Errors R/W Default (Hex) 0xFE Description The BCC Watchdog Timer allows termination of a control channel transaction if it fails to complete within a programmed amount of time. This field sets the Bidirectional Control Channel Watchdog timeout value in units of 2ms. This field should not be set to 0. Bidirectional Control Channel Watchdog Timer enable. 1: Disables BCC Watchdog Timer operation. 0: Enables BCC Watchdog Timer operation. 0x00 Number of CRC errors in the back channel when in BIST mode. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 FUNCTIONAL DESCRIPTION The DS90UA101-Q1/DS90UA102-Q1 chipset is intended to link digital audio sources with remote audio converters and DSPs. The chipset can operate from a reference clock of 10 MHz to 50 MHz. The DS90UA101Q1 device serializes up to 8 audio inputs and 4 general purpose inputs, along with a bidirectional control channel, into a single high-speed differential pair or single-ended coaxial cable. The high-speed serial bit stream contains an embedded clock and DC-balanced information to enhance signal quality and support AC coupling. The DS90UA102-Q1 device receives the single serial data stream and converts it back to digital audio outputs, control channel data, and general purpose outputs (GPOs). The DS90UA101-Q1/DS90UA102-Q1 chipset can accept up to 8 audio data inputs, bit clock (BCK), word clock (LRCK), and an input reference clock (SCK) ranging from 10 MHz to 50 MHz. The control channel function of the chipset provides bidirectional communication between the two ends of the link, such as a digital signal processor (DSP) on one end and an audio digital-analog converter (DAC) on the other. The integrated Bidirectional Control Channel transfers data bidirectionally over the same differential pair used for audio data interface. This interface offers advantages over other chipsets by eliminating the need for additional wires for programming and control. The Bidirectional Control Channel bus is controlled via an I2C port, available on both the Serializer and Deserializer. Transmission Media The DS90UA101-Q1/DS90UA102-Q1 chipset is intended to be used in a point-to-point data link through a shielded twisted pair (STP) or coaxial (coax) cable. The Serializer and Deserializer provide internal termination to minimize impedance discontinuities. The interconnect (cable and connectors) should have a differential impedance of 100Ω, or a single-ended impedance of 50Ω. The maximum length of cable that can be used is dependent on the quality of the cable (gauge, impedance), connector, board (discontinuities, power plane), and the electrical environment (e.g power stability, ground noise, input clock jitter, SCK frequency, etc). The resulting signal quality at the receiving end of the transmission media may be assessed by monitoring the differential eye opening of the serial data stream. This can be done by measuring the output of the CMLOUTP/N pins. These pins should each be terminated with a 0.1 µF capacitor in series with a 50Ω resistor to GND. Figure 13 illustrates the minimum eye width and eye height that is necessary for bit error free operation. Operation with Audio System Clock as Reference Clock The DS90UA101-Q1/DS90UA102-Q1 chipset is operated using the audio system clock (SCK) from the digital audio source. The audio data, LRCK, and BCK inputs are clocked into the Serializer using SCK. Up to 4 GPI inputs are also sampled and transported along with the digital audio inputs. Figure 14 shows the operation of the Serializer and Deserializer with the reference clock. Serializer Deserializer Forward Channel DOUT+ RIN+ DOUT[7:0] DIN[7:0] LRCK LRCK DOUT- BCK Bidirectional Control Channel SDA DSP BCK RIN- SCL SCK GPI[3:0] GPO[3:0] GPO[3:0] GPIO[3:0] SCK DAC SDA PLL SCL REF Figure 14. Operation with SCK Reference Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 21 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com The Serializer switches over to an internal reference clock when SCK is idle or missing. This frequency is selectable via the device control registers, as shown below (Table 1). Table 1. Internal Oscillator Frequencies for Forward Channel Frame during Normal Operation DS90UA101-Q1 Reg 0x14 [2:1] Frequency (MHz) 00 ~25 01 ~50 10 ~25 11 ~12.5 SET Pin on Serializer The SET pin on the Serializer sets the internal configuration of the part for audio sources with SCK in the range of 10 MHz to 50MHz. It requires a 10 kΩ pull-up resistor to 1.8V, and a 100 kΩ pull-down resistor to GND. The recommended resistor tolerance is 1% (Figure 15). 1.8V 10kQ SET 100kQ Serializer Figure 15. SET Pin configuration on DS90UA101-Q1 Line Rate Calculations for the DS90UA101-Q1/DS90UA102-Q1 The following formula is used to calculate the line rate for the DS90UA101-Q1/DS90UA102-Q1 chipset: • Line rate = ƒSCK * 28 Serial Frame Format For example, for maximum line rate, ƒSCK = 50 MHz, line rate = 50 * 28 = 1.4 Gbps. The high-speed forward channel is composed of 28 bits of data containing digital audio data, sync signals, I2C and parity bits. This data payload is optimized for signal transmission over an AC-coupled link. Data is randomized, balanced and scrambled. The Bidirectional Control Channel data is transferred over the single serial link along with the high-speed forward data. This architecture provides a full duplex, low-speed control path across the serial link together with the high speed forward channel. Serial Audio Formats There are several de-facto industry standards or formats that define the required alignments and signal polarities between the left/right clock (LRCK), bit clock (BCK), and the serial audio data. Hence, this section is dedicated to discussing various serial audio formats. I2S Format An I2S bus uses three signal lines for data transfer – a frame or word clock (LRCK), a bit clock (BCK), and a single or multiple data lines. The device which generates the appropriate BCK and LRCK signals on the bus is called Master, whereas other devices which accept BCK and LRCK as inputs are all slaves. 22 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 Bit Clock (BCK) The bit clock pulses once for each discrete bit of data on the data lines. The bit clock frequency must be greater than or equal to the product of the sample rate, the number of bits per sample and the number of channels (which is 2 in normal stereo operation). Word Select (LRCK) The word select line indicates the channel being transmitted: • LRCK = 0; channel 1 (left); • LRCK = 1; channel 2 (right). The LRCK line changes one clock period before the MSB is transmitted (Figure 16). This allows the slave transmitter to derive synchronous timing of the serial data that will be set up for transmission. Furthermore, it enables the receiver to store the previous word and clear the input for the next word. Serial Data (DATA) Serial data is transmitted in two’s complement with the MSB first (as shown in Figure 16). The MSB is transmitted first because the transmitter and receiver may have different word lengths. If the receiver is sent more bits than its word length, the bits after the LSB are ignored. On the other hand, if the receiver is sent fewer bits than its word length, the missing bits are set to zero internally. And so, the MSB has a fixed position, whereas the position of the LSB depends on the word length. Serial data sent by the transmitter may be synchronized with either the trailing (HIGH-to-LOW) or the leading (LOW-to-HIGH) edge of the clock signal. However, the serial data must be latched into the receiver on the leading edge of the serial clock signal, and so there are some restrictions when transmitting data that is synchronized with the leading edge. LEFT Channel Data LRCK RIGHT Channel Data BCK DIN 2 MSB 1 0 2 LSB MSB 1 0 LSB 2 Figure 16. Stereo I S Format Left Justified Format In this format, MSB of the word appears in synchronization with the LRCK edges. Unlike in I2S mode, there is no lag between Data and LRCK. Left channel data word begins at falling edge of LRCK and right channel data word begins on rising edge of the LRCK signal. Hence, as can be seen from below waveforms (Figure 17), data appears to be left justified. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 23 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com RIGHT Channel Data LRCK LEFT Channel Data BCK DIN 2 MSB 1 0 2 LSB MSB 1 0 N LSB Figure 17. Left-Justified Format Right Justified Format In this format, LSB of the word appears just before the LRCK edges. Left channel data word may begin at any point depending upon the word length, but LSB of this data word must appear just before the rising edge of the LRCK signal. Similarly, LSB of the right channel data word must appear just before falling edge of the LRCK signal. Hence, as can be seen from below waveforms (Figure 18), data appears to be right justified. LRCK RIGHT Channel Data LEFT Channel Data BCK DIN 0 2 MSB 1 0 LSB 2 MSB 1 0 LSB Figure 18. Right-Justified Format TDM Format There are no well defined rules for TDM format and it can be implemented in large number of ways depending upon the word length, bit clock, number of channels to be multiplexed, etc. For example, let’s assume that word clock signal (LRCK) period = 256 * bit clock (BCK) time period. In this case, we can multiplex 4 channels with maximum word length of 64 bits each, or 8 channels with maximum word length of 32 bits each. Figure 19 illustrates the multiplexing of 8 channels with 24 bit word length, in a format similar to I2S. Pulse width of LRCK can be used to define a clock period for BCK or to define a slot period, i.e., the period for which individual channel can be active on the shared data line. If the number of audio channels is more than 8, DS90UA101-Q1/DS90UA102-Q1 can easily support multiplexed data with additional devices to multiplex and de-multiplex the data. The number of channels multiplexed on each data line must be selected as a power of 2, for example, 2/ 4/ 8. 24 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 t1/fS (256 BCKs at Single Rate, 128 BCKs at Dual Rate)t LRCK BCK I2S Mode DIN1 (Single) Ch 1 t32 BCKst Ch 2 t32 BCKst Ch 3 t32 BCKst Ch 4 t32 BCKst Ch 5 t32 BCKst Ch 6 t32 BCKst Ch 7 t32 BCKst Ch 8 t32 BCKst 23 22 23 22 23 22 23 22 23 22 23 22 23 22 23 22 0 0 0 0 0 0 0 0 23 22 Figure 19. TDM Format Error Detection The chipset provides error detection operations for validating data integrity in long distance transmission and reception. The data error detection function offers users flexibility and usability of performing bit-by-bit data transmission error checking. The error detection operating modes support data validation of the following signals: • Bidirectional Control Channel data across the serial link • Parallel audio/sync data across the serial link The chipset provides 1 parity bit on the forward channel and 4 CRC bits on the back channel for error detection purposes. The DS90UA101-Q1/DS90UA102-Q1 chipset checks the forward and back channel serial links for errors and stores the number of detected errors in two 8-bit registers in the Serializer and the Deserializer, respectively. To check parity errors on the forward channel, monitor registers 0x1A and 0x1B on the Deserializer. If there is a loss of LOCK, then the counters on registers 0x1A and 0x1B are reset. Whenever there is a parity error on the forward channel, the PASS pin will go low momentarily. To check CRC errors on the back-channel, monitor registers 0x0A and 0x0B on the Serializer. Bidirectional Control Bus and I2C S Register Address Slave Address 7-bit Address Bus Activity: Slave S 0 A C K N A C K Slave Address 7-bit Address A C K Stop SDA Line Start Bus Activity: Master Start The I2C compatible interface allows programming of the Serializer, Deserializer, or an external remote device through the Bidirectional Control Channel. For example, an audio module connected to the Deserializer can communicate with the ADC connected to the Serializer using the Bidirectional Control Channel. Register programming transactions to/from the chipset are employed through the clock (SCL) and data (SDA) lines. These two signals have open drain I/Os and both lines must be pulled-up to VDDIO by an external resistor. Pull-up resistors or current sources are required on the SCL and SDA busses to pull them high when they are not being driven low. A logic LOW is transmitted by driving the output low. Logic HIGH is transmitted by releasing the output and allowing it to be pulled-up externally. The appropriate pull-up resistor values will depend upon the total bus capacitance and operating speed. The DS90UA101-Q1/DS90UA102-Q1 I2C bus data rate supports up to 400 kbps according to I2C fast mode specifications. Figure 20, Figure 21, Figure 22, Figure 23 show I2C waveforms of read/write bytes, basic operation, and start/stop conditions. P 1 A C K Data Figure 20. Read Byte Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 25 DS90UA101-Q1 SDA Line S www.ti.com Register Address Slave Address 7-bit Address Data P 0 A C K A C K A C K Bus Activity: Slave Stop Bus Activity: Master Start SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 Figure 21. Write Byte SDA 1 2 6 MSB LSB R/W Direction Bit Acknowledge from the Device 7-bit Slave Address SCL ACK LSB MSB 7 8 9 Data Byte *Acknowledge or Not-ACK 1 8 2 Repeated for the Lower Data Byte and Additional Data Transfers START N/ACK 9 STOP Figure 22. Basic Operation SDA SCL S P START condition, or START repeat condition STOP condition Figure 23. Start and Stop Conditions IDx Address Decoder on the Serializer The IDx pin (Figure 24) on the Serializer is used to decode and set the I2C address of the Serializer. There are 6 possible I2C addresses that can be set on the Serializer. The pin must be pulled to VDD (1.8V, not VDDIO) with a 10 kΩ resistor and a pull down resistor RID) of the recommended value to set the I2C address of the Serializer (Table 2). The recommended maximum resistor tolerance is 1%. 26 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 1.8V 10kQ VDDIO IDx RPU RPU RID HOST Serializer SCL SCL SDA SDA To other Devices Figure 24. IDx Address Select Table 2. IDx Recommended Resistor Values IDx Resistor Value Resistor RID (kΩ) (1% Tolerance) 7-Bit Address 8-Bit Address (0 appended) 0 0x58 0xB0 2 0x59 0xB2 4.7 0x5A 0xB4 8.2 0x5B 0xB6 14 0x5C 0xB8 100 0x5D 0xBA Note: The I2C address of the Serializer can also be set using 0x00[7:1] once 0x00[0] is set to 1. I2C Pass-Through I2C pass-through is the feature that provides a way to access remote devices at the other end of the serial interface. For example, when the I2C Master is connected to the Deserializer and I2C pass-through is enabled on the Deserializer, any I2C traffic targeted for the remote Serializer or remote slave will be allowed to pass through the Deserializer to reach those respective devices. See Figure 25 for an example of this function: • If Master (DSP) transmits an I2C transaction for SER A, then DES A with I2C pass-through enabled will transfer that I2C command to SER A. Responses from SER A will travel from SER A --> DES A --> DSP. • If Master transmits an I2C transaction for address 0xA0, then DES A with I2C pass-through enabled will transfer that I2C command to SER A, which will then transfer it to remote slave Device A. Responses from Device A will travel from Device A --> SER A --> DES A --> DSP. • As for DES B with I2C pass-through disabled, any I2C commands for SER B or Device B will NOT be passed on the I2C bus to SER B/Device B. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 27 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com Serializer A Digital Audio Source DIN[7:0], BCK,LRCK SCK SDA SCL Device A Remote Slave ID: (0xA0) DOUT[7:0], BCK,LRCK, SCK I2C SER A: Remote I2C Master Proxy Serializer B Digital Audio Source Deserializer A I2C DES A: Local I2C Slave Pass-Through Enabled Device B Remote Slave ID: (0xA0) DSP Deserializer B DIN[7:0], BCK,LRCK SCK SDA SCL SDA SCL DOUT[7:0], BCK,LRCK, SCK I2C SER B: Remote I2C Master Proxy I2C SDA SCL DES B: Local I2C Slave Pass-Through Disabled Master Figure 25. I2C Pass-Through To setup I2C pass-through on the Serializer, set 0x03[2] = 1 and configure registers 0x06, 0x07, 0x08, and 0x09 as needed (Deserializer I2C ID, Deserializer Alias ID, remote slave I2C ID, remote slave Alias ID, respectively). Refer to Multiple Device Addressing for information about Alias IDs and refer to DS90UA101-Q1 REGISTER INFORMATION for information to set these registers. To communicate with the remote Deserializer from the Serializer side, registers 0x06 and 0x07 must be configured (register 0x06 is auto-loaded by default if there is LOCK). To communicate with the remote slave connected to the remote Deserializer, configure registers 0x08 and 0x09. To setup I2C pass-through on the Deserializer, set 0x03[3] = 1 and configure registers 0x06 - 0x17 as needed. To communicate with the remote Serializer from the Deserializer side, registers 0x06 and 0x07 must be configured (register 0x06 is auto-loaded by default if there is LOCK). To communicate with one or more remote slaves connected to the remote Serializer, configure 0x08 - 0x17 accordingly. Multiple Device Addressing Some applications require multiple devices with the same fixed address to be accessed on the same I2C bus. The DS90UA101-Q1/DS90UA102-Q1 provides slave ID aliasing to generate different target slave addresses when connecting two or more identical devices remotely. Instead of addressing their actual I2C addresses, each remote device can be addressed through a unique alias ID by programming the Slave Alias ID register on the Serializer/Deserializer. By addressing the Slave Alias IDs, I2C slaves with identical, fixed addresses can now be addressed independently. On the DS90UA101-Q1, up to 1 Slave Alias ID index is supported. On the DS90UA102-Q1, up to 8 Slave Alias IDs can be supported. The Audio Module/DSP (I2C Master) must keep track of the alias list in order to properly address the correct device. Refer to Figure 26 for an example of this function: • There is a local I2C bus between Audio Module, DES A, and DES B. Audio Module is the I2C Master, and DES A and DES B are I2C slaves. • The I2C protocol is bridged from DES A to SER A and from DES B to SER B. SER A is the master of its own local I2C bus, and Source A and its µC/EEPROM are slaves on this bus. SER B is also the master of its local I2C bus, and Source B and its µC/EEPROM are the slaves. • Audio Module can now address remote slaves connected to SER A and SER B independently. • Case 1: If Audio Module transmits to I2C slave 0xA0, DES A (address 0xC0) will forward the transaction to SER A, which then forwards it to remote slave Source A. Responses from Source A will travel from Source A --> SER A --> DES A --> Audio Module. • Case 2: If Audio Module transmits to slave address 0xA4, DES B (address 0xC2) will recognize that 0xA4 is mapped to 0xA0 and will transmit the command to SER B, which then forwards it to remote slave Source B. 28 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com • SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 Responses from Source B will travel from Source B --> SER B --> DES B --> Audio Module. Case 3: If Audio Module sends command to address 0xA6, DES B (address 0xC2) will forward the transaction to SER B, which then forwards it to Source B's µC/EEPROM. Responses from Source B's µC/EEPROM will travel from Source B's µC/EEPROM --> SER B --> DES B --> Audio Module. Source A Serializer A Slave ID: (0xA0) Digital Audio Source DIN[7:0], BCK, LRCK, SCK DOUT[7:0], BCK, LRCK, SCK 2 SDA SCL I C SER A: ID[x] (0xB0) PC/ EEPROM Slave ID: (0xA2) Source B Serializer B Slave ID: (0xA0) Digital Audio Source Deserializer A DES A: ID[x] (0xC0) SLAVE ID0 (0xA0) SLAVE ALIAS ID0 (0xA0) SLAVE ID1 (0xA2) SLAVE ALIAS ID1 (0xA2) PC/ EEPROM Slave ID: (0xA2) Audio Module Deserializer B DOUT[7:0], BCK, LRCK, SCK DIN[7:0], BCK, LRCK, SCK SDA SCL SDA SCL 2 I C 2 I C SER B: ID[x] (0xB2) 2 I C SDA SCL DES B: ID[x] (0xC2) SLAVE ID0 (0xA0) SLAVE ALIAS ID0 (0xA4) SLAVE ID1 (0xA2) SLAVE ALIAS ID1 (0xA6) DSP Master Figure 26. Multiple Device Addressing NOTE The alias ID must be set in order to communicate with any remote device. For example: • When there is only one SER/DES pair and no remote slaves: if I2C Master on the DES side wants to communicate with the remote SER, I2C pass-through must be enabled on the DES and the SER Alias ID must also be set before the I2C Master can communicate with the remote SER (the SER ID is automatically configured by default if there is LOCK). • When there is only one SER/DES pair and one remote slave connected to the SER: if I2C Master on the DES side (with pass-through enabled) wants to communicate with the remote slave, the Slave ID and Slave Alias ID must be set before the I2C Master can communicate with the remote slave, even if there is only one remote slave. Slave Clock Stretching To communicate and synchronize with remote devices on the I2C bus through the Bidirectional Control Channel, the chipset utilizes bus clock stretching (holding the SCL line low) during data transmission. On the 9th clock of every I2C transfer (before the ACK signal), the local I2C slave pulls the SCL line low until a response is received from the remote I2C bus located on the other end of the serial interface. The slave device will not control the clock and only stretches it until the remote peripheral has responded. The I2C Master must support slave clock stretching in order to communicate with remote devices. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 29 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com General Purpose Inputs, Outputs (GPIs, GPOs, GPIOs) Descriptions There are 4 dedicated general purpose inputs (GPIs) on the DS90UA101-Q1 and 4 dedicated general purpose outputs (GPOs) on the DS90UA102-Q1. Inputs to the GPI pins on the Serializer are fed to the GPO outputs on the Deserializer. The maximum GPI data rate is defined by the SCK source (up to 50 Mbps). In addition, there are also 4 GPOs on the DS90UA101-Q1 and 4 GPIOs on the DS90UA102-Q1. The GPOs on the Serializer can be configured as outputs for the input signals that are fed into the Deserializer GPIOs. The GPIO maximum data rate is up to 66 kbps when configured for communication between Deserializer GPIO to Serializer GPO. Both the GPOs on the Serializer and GPIOs on the Deserializer can also behave as outputs whose values are set from local registers. LVCMOS VDDIO Option 1.8V/3.3V Serializer inputs are user configurable to provide compatibility with 1.8V and 3.3V system interfaces. Power Up Requirements and PDB Pin The Serializer is active when the PDB pin is driven HIGH. Driving the PDB pin LOW powers down the device and clears all control register configurations to default values. The PDB pin must be held low until the power supplies (VDDn and VDDIO) have settled to the recommended operating voltage. This can be done by driving PDB externally, or an RC network can be connected to the PDB pin to ensure PDB arrives after all the power supplies have stabilized. Powerdown The PDB pin's function on the Serializer is to ENABLE or powerdown the device. This pin can be controlled by the system and can be used to disable the SER to save power. If PDB = HIGH, the SER will lock to the valid input SCK and transmit data to the DES by sending a serial stream at 28 times the SCK frequency. If SCK is idle or missing, the SER will output a serial stream based on its internal oscillator frequency (Table 1). When PDB = LOW, the high-speed driver outputs are static HIGH. SCK Clock Edge Select (TRFB) The TRFB selects which edge of the input clock is used to latch input data. If TRFB register is 1, data is latched on the rising edge of the SCK. If TRFB register is 0, data is latched on the falling edge of the SCK. SCK DIN TRFB: 0 TRFB: 1 Figure 27. Programmable SCK Strobe Select Built In Self Test (BIST) An optional at-speed built in self test (BIST) feature supports the testing of the high speed serial link and lowspeed back channel. This is useful in the prototype stage, equipment production, and in-system test and also for system diagnostics. BIST Configuration and Status The DS90UA101-Q1/DS90UA102-Q1 chipset can be programmed into BIST mode using either pins or registers. By default BIST configuration is controlled through pins on the DS90UA102-Q1. BIST can also be configured via registers using BIST Control Register 0x24 on the DS90UA102-Q1. Pin based configuration is defined as follows: • BISTEN (on DS90UA102-Q1) = HIGH: Enable the BIST mode, BISTEN = LOW: Disable the BIST mode. • GPIO3 and GPIO2 of DS90UA102-Q1: Defines the BIST clock source (SCK vs. various internal oscillator frequencies). See Table 3 below. 30 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 Table 3. BIST Pin Configuration on DS90UA102-Q1 Deserializer (1) (1) DS90UA102-Q1 Deserializer GPIO[3:2] Oscillator Source BIST Frequency (MHz) 00 External SCK 01 Internal ~25 10 Internal ~50 11 Internal ~12.5 Note: These pin settings will only be active when 0x24[3] = 1 and BIST is on. The BIST mode provides various options for the clock source. Either external pins (GPIO3 and GPIO2 of DES) or register 0x24 on DES can be used to configure the BIST to use SCK or various internal oscillator frequencies as the clock source. Refer to Table 4 below for BIST register settings. Table 4. BIST Register Configuration on DS90UA102-Q1 Deserializer (1) (1) DS90UA102-Q1 Deserializer 0x24[2:1] Oscillator Source BIST Frequency (MHz) 00 External SCK 01 Internal ~50 10 Internal ~25 11 Internal ~12.5 Note: These register settings will only be active when 0x24[3] = 0 and BIST is on. The BIST status can be monitored real-time on the PASS pin. For every frame with error(s), the PASS pin toggles low momentarily. If two consecutive frames have errors, PASS will toggle twice to allow counting of frames with errors. Once the BIST is done, the PASS pin reflects the pass/fail status momentarily (pass = no errors, fail = one or more errors). The BIST result can also be read through I2C for the number of frames that errored. The status register retains results until it is reset by a new BIST session or a device reset. For all practical purposes, the BIST status can be monitored from the BIST Error Count register 0x25 on the DS90UA102-Q1 Deserializer. Sample BIST Sequence (Refer to Figure 28) Step 1: BIST mode is enabled via the BISTEN pin on the DS90UA102-Q1 Deserializer, or through the Deserializer control registers. The clock source is selected through the GPIO3 and GPIO2 pins as shown in Table 3. Step 2: The DS90UA101-Q1 Serializer BIST start command is activated through the back channel. Step 3: The BIST pattern is generated and sent through the serial interface to the Deserializer. Once the Serializer and Deserializer are in the BIST mode and the Deserializer acquires LOCK, the PASS pin of the Deserializer goes high and BIST starts checking the data stream. If an error in the payload is detected the PASS pin will switch low momentarily. During the BIST test, the PASS output can be monitored and counted to determine the payload error rate. Step 4: To stop the BIST mode, the Deserializer BISTEN pin is set low and the Deserializer stops checking the data. The final test result is not maintained on the PASS pin. To check the number of BIST errors, check the BIST Error Count register, 0x25 on the Deserializer. The link returns to normal operation after the Deserializer BISTEN pin is low. Figure 29 below shows the waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple errors. In most cases, it is difficult to generate errors due to the robustness of the link (differential data transmission, adaptive equalization, etc.), thus they may be introduced by greatly extending the cable length, increasing the frequency, or by reducing signal condition enhancements (Rx equalization). Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 31 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com Normal Step 1: DES in BIST BIST Wait Step 2: Wait, SER in BIST BIST start Step 3: SER/DES in BIST ± monitor PASS BIST stop Step 4: DES/SER in Normal, check register 0x25 on DES Figure 28. BIST System Flow Diagram DES Outputs BISTEN (DES) LOCK SCK (RFB = L) Case 1 - Pass SSO DOUT[7:0] DATA (internal) PASS Prior Result PASS PASS X X X FAIL Prior Result Normal Case 2 - Fail X = bit error(s) DATA (internal) BIST Test BIST Duration BIST Result Held Normal Figure 29. BIST Timing Diagram 32 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 APPLICATIONS INFORMATION AC Coupling The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced coding scheme. External AC coupling capacitors must be placed in series with the serial interface signal path as illustrated in Figure 30 or Figure 31. Applications utilizing STP cable require a 0.1 µF coupling capacitor on both outputs (DOUT+, DOUT-). Applications utilizing single-ended 50Ω coaxial cable require a 0.1 µF capacitor on the true serial interface output (DOUT+). The unused data pin (DOUT-) requires a 0.047 µF capacitor coupled to a 50Ω resistor to GND. DOUT+ RIN+ DOUT- RIN- SER DES Figure 30. AC-Coupled Connection (STP) DOUT+ RIN+ SER DES DOUT- 50Q 50Q RIN- Figure 31. AC-Coupled Connection (Coaxial) For high-speed serial transmissions, the smallest available package should be used for the AC coupling capacitor. This will help minimize degradation of signal quality due to package parasitics. Typical Application Connection Figure 32 and Figure 33 show typical application connections of the DS90UA101-Q1 Serializer. The serial interface outputs must have external 0.1 µF coupling capacitors connected to the high-speed interconnect. The Serializer has internal termination. Bypass capacitors are placed near the power supply pins. Ferrite beads should also be used for effective noise suppression. The digital audio electrical interface is LVCMOS format. The VDDIO pin may be connected to 3.3V or 1.8V. Device I2C address select is configured via the IDx pin. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 33 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com DS90UA101-Q1 VDDIO VDDIO C3 1.8V VDDT C4 C8 C9 C13 1.8V VDDPLL C5 SCK LRCK BCK DIN0 DIN1 DIN2 DIN3 DIN4 DIN5 DIN6 DIN7 Digital Audio Interface C14 C10 FB1 1.8V VDDCML C6 C11 C15 C7 C12 FB2 1.8V VDDD C1 DOUT+ DOUT- Serial Interface C2 50Q 1.8V PDB GPI Interface GPO Interface GPI0 GPI1 GPI2 GPI3 IDx GPO0 GPO1 GPO2 GPO3 SET 10 kQ 1.8V RID 10kQ 100kQ VDDIO RPU I2C Bus Interface RPU SCL SDA RES0 DAP (GND) NOTE: C1 = 0.1 µF (50 WV) C2 = 0.047 µF (50 WV) C3 ± C7 = 0.01 µF C8 - C12 = 0.1 µF C13 - C14 = 4.7 µF C15 = 22 µF RPU = 4.7 kQ RID (see IDx Resistor Value Table) FB1, FB2: Impedance = 1 kQ (@ 100 MHz) low DC resistance (<1Q) Figure 32. DS90UA101-Q1 Typical Connection Diagram (Coaxial Interconnect) 34 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 DS90UA101-Q1 www.ti.com SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 DS90UA101-Q1 VDDIO VDDT VDDIO C3 1.8V C4 C8 C9 C13 1.8V VDDPLL C5 SCK LRCK BCK DIN0 DIN1 DIN2 DIN3 DIN4 DIN5 DIN6 DIN7 Digital Audio Interface C14 C10 FB1 1.8V VDDCML C6 C11 C15 C7 C12 FB2 1.8V VDDD C1 DOUT+ DOUT- Serial Interface C2 1.8V PDB GPI Interface GPO Interface GPI0 GPI1 GPI2 GPI3 IDx GPO0 GPO1 GPO2 GPO3 SET 10 kQ 1.8V RID 10kQ 100kQ VDDIO RPU I2C Bus Interface RPU SCL SDA RES0 DAP (GND) NOTE: C1, C2 = 0.1 µF (50 WV) C3 ± C7 = 0.01 µF C8 - C12 = 0.1 µF C13 - C14 = 4.7 µF C15 = 22 µF RPU = 4.7 kQ RID (see IDx Resistor Value Table) FB1, FB2: Impedance = 1 kQ (@ 100 MHz) low DC resistance (<1Q) Figure 33. DS90UA101-Q1 Typical Connection Diagram (STP Interconnect) PCB Layout and Power System Considerations Circuit board layout and stack-up for the Ser/Des devices should be designed to provide low-noise power feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the range of 0.01 µF to 0.1 µF. Tantalum capacitors may be in the 2.2 µF to 10 µF range. Voltage rating of the tantalum capacitors should be at least 5X the power supply voltage being used. Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power entry. This is typically in the 50 µF to 100 µF range and will smooth low frequency switching noise. It is recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external bypass capacitor will increase the inductance of the path. Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 35 DS90UA101-Q1 SNLS441A – JULY 2013 – REVISED SEPTEMBER 2013 www.ti.com A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing the impedance at high frequency. Some devices provide separate power for different portions of the circuit. This is done to isolate switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs. Use at least a four-layer board with a power and ground plane. Locate LVCMOS signals away from the differential lines to prevent coupling from the LVCMOS lines to the differential lines. Closely-coupled differential lines of 100Ω are typically recommended for differential interconnect. The closely coupled lines help to ensure that coupled noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less. Information on the LLP style package is provided in TI Application Note 1187. Interconnect Guidelines See AN-1108 and AN-905 for full details. • Use 100Ω coupled differential pairs • Use the S/2S/3S rule in spacings – – S = space between the pair – – 2S = space between pairs – – 3S = space to LVCMOS signal • Minimize the number of Vias • Use differential connectors when operating above 500 Mbps line speed • Maintain balance of the traces • Minimize skew within the pair Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the Texas Instrument web site at: www.ti.com/lvds. 36 Submit Documentation Feedback Copyright © 2013, Texas Instruments Incorporated Product Folder Links: DS90UA101-Q1 PACKAGE OPTION ADDENDUM www.ti.com 26-Sep-2013 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish (2) MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) DS90UA101TRTVJQ1 ACTIVE WQFN RTV 32 2500 Green (RoHS & no Sb/Br) CU SN Level-3-260C-168 HR -40 to 105 UA101Q DS90UA101TRTVRQ1 ACTIVE WQFN RTV 32 1000 Green (RoHS & no Sb/Br) CU SN Level-3-260C-168 HR -40 to 105 UA101Q DS90UA101TRTVTQ1 ACTIVE WQFN RTV 32 250 Green (RoHS & no Sb/Br) CU SN Level-3-260C-168 HR -40 to 105 UA101Q (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 26-Sep-2013 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 27-Sep-2013 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant DS90UA101TRTVJQ1 WQFN RTV 32 2500 330.0 12.4 5.3 5.3 1.3 8.0 12.0 Q1 DS90UA101TRTVRQ1 WQFN RTV 32 1000 178.0 12.4 5.3 5.3 1.3 8.0 12.0 Q1 DS90UA101TRTVTQ1 WQFN RTV 32 250 178.0 12.4 5.3 5.3 1.3 8.0 12.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 27-Sep-2013 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) DS90UA101TRTVJQ1 WQFN RTV 32 2500 367.0 367.0 35.0 DS90UA101TRTVRQ1 WQFN RTV 32 1000 213.0 191.0 55.0 DS90UA101TRTVTQ1 WQFN RTV 32 250 213.0 191.0 55.0 Pack Materials-Page 2 MECHANICAL DATA RTV0032A SQA32A (Rev B) www.ti.com IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated