DA7211 Ultra-low power stereo codec Company confidential General description DA7211 features a high fidelity and powerful 72 mW per channel headphone amplifier. The device may be operated from a single 1.8 V supply. Total device consumption is only 2.5 mW which helps extend music playback time for battery operated equipment. The fully integrated fractional PLL has been designed to use minimal power while supporting a wide range of input and output frequencies. Internal suppression circuits help maintain audio synchronisation in the presence of system noise on the external clock. Six analogue input pins allow multiple audio sources to be internally mixed, eliminating the need for external switches. Both single-ended and fully-differential line and microphone inputs are supported with built-in variable gain amplifiers to optimise the dynamic range prior to digitisation. This provides hardware support for ambient noise cancellation. The DA7211 provides two volume-controlled differential/single-ended stereo line-out drivers and ground-centred stereo amplifiers to directly drive standard 3-wire 16 Ω headphones. For example the dc coupled, dedicated pop-free drivers may be connected simultaneously to stereo headphones, stereo speakers and a mono line out without external switches. All filtering functions are performed digitally including 5-band EQ and a digital input AGC with programmable attack and decay parameters. A configurable signal processing engine allows various audio enhancements and effects such as acoustic filtering, transducer equalisation, wind noise suppression and 3D sound The multi-slot I2S/PCM interface supports all common sample rates between 8 and 96 kHz in master or slave mode operation. Key features ■ Stereo multi-bit Delta Sigma DAC with SNR ■ Audio serial data bus supports I2S, 100 dB ('A' weighted @ 48 kHz) left/right justified, DSP and TDM modes ■ Stereo multi-bit Delta Sigma ADC with SNR ■ Stereo or mono differential microphone 96 dB ('A' weighted @ 48 kHz) interface ■ Ultra low-power stereo headphone driver with ■ Programmable ultra-low noise bias supply for electret microphones □ Stereo DAC to HP playback power: 2.5 mW ■ Volume controlled stereo auxiliary inputs and outputs supporting FM Radio and fixed gain □ 2x58 mW output power (16 Ω) speaker amplifiers □ ‘Capless’ output via GND centred signals ■ Multi-mode audio routing and mixers □ Four level charge pump with continuous ■ Pop & click suppression circuitry tracking of audio signal (Class G) ■ ASSP DSP filter engine for digital audio □ Short circuit protection enhancements (acoustic filtering, wind noise suppression, 5-band equaliser, 3D sound, automatic gain control) ■ Support of 8, 11.025, 12, 16, 22.05, 24, 32, 44.1, 48 and 96 kHz sample rates ■ On-chip PLL with signal shaper and audio Sample Rate Matching ■ 2-wire software control interface ■ Supports supply from single voltage (1.8/2.5 V) ■ Extensive modular power control ■ Package: 36 bump WL-CSP 3x3 – 0.5 mm pitch Applications ■ Personal media players ■ Portable consumer devices Datasheet CFR0011-120-00 Rev 5 ■ Music handsets ■ Personal navigation devices Revision 3e 1 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Contents General description ............................................................................................................................. 1 Key features ......................................................................................................................................... 1 Applications ......................................................................................................................................... 1 Contents ............................................................................................................................................... 2 Figures .................................................................................................................................................. 3 Tables ................................................................................................................................................... 4 1 Terms and definitions ................................................................................................................... 8 2 Block diagram ................................................................................................................................ 9 3 Pinout ........................................................................................................................................... 10 3.1 The 36-ball DA7211 device ................................................................................................. 12 4 Absolute maximum ratings ........................................................................................................ 13 5 Recommended operating conditions ........................................................................................ 13 6 Electrical characteristics ............................................................................................................ 14 7 Timing characteristics ................................................................................................................ 23 7.1 Digital audio interface timing - I2S/DSP (in master/slave mode) ........................................ 23 7.2 Digital audio control timing - 2-wire control timing .............................................................. 24 8 Functional description ................................................................................................................ 26 8.1 Stereo codec ....................................................................................................................... 26 8.1.1 Input signal chain ................................................................................................. 26 8.1.2 Microphone inputs ............................................................................................... 27 8.1.3 Auxiliary inputs ..................................................................................................... 27 8.1.4 Stereo audio ADC ................................................................................................ 28 8.1.5 Automatic level control (ALC) .............................................................................. 30 8.1.6 Noise gate ............................................................................................................ 32 8.2 Output signal chain ............................................................................................................. 32 8.2.1 Stereo audio DAC ................................................................................................ 32 8.2.2 Soft mute ............................................................................................................. 33 8.2.3 Output mixer and line-out amplifier ...................................................................... 34 8.2.4 Headphone amplifier ............................................................................................ 35 8.2.5 Ambient noise suppression ................................................................................. 37 8.2.6 Digital signal processing engine .......................................................................... 37 8.3 Programming the general purpose filter .............................................................................. 39 8.4 Hi-Fi recording ..................................................................................................................... 40 8.4.1 5-band equaliser for recording path ..................................................................... 40 8.4.2 Digital audio processing for the record path ........................................................ 42 8.5 Hi-Fi playback ..................................................................................................................... 43 8.5.1 5-band equaliser for playback path ..................................................................... 43 8.5.2 Digital audio processing for playback path .......................................................... 44 8.6 Telephone/Bluetooth voice recording/playback at low sample rates .................................. 45 8.6.1 Voice filtering for recording at low sample rates .................................................. 45 8.6.2 Voice filtering for playback at low sample rates .................................................. 46 8.6.3 Digital audio processing for phone applications .................................................. 48 9 INTERFACES................................................................................................................................ 49 Datasheet CFR0011-120-00 Rev 5 Revision 3e 2 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 9.1 9.2 Company confidential Digital audio interface (DAI) ................................................................................................ 49 9.1.1 Operation modes DAI interface ........................................................................... 49 9.1.2 Right justified mode ............................................................................................. 49 9.1.3 Left justified mode................................................................................................ 50 9.1.4 I2S mode ............................................................................................................. 50 9.1.5 DSP mode ........................................................................................................... 50 9.1.6 TDM mode ........................................................................................................... 50 9.1.7 Clocking schemes................................................................................................ 51 9.1.8 Master mode ........................................................................................................ 53 9.1.9 Programming master and 32 kHz mode – PLL enabled ..................................... 55 Slave mode ......................................................................................................................... 57 9.2.1 Conditions: ........................................................................................................... 57 9.2.2 Programming slave mode – PLL not enabled ..................................................... 57 9.2.3 Programming slave mode – PLL enabled ........................................................... 59 9.2.4 32 kHz master or slave mode .............................................................................. 61 9.2.5 Phase locked loop (PLL)...................................................................................... 61 9.2.6 Control interface .................................................................................................. 62 9.2.7 2-wire communication .......................................................................................... 62 9.2.8 Details of the 2-wire control bus protocol ............................................................ 63 10 Register definitions ..................................................................................................................... 65 10.1 Register map ....................................................................................................................... 65 10.2 Control and status registers ................................................................................................ 68 10.3 Codec registers .................................................................................................................. 70 10.4 GP filter engine ................................................................................................................... 89 10.5 ALC level controls ............................................................................................................... 99 11 Package information ................................................................................................................. 102 11.1 Package outlines ............................................................................................................... 102 11.2 Soldering information ........................................................................................................ 102 12 Ordering information ................................................................................................................ 102 13 Applications information .......................................................................................................... 103 13.1 Supporting information ...................................................................................................... 103 13.2 Minimum component recommendations ........................................................................... 103 13.3 General component suggestions ...................................................................................... 104 Figures Figure 1: DA7211 block diagram ........................................................................................................... 9 Figure 2: DA7211 pad arrangement (bottom view ball side up) .......................................................... 10 Figure 3: DA7211 power supply topology ........................................................................................... 12 Figure 4: I2S/DSP timing diagram ....................................................................................................... 23 Figure 5: 2-wire control timing diagram ............................................................................................... 24 Figure 6: Typical microphone applications .......................................................................................... 27 Figure 7: ADC and DAC DC blocking (cut-off frequency setting ‘00’ to ‘11’, 16 kHz) ......................... 29 Figure 8: ADC pass band attenuation (audio mode, 48 kHz).............................................................. 29 Figure 9: ADC pass band suppression (audio mode, 48 kHz) ............................................................ 30 Figure 10: Operation of ALC................................................................................................................ 30 Figure 11: DAC DC blocking (cut-off frequency setting ‘00’ to ‘11’, 48 kHz) ....................................... 33 Figure 12: DAC pass band attenuation (audio mode, 48 kHz)............................................................ 34 Datasheet CFR0011-120-00 Rev 5 Revision 3e 3 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Figure 13: DAC pass band suppression (audio mode, 48 kHz) .......................................................... 34 Figure 14: DA7211 audio signal paths ................................................................................................ 35 Figure 15: Digital signal processing engine (simplified block diagram) .............................................. 38 Figure 16: Direct form I implementation of a second order IIR filter ................................................... 38 Figure 17: Band 5 (LP 50 Hz) frequency response at FS = 48 kHz .................................................... 41 Figure 18: Band 5 (BP 150 Hz) frequency response at FS = 48 kHz ................................................. 41 Figure 19: Band 5 (BP 500 Hz) frequency response at FS = 48 kHz ................................................. 41 Figure 20: Band 5 (BP 2500 Hz) frequency response at FS = 48 kHz ............................................... 42 Figure 21: Band 5 (HP 5000 Hz) frequency response at FS = 48 kHz ............................................... 42 Figure 22: Record only ........................................................................................................................ 43 Figure 23: Record with sound monitor ................................................................................................ 43 Figure 24: Stereo playback (for example, freefield headphone equalisation) ..................................... 44 Figure 25: Sound spatialiser for stereo speaker ................................................................................. 44 Figure 26: Voice mode recording high pass filter (cut-off frequency setting ‘000’ to ‘111’, 8 kHz) .... 45 Figure 27: Voice mode recording frequency response (setting ‘001’, 8 kHz) ..................................... 46 Figure 28: Voice mode recording stop band suppression (8 kHz) ...................................................... 46 Figure 29: Voice mode playback high-pass filter (cut-off frequency setting ‘000’ to ‘111’, 16 kHz) ... 47 Figure 30: Voice mode playback frequency response (setting ‘001’, 8 kHz) ...................................... 47 Figure 31: Voice mode playback stop band suppression (8 kHz) ....................................................... 48 Figure 32: Transmit (red), receive (green) and sidetone (blue) sound filtering for phone applications ............................................................................................................................................................. 48 Figure 33: Right justified format .......................................................................................................... 49 Figure 34: Left justified format ............................................................................................................. 50 Figure 35: I2S format ........................................................................................................................... 50 Figure 36: DSP format ......................................................................................................................... 50 Figure 37: TDM left justified format ..................................................................................................... 51 Figure 38: TDM DSP format ................................................................................................................ 51 Figure 39: PLL master mode start up sequence ................................................................................. 56 Figure 40: Non-PLL mode start-up sequence ..................................................................................... 59 Figure 41: PLL Slave mode start-up sequence ................................................................................... 61 Figure 42: PLL block diagram.............................................................................................................. 62 Figure 43: Schematic of a 2-wire control bus ...................................................................................... 62 Figure 44: 2-wire byte write (SI/DATA line) ......................................................................................... 63 Figure 45: Examples of 2-wire byte read (SI/DATA line) .................................................................... 63 Figure 46: Examples of 2-wire page read (SI/DATA line) ................................................................... 64 Figure 47: 2-wire page write (SI/DATA line) ........................................................................................ 64 Figure 48: 2-wire repeated write (SI/DATA line) ................................................................................. 64 Figure 49: 36 bump WL-CSP 0.5mm pitch package outline drawing ............................................... 102 Tables Table 1: Pin description ....................................................................................................................... 10 Table 2: Absolute maximum ratings .................................................................................................... 13 Table 3: Recommended operating conditions ..................................................................................... 13 Table 4: Power dissipation table ......................................................................................................... 14 Table 5: Power consumption figures 1: ............................................................................................... 15 Table 6: Power consumption figures 2: ............................................................................................... 15 Table 7: Electrical characteristics: Microphone bias ........................................................................... 16 Table 8: Electrical characteristics: Input mixing units .......................................................................... 16 Table 9: Electrical characteristics: Analogue to digital converter (ADC) ............................................. 17 Table 10: Electrical characteristics: Digital to analogue converter (DAC) ........................................... 18 Table 11: Electrical characteristics: Line out and receiver amplifier ................................................... 19 Table 12: Electrical characteristics: Dynamic charge pump ................................................................ 20 Table 13: Electrical characteristics: Headphone amplifier .................................................................. 21 Table 14: Electrical characteristics: Phase locked loop (MCLK) ......................................................... 22 Table 15: Electrical characteristics: Digital I/O .................................................................................... 22 Table 16: I2S/DSP timing characteristics ............................................................................................ 23 Table 17: 2-wire control timing characteristics .................................................................................... 24 Datasheet CFR0011-120-00 Rev 5 Revision 3e 4 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 18: Start-up times after setting SC_MST_EN = 1 ..................................................................... 25 Table 19: ADC digital high pass filter specifications ........................................................................... 28 Table 20: Permitted register values for ALC_NOIS (0x85 [5:0]) ......................................................... 31 Table 21: DAC digital high pass filter specifications ........................................................................... 33 Table 22: Headphone/OUT1 amplifier gain settings ........................................................................... 36 Table 23: GP filter section enable bits ................................................................................................. 39 Table 24: Band-equaliser corner frequencies ..................................................................................... 40 Table 25: 5-band-equaliser turn-over/centre frequencies ................................................................... 40 Table 26: Voice mode recording high pass filter specifications .......................................................... 45 Table 27: Voice mode playback high-pass filter specifications ........................................................... 47 Table 28: Internal system clock frequency .......................................................................................... 52 Table 29: Block enable and system standby bits ................................................................................ 52 Table 30: ADC and DAC clock frequencies ........................................................................................ 53 Table 31: Master mode PLL-DIV look up table ................................................................................... 54 Table 32: SRM mode PLL-DIV look up table ...................................................................................... 54 Table 33: PLL master mode register setting recommendations.......................................................... 55 Table 34: MCLK frequencies in non-PLL slave mode ......................................................................... 57 Table 35: Non-PLL slave mode and PLL master mode sample rate settings ..................................... 58 Table 36: SRM mode PLL division ratio settings ................................................................................ 60 Table 37: Slave mode PLL-enabled register setting recommendations ............................................. 60 Table 38: Register map ....................................................................................................................... 65 Table 39: CONTROL 0x01 .................................................................................................................. 68 Table 40: STATUS 0x02...................................................................................................................... 68 Table 41: STARTUP 1 0x03 ................................................................................................................ 69 Table 42: STARTUP 2 0x04 ................................................................................................................ 69 Table 43: STARTUP 3 0x05 ................................................................................................................ 70 Table 44: MIC_L 0x07 ......................................................................................................................... 70 Table 45: MIC_R 0x08......................................................................................................................... 71 Table 46: AUX1_L 0x09 ...................................................................................................................... 71 Table 47: AUX1_R 0x0A ..................................................................................................................... 71 Table 48: IN_GAIN 0x0C ..................................................................................................................... 72 Table 49: INMIX_L 0x0D ..................................................................................................................... 73 Table 50: INMIX_R 0x0E ..................................................................................................................... 73 Table 51: ADC_HPF 0x0F ................................................................................................................... 74 Table 52: ADC 0x10 ............................................................................................................................ 74 Table 53: ADC_EQ1_2 0x11 ............................................................................................................... 75 Table 54: ADC_EQ3_4 0x12 ............................................................................................................... 76 Table 55: ADC_EQ5 0x13 ................................................................................................................... 77 Table 56: DAC_HPF 0x14 ................................................................................................................... 78 Table 57: DAC_L 0x15 ........................................................................................................................ 78 Table 58: DAC_R 0x16........................................................................................................................ 79 Table 59: DAC_SEL 0x17 ................................................................................................................... 79 Table 60: SOFTMUTE 0x18 ................................................................................................................ 80 Table 61: DAC_EQ1_2 0x19 ............................................................................................................... 81 Table 62: DAC_EQ3_4 0x1A .............................................................................................................. 82 Table 63: DAC_EQ5 0x1B................................................................................................................... 83 Table 64: OUTMIX_L 0x1C ................................................................................................................. 83 Table 65: OUTMIX_R 0x1D................................................................................................................. 84 Table 66: OUT1_L 0x1E ...................................................................................................................... 84 Table 67: OUT1_R 0x1F ..................................................................................................................... 85 Table 68: HP_L_VOL 0x21.................................................................................................................. 85 Table 69: HP_R_VOL 0x22 ................................................................................................................. 86 Table 70: HP_CFG 0x23 ..................................................................................................................... 86 Table 71: ZEROX 0x24 ....................................................................................................................... 86 Table 72: DAI_SRC_SEL 0x25 ........................................................................................................... 87 Table 73: DAI_CFG1 0x26 .................................................................................................................. 87 Table 74: DAI_CFG2 0x27 .................................................................................................................. 87 Table 75: DAI_CFG3 0x28 .................................................................................................................. 88 Table 76: PLL_DIV1 0x29 ................................................................................................................... 88 Datasheet CFR0011-120-00 Rev 5 Revision 3e 5 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 77: PLL_DIV2 0x2A ................................................................................................................... 88 Table 78: PLL_DIV3 0x2B ................................................................................................................... 88 Table 79: PLL 0x2C ............................................................................................................................. 89 Table 80: GP1A A0L 0x2D .................................................................................................................. 89 Table 81: GP1A A0H 0x2E .................................................................................................................. 89 Table 82: GP1B A0L 0x2F................................................................................................................... 90 Table 83: GP1B A0H 0x30 .................................................................................................................. 90 Table 84: GP2A A0L 0x31 ................................................................................................................... 90 Table 85: GP2A A0H 0x32 .................................................................................................................. 90 Table 86: GP2B_A0L 0x33 .................................................................................................................. 90 Table 87: GP2B_A0H 0x34 ................................................................................................................. 90 Table 88: GP1C_A0L 0x35.................................................................................................................. 90 Table 89: GP1C_A0H 0x36 ................................................................................................................. 90 Table 90: GP1D_A0L 0x37.................................................................................................................. 90 Table 91: GP1D_A0H 0x38 ................................................................................................................. 90 Table 92: GP2C_A0L 0x39.................................................................................................................. 90 Table 93: GP2C_A0H 0x3A................................................................................................................. 91 Table 94: GP2D_A0L 0x3B ................................................................................................................. 91 Table 95: GP2D_A0H 0x3C ................................................................................................................ 91 Table 96: GP1A_A1L 0x3D ................................................................................................................. 91 Table 97: GP1A_A1L 0x3E ................................................................................................................. 91 Table 98: GP1B_A1L 0x3F.................................................................................................................. 91 Table 99: GP1B_A1H 0x40 ................................................................................................................. 91 Table 100: GP2A_A1L 0x41 ................................................................................................................ 91 Table 101: GP2A_A1H 0x42 ............................................................................................................... 91 Table 102: GP2B_A1L 0x43 ................................................................................................................ 91 Table 103: GP2B_A1H 0x44 ............................................................................................................... 91 Table 104: GP1C_A1L 0x45................................................................................................................ 92 Table 105: GP1C_A1H 0x46 ............................................................................................................... 92 Table 106: GP1D_A1L 0x47................................................................................................................ 92 Table 107: GP1D_A1H 0x48 ............................................................................................................... 92 Table 108: GP2C_A1L 0x49................................................................................................................ 92 Table 109: GP2C_A1H 0x4A .............................................................................................................. 92 Table 110: GP2D_A1L 0x4B ............................................................................................................... 92 Table 111: GP2D_A1H 0x4C .............................................................................................................. 92 Table 112: GP1A_A2L 0x4D ............................................................................................................... 92 Table 113: GP1A_A2H 0x4E ............................................................................................................... 92 Table 114: GP1B_A2L 0x4F................................................................................................................ 92 Table 115: GP1B_A2H 0x50 ............................................................................................................... 93 Table 116: GP2A_A2L 0x51 ................................................................................................................ 93 Table 117: GP2A_A2H 0x52 ............................................................................................................... 93 Table 118: GP2B_A2L 0x53 ................................................................................................................ 93 Table 119: GP2B_A2H 0x54 ............................................................................................................... 93 Table 120: GP1C_A2L 0x55................................................................................................................ 93 Table 121: GP1C_A2H 0x56 ............................................................................................................... 93 Table 122: GP1D_A2L 0x57................................................................................................................ 93 Table 123: GP1D_A2H 0x58 ............................................................................................................... 93 Table 124: GP2C_A2L 0x59................................................................................................................ 93 Table 125: GP2C_A2H 0x5A .............................................................................................................. 93 Table 126: GP2D_A2L 0x5B ............................................................................................................... 94 Table 127: GP2D_A2H 0x5C .............................................................................................................. 94 Table 128: GP1A_B1L 0x5D ............................................................................................................... 94 Table 129: GP1A_B1H 0x5E ............................................................................................................... 94 Table 130: GP1B_B1L 0x5F................................................................................................................ 94 Table 131: GP1B_B1H 0x60 ............................................................................................................... 94 Table 132: GP2A_B1L 0x61 ................................................................................................................ 94 Table 133: GP2A_B1H 0x62 ............................................................................................................... 94 Table 134: GP2B_B1L 0x63 ................................................................................................................ 94 Table 135: GP2B_B1H 0x64 ............................................................................................................... 94 Datasheet CFR0011-120-00 Rev 5 Revision 3e 6 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 136: GP1C_B1L 0x65................................................................................................................ 94 Table 137: GP1C_B1H 0x66 ............................................................................................................... 95 Table 138: GP1D_B1L 0x67................................................................................................................ 95 Table 139: GP1D_B1H 0x68 ............................................................................................................... 95 Table 140: GP2C_B1L 0x69................................................................................................................ 95 Table 141: GP2C_B1H 0x6A .............................................................................................................. 95 Table 142: GP2D_B1L 0x6B ............................................................................................................... 95 Table 143: GP2D_B1H 0x6C .............................................................................................................. 95 Table 144: GP1A_B2L 0x6D ............................................................................................................... 95 Table 145: GP1A_B2H 0x6E ............................................................................................................... 95 Table 146: GP1B_B2L 0x6F................................................................................................................ 95 Table 147: GP1B_B2H 0x70 ............................................................................................................... 95 Table 148: GP2A_B2L 0x71 ................................................................................................................ 96 Table 149: GP2A_B2H 0x72 ............................................................................................................... 96 Table 150: GP2B_B2L 0x73 ................................................................................................................ 96 Table 151: GP2B_B2H 0x74 ............................................................................................................... 96 Table 152: GP1C_B2L 0x75................................................................................................................ 96 Table 153: GP1C_B2H 0x76 ............................................................................................................... 96 Table 154: GP1D_B2L 0x77................................................................................................................ 96 Table 155: GP1D_B2H 0x78 ............................................................................................................... 96 Table 156: GP2C_B2L 0x79................................................................................................................ 96 Table 157: GP2C_B2H 0x7A .............................................................................................................. 96 Table 158: GP2D_B2L 0x7B ............................................................................................................... 96 Table 159: GP2D_B2H 0x7C .............................................................................................................. 97 Table 160: GPF_SRC1 0x7D .............................................................................................................. 97 Table 161: GPF_SRC2 0x7E .............................................................................................................. 98 Table 162: DSP_CFG 0x7F................................................................................................................. 98 Table 163: CHIP_ID 0x81.................................................................................................................... 99 Table 164: INTERFACE 0x82 ............................................................................................................. 99 Table 165: ALC_MAX 0x83 ................................................................................................................. 99 Table 166: ALC_MIN 0x84 .................................................................................................................. 99 Table 167: ALC_NOIS 0x85 ................................................................................................................ 99 Table 168: ALC_ATT 0x86 .................................................................................................................. 99 Table 169: ALC_REL 0x87 ................................................................................................................ 100 Table 170: ALC_DEL 0x88 ................................................................................................................ 100 Table 171: A_HID_UNLOCK 0x8A .................................................................................................... 100 Table 172: A_TST_UNLOCK 0x8B ................................................................................................... 100 Table 173: A_PLL0 0x8F ................................................................................................................... 100 Table 174: A_PLL1 0x90 ................................................................................................................... 100 Table 175: A_ADC0 0x95 .................................................................................................................. 101 Table 176: A_DAC0 0x96 .................................................................................................................. 101 Table 177: A_CPHP6 0xA2 ............................................................................................................... 101 Table 178: A_CP_MODE 0xA7 ......................................................................................................... 101 Table 179: Ordering information ........................................................................................................ 102 Datasheet CFR0011-120-00 Rev 5 Revision 3e 7 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 1 Company confidential Terms and definitions ADC ALC ASSP DAC DAI DMIC DSP FIR I2C I2S IIR GP LDO MCLK PCM PGA PLL PSRR RDL RC SC SDM SNR SRM TDM THD+N VCO WL-CSP Datasheet CFR0011-120-00 Rev 5 Analogue to Digital Converter Automatic Level Control Application Specific Standard Product Digital to Analogue Converter Digital Audio Interface Digital microphone Digital Signal Processor or Digital Signal Processing Finite Impulse Response (Filter) Inter-Integrated Circuit interface Inter-IC Sound Infinite Impulse Response (Filter) General Purpose (Filter) Low Dropout regulator Master Clock Pulse Code Modulation Programmable Gain Amplifier Phase Locked Loop Power Supply Rejection Ratio Redistribution Layer Resistance-Capacitance System Controller Sigma Delta Modulator Signal to Noise Ratio Sample Rate Matching Time Division Multiplexing Total Harmonic Distortion plus Noise Voltage-Controlled Oscillator Wafer Level-Chip Scale Packaging Revision 3e 8 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 2 Company confidential Block diagram OUT1P_L + Sidetone-Filter OUT1 L OUT1N_L AUX1_L A1 PGA L + IN PGA L ADC L DAC L Receiver HP_L MICP_L HP L ADC DIGITAL FILTERS Acoustic Filtering, Wind/Zoom Noise Suppression, 5 Band Equaliser, Automatic Gain Control + M PGA L MIC - DATOUT MICN_L FM Radio MICBIAS DA7211 MICP_R + M PGA R MIC Headphones DAC DIGITAL FILTERS Digital Mixer, Acoustic Filtering, 5 Band Equaliser, 3D Sound - HP R HP_R GROUND CENTRED CLASS G HEADPHONE AMPLIFIERS HPCSP 1uF HPCF1P 1uF HPCF1N Charge Pump GNDCP HPCF2P 1uF MICN_R 1uF HPCF2N HPCSN AUX1_R A1 PGA R + IN PGA R ADC R Speaker DAC R OUT1P_R 100nF + OUT1 R DA7202 100nF OUT1N_R PLL MCLK I2S/PCM INTERFACE GND 1uF VMID DACREF VBG ADCREF VDDD AVDD VDDCP WCLK DATIN DATOUT CLK SI SK 1uF 100nF 1uF AGND CODEC CONTROL INTERFACE Figure 1: DA7211 block diagram Datasheet CFR0011-120-00 Rev 5 Revision 3e 9 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 3 Company confidential Pinout A VBG AGND OUT1N_R DACREF OUT1P_R HPR B MICP_L VMID ADCREF OUT1N_L OUT1P_L HPL C MICP_R MICBIAS AUX1_L AVDD HPCSP HPCSN D AUX1_R MICN_R MICN_L VDD HPCF2N HPCF2P E DATIN DATOUT GND CLK GNDCP HPCF1N F MCLK SK SI WCLK VDDCP HPCF1P 6 5 4 3 2 1 Figure 2: DA7211 pad arrangement (bottom view ball side up) Table 1: Pin description Pin no. Pin name Description 5A AGND Analogue ground 3C AVDD Analogue supply 3D VDD Digital and input supply 4C AUX1_L Left channel single-ended auxiliary input 6B MICP_L Left channel differential microphone +ve input 4D MICN_L Left channel differential microphone –ve input 5C MICBIAS Current supply for microphone 6C MICP_R Right channel differential microphone +ve input 5D MICN_R Right channel differential microphone -ve input 6D AUX1_R Right channel single-ended auxiliary input 6F MCLK Master clock input (reference to PLL) 6E DATIN I2S digital data input Datasheet CFR0011-120-00 Rev 5 Revision 3e 10 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Pin no. Pin name Description 5E DATOUT I2S digital data output 5F SK Digital clock for 2-wire 4F SI 2-wire input and open drain output 3E CLK Digital bit clock for I2S 3F WCLK Digital word clock for I2S 2F VDDCP Headphone charge pump supply 1F HPCF1P Head phone amp charge pump floating cap1 +ve 1E HPCF1N Head phone amp charge pump floating cap1 –ve 2E GNDCP Headphone and digital ground 1D HPCF2P Head phone amp charge pump floating cap2 +ve 2D HPCF2N Head phone amp charge pump floating cap2 –ve 1C HPCSN Head phone amp charge pump storage cap –ve 2C HPCSP Head phone amp charge pump storage cap +ve 1B HPL Left head phone amp output 1A HPR Right head phone amp output 4E GND Ground bump 3A DACREF Decoupling capacitor for DAC 2A OUT1P_R Differential or single ended +ve line out right 4A OUT1N_R Differential –ve line out right 2B OUT1P_L Differential or single ended +ve line out left 3B OUT1N_L Differential –ve line out left 4B ADCREF Decoupling capacitor for ADC 5B VMID Decoupling capacitor for VMID 6A VBG Decoupling capacitor for VBG Datasheet CFR0011-120-00 Rev 5 Revision 3e 11 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 3.1 Company confidential The 36-ball DA7211 device The VDDIO and the digital core supplies are joined in the RDL layer, so the internal LDO is unusable and should remain disabled. Separating the digital supply voltages from the AVDD allows a digital supply as low as 1.2 V to be used. VDD AVDD Pin Pin 3D 3C VDDCP VDDADC VDDDAC Pin 2F XVDD LDO (off) VDDIO VDDIO (1.2 to 2.5 V) VDD Digital Core (1.2 to 2.5 V) AVDD (1.8 to 2.5 V) VDDADC (1.8 to 2.5 V) VDDDAC (1.8 to 2.5 V) VDDCP (1.5 to 2.5 V) Figure 3: DA7211 power supply topology Datasheet CFR0011-120-00 Rev 5 Revision 3e 12 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 4 Company confidential Absolute maximum ratings Table 2: Absolute maximum ratings Parameter Description Min Max Unit Storage temperature -40 +95 °C Ta Operating temperature -40 +85 °C AVDD VDDCP Power Supply Input -0.3 2.75 V Supply voltage all input pins except power -0.3 AVDD+ 0.3 V Maximum power dissipation 200 mW Package thermal resistance 40 k/W 2 kV ESD susceptibility Human body model Stresses beyond those listed under ‘Absolute maximum ratings’ may cause permanent damage to the device. These are stress ratings only, so functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note 1 5 Conditions (Note 1) Recommended operating conditions Table 3: Recommended operating conditions Parameter Description Conditions Operating temperature Min Typ Max Unit -40 +85 °C VDD Supply voltage digital and I/O Min and max values can accept +/-5% tolerances 1.2 2.5 V AVDD Supply voltage analogue Min and max values can accept +/-5% tolerances 1.8 2.5 V VDDCP Supply voltage headphone Max value can accept +/5% tolerances 1.8 2.5 V Datasheet CFR0011-120-00 Rev 5 Revision 3e 13 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 6 Company confidential Electrical characteristics Table 4: Power dissipation table Parameter Note 2 Description Conditions (Note 2) All registers at default values Powerdown Digital playback to lineout Min Typ Max Unit 6 µA DACL/R to OUT1L/R 3.15 mW Digital playback to HP no load DACL/R to HPL/R quiescent 2.54 mW Digital playback to HP with load DACL/R to HPL/R 16 Ω load 0.1 mW 4.66 mW Analogue bypass to lineout AUX1L/R to OUT1L/R 2.87 mW Analogue bypass to HP no load AUX1L/R to HPL/R quiescent 2.43 mW Analogue bypass to HP with load AUX1L/R to HPL/R 16 Ω load 0.1 mW 4.57 mW Microphone stereo record MICL/R to ADCL/R 2.38 mW Mic one channel record and digital playback to lineout MICR to ADCR 3.10 mW Mic stereo record and digital playback to HP no load MICL/R to ADCL/R and DACL/R to HPL/R quiescent 4.35 mW Mic stereo record and digital playback to HP with load MICL/R to ADCL/R and DACL/R to HPL/R 16 Ω load 0.1 mW 6.49 mW SC_CLK_DIS, 0x03[7] = 1 for all measurements VMID_BUFF_EN, 0x96[2:0] = 000 for all modes not using DAC AVDD and VDDCP = 1.8 V. Internal regulator configured for 1.2 V, 0xB7 [5:4] = 11 Datasheet CFR0011-120-00 Rev 5 Revision 3e 14 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 5: Power consumption figures 1: AVDD and VDDCP = 1.8 V (Note 3) Current (mA) DA7211 Power (mW) AVDD 1.8 V VDDCP 1.8 V VDD 1.2 V AVDD VDDCP VDD Total Powerdown 0.005 0 0.006 0.009 0 0.007 0.016 DACL/R to HPL/R quiescent no load Class G On 0.303 0.191 0.686 0.545 0.344 0.823 1.712 DACL/R to HPL/R 16 Ω load 0.1 mW Class G On 0.336 1.357 0.726 0.605 2.443 0.871 3.918 DACL/R to HPL/R "Love Comes Around" 16 Ω 0.298 0.279 0.731 0.536 0.503 0.877 1.915 DACL/R to HPL/R "Love Comes Around" 16 Ω & MIC2ADC 0.331 0.365 0.84 0.595 0.657 1.008 2.26 DACL/R to HPL/R "Love Comes Around" 16 Ω & MIC2ADC & PLL 0.762 0.365 1.13 1.372 0.657 1.356 3.385 DACL/R to HPL/R "Love Comes Around" 16 Ω & MIC2ADC & MICBIAS (2 k load,1.5 V) & PLL 0.776 0.365 1.13 1.397 0.657 1.356 3.41 Table 6: Power consumption figures 2: AVDD and VDDCP = 2.5 V (Note 3) Current (mA) DA7211 Power (mW) AVDD 2.5 V VDDCP 2.5 V VDD 1.2 V AVDD VDDCP VDD Total Powerdown 0.303 0.204 0.685 0.758 0.509 0.822 2.089 DACL/R to HPL/R quiescent no load Class G On 0.336 1.416 0.724 0.839 3.54 0.869 5.248 DACL/R to HPL/R 16 Ω load 0.1 mW Class G On 0.306 0.306 0.728 0.765 0.764 0.874 2.403 DACL/R to HPL/R "Love Comes Around" 16 Ω 0.311 0.3 0.833 0.777 0.75 1 2.527 DACL/R to HPL/R "Love Comes Around" 16 Ω & MIC2ADC 0.824 0.298 1.01 2.06 0.745 1.212 4.017 DACL/R to HPL/R "Love Comes Around" 16 Ω & MIC2ADC & PLL 0.832 0.298 1.003 2.08 0.745 1.204 4.029 DACL/R to HPL/R "Love Comes Around" 16 Ω & MIC2ADC & MICBIAS (2 k load,1.5 V) & PLL 0.303 0.204 0.685 0.758 0.509 0.822 2.089 Note 3 Corinne Bailey Rae, ‘Love Comes Around’ 44.1 kHz, volume referenced to a 0.1 mW sine wave. The gain from a pure sine wave input is adjusted to give 0.1 mW output. Power consumption measurements are then made while playing the music track played at the same volume. Datasheet CFR0011-120-00 Rev 5 Revision 3e 15 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Test conditions: VDD=2.5 V, Ta=25°C, fs=48 kHz, 24-bit audio data unless specified otherwise Table 7: Electrical characteristics: Microphone bias Parameter Description Conditions Min Typ Max Unit VBIAS Bias Voltage No load, AVDD = 2.5 V No load, AVDD = 1.8 V 2.2 1.5 Programmable 2.3 1.6 V IBIAS Maximum Current Voltage drop < 50 mV PSRR with respect to AVDD Power Supply Rejection Ratio 20 Hz - 2 kHz 2 kHz - 20 kHz VN Output Noise Voltage Capacitive Load 2 mA 70 50 IBIAS < 100 µA, 100 µA < IBIAS < 2 mA dB 5 µVRMS 100 200 pF Table 8: Electrical characteristics: Input mixing units (MICP_L, MICN_L, AUX_L, MICP_R, MICN_R, AUX1_R) Parameter Description Conditions VMAX Full-scale Input Signal single-ended differential MIC-PGA=0 dB IN-PGA=0 dB RIN Input resistance 0.8*AVDD 1.6*AVDD Unit VPP 12 15 18 6 variable 40 Frequency Response +/- 0.5 dB 20 20k Hz Amplitude Ripple 20 Hz – 20 kHz -0.5 0.5 dB MIC-PGA AUX1-PGA -6 -48 24 21 dB IN-PGA -4.5 18 6 k Programmable Gain Step Size MIC-PGA Absolute Gain Accuracy 0 dB @ 1 kHz -1.0 1.0 dB Input Gain L/R-Mismatch 20 Hz – 20 kHz -0.1 0.1 dB Input Gain Step Error 20 Hz – 20 kHz -0.1 0.1 dB AUX1-PGA, IN-PGA Inputs connected to GND A-weighting input referred, measured @ ADC output 5 6.5 AUX1 (Gain = 21 dB) Power Supply Rejection Ratio dB 1.5 Mic (Gain = 42 dB) Note 4 Max AUX1 Input Noise Level PSRR with respect to AVDD Typ Mic, single-ended Programmable Gain Note 4 VNOISE Min 20 Hz - 2 kHz 2 kHz - 20 kHz, single-ended input 80 70 µVRMS dB The gain describes the ratio of input and output signal level at the related amplifier stage (independent of whether the connection is single ended or differential). Datasheet CFR0011-120-00 Rev 5 Revision 3e 16 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 9: Electrical characteristics: Analogue to digital converter (ADC) Parameter Description Conditions Full-scale Input Signal Corresponding digital level 0 dBFS SNR Signal to Noise Ratio THD+N THD+N VMAX Min Unit VPP A-weighting, no input selected 96 dB Total Harmonic Distortion Plus Noise -1 dBFS -89 dB Total Harmonic Distortion Plus Noise -1 dBFS, 32 kHz PLL mode -80 dB 90 dB BPASS Pass band BSTOP Stop band fs 48 kHz fs = 88.2/96 kHz Pass band Ripple Voice Mode Music Mode Stop band Attenuation Voice Mode Music Mode Group delay Voice Mode Music Mode (Note 5) fs= 88.2/96 kHz Group delay mismatch Between left and right channel Power Supply Rejection Ratio 20 Hz - 2 kHz 2 kHz - 20 kHz Note 5 Max 1.6* AVDD Channel separation PSRR with respect to AVDD Typ 0.56*fs 0.45*fs kHz 7*fs 3.5*fs kHz +/-0.3 +/-0.1 dB 70 55 dB 4.3/fs 18/fs 9/fs 600 2 80 70 µs µs dB 5-band-equaliser disabled. Datasheet CFR0011-120-00 Rev 5 Revision 3e 17 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 10: Electrical characteristics: Digital to analogue converter (DAC) Parameter Description Conditions Full-scale Output Signal Corresponding digital level 0 dBFS SNR Signal to Noise Ratio THD+N THD+N VMAX Min BSTOP PSRR with respect to AVDD Max Unit 1.6*AV DD VPP A weighting 102 dB Total Harmonic Distortion Plus Noise -1 dBFS -85 dB Total Harmonic Distortion Plus Noise -1 dBFS, 32 kHz PLL mode -80 dB 90 dB Channel separation BPASS Typ Pass band Stop band fs 48 kHz fs = 88.2/96 kHz Pass band Ripple Voice Mode Music Mode Stop band Attenuation Voice Mode Music Mode Group delay Voice Mode Music Mode fs = 88.2/96 kHz Group delay variation 0.56*fs 0.45*fs kHz 7*fs 3.5*fs kHz ±0.15 ±0.1 dB 70 55 dB 650 µs 20 Hz to 20 kHz 1 µs Group delay mismatch Between left and right channel 2 µs Power Supply Rejection Ratio 20 Hz - 2 kHz 2 kHz - 20 kHz Datasheet CFR0011-120-00 Rev 5 Revision 3e 18 of 105 4.8/fs 18.5/fs 9/fs 70 60 dB 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 11: Electrical characteristics: Line out and receiver amplifier (OUT1P_L, OUT1N_L, OUT1P_R, OUT1N_R) Parameter Description Conditions VMAX Full-scale Input Signal No load, single-ended No load, differential single-ended output mode Load Impedance differential output mode Frequency Response +/- 0.5 dB Amplitude Ripple 20 Hz – 20 kHz Programmable Gain Typ Max 0.8*AVDD 1.6 *AVDD Unit VPP 1 µH 200 pF 1 H 200 pF 20 20k Hz -0.5 0.5 dB -54 15 dB 500 25 2k 32 Mute Attenuation 100 Programmable Gain Step Size 1.5 dB dB Absolute Gain Accuracy 0 dB @ 1 kHz -0.8 0.8 dB Input Gain L/R-Mismatch 20 Hz – 20 kHz -0.1 0.1 dB Input Gain Step Error 20 Hz – 20 kHz -0.1 0.1 dB Signal to Noise Ratio A weighting VNOISE Output Noise Level THD+N Total Harmonic Distortion Plus Noise PSRR with respect to AVDD Min Power Supply Rejection Ratio 102 20 - 20 kHz, unweighted gain < -15 dB single-ended differential <5.5 <4.5 -1 dBFS, 44.1 kHz slave mode non A-weighting -90 dB µV 20 Hz - 2 kHz 70 2 kHz - 20 kHz single-ended output 47 dB 20 Hz - 2 kHz 2 kHz - 20 kHz 90 70 dB differential output Datasheet CFR0011-120-00 Rev 5 Revision 3e 19 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 12: Electrical characteristics: Dynamic charge pump (HPCSP, HPCSN) Parameter Description Conditions VDDCSP Positive dynamic supply voltage Positive dynamic supply voltage Min Typ Max Unit VDDCP VDDCP/2 (VDDCP/3, VDDCP/4) VDDCSN Negative dynamic supply voltage Negative dynamic supply voltage -VDDCP -VDDCP/2 (-VDDCP/3, -VDDCP/4) Floating capacitors 1.0 µF Storage capacitors 1.0 µF Datasheet CFR0011-120-00 Rev 5 Revision 3e 20 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 13: Electrical characteristics: Headphone amplifier (HPL, HPR) Parameter Description Conditions VMAX Full-scale Output Signal No load Min DC output offset PMAX Output Power per channel Dynamic internal supply voltages IQ Typ VPP 100 µV 25 30 VDDCP = 2.5 V, THD < 0.1%, RL=16 Ω 1 kHz 50 58 Quiescent current per channel from VDDCP Load Impedance 13 < RL < mW RMS mW RMS ±VDD ±VDD/2 (±VDD/3 (±VDD/4) 100 13 uA 16 400 500 Frequency Response +/- 0.5 dB Amplitude Ripple 20 Hz – 20 kHz Programmable Gain SNR VNOISE THD+N PSRR with respect to AVDD Unit 1.6*VDD CP VDDCP = 1.8 V, THD < 0.1%, RL=16 Ω 1 kHz VDD/3 or VDD/4 can optionally be selected if two flying caps are available Max µH pF 20 20k -0.5 0.5 dB -54 15 dB Mute Attenuation 100 dB Programmable Gain Step Size 1.5 dB Absolute Gain Accuracy 0 dB @ 1 kHz -0.8 0.8 dB Input Gain L/R-Mismatch 20 Hz – 20 kHz -0.1 0.1 dB Input Gain Step Error 20 Hz – 20 kHz -0.1 0.1 dB Signal to Noise Ratio A weighting, gain = 0 dB 100 Output Noise Level 20 to 20 kHz, unweighted, gain < -15 dB <4.5 Total Harmonic Distortion Plus Noise VDDCP = 1.8 V, -5 dBFS, RL=16 Ω -70 Power Supply Rejection Ratio 20 Hz - 2 kHz 2 kHz - 20 kHz Output power per channel VDDCP=2.5 V, THD<1%, RL=16 Ω, 1 kHz Datasheet CFR0011-120-00 Rev 5 Revision 3e 21 of 105 70 50 dB µVrms dB dB 72 mW 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 14: Electrical characteristics: Phase locked loop (MCLK) Parameter Description Conditions Input Jitter Input Impedance Max Unit cycle to cycle 35 ps rms 100 ps DC impedance > 10 MΩ Min 300 0.5 Typ 1 2 pF 12.288 MHz 80 MHz Interface mode (MCLK is 256 Fs, PLL off) Fin Input frequency 256 Fs 128 Fs (96 kHz) 11.289 Oscillator mode (MCLK from standard oscillator, PLL on) 10 Fin Input frequency 32 kHz mode VIN AC 32.768 kHz I2S tracking range (SRM) Maximum mismatch of I2S word-clock 4 % I2S clock drift Maximum frequency drift of I2S word clock 50 ppm/s MCLK Shaper range For AC coupling with internal clock shaping 1000 mVPP Max Unit 300 500 Table 15: Electrical characteristics: Digital I/O (Ta = -40 to +85ºC) Parameter Description VIH CLK, WCLK, DATIN, SK, SI, PD, MCLK Input High Voltage 0.7*VDD CLK, WCLK, DATIN, SK, SI, PD, MCLK, -0.3 VIL Conditions Min Typ VDD V 0.3*VDD V Input Low Voltage VOH @ 1 mA CLK, WCLK, DATOUT VOL @ 1 mA CLK, WCLK, DATOUT Output Low Voltage 0.8*VDD VDD 0 0.3 0.7*VDD VDD -0.3 0.3*VDD Output High Voltage MCLK Input High Voltage DC-coupled TTL signal MCLK Input Low Voltage Datasheet CFR0011-120-00 Rev 5 Revision 3e 22 of 105 V V V V 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 7 Company confidential Timing characteristics 7.1 Digital audio interface timing - I2S/DSP (in master/slave mode) T WCLK tdCW tsW tf thW thC tr tlC CLK tdWD tdCD DATOUT tsD thD DATIN Figure 4: I2S/DSP timing diagram Table 16: I2S/DSP timing characteristics (Ta = -40 to +85ºC) Parameter Description Conditions Min Input impedance DC impedance > 10 MΩ 300 1.0 Typ Max Unit 2.5 Ω pF T CLK period tr CLK rise time 8 ns tf CLK fall time 8 ns thC CLK high period 40% 60% T tlC CLK low period 40% 60% T tdCW CLK to WCLK delay -30% +30% T tdCD CLK to DATOUT delay -30% +30% T WCLK high time thW WCLK low time tlW 75 ns DSP mode 100% T Non-DSP mode Word length T DSP mode 100% T Non-DSP mode Word length T tsW WCLK setup time Slave mode 7 ns thW WCLK hold time Slave mode 2 ns tsD DATIN setup time 7 ns thD DATIN hold time 2 ns tdWD DATOUT to WCLK delay DATOUT is synchronised to CLK Datasheet CFR0011-120-00 Rev 5 Revision 3e 23 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 7.2 Company confidential Digital audio control timing - 2-wire control timing Figure 5: 2-wire control timing diagram Table 17: 2-wire control timing characteristics (Ta = -40 to +85ºC) Parameter Description Conditions Bus free time STOP to START Min Typ Max 1.3 Bus Line Capacitive load Unit µs 100 pF 400 kHz Standard/Fast Mode SK clock frequency 1 Bus free time STOP to START 1.3 µs Start condition set-up time 0.6 µs STH Start condition hold time 0.6 µs CLKL SK low time 1.3 µs CLKH SK high time 0.6 µs 2-wire SK and SI rise/fall time DST SI set-up time DHT SI hold-time TSS Stop condition set-up time 300 ns 100 ns 0 ns 0.6 µs High Speed Mode SK clock frequency 1 1700 kHz Start condition set-up time 160 ns STH Start condition hold time 160 ns CLKL SK low time 160 ns CLKH SK high time 60 ns DST TSS HS-2-wire SK rise/fall time 40 ns HS-2-wire SI rise/fall time 80 ns SI set-up time 10 ns SI hold-time 0 ns Stop condition set-up time 16 ns Datasheet CFR0011-120-00 Rev 5 Revision 3e 24 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 18: Start-up times after setting SC_MST_EN = 1 Source Output Comment VBG VBG voltage >90% with 1 µF VBG capacitor All analogue inputs and DACL/R HPL/R Slave mode; 200 ms added delay required All analogue inputs and DACL/R HPL/R All analogue inputs and DACL/R Min Typ Max Unit 25 ms 200 ms 32 kHz PLL master mode; 200 ms added delay required 500 ms OUT1L/R Slave mode 250 ms All analogue inputs ADCL/R Slave mode 200 ms All analogue inputs ADCL/R 32 kHz PLL master mode 600 ms Datasheet CFR0011-120-00 Rev 5 Revision 3e 25 of 105 200 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 8 Company confidential Functional description DA7211 is an ultra-low power audio codec with a true ground headphone, mixing capability and a programmable ASSP filter engine. It offers Hi-Fi audio quality with class-leading power consumption for portable media applications. Featuring a high-efficiency headphone amplifier and a minimum supply voltage of 1.8 V, the ultra-low 2.5 mW power consumption extends music playback time for battery operated equipment. The integrated PLL uses a FRACT-N PLL architecture that supports a large range of input and output frequencies. This can accept standard mobile phone/USB system clock frequencies, thus enabling audio data synchronisation when no master clock is readily available. Eight analogue input pins allow multiple audio sources to be internally mixed, eliminating the need for external switches. Both single-ended and fully-differential line and microphone inputs are supported with built-in variable gain amplifiers to optimise dynamic range prior to digitisation. This allows a diverse variety of analogue audio sources such as baseband voice, mobile TV, Wi-Fi and FM radio to be managed. Input and output mixers with stereo-to-mono conversion also support mono configurations such as headset/baseband line outputs. Three output drivers are available in the output stage of the DA7211. One output driver will directly drive standard 3-wire 16 Ω headphones whilst the other two provide two adjustable, fully differential stereo lineout channels. For example the dc-coupled, dedicated pop-free drivers may be connected simultaneously to stereo headphones, stereo speakers and a mono line out without external switches. All filtering and sidetone functions are performed digitally including 5-band EQ and a digital input AGC with programmable attack and decay parameters. The multi-slot I2S/PCM interface supports all common sample rates between 8 and 96 kHz in master or slave modes. 8.1 8.1.1 Stereo codec Input signal chain The DA7211 has three flexible stereo analogue inputs that can be set up as line inputs, microphone inputs, or both. They can be configured as differential or single ended. Line inputs (AUX1_L/R) and microphone outputs can be routed to the ADC or directly to the output mixers via a bypass path. Datasheet CFR0011-120-00 Rev 5 Revision 3e 26 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 8.1.2 Company confidential Microphone inputs The DA7211 includes two analogue microphone inputs, which can be used as a stereo or two mono microphones. These can either be connected in (i) fully differential mode for improved common mode noise rejection and (ii) single ended or in pseudo-differential (by connecting MICN to GND). The larger signal should be always connected to MICPL or MICPR and the smaller should be connected to MICNL or MICNR. The microphone PGAs are enabled by the MIC_L_EN/MIC_R_EN controls (address 0x07/0x08, (Table 44 and Table 45). For maximum flexibility each microphone channel includes an individual gain setting MIC_L_VOL (address 0x7, Table 44), which have a range of -6 dB to +24 dB in 6 dB steps. A maximum gain from microphone to ADC input of +42 dB can be selected with a resolution of 1.5 dB. Figure 6: Typical microphone applications Standard electret microphones can be supplied from an on chip microphone bias. This generates an ultra-low noise voltage to feed several electret microphones with up to 2 mA. Depending on the provided AVDD level, the bias voltage can be configured via MICBIAS_SEL (address 0x07, Table 44). If it is not needed then the microphone bias can be powered down using MICBIAS_EN (address 0x07, Table 44). 8.1.3 Auxiliary inputs Standard analogue sources are supported via the stereo line inputs AUX1_L and AUX1_R. Mono sound sources are intended to be connected to the right channel of AUX1. Each channel includes individual gain settings of 48 to 21 dB in 1.5 dB steps using AUX1_L_VOL and AUX1_R_VOL (address 0x09/0x0A, Table 46 and Table 47). A maximum gain from auxiliary to ADC input of +36 dB with a resolution of 1.5 dB can be selected. The gain describes the overall input signal to output signal ratio (independent whether the path is single ended or differential). Datasheet CFR0011-120-00 Rev 5 Revision 3e 27 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 8.1.4 Company confidential Stereo audio ADC DA7211 includes a low power 24 bit high quality stereo audio ADC, which uses a continuous time delta-sigma modulator providing improved robustness against uncorrelated environmental noise. The ADC supports sampling rates from 8 kHz to 96 kHz. A master clock has to be provided at MCLK whenever the ADC or DAC are in operation. Dependent on the intended recording path, the stereo ADC can power down one channel at a time via controls ADC_L_EN and ADC_R_EN (address 0x10, Table 52) to provide optimal power dissipation. To enable saturation free maximum signal-to-noise, the input levels of the ADC are adjusted with input PGAs. The inputs to left and right input mixers are controlled by the bits in the INMIX_L and INMIX_R registers (addresses 0x0D and 0x0E, Table 49 and Table 50). Gain settings for the left and right PGAs are controlled by INPGA_L_VOL and INPGA_R_VOL (address 0x0C, Table 48), with a range of 4.5 dB to 18 dB with 1.5 dB resolution. For smooth volume changes the gain update can be synchronised to signal zero crossings enabled using INZX_L_EN and INZX_R_EN (address 0x24, Table 71). Disabling the left ADC saves power for mono recordings of stereo input signals by using the analogue stereo to mono conversion from the input mixer. This configuration requires setting the INPGA_L_VOL to 0 dB (‘0011’) and the assertion of IN_R_IN_L (address 0x0E, Table 50). The IIR filters are enabled using ADC_HPF_EN (address 0xF, Table 51, and see blocks ‘ADC HP’ in Figure 15). The filters (typ. <2 Hz roll-off) are configurable by control ADC_HPF_F0 (address 0x0F, Table 51) and, if enabled, will remove any DC offset from the input path. After Reset, the filters for both channels are enabled by default. Enabling the high pass filter is especially important if the ADC output is fed back into the DAC. By default the ADC bias current is minimised, but it is possible to improve the THD+N performance of the ADC by approximately 4 dB by increasing this current. The bias current is increased by setting the ADC_T2 bit (address 0x95[3], Table 175). Also by default the VMID buffer current is enabled for DAC operation, but this buffer is not required for analogue only paths and for ADC only operation. The VMID bias current can be disabled by setting the VMID_BUFF_EN bits (address 0x96[2:0], Table 176) and a significant power saving can be made. Table 19: ADC digital high pass filter specifications Sampling frequency (kHz) 48 (KHZ) 00 01 10 11 2 4 8 16 44.1 1.8 3.7 7.3 14.7 32 1.3 2.7 5.3 10.7 24 1 2 4 8 22.05 0.9 1.8 3.7 7.3 16 0.7 1.3 2.7 5.3 12 0.5 1 2 4 11.025 0.4 0.9 1.8 3.7 8 0.3 0.7 1.3 2.7 Datasheet CFR0011-120-00 Rev 5 Cut-off frequency (Hz) at ADC_HPF_F0 setting Revision 3e 28 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Figure 7: ADC and DAC DC blocking (cut-off frequency setting ‘00’ to ‘11’, 16 kHz) Figure 8: ADC pass band attenuation (audio mode, 48 kHz) Datasheet CFR0011-120-00 Rev 5 Revision 3e 29 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Figure 9: ADC pass band suppression (audio mode, 48 kHz) 8.1.5 Automatic level control (ALC) For improved sound recordings of signals with a widely changing loudness the DA7211 offers an automatic recording level control (ALC). It is enabled via ALC_EN (address 0x10, Table 52) and monitors the analogue signal before it enters the ADC and adapts the input gain to keep a constant recording volume irrespective of the analogue input signal level. Figure 10 (below) illustrates the operation of the ALC. It shows an input signal with high level. The output level is reduced when its level is above the upper threshold, and increased when it falls below the minimum threshold. ALC Input ALC MAX level ALC Gain ALC MIN level Release time ALC Output Attack time Figure 10: Operation of ALC If this absolute value of an analogue signal is greater than ALC_MAX (address 0x83, Table 165), then the gain is ramped down at a rate determined by the ALC_ATT (address 0x86, Table 168). If this absolute value is lower than a level set in ALC_MIN (address 0x84, Table 166), the gain is ramped up at a rate determined by ALC_REL (address 0x87, Table 169). Datasheet CFR0011-120-00 Rev 5 Revision 3e 30 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential ALC_MAX needs to be greater than ALC_MIN (minimum delta 1.5 dB). The target level is best achieved by setting these values close to each other. A wider delta allows for a larger input range, and that will reduce the ALC activity. The value of ALC_REL is configured in increments of 4 sample periods. The gain-ramping is performed inside the input PGA in steps of 1.5 dB. To prevent audible clicks each analogue gain step is interpolated by 8 digital volume steps of 0.25 dB inside the ADC (the rate refers to the intermediate steps inside the ADC). However, the level must be lower than ALC_MIN for a time greater than the hold time in order for this gain increase to take place. The hold time is determined by ALC_DEL (address 0x88, Table 170) in increments of ALC_REL periods, which allows long hold periods to be programmed for a reduction of potential ‘gain pumping’ during dynamic signal content. For ALC noise value, refer to Table 20. Table 20: Permitted register values for ALC_NOIS (0x85 [5:0]) Dec Bin Hex Level (dB) Dec Bin Hex Level (dB) 60 111100 3C -0.5 29 011101 1D -47 59 111011 3B -2 28 011100 1C -48.5 58 111010 3A -3.5 27 011011 1B -50 57 111001 39 -5 26 011010 1A -51.5 56 111000 38 -6.5 25 011001 19 -53 55 110111 37 -8 24 011000 18 -54.5 54 110110 36 -9.5 23 010111 17 -56 53 110101 35 -11 22 010110 16 -57.5 52 110100 34 -12.5 21 010101 15 -59 51 110011 33 -14 20 010100 14 -60.5 50 110010 32 -15.5 19 010011 13 -62 49 110001 31 -17 18 010010 12 -63.5 48 110000 30 -18.5 17 010001 11 -65 47 101111 2F -20 16 010000 10 -66.5 46 101110 2E -21.5 15 001111 0F -68 45 101101 2D -23 14 001110 0E -69.5 44 101100 2C -24.5 13 001101 0D -71 43 101011 2B -26 12 001100 0C -72.5 42 101010 2A -27.5 11 001011 0B -74 41 101001 29 -29 10 001010 0A -75.5 40 101000 28 -30.5 9 001001 09 -77 39 100111 27 -32 8 001000 08 -78.5 38 100110 26 -33.5 7 000111 07 -80 37 100101 25 -35 6 000110 06 -81.5 36 100100 24 -36.5 5 000101 05 -83 35 100011 23 -38 4 000100 04 -84.5 34 100010 22 -39.5 3 000011 03 -86 33 100001 21 -41 2 000010 02 -86 32 100000 20 -42.5 1 000001 01 -86 31 011111 1F -44 0 000000 00 -86 30 011110 1E -45.5 Datasheet CFR0011-120-00 Rev 5 Revision 3e 31 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Examples for ALC_ATT (address 0x86, Table 168). (fs=44.1 kHz; sample period = 22.67 µs) Setting ms per 1 dB step 11111111 (FF) 23.2 10111111 (BF) 17.4 01111111 (7F) 11.6 00111111 (3F) 5.8 00011111 (1F) 2.9 00001111 (0F) 1.5 00000100 (04) 0.5 Examples for ALC_REL (address 0x87,Table 169). (fs=44.1 kHz; sample period = 22.67 µs) Setting ms per 1 dB step 11111111 (FF) 92.9 10111111 (BF) 69.7 01111111 (7F) 46.4 00111111 (3F) 23.2 00011111 (1F) 11.6 00001111 (0F) 5.8 00000100 (04) 0.5 8.1.6 Noise gate A noise gate feature is provided to avoid ‘noise pumping’ where the gain of the channel is increased to the maximum when there is no signal is present (i.e. only noise). If the level of the input signal drops below the threshold configured inside control ALC_NOIS (address 0x85, Table 167) the channel gain is held. 8.2 8.2.1 Output signal chain Stereo audio DAC The integrated stereo DAC is suitable for high quality audio playback of MP3 files and portable multimedia files of all kinds. The DAC has individually enabled channels via controls DAC_L_EN and DAC_R_EN (address 0x17, Table 59). The DA7211 supports the option of individually phase inverted output signals using controls DAC_L_INV (address 0x15, Table 57).and DAC_R_INV (address 0x16, Table 58). A digital high pass filter for each DAC channel is implemented (configurable by control DAC_HPF_F0 (address 0x14, Table 56) that can be enabled via control DAC_HPF_EN (address 0x14, Table 56, see blocks ‘DAC HP’ in Figure 15). After Reset, the high pass filters for both channels are enabled by default. Datasheet CFR0011-120-00 Rev 5 Revision 3e 32 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 21: DAC digital high pass filter specifications Sampling frequency (kHz) 48 Cut-off frequency (Hz) at DAC_HPF_F0 setting 00 01 10 11 2 4 8 16 44.1 1.8 3.7 7.3 14.7 32 1.3 2.7 5.3 10.7 24 1 2 4 8 22.05 0.9 1.8 3.7 7.3 16 0.7 1.3 2.7 5.3 12 0.5 1 2 4 11.025 0.4 0.9 1.8 3.7 8 0.3 0.7 1.3 2.7 (KHZ) Figure 11: DAC DC blocking (cut-off frequency setting ‘00’ to ‘11’, 48 kHz) 8.2.2 Soft mute To improve the user’s perception of audio reconfigurations, the DAC channel signals may be soft muted by asserting control SOFT_MUTE (address 0x18, Table 60). The soft mute function attenuates the digital input to the DAC, ramping the gain down in steps of 0.1875 dB from the nominal level to -77.25 dB, before completely muting the channel. When SOFT_MUTE is released, the attenuation is set to -77.25 dB, and then ramped up to the initial gain. Both left and right channels are muted simultaneously. The ramping speed is dependent on the audio sample rate and can be configured by control MUTE_RATE (address 0x18, Table 60). Status bits SOFTMUTED and MUTING may be read from the system status register (address 0x02, Table 40). Datasheet CFR0011-120-00 Rev 5 Revision 3e 33 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Figure 12: DAC pass band attenuation (audio mode, 48 kHz) Figure 13: DAC pass band suppression (audio mode, 48 kHz) 8.2.3 Output mixer and line-out amplifier For playback the output mixer has to be enabled via OUT1_L_EN and OUT1_R_EN (addresses 0x1C, Table 64 and 0x1D, Table 65). The audio signal can be mixed from all sources and listened to via headphones/speakers and recorded simultaneously if required. OUTMIX_L and OUTMIX_R (addresses 0x1C, Table 64 and 0x1D, Table 65) are independent of the input path, thus allowing recording of a different audio signal when listening to stereo sources like FM Radio or MP3 playback. The playback sound can be mixed with background or inverted background microphone signals (side tone) to enable a basic headphone environmental noise reduction or to compensate unwanted damping of environmental sound happening with sealed headphones. Playback signals can be inverted individually for left and right channel via OUT_L_INV (address 0x1C, Table 64), OUT_R_INV (address 0x1D, Table 65) or for playback of signals from the DAC via DAC_L_INV/DAC_R_INV (address 0x15, Table 57). Datasheet CFR0011-120-00 Rev 5 Revision 3e 34 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential A stereo to mono conversion can either be realised by the input or the output mixer. This allows direct feeding of phone earpiece receivers, high power speaker amplifiers and other mono devices with the complete audio content. Unused channels of the stereo line out can be switched off to reduce power consumption using OUT1_L_EN (address 0x1E, Table 66) and OUT1_R_EN (address 0x1F, Table 67). The mixer allows listening to mono signals like baseband or Bluetooth voice also at both channels of stereo headphones. Each differential channel of OUT1 can alternatively be individually configured to be single ended via OUT1_L_SE (address 0x1E, Table 66) and OUT1_R_SE (address 0x1F, Table 67). Typical earpiece receivers with an impedance > 32 Ω can be driven directly in differential mode at all outputs. This amplifier offers individual programmable volume control from +15 dB to –54 dB in 1.5 dB steps, then mute for steps below -54 dB using controls OUT1_L_VOL (address 0x1E, Table 66) and OUT1_R_VOL (address 0x1F, Table 67). For smooth volume changes, the gain update can be synchronised to zero-crossing of the signal using OUTZX_L_EN and OUTZX_R_EN (address 0x24, Table 71). If no zero-crossing is detected within 2048 sample periods, the gain change is applied unconditionally. The left and right channels are synchronised independently. AUX1_L A1 PGA L OUT1 L 0x09 0x1E + MICP_L + M PGA L MICN_L MICBIAS - INPUT MIXER L 0x0D + DAC L 0x14 to 0x1B OUTPUT MIXER L 0x1C HP L HP_L 0x21 MICBIAS + IN PGA R ADC R 0x0F to 0x13 DAC R 0x14 to 0x1B + 0x0C M PGA R MICN_R ADC L 0x0F to 0x13 0x0C 0x07 + MICP_R IN PGA L OUT1P_L OUT1N_L 0x08 INPUT MIXER R 0x0E OUTPUT MIXER R 0x1D HP R HP_R 0x22 DIGITAL FILTERING 0x2D to 0x7F AUX1_R OUT1 R A1 PGA R PHASE LOCKED LOOP 0x29 to 0x2C 0x0A I2S/PCM DIGTIAL AUDIO INTERFACE 0x25 to 0x28 OUT1P_R OUT1N_R 0x1F DATIN CLK WCLK DATOUT MCLK DA7211 Figure 14: DA7211 audio signal paths 8.2.4 Headphone amplifier The headphone Class G amplifiers are enabled by controls HP_L_EN and HP_R_EN (address 0x23, Table 70) and their output can be set to high impedance mode using HP_HIGHZ_L and HP_HIGHZ_R (address 0x23, Table 70). They offer 'true ground' technology, which allows cost and space optimisation by removing the need for large capacitors in the headphone paths. This also enhances the bass performance, which is typically reduced by conventional AC-coupling. In comparison to alternative approaches like ‘phantom ground’, the ‘true ground’ technology generates real ground-centred output signals, and provides common GND as required for Mini-USB connectors and CEA-936-A compliant interfaces. Integrated short-circuit protection enables a ‘resistors free’ connection to a standard audio jack to achieve a maximum output power of up to 58 mW per channel (referenced to VDDCP). The output mixing units enable the support of single-ended mono and stereo, as well as differential headphones selected by OUT_R_INV (address 0x1D, Table 65). Headphone load impedance is typically 16 Ω, but the paths can also be used as volume controlled lineout signals for external speaker amplifiers and audio devices. The headphone Class G amplifiers are supplied from the positive VDDCP rail via a capacitive charge pump that generates the negative rail required for ‘true ground’ mode. For improved power efficiency it provides dynamically adjusted Datasheet CFR0011-120-00 Rev 5 Revision 3e 35 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential supply voltage levels VDD, VDD/2, VDD/3 and VDD/4, which are automatically adjusted by DA7211 from the average left and right level of the headphone audio signals see control HP_CFG (address 0x23, Table 70). To minimise the number of external components the charge pump provides a restricted mode enabled via HP_2CAP_MODE (address 0x23, Table 70), which removes the need for the second flying cap (at pins HPCF2P and HPCF2N), but disables the VDD/3 and VDD/4 supply voltage levels. Unlike conventional solutions DA7211 does not require any coupling capacitors at the ‘true ground’ headphone amplifier input. An embedded offset compensation circuit suppresses click and pop noise during both start-up and dynamic supply-voltage adjustments. Table 22: Headphone/OUT1 amplifier gain settings GAIN CODE GAIN CODE MUTE 0x10 -19.5 dB 0x28 -54.0dB 0x11 -18.0 dB 0x29 -52.5dB 0x12 -16.5 dB 0x2A -51.0dB 0x13 -15.0 dB 0x2B -49.5dB 0x14 -13.5 dB 0x2C -48.0dB 0x15 -12.0 dB 0x2D -46.5dB 0x16 -10.5 dB 0x2E -45.0dB 0x17 -9.0 dB 0x2F -43.5dB 0x18 -7.5 dB 0x30 -42.0dB 0x19 -6.0 dB 0x31 -40.5dB 0x1A -4.5 dB 0x32 -39.0dB 0x1B -3.0 dB 0x33 -37.5dB 0x1C -1.5 dB 0x34 -36.0dB 0x1D 0 dB 0x35 -34.5dB 0x1E 1.5 dB 0x36 -33.0dB 0x1F 3.0 dB 0x37 -31.5dB 0x20 4.5 dB 0x38 -30.0dB 0x21 6.0 dB 0x39 -28.5dB 0x22 7.5 dB 0x3A -27.0dB 0x23 9.0 dB 0x3B -25.5dB 0x24 10.5 dB 0x3C -24.0dB 0x25 12.0 dB 0x3D -22.5dB 0x26 13.5 dB 0x3E -21.0dB 0x27 15.0 dB 0x3F Table 22 relates to the registers shown below ● ● ● ● HP_L_VOL: 0x21[5:0] HP_R_VOL: 0x22[5:0] OUT1_L_VOL: 0x1e[5:0] OUT1_R_VOL: 0x1f[5:0] To enable volume balance settings the gain of the headphone buffers can be programmed independently for both channels by controls HP_L_VOL (addresses 0x21, Table 68) and HP_R_VOL (addresses 0x22, Table 69) according to Table 22. The gain steps are 1.5 dB from +15 dB down to – 54 dB, and mute for the steps below -54 dB. Alternatively the channels’ gain settings can be combined with bit STEREO_TRACK (address 0x23, Table 70) and controlled for both channels with volume register HP_R_VOL (address 0x22, Table 69). For smooth volume changes the gain update can be synchronised to audio signal zero-crossings by enabling HPZX_L_EN and HPZX_R_EN (address 0x24, Table 71). If no zero-crossing is detected Datasheet CFR0011-120-00 Rev 5 Revision 3e 36 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential within 2048 sample periods, the gain change is applied unconditionally. The left and right channels are synchronised independently. The headphone outputs are supported by DC offset compensation circuitry to minimise any possible pop and click artefacts during power up/down. To ensure sufficient time for the DC compensation circuitry to operate, a delay of 200 ms must be added after SC_MST_EN (address 0x03, Table 41) bit is enabled. 8.2.5 Ambient noise suppression DA7211 supports stereo noise suppression by subtracting inverted noise signals from the AUX1 inputs at the headphone outputs. The noise signal must pass through the input PGA, be inverted and then mixed with the outputs from the DAC. The signal at the AUX1 inputs for example, can be from microphones picking up ambient noise at the user’s ears. This mode is enabled via control NOISE_SUP (address 0x01 CONTROL, Table 39) and then offers a modified headphones volume control via a combination of three gain stages: a) Headphones gain settings > 0 dB All headphone gains settings > 0 dB will be applied to the headphone PGA, but the equivalent gain will be synchronously subtracted from the input PGA to equalise the overall net gain in the ambient noise signal path. For sufficient range of operation, the starting values of INPGA_L_VOL and INPGA_R_VOL (address 0x0C, Table 48) must be configured >= 10.5 dB (settings ‘1010’ to ‘1111’) before enabling the noise suppression mode. b) Headphones gain settings <= 0 dB When DAC is selected to the headphone output any update of the gain less than or equal to 0 dB, using controls HP_L_VOL/HP_R_VOL (address 0x21, Table 68 and address 0x22, Table 69), will be implemented instead using the controls DAC_L_GAIN and DAC_R_GAIN (address 0x15, Table 57 and address 0x16, Table 58). If this were not the case then a large signal on AUX1 could cause clipping at the headphone output. For the ambient noise signals from the AUX1 path all headphones gain changes <= 0 dB will be implemented using the settings of AUX1_L_VOL and AUX1_R_VOL (address 0x09, Table 46). To allow the full minimum headphone volume of -54 dB, these AUX1_L_VOL and AUX1_R_VOL controls need to be set to >= 6 dB (setting > 110101’b) before enabling the noise suppression mode. NOTE – The ALC has to be disabled during noise suppression mode and it is recommended to enable zero-crossing for gain updates at the headphone amplifier and the AUX1 PGA (see the register ZEROX (address 0x24, Table 71)). Headphone volume changes should enable digital gain ramping for DAC playback. The controls INPGA_L_VOL, INPGA_R_VOL, AUX1_L_VOL, AUX1_R_VOL, DAC_L_GAIN, and DAC_R_GAIN should not be written to when noise suppression is enabled. 8.2.6 Digital signal processing engine The digital signal processing engine includes a configurable audio processor that offers flexible routing and extensive audio enhancement and effects. Linear phase FIR filters perform the interpolation and decimation for the required sigma-delta sample rates. Configurable high-pass filtering (optionally enabled) removes any signal DC offset (see blocks ‘ADC HP’ and ‘DAC HP’ in Figure 15) and offers 5-band equalisation during recording and sound playback. Alternatively it can provide dedicated voice band filtering at samples rates 16 kHz (see blocks ‘ADC IIR’ and ‘DAC IIR’ in Figure 15). An additional general purpose (GP) filter engine offers up to eight second-order biquad filter stages with configurable 16-bit coefficients, and supports flexible digital audio routing and mixing arrangements. Figure 15 shows some possible routings (a subset of the available settings) for filter blocks GP1A to GP2D with the related control registers. Typical use cases with example configurations are explained in the section 8.3. Datasheet CFR0011-120-00 Rev 5 Revision 3e 37 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec DAI Left Input I2S/PCM Left ADC L GP1A ADC HP L ADC IIR L ADC HP R ADC IIR R Company confidential DAI Left Output GP1B GP1C GP1D + + + + ADC R GP2A DAI Right Input GP2B + I2S/PCM Right + + GP2C GP2D + DAC L DAC IIR L DAC HP L DAC IIR R DAC HP R + DAC R DAI Right Output Figure 15: Digital signal processing engine (simplified block diagram) The GP filter sections are implemented using a Direct Form 1 architecture, as shown in Figure 16. This structure implements the transfer function: H(z) = a0 + a1 z + a2 z2 1-b1 z - b2 z2 X(n) Y(n) e.g. GP1A_A0L GP1A_A0H 0x2D/0x2E a0 + + z-1 e.g. GP1A_A1L GP1A_A1H 0x3D/0x3E z-1 a1 + + z-1 e.g. GP1A_A2L GP1A_A2H 0x4D/0x4E e.g. GP1A_B1L GP1A_B1H 0x5D/0x5E b1 z-1 a2 e.g. GP1A_B2L GP1A_B2H 0x6D/0x6E b2 Figure 16: Direct form I implementation of a second order IIR filter Each of the five coefficients may be configured by the user, for each filter section. The coefficients are specified as 16-bit two’s-complement numbers, ranging from -2 to +2. Denominator coefficients must be negated, that is, if b1 is positive then a negative value (-b1) must be programmed, and conversely, if b1 is negative then a positive value (+b1) must be programmed. Coefficients must be selected carefully to specify a stable filter. The filter sections are arranged in four groups, where the input to each filter group can be programmed to be one of up to seven possible sources: ● The two digital audio interface (DAI) output ports (left or right) ● The output from the two ADC channels (left or right) ● The output from a previously processed filter group (one of the up to three remaining groups) If the processing function of a filter is not required the group can be disabled. In this case, the output path of the filter group is connected directly to the input source. Disabling a filter group reduces the power consumption of the filter group to a minimum. Datasheet CFR0011-120-00 Rev 5 Revision 3e 38 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 8.3 Company confidential Programming the general purpose filter The general purpose filter is configured using two groups of registers. These are coefficient programming and path selection. The coefficients should be programmed using the registers GP1A_A0L (address 0x2D, Table 80) to GP2D_B2H (address 0x7C, Table 159). Coefficients are programmed as two 8-bit registers of signed values representing the range +2 to -2. Example GP1A_B1L and GP1A_B1H contain the two’s complement low and high bytes of the -b1 coefficient of the filter illustrated in Figure 16. If a coefficient value of 1.45 is required, -b1 is programmed as the coefficient number multiplied by a scaling factor. The scaling factor 214 is used to convert the floating point number into an integer value for programming. The low byte will always be an 8-bit unsigned hexadecimal value, while the high byte contains the sign bit of the two’s complement word. Scale the unsigned decimal coefficient value: b1 = 1.45 x 214 = 23756.8 ≈ 23757 The unsigned scaled value in binary: b1 = 0101110011001100b Convert to two’s complement; invert the binary value and add the MSB sign bit: b1 = 10100011001100112 = A333h GP1A_B1L = 33h = 00110011 GP1A_B1H = A3h = 10100011, where MSB is the two’s complement sign-bit Note that the denominator coefficient is explicitly negated. The value of the -b1 term is positive, so a negative value must be programmed. There are eight fully programmable, second-order IIR biquad filter sections grouped in the following pairs: ● ● ● ● 1AB 1CD 2AB 2CD The output of the first section in each group is cascaded with the second section. The filter sections are processed in a fixed order: 1A, 1B, 1C, 1D, 2A, 2B, 2C, 2D. Each filter group can be programmed to take its input from one of seven possible sources, that is, from either an ADC or an I2S channel, or from any filter section that has been previously processed using GP_1AB_SRC and GP_2AB_SRC (address 0x7D, Table 160) and GP_1CD_SRC and GP_2CD_SRC (address 0x7E, Table 161) It is possible to cascade all eight GP filters together using these registers. Each filter block can be enabled or disabled in register DSP_CFG (address 0x7F, Table 162). Table 23: GP filter section enable bits Control Definition GP1AB_EN Enable GP section 1AB GP1CD_EN Enable GP section 1CD GP2AB_EN Enable GP section 2AB GP2CD_EN Enable GP section 2CD The outputs of some groups can be summed together, as controlled by register DSP_CFG (address 0x7F, Table 162). Datasheet CFR0011-120-00 Rev 5 Revision 3e 39 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 24: Band-equaliser corner frequencies Control Definition DSP_MIX_1 Output of group 1AB is summed with 1CD DSP_MIX_2 Output of group 1CD is summed with 2AB DSP_MIX_3 Output of group 2AB is summed with 2CD When using the summing facility, the user must ensure that the source signal filter sections are activated and their output levels are such that clipping does not occur. At 88.2 kHz and 96 kHz sample rates, the number of useable filter sections is halved. Only sections 1B, 1D, 2B and 2D are available. 8.4 8.4.1 Hi-Fi recording 5-band equaliser for recording path To allow user-specific sound control, the recording path includes a programmable 5-band equaliser (combined in the ADC IIR blocks in Figure 15). This is enabled using control ADC_EQ_EN (address 0x13, Table 55). A low-pass filter, three band-pass filters and a high-pass filter with turn over frequencies at approximately 50 Hz, 300 Hz, 1.2 kHz and 5 kHz (bandpass centre frequencies at 150, 500 and 2500 Hz) are controlled using the registers ADC_EQ1_VOL to ADC_EQ5_VOL (addresses: 0x11, Table 53; 0x12, Table 54; 0x13, Table 55). These registers boost or damp each frequency band from -10.5 dB to +12 dB in 1.5 dB steps. Saturation of the signal from boosted frequencies can be prevented by an overall damping control ADC_EQ_GAIN (address 0x13, Table 55), which provides attenuation from -18 dB to 0 dB in 6 dB steps. Table 25: 5-band-equaliser turn-over/centre frequencies Sampling frequency kHz Low pass Band pass Band pass Band pass High pass 50 Hz 150 Hz 500 Hz 2500 Hz 5000 Hz 96.0 n.a. n.a. n.a. n.a. n.a. 88.2 n.a. n.a. n.a. n.a. n.a. 48.0 67 143 627 2565 5100 44.1 62 131 576 2357 4686 32.0 45 95 418 1710 3400 24.0 67 144 659 2953 6230 22.05 62 132 605 2713 5724 16.0 45 96 439 1969 4153 12.0 67 147 726 2230 3050 11.025 62 135 667 2049 2802 8.0 45 98 484 1486 2033 The 5-band equaliser cannot be used at 88.2 kHz and 96 kHz sampling rates, and is automatically disabled if the ADC is configured to Voice Mode using control ADC_HPF_F0 (address 0x0F, Table 51). The frequency responses of the 5-band equaliser are illustrated in Figure 17 to Figure 21. Datasheet CFR0011-120-00 Rev 5 Revision 3e 40 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Figure 17: Band 5 (LP 50 Hz) frequency response at FS = 48 kHz Figure 18: Band 5 (BP 150 Hz) frequency response at FS = 48 kHz Figure 19: Band 5 (BP 500 Hz) frequency response at FS = 48 kHz Datasheet CFR0011-120-00 Rev 5 Revision 3e 41 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Figure 20: Band 5 (BP 2500 Hz) frequency response at FS = 48 kHz Figure 21: Band 5 (HP 5000 Hz) frequency response at FS = 48 kHz 8.4.2 Digital audio processing for the record path When Record only is selected, the DAC and playback filter units can be powered down. The general purpose filter engine can offer 8th order stereo filters to correct the acoustic frequency response of the connected microphone (Figure 22). If less filtering is required, filter stages can be bypassed using the filter enable controls described in Table 23. For mono playback, this can also be achieved by switching off a complete channel (blocks not required are highlighted in the following figures in light grey). Datasheet CFR0011-120-00 Rev 5 Revision 3e 42 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential I2S/PCM L GP 1A ADC L ADC HP L ADC IIR L ADC HP R ADC IIR R GP 1B GP 1D + + + + GP 2A ADC R GP 1C GP 2B + + + GP 2C GP 2D DAC L DAC IIR L DAC HP L DAC IIR R DAC HP R + + DAC R I2S/PCM R Figure 22: Record only If it is intended to listen to the recording as it is being made, or to listen to another sound at the same time as the recording, the general purpose filter engine offers a split mode for parallel record and playback equalisation. This mode supports applications that perform active noise cancellation. I2S/PCM L GP 1A ADC L ADC HP L ADC IIR L ADC HP R ADC IIR R GP 1C GP 1D + + + + GP 2A ADC R GP 1B GP 2B + + + GP 2C GP 2D + + DAC L DAC IIR L DAC HP L DAC IIR R DAC HP R DAC R I2S/PCM R Figure 23: Record with sound monitor 8.5 8.5.1 Hi-Fi playback 5-band equaliser for playback path To allow user-specific sound settings, the digital playback path includes a programmable 5-band equaliser, which is enabled using control DAC_EQ_EN (address 0x1B, Table 63). A low-pass filter, three band pass filters and a high-pass filter, with corner frequencies at approximately 100 Hz, 300 Hz, 1 kHz, 3 kHz and 3 kHz (for FS = 44.1 kHz) are controlled by the registers DAC_EQ1_VOL to DAC_EQ5_VOL (addresses: 0x19, Table 61; 0x1A, Table 62; 0x1B, Table 63). These registers boost or damp each frequency band from -10.5 dB to +12 dB in 1.5 dB steps. Saturation of the signal from boosted frequencies can be prevented by an overall damping control ADC_EQ_GAIN (address 0x1B, Table 63). Datasheet CFR0011-120-00 Rev 5 Revision 3e 43 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential The 5-band equaliser cannot be used at a 96 kHz sampling rate and is automatically disabled if the ADC is configured to Voice Mode using control DAC_VOICE_EN (address 0x14, Table 56). Details of corner frequencies are shown in Table 25. Frequency responses are illustrated in Figure 17 to Figure 21. 8.5.2 Digital audio processing for playback path In addition to the user selectable sound settings offered by the 5-band equaliser, the playback path offers up to 8th order configurable audio filtering, for example, to correct the frequency response of connected receivers, speakers or headphones. I2S/PCM L GP 1A ADC L ADC HP L ADC IIR L ADC HP R ADC IIR R GP 1C GP 1D + + + + GP 2A ADC R GP 1B GP 2B + + + GP 2C GP 2D + DAC L DAC IIR L DAC HP L DAC IIR R DAC HP R + DAC R I2S/PCM R Figure 24: Stereo playback (for example, freefield headphone equalisation) For applications with stereo speakers the digital signal processing offers stereo widening with 3D audio effects. I2S/PCM L GP 1A ADC L ADC HP L ADC IIR L ADC HP R ADC IIR R ADC R GP 1B GP 1C GP 1D + + + + GP 2A GP 2B + + + GP 2C GP 2D + + DAC L DAC IIR L DAC HP L DAC IIR R DAC HP R DAC R I2S/PCM R Figure 25: Sound spatialiser for stereo speaker Datasheet CFR0011-120-00 Rev 5 Revision 3e 44 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 8.6 Company confidential Telephone/Bluetooth voice recording/playback at low sample rates DA7211 offers a dedicated Voice Mode with configurable voice in-band and enhanced out-of-band suppression for sample rates up to 16 kHz. 8.6.1 Voice filtering for recording at low sample rates When the sampling frequency is 8, 11.025, 12 or 16 kHz, a Voice Mode can be enabled via ADC_VOICE_EN (address 0xF, Table 51) where the low frequency roll off is configured using control ADC_VOICE_F0 (address 0xF, Table 51). Note 6 Voice filter setting takes precedence over the 5-band equaliser. If the voice filter is enabled for the ADC path, the 5 band equaliser for recording is disabled. Table 26: Voice mode recording high pass filter specifications Cut-off frequency [Hz] at setting Fs [kHz] 000 001 010 011 100 101 110 111 8.0 2.5 25 50 100 150 200 300 400 11.025 3.4 34.5 69 138 207 276 413 551 12.0 3.75 37.5 75 150 225 300 450 600 16.0 5 50 100 200 300 400 600 800 Figure 26: Voice mode recording high pass filter (cut-off frequency setting ‘000’ to ‘111’, 8 kHz) Datasheet CFR0011-120-00 Rev 5 Revision 3e 45 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Figure 27: Voice mode recording frequency response (setting ‘001’, 8 kHz) Figure 28: Voice mode recording stop band suppression (8 kHz) 8.6.2 Voice filtering for playback at low sample rates For playback the voice mode is enabled via DAC_VOICE_EN (Address 0x14, Table 56) where the low frequency roll off is configured via control DAC_VOICE_F0 (Address 0x14, Table 56). Note 7 Voice filter setting takes precedence over the 5 band-equaliser. If the voice filter is enabled for the DAC signal the 5-band-equalizer for playback is automatically disabled. Datasheet CFR0011-120-00 Rev 5 Revision 3e 46 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 27: Voice mode playback high-pass filter specifications Cut-off frequency [Hz] at DAC_VOICE_F0 setting Fs [kHz] 000 001 010 011 100 101 110 111 8.0 2.5 25 50 100 150 200 300 400 11.025 3.4 34.5 69 138 207 276 413 551 12.0 3.75 37.5 75 150 225 300 450 600 16.0 5 50 100 200 300 400 600 800 Figure 29: Voice mode playback high-pass filter (cut-off frequency setting ‘000’ to ‘111’, 16 kHz) Figure 30: Voice mode playback frequency response (setting ‘001’, 8 kHz) Datasheet CFR0011-120-00 Rev 5 Revision 3e 47 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Figure 31: Voice mode playback stop band suppression (8 kHz) 8.6.3 Digital audio processing for phone applications The general purpose filter engine offers a parallel 4th order acoustic equalisation of microphone and receiver/speaker, and filtering of the sidetone signal to suppress oscillations from any acoustic feedback loop. This allows corrections to the frequency response of acoustic transducers and their mechanical environment that is required for GSM/3GPP type approval of mobile phone applications. I2S/PCM L GP 1A ADC L ADC HP L ADC IIR L ADC HP R ADC IIR R GP 1C GP 1D + + + + GP 2A ADC R GP 1B GP 2B + + + GP 2C GP 2D + DAC L DAC IIR L DAC HP L DAC IIR R DAC HP R + DAC R I2S/PCM R Figure 32: Transmit (red), receive (green) and sidetone (blue) sound filtering for phone applications Datasheet CFR0011-120-00 Rev 5 Revision 3e 48 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 9 Company confidential INTERFACES 9.1 Digital audio interface (DAI) Audio data is transferred to and from DA7211 via a serial 2-wire digital audio interface, which is enabled with bit DAI_EN. It is compatible with the Phillips I2S bus specification in normal, left justified, and right justified modes, and operates in both master and slave modes. In addition to I2S, the codec supports the DSP/PCM format of Bluetooth and mobile phone voice links, and offers a multi device TDM mode. The four bus lines are the clock (CLK), the serial data-in line (DATAIN), the serial data-out line (DATAOUT), and the word select line (WCLK). For voice stream monitoring within dual processor architectures, DA7211 includes loop back modes that allow merging of the mono (left) RX and TX data into the PCM/I2S TX data stream configured via control DAI_OUT_R_SRC (address 0x25, Table 72). Serial data and control signals are clocked onto the bus at the falling edge of the CLK clock signal. This guarantees that they are stable at the rising edge of CLK. The serial data is sampled into DA7211 on the rising edge of the CLK clock signal. The interface is enabled via DAI_EN (address 0x28, Table 75) and can operate as either the bus master or as a slave (see control DAI_MODE (address 0x26, Table 73). In master mode, DA7211 generates the WCLK and CLK signals, whereas in the default slave mode these are inputs to the device. If the output from the ADC is not required, the serial data output from this pin can be disabled using control DAI_OE (address 0x28, Table 75). The device may also be used in a system where several devices are connected to the master, using Time Division Multiplexing (TDM). The serial input and output data for each device is valid at a certain offset from the start of the frame. The serial data output from the device is tri-stated until the data from the device is valid, thus allowing several devices to have their serial data out pins connected together. 9.1.1 Operation modes DAI interface Serial data is transferred as two’s complement with the MSB first. The protocol format is selected via control DAI_FORMAT (address 0x28, Table 75). DA7211 is configured to operate with data word lengths of 16, 20, 24, or 32 bits using control DAI_WORD (address 0x26, Table 73). In master mode the device can be configured via DAI_FRAME (address 0x26, Table 73) to generate either twice the selected word-length bit clocks per frame, or 256, 128, or 64 bit clocks per frame. In slave modes, the device may be clocked by any number of bit clocks per frame provided that there are sufficient clocks to transfer all the data bits, which are defined by the word length configuration register. In loop mode, the RX right data overrides available TX left data using control DAI_SRC_SEL (address 0x25, Table 72). 9.1.2 Right justified mode In right-justified mode the LSB of the left channel is valid on the rising edge of the bit clock preceding the falling edge of word clock. The LSB of the right channel is valid on the rising edge of the bit clock preceding the rising edge of the word clock. WCLK = 1; left channel data WCLK = 0: right channel data WCLK CLK < left channel data> DATA N-1 N-2 1 < right channel data> 0 N-1 N-2 1 0 Figure 33: Right justified format Datasheet CFR0011-120-00 Rev 5 Revision 3e 49 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 9.1.3 Company confidential Left justified mode In left-justified mode the MSB of the right channel is valid on the rising edge of the bit clock following the falling edge of the word clock. The MSB of the left channel is valid on the rising edge of the bit clock following the rising edge of the word clock. WCLK = 1; left channel data WCLK = 0: right channel data WCLK CLK < left channel data> DATA N-2 N-1 < right channel data> 1 0 N-1 N-2 1 0 Figure 34: Left justified format 9.1.4 I2S mode In I2S mode, the MSB of the left channel is valid on the second rising edge of the bit clock after the falling edge of the word clock. Similarly the MSB of the right channel is valid on the second rising edge of the bit clock after the rising edge of the word clock. WCLK = 1; right channel data WCLK = 0: left channel data WCLK CLK < right channel data> DATA N-1 N-2 < left channel data> 1 0 N-1 N-2 1 0 Figure 35: I2S format 9.1.5 DSP mode In DSP mode, the rising edge of the word clock starts the data transfer, first with the left channel data, and followed immediately by the right channel data. Each data bit is valid on the falling edge of the bit clock. WCLK CLK < left channel data > DATA N-1 N-2 1 < right channel data > 0 N-1 N-2 1 0 Figure 36: DSP format 9.1.6 TDM mode TDM modes are implemented by defining the data to be valid a certain number of bit clock periods after the start of the frame. This is configured using the offset value DAI_TDM_OFFS (address 0x27, Table 74). It is recommended that TDM is used in either the Left Justified or DSP mode. Datasheet CFR0011-120-00 Rev 5 Revision 3e 50 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential In the Left Justified TDM mode, the left channel data is valid DAI_TDM_OFFS clock cycles after the rising edge of the word clock, and the right channel data is valid after the same DAI_TDM_OFFS number of clock cycles after the falling edge of the word clock. In the DSP TDM mode, the left channel data is valid DAI_TDM_OFFS clock cycles after the rising edge of the word clock pulse, and the right channel data is valid immediately after the left channel data. The number of bits of the data is determined by the word length setting in the configuration registers. The serial data output pin will be tri-stated when the output is not valid. WCLK CLK offset DATA offset < left channel data> N-2 N-1 1 0 < right channel data> N-1 N-2 1 0 Figure 37: TDM left justified format WCLK CLK < left channel data> offset DATA N-1 N-2 1 < right channel data> 0 N-1 N-2 1 0 Figure 38: TDM DSP format TDM mode is enabled via DAI_TDM (address 0x28 Table 75) and may be configured to operate in mono only using the control DAI_TDM_MONO (address 0x26 Table 73). In this case, only one channel data is received from the bus and placed on the bus. Other devices may place data on the bus immediately after the left channel data. 9.1.7 Clocking schemes The internal system clock of the DA7211 runs at either 12.288 MHz or 11.2896 MHz. Which of these two system clock speeds is used depends on the audio sample rate as shown in Table 28. However, the external MCLK input choice has a number of options that depend on the sample rate, the MCLK_RANGE setting, whether the device is operating in Master or Slave Mode, and whether the PLL has been enabled. For all DA7211 operations, the device must be started with an external MCLK input to allow register settings to be made. The DA7211 will not start up correctly unless this external clock is available. The initial frequency of the MCLK input during register set up is unimportant as long as it is within the 10 to 80 MHz range, but the frequency must be valid for DAC, ADC and filter operation. Note: In PLL-enabled modes, register writes are clocked into the register map by the control interface clock (SK) until the PLL clock is locked and available. Datasheet CFR0011-120-00 Rev 5 Revision 3e 51 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 28: Internal system clock frequency Sample rate (kHz) System clock rate FSYS (MHz) ADC/DAC clock rate FSDM (MHz) 8 12.288 3.072 16 12.288 3.072 32 12.288 3.072 48 12.288 3.072 96 12.288 3.072 11.025 11.2896 2.8224 25.05 11.2896 2.8224 44.1 11.2896 2.8224 88.2 11.2896 2.8224 Table 29: Block enable and system standby bits Block enable register bit SC_MST_EN = 1 required to enable I/O block bit? Start-up register bit for setting I/O to standby MIC_L 0x07[7] Yes 0x05[0] MIC_R 0x08[7] Yes 0x05[1] AUX1_L 0x09[7] Yes 0x05[3] AUX1_R 0x0A[7] Yes 0x05[2] ADC_L 0x10[3] Yes 0x05[5] ADC_R 0x10[7] Yes 0x05[6] OUT1_L 0x1E[7] Yes 0x04[0] OUT1_R 0x1F[7] Yes 0x04[1] HP_L 0x23[7] Yes 0x04[3] HP_R 0x23[3] Yes 0x04[4] DAC_L 0x17[7] Yes 0x04[5] DAC_R 0x17[3] Yes 0x04[6] INMIX_L mixer 0x0D[7] No n/a INMIX_R mixer 0x0E[7] No n/a OUT_L mixer 0x1C[7] No n/a OUT_R mixer 0x1D[7] No n/a I/O Table 29 summarises the registers bits that must be enabled before SC_MST_EN is enabled if that block operation is required. Each block can be set in and out of standby after SC_MST_EN = 1. Datasheet CFR0011-120-00 Rev 5 Revision 3e 52 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 9.1.8 Company confidential Master mode In Master mode (controlled by DAI_MODE - address 0x26, Table 73) DA7211 can generate all supported audio sampling rates directly from a provided MCLK signal at either 12.288 MHz or 11.2896 MHz. In this case the PLL is not required and it should be bypassed and disabled with PLL_EN (address 0x2C, Table 79). DA7211 can also generate all internal clocks without offset, as well as the sample rate, the CLK signal, and the WCLK signal from an MCLK signal in the range of 10 MHz to 80 MHz. This is done using the embedded fractional-N PLL (see controls MCLK_RANGE and PLL_DIV_L to PLL_DIV_H. Table 30: ADC and DAC clock frequencies Sample rate [kHz] Voice mode (Note 8) 8 ADC decimation DAC SDM oversample SDM rate Fs FSDM frequency [kHz] 96 32 384 3072 8 Y 96 16 384 3072 11.025 Y 64 32 256 2822.4 12 Y 64 32 256 3072 48 16 192 3072 48 8 192 3072 22.05 32 16 128 2822.4 24 32 16 128 3072 32 24 8 96 3072 44.1 16 8 64 2822.4 48 16 8 64 3072 96 Note 9 8 4 32 2822.4 16 16 Y Note 8 Voice filter has stopband attenuation of >75 dB. The IIR engine implements voice filtering, or 5-band equalisation. For rates other than 44.1 kHz, the 5-band equalisation turnover frequencies scale with the sampling rate. Note 9 No TDM on digital audio interface. Datasheet CFR0011-120-00 Rev 5 Revision 3e 53 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 31: Master mode PLL-DIV look up table Input MCLK [MHz] PLL_DIV_H PLL_DIV_H PLL_DIV_H Audio frequency [kHz] [MHz] 12.0 0xE8 0x6C 0x2 44.1 (Note 10) 12.0 0xF3 0x12 0x7 48.0 (Note 11) 13.0 0xDF 0x28 0xC 44.1 (Note 10) 13.0 0xE8 0xFD 0x5 48.0 (Note 11) 13.5 0xDB 0x0A 0xD 44.1 (Note 10) 13.5 0xE4 0x82 0x3 48.0 (Note 11) 14.4 0xD4 0x5A 0x2 44.1 (Note 10) 14.4 0xDD 0x3A 0x0 48.0 (Note 11) 19.2 0xBB 0x43 0x9 44.1 (Note 10) 19.2 0xC1 0xEB 0x8 48.0 (Note 11) 19.68 0xB9 0x6D 0xA 44.1 (Note 10) 19.68 0xBF 0xEC 0x0 48.0 (Note 11) 19.8 0xB8 0xFB 0xB 44.1 (Note 10) 19.8 0xBF 0x70 0x0 48.0 (Note 11) Note 10 Including harmonics such as 11.025, 22.05 and 88.2 kHz sample rates. Note 11 Including audio frequencies such as 8.0, 12.0, 16.0, 32.0, 24.0, 36.0, 48.0, 96.0 kHz sample rates. Table 32: SRM mode PLL-DIV look up table Datasheet CFR0011-120-00 Rev 5 Input MCLK [MHz] PLL_DIV_H PLL_DIV_M PLL_DIV_L 0.032768 0xD4 0x99 0x0 12.0 0xED 0xBF 0x5 13.0 0xE4 0x13 0x0 13.5 0xDF 0xC6 0x8 14.4 0xD8 0xCA 0x1 19.2 0xBE 0x97 0x9 19.68 0xBC 0xAC 0xD 19.8 0xBC 0x35 0xE Revision 3e 54 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 9.1.9 Company confidential Programming master and 32 kHz mode – PLL enabled If DA7211 is to be used in Master Mode with the PLL, a clock signal must first be applied to the MCLK pin. The frequency of this clock must either be 32.768 kHz (32 kHz Mode), or within the range 10 to 80 MHz. MCLK_RANGE (address 0x2B[5:4]) must be set to the appropriate frequency range at the MCLK pin. The Sample Rate Matching (SRM) only needs to be enabled if 32 kHz Mode is being used. SRM is enabled by asserting MCLK_SRM_EN (address 0x26[7]). For the PLL to assume initial lock, it is necessary to set the PLL division ratio bits in registers 0x29, 0x2A, 0x2B. The settings for PLL Master Mode differ from those of PLL 32 kHz Mode. For 32 kHz mode, MCLK_RANGE (address 0x2C[5:4]) = 00. For all other PLL Master Mode operations, MCLK_RANGE (address 0x2C[5:4]) = 01, 10 or 11. These settings will allow the PLL lock cycle to start in the correct frequency range. It is not necessary to assert MCLK_DET_ENA in PLL Master Mode as the CLK and WCLK outputs are produced by the DA7211 itself. It is also necessary to assert vco_rst, 0x90[0] to ensure successful PLL lock. To access this bit is necessary to first enter the following register settings 0x8A = 8Bh and 0x8B =B4h. As with non-PLL slave mode, to set the required sample rate, the correct clock division ratio must be set within register 0x2C[3:0], (see Table 35). Table 33: PLL master mode register setting recommendations 0x2C PLL 4 MCLK_SHAPE_EN 0 Enable MCLK shaper for low level non TTL signals - optional 5 MCLK_DET_EN 0 Enable automatic detection of sample rate 6 MCLK_SRM_EN 0 Enable DAI sample rate tracking, sample rate defined by FS 7 PLL_EN 1 0: Disable and bypass PLL 1: Enable PLL Dialog Semiconductor recommend that good quality external clocks are used to supply the DAI, but if the only available MCLK source is of poor quality, it can be improved by using the optional bit MCLK_SHAPE_EN. Figure 39 shows a basic start-up up configuration sequence for PLL master mode. Datasheet CFR0011-120-00 Rev 5 Revision 3e 55 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Apply clock to MCLK pin in the range 10 to 80MHz, or 32.768kHz Set MCLK division ratio or 32.768kHz mode 0x2B[5:4] Enable DAI master mode 0x26[7] = 1 Is 32.768kHz Mode Selected? Yes Enable SRM function 0x2C[6] = 1 No Set PLL division ratios for MCLK provided externally 0x29[7:0] 0x2A[7:0] 0x2B[3:0] Set PLL division ratios for 32.768kHz MCLK provided externally 0x29[7:0] = D4h 0x2A[7:0] = 99h 0x2B[3:0] = 0h Enable vco_rst bit 0x8A = 8Bh 0x8B = B4h 0x90 = 1 Write to all registers that require setting up for chosen path functions Set gain of active analogue outputs to mute Select I/Os and blocks that require power down 0x04[6:0] 0x05[6:0] Enable PLL 0x2C[7] = 1 Activate system controller 0x03[0] = 1 Device power up Figure 39: PLL master mode start up sequence Datasheet CFR0011-120-00 Rev 5 Revision 3e 56 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec 9.2 Company confidential Slave mode Slave mode is selected by setting DAI_MODE (address 0x26, Table 73) = 0. The CLK and WCLK signals are supplied by the application. 9.2.1 Conditions: (i) Sample Rate Matching (SRM) Disabled SRM is not needed if the audio sample rate is known and the CLK and WCLK signals are derived from the same master clock as the MCLK input. In this case CLK and WCLK are synchronised with MCLK, so the SRM function should be disabled and the PLL_DIV registers programmed as shown in Table 32. Alternatively, lowest power dissipation can be achieved if the MCLK frequency can be set to 256×Fs (12.288 MHz or 11.2896 MHz) and the PLL switched off. (ii) Sample Rate Matching (SRM) Enabled SRM is needed if the sample rate on the audio interface is unknown, or the CLK and WCLK signals are derived from a different clock domain to the MCLK input. SRM (MCLK_SRM_EN = 1 address 0x2C, Table 79) keeps the internal clocks synchronised with WCLK. If the sample rate is known, the value of FS should be set accordingly. If the sample rate is not known, it can be derived from WCLK and automatically programmed by asserting MCLK_DET_EN (address 0x2C, Table 79). The Sample Rate Matching (SRM) functions by pulling the PLL frequency away from the nominal value specified by the PLL control registers (addresses 0x29 to 0x2B, Table 78). In this mode the register settings shown in Table 33 should be used. Enabling the SRM offers maximum flexibility for clocking schemes as it removes the need to have common clock domains for the application processor and audio codec processor. Programming slave mode – PLL not enabled 9.2.2 In either Slave or Master mode, and when the PLL is not enabled, an exact multiple of (256 * Fs) must be input to the MCLK pin (see Table 34). In order to set the correct clock division ratio within the DA7211 for a particular sample rate, it is necessary to set the correct sample rate setting in the FS register (address 0x2C [3:0], Table 79). The possible sample rates and MCLK frequencies are shown in Table 34. Table 34: MCLK frequencies in non-PLL slave mode MCLK (MHz) Sample rate (kHz) MCLK_RANGE = 00 MCLK_RANGE = 01 MCLK_RANGE = 10 MCLK_RANGE = 11 8 n/a 12.288 24.576 49.152 16 n/a 12.288 24.576 49.152 32 n/a 12.288 24.576 49.152 48 n/a 12.288 24.576 49.152 96 n/a 12.288 24.576 49.152 11.025 n/a 11.2896 22.5792 45.1584 25.05 n/a 11.2896 22.5792 45.1584 44.1 n/a 11.2896 22.5792 45.1584 88.2 n/a 11.2896 22.5792 45.1584 Datasheet CFR0011-120-00 Rev 5 Revision 3e 57 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 35: Non-PLL slave mode and PLL master mode sample rate settings 0x2C[3:0] Sample rate 0000 Not used 0001 8 kHz 0010 11.025 kHz 0011 12 kHz 0100 Not used 0101 16 kHz 0110 22.05 kHz 0111 24 kHz 1000 Not used 1001 32 kHz 1010 44.1 kHz 1011 48 kHz 1100 Not used 1101 Not used 1110 88.1 kHz 1111 96 kHz If only analogue paths are required then it is possible to use MCLK = 32.768 kHz for the register setup. For all other 32.768 kHz modes, the PLL must be enabled for any operation that requires ADC, DAC or digital filtering. Figure 40: Non-PLL mode start-up sequence shows a basic start-up up configuration sequence for non-PLL slave mode. Datasheet CFR0011-120-00 Rev 5 Revision 3e 58 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Is the signal path analogue only? Yes then 32.768kHz clock maybe used Company confidential Set 32.768kHz mode 0x2B[5:4] = 00 Is master mode required? No Apply 12.288 or 11.2896MHz clock or multiples to MCLK pin Yes Select master mode 0x26[7] = 1 No Select I/Os and blocks that require power down 0x04[6:0] 0x05[6:0] Set MCLK division ratio mode 0x2B[5:4] Activate system controller SC_MST_EN bit 0x02[0] = 1 Provide internal MCLK for register writes 0x2B[6] = 1 Write to all registers which require setup for chosen path functions Set gain of active analogue output paths to mute Device power up Figure 40: Non-PLL mode start-up sequence 9.2.3 Programming slave mode – PLL enabled If PLL mode is enabled and the MCLK_DET_EN (0x2C[5]) bit is set, the value read from this register will be the automatically detected sample rate from the PLL track circuitry. Register 0x2C[3:0] can be set to 0000 in this case. Sample rate changes will be updated on the positive edge of DAI clock. It is also recommended that the Sample Rate Matching (SRM) tracking function is enabled (register 0x2C[6]) when the PLL is used in slave mode. This means that any changes in the sample rate can be tracked automatically without any input from the controlling processor. Failure to enable SRM can result in intermittent audible clicking on the DAC outputs. In order to allow the PLL to assume initial lock, it is necessary to set the PLL division ratio bits and the MCLK_RANGE in registers 0x29, 0x2A, 0x2B and 0x2C. These functions cause the PLL lock cycle to start in the correct frequency range. The division ratio settings for SRM mode differ from those of master mode (see section 9.1.8). It is also necessary to set the vco_rst bit, 0x90[0] = 1 to ensure a successful PLL lock. To access this bit, it is necessary to first enter the following register settings: 0x8A = 8Bh and 0x8B = B4h. Datasheet CFR0011-120-00 Rev 5 Revision 3e 59 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 36: SRM mode PLL division ratio settings MCLK (MHz) PLL_DIV_H 0x29[7:0] PLL_DIV_M PLL_DIV_L 0x2A[7:0] 0x2B[3:0] 0.032768 0xD4 0x99 0x0 12.0 0xED 0xBF 0x5 13.0 0xE4 0x13 0x0 13.5 0xDF 0xC6 0x8 14.4 0xD8 0xCA 0x1 19.2 0xBE 0x79 0x7 19.68 0xBC 0xAC 0xD 19.8 0xBC 0x35 0xE Table 35 contains the division ratios for a selection of common oscillator frequencies that can be used for generating the internal 256 * Fs master clock from the PLL. If an uncommon frequency is used, the division ratio values can be calculated. The feedback divide ratio PLL_DIV is a 20-bit two’s complement value in the range -0.5 to +0.5, which can be calculated using 8 * FSYS 9 FMCLK PLL _ DIV 16 For example, if FMCLK = 13.7 MHz and FSYS = 12.288 MHz then PLL_DIV = -0.114033, which equals 0xE2CEC as a 20-bit two’s-complement number. This value is written to the three PLL_DIV registers: ● PLL_DIV_H (0x29) = E2h ● PLL_DIV_M (0x2A) = CEh ● PLL_DIV_L (0x2B[3:0]) = Ch Note A PLL division ratio calculation tool is available on request. Dialog Semiconductor recommend that good quality external clocks are used to supply the DAI, but if the only available MCLK source is of poor quality. It can be improved by using the optional bit MCLK_SHAPE_EN. Table 37: Slave mode PLL-enabled register setting recommendations 0x2C PLL 4 MCLK_SHAPE_EN 0 Enable MCLK shaper for low level non TTL signals - optional 5 MCLK_DET_EN 1 Enable automatic detection of sample rate 6 MCLK_SRM_EN 1 Enable DAI sample rate tracking, sample rate defined by FS 7 PLL_EN 1 0: Disable and bypass PLL 1: Enable PLL Datasheet CFR0011-120-00 Rev 5 Revision 3e 60 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Apply clock to MCLK pin in the range 10-80MHz Write to all registers which require setup for chosen path functions Set MCLK division ratio mode 0x2B[5:4] Set gain of active analogue outputs to mute Select I/Os and blocks that require power down 0x04[6:0] 0x05[6:0] Set PLL division ratios for MCLK provided externally 0x29[7:0] 0x2A[7:0] 0x2B[3:0] Activate system controller 0x02[0] = 1 Enable PLL, SRM and and MCLK detection functions 0x2C[7:5] = 111 Device power up Enable vco_rst bit 0x8A = 8Bh 0x8B = B4h 0x90[0] = 1 Figure 41: PLL Slave mode start-up sequence 9.2.4 32 kHz master or slave mode With the 32 kHz mode enabled, the DA7211 is able to accept a standard watch-crystal frequency (32.768 kHz) input on MCLK. It does this by enabling an on-chip reference oscillator and using the SRM system to track the MCLK input. The 32 kHz mode is enabled by setting MCLK_RANGE (address 0x2B, Table 78), and since the SRM is required, the PLL_DIV settings in Table 31 should be used. The 32 kHz mode works with the DA7211 in Master (Note 12) or Slave modes, but it is not possible to use the automatic detection of audio sample rate. Note 12 In 32 kHz Master Mode the sample rates 11.025, 22.05, 44.1 and 88.2 kHz will have a maximum offset of 0.14%. 9.2.5 Phase locked loop (PLL) A PLL is integrated into the codec. This uses standard oscillator master clock signals to generate the target audio sample rates and all internal clock signals. If no 256 * Fs master clock signal is provided, the PLL can be enabled with control PLL_EN (address 0x2C, Table 79). The PLL supports a wide range of common oscillator frequencies between 10 and 20 MHz (see Table 31) The PLL can also be fed from the 2nd or 4th harmonics of these frequencies via an input clock divider (configured using control MCLK_RANGE (address 0x2B Table 78). The master clock input can be either a standard TTL signal. It can also be any kind of saw tooth, square or sine wave if the embedded signal shaper is enabled via control MCLK_SHAPE_EN (address 0x2C, Table 79). If the host provides the 256 * FS master clock, the PLL can be disabled to reduce dissipation power. Datasheet CFR0011-120-00 Rev 5 Revision 3e 61 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential 32 kHz mode 15 MHz OSC PLL Bypass 10 – 20 MHz MCLK Digital Clock 12.288 / 11.290 MHz 98.3 or 90.3 MHz 20 – 40 MHz MCLK ¸2 40 – 80 MHz MCLK ¸4 PFD / CP Loop Filter ¸2 VCO ¸2 ¸2 ¸4 DAC & ADC Clock 3.072 / 2.822 MHz ¸(9 + Y[n]) Y[n] Sigma-Delta Modulator Lock Detect X PLL_DIV SRM WCLK Lock 32.768 kHz MCLK 32 kHz Master Mode Figure 42: PLL block diagram 9.2.6 Control interface The DA7211 has a 2-wire control interface. AVDD Host processor AVDD SK DA7211 SI Peripheral device SCL SDA 2-wire interface SCL SDA Peripheral device Figure 43: Schematic of a 2-wire control bus 9.2.7 2-wire communication The 2-wire interface supports 7-bit address protocol. DA7211 responds to the device address 001 1010. SK provides the 2-wire clock and SI carries all the control bidirectional 2-wire data. The 2-wire interface is open-drain, supporting multiple devices on a single line. The attached devices only drive the bus lines low by connecting them to ground. The bus lines are pulled high by pull-up resistors (2 KΩ to 20 KΩ range). As a result, two devices cannot conflict if they drive the bus simultaneously. In standard/fast mode the highest frequency of the bus is 400 kHz. The exact frequency can be determined by the application and does not have any relation to the DA7211 internal clock signals. DA7211 will follow the host clock speed within the described limitations, and does not initiate any clock arbitration or slow down. Datasheet CFR0011-120-00 Rev 5 Revision 3e 62 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential In high speed mode, the maximum frequency of the bus is 1.7 MHz. This mode is supported if the SK line is driven with a push-pull stage from the host and if the host enables an external 3 mA pull-up at the SI pin to decrease the rise time of the data. In this mode the SI line on DA7211 is able to sink up to 12 mA. In all other respects the high speed mode behaves as the standard/fast mode. Communication on the 2-wire bus always takes place between two devices, one acting as the master and the other as the slave, but DA7211 will only operate as a slave. The 2-wire interface has direct (linear) access to the whole DA7211 register space (except 0x00 and 0x80). This is achieved by using the MSB of the 2-wire 8 bit register address as a selector of the register page. 9.2.8 Details of the 2-wire control bus protocol Data is transmitted access the 2-wire bus in groups of eight bits. To send a bit, the SI line is driven towards the intended state while the SK is LOW (a low on SI indicates a zero bit). Once the SI has settled, the SK line is brought HIGH and then LOW. This pulse on SK clocks the SI bit into the receiver’s shift register. A two byte serial protocol is used containing one byte for address and one byte data. Data and address transfer is MSB transmitted first for both read and write operations. All transmission begins with the START condition from the master during the bus is in IDLE state (the bus is free). It is initiated by a high to low transition on the SI line while the SK is in the high state (a STOP condition is indicated by a low to high transition on the SI line while the SK is in the high state). S SLAVEadr 7-bits W A REGadr 1-bit A DATA 8-bits Master to Slave P A 8-bits Slave to Master S = START condition P = STOP condition A = Acknowledge (low) W = Write (low) Figure 44: 2-wire byte write (SI/DATA line) When the host reads data from a register it first has to write access DA7211 with the target register address. It then read accesses DA7211 with a Repeated START or alternatively a second START condition. After receiving the data the host sends no acknowledge and terminates the transmission with a STOP condition. S SLAVEadr W A 7-bits S 1-bit SLAVEadr W A 7-bits 1-bit Master to Slave REGadr A Sr SLAVEadr 8-bits 7-bits REGadr A P S 8-bits R A 1-bit 8-bits SLAVEadr 7-bits A* P DATA R 1-bit A DATA A* P 8-bits Slave to Master S = START condition Sr = Repeated START condition P = STOP condition A = Acknowledge (low) A* = Not acknowledge W = Write (low) R = Read (high) Figure 45: Examples of 2-wire byte read (SI/DATA line) Consecutive (page) read out mode is initiated from the master by sending an Acknowledge instead of Not acknowledge after receipt of the data word. The 2-wire control block then increments the address pointer to the next 2-wire address and sends the data to the master. This enables an unlimited read of data bytes until the master sends a NACK (‘Not Acknowledge’) directly after the receipt of data, followed by a subsequent STOP condition. If a non-existent 2-wire address is read out then the DA7211 will return code zero. Datasheet CFR0011-120-00 Rev 5 Revision 3e 63 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec S SLAVEadr W A 7-bits REGadr 1 bit 7-bits A Sr SLAVEadr R A 8-bits S SLAVEadr W A REGadr Company confidential 7-bits Master to Slave A DATA 8-bits 1-bit A 8-bits SLAVEadr R A 7-bits 8-bits 1-bit 1-bit S A P DATA DATA DATA A* P 8-bits A A* P DATA 8-bits 8-bits Slave to Master S = START condition Sr = Repeat START condition P = STOP condition A = Acknowledge (low) A* = Not Acknowledge W = Write (low) R = Read (high) Figure 46: Examples of 2-wire page read (SI/DATA line) Note - The slave address after the Repeated START condition must be the same as the previous slave address. Consecutive (page) write mode is supported if the Master sends several data bytes following a slave register address. The 2-wire control block then increments the address pointer to the next 2-wire address, stores the received data and sends an Acknowledge until the master sends the STOP condition. S SLAVEadr W A 7-bits 1 bit REGadr A 8-bits Master to Slave DATA 8-bits A DATA 1-bit 8-bits A DATA A 8-bits ………. A P Repeated writes Slave to Master S = START condition Sr = Repeat START condition P = STOP condition A = Acknowledge (low) A* = Not Acknowledge W = Write (low) R = Read (high) Figure 47: 2-wire page write (SI/DATA line) Using the control WRITE_MODE (address 0x01, Table 39) the device can be configured to accept an alternate write mode where the host transmits alternate addresses and write data. This allows the host to perform several write operations to non consecutive registers. Data will be stored at the previously received register address: S SLAVEadr W A 7-bits 1 bit REGadr 8-bits Master to Slave A DATA 8-bits A REGadr 1-bit 8-bits A DATA 8-bits A ………. A P Repeated writes Slave to Master S = START condition Sr = Repeat START condition P = STOP condition A = Acknowledge (low) * A = Not Acknowledge W = Write (low) R = Read (high) Figure 48: 2-wire repeated write (SI/DATA line) If a new START or STOP condition occurs within a message, the bus will return to IDLE-mode. Datasheet CFR0011-120-00 Rev 5 Revision 3e 64 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential 10 Register definitions WARNING: Any writes to RESERVED registers or bits can result in unexpected operation. This section gives an overview of all user accessible registers in the Register map table. Detailed descriptions are given in Register description tables, which are grouped per functional block. 10.1 Register map Table 38: Register map A d d r ess F unct i o n 7 1 CONTROL WRITE_M ODE 6 5 4 3 2 1 NOISE_SUP BIAS_EN V_IO M UTING SOFTM UTED I2S_LOCK 2 STATUS 3 STARTUP1 4 STARTUP2 STARTUP2[ 6:0] 5 STARTUP3 STARTUP3[ 6:0] 7 M IC_L M IC_L_EN 8 M IC_R M IC_R_EN 9 AUX1_L AUX1_L_EN AUX1_L_VOL[ 5:0] 0a AUX1_R AUX1_R_EN AUX1_R_VOL[ 5:0] 0c IN_GAIN SC_CLK_DIS SC_OVERRIDE M ICBIAS_EN M ICBIAS_SEL[ 1:0] 0 PLL_LOCK 0b00000000 SC_M ST_EN 0b00000000 0b00000000 0b00000000 M IC_L_M UTE M IC_L_VOL[ 2:0] 0b00000000 M IC_R_M UTE M IC_R_VOL[ 2:0] 0b00000000 INPGA_R_VOL[ 3:0] 0b00010000 0b00010000 INPGA_L_VOL[ 3:0] 0d INM IX_L IN_L_EN 0e INM IX_R IN_R_EN IN_R_IN_L 0f ADC_HPF ADC_VOICE_EN ADC_VOICE_F0[ 2:0] 10 ADC ADC_R_EN D ef aul t 0b00010000 0b00000000 IN_L_OUTM IX_L IN_L_A1_L IN_L_M IC_R IN_L_M IC_L 0b00000000 IN_R_OUTM IX_R IN_R_A1_R IN_L_M IC_L IN_L_M IC_R 0b00000000 ADC_HPF_EN ADC_R_M UTE ADC_L_EN ADC_HPF_F0[ 1:0] ADC_L_M UTE ALC_EN 0b00001000 0b00000000 11 ADC_EQ1_2 ADC_EQ2_VOL[ 7:4] ADC_EQ1_VOL[ 3:0] 0b00000000 12 ADC_EQ3_4 ADC_EQ4_VOL[ 7:4] ADC_EQ3_VOL[ 3:0] 0b00000000 13 ADC_EQ5 ADC_EQ_EN ADC_EQ5_VOL[ 3:0] 0b00000000 14 DAC_HPF DAC_VOICE_EN 15 DAC_L DAC_L_INV DAC_L_GAIN[ 6:0] 16 DAC_R DAC_R_INV DAC_R_GAIN[ 6:0] 17 DAC_SEL DAC_R_EN 18 SOFT_M UTE SOFT_M UTE ADC_EQ_GAIN[ 1:0] DAC_VOICE_F0[ 2:0] DAC_HPF_EN DAC_R_SRC[ 2:0] DAC_M UTE DAC_HPF_F0[ 1:0] 0b00001000 0b00010000 0b00010000 DAC_L_EN RAM P_EN DAC_L_SRC[ 2:0] 0b01010100 M UTE_RATE[ 2:0] 0b01000000 19 DAC_EQ1_2 DAC_EQ2_VOL[ 7:4] DAC_EQ1_VOL[ 3:0] 0b00000000 1a DAC_EQ3_4 DAC_EQ4_VOL[ 7:4] DAC_EQ3_VOL[ 3:0] 0b00000000 1b DAC_EQ5 DAC_EQ_EN 1c OUTM IX_L OUT_L_EN OUT_L_INV OUT_L_DAC_L OUT_L_IN_R OUT_L_IN_L OUT_L_A1_L 0b00000000 1d OUTM IX_R OUT_R_EN OUT_R_INV OUT_R_DAC_R OUT_R_IN_R OUT_R_IN_L OUT_R_A1_R 0b00000000 1e OUT1_L OUT1_L_EN OUT1_L_SE OUT1_L_VOL[ 5:0] 1f OUT1_R OUT1_R_EN OUT1_R_SE OUT1_R_VOL[ 5:0] 0b00110101 21 HP_L_VOL HP_L_VOL[ 5:0] 0b00010000 22 HP_R_VOL 23 HP_CFG HP_R_EN HP_M ODE 24 ZEROX HPZX_R_EN HPZX_L_EN 25 DAC_EQ_GAIN DAC_EQ5_VOL[ 3:0] 0b00000000 0b00110101 HP_R_VOL[ 5:0] DAI_SRC_SEL DAI_IN_R_M IX STEREO_TRACK HP_HIGHZ_R OUTZX_R_EN OUTZX_L_EN DAI_OUT_R_SRC[ 2:0] INZX_R_EN HP_2CAP_M ODE HP_HIGHZ_L INZX_L_EN DAI_IN_L_M IX A1ZX_L_EN DAI_OUT_L_SRC[ 2:0] DAI_FRAM E[ 1:0] 0b00000010 0b00000000 0b01110110 DAI_CFG1 27 DAI_CFG2 28 DAI_CFG3 29 PLL_DIV1 2a PLL_DIV2 2b PLL_DIV3 2c PLL 2d GP1A_A0L GP1A_A0L[ 7:0] 2e GP1A_A0H GP1A_A0H[ 7:0] 0b01000000 2f GP1B_A0L GP1B_A0L[ 7:0] 0b00000000 30 GP1B_A0H GP1B_A0H[ 7:0] 0b01000000 31 GP2A_A0L GP2A_A0L[ 7:0] 0b00000000 CFR0011-120-00 Rev 5 DAI_TDM _M ONO A1ZX_R_EN 26 Datasheet DAI_M ODE 0b00010000 HP_L_EN DAI_WORD[ 1:0] 0b00000000 DAI_TDM _OFFS[ 7:0] DAI_EN DAI_OE 0b00000000 DAI_TDM DAI_FORM AT[ 1:0] PLL_DIV_H[ 7:0] PLL_DIV_M [ 7:0] PLL_BYP PLL_EN M CLK_RANGE[ 1:0] M CLK_SRM _EN M CLK_DET_ENM CLK_SHAPE_EN Revision 3e 65 of 105 0b00001000 0b00000000 0b00000000 PLL_DIV_L[ 3:0] FS[ 3:0] 0b00010000 0b00001010 0b00000000 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential 32 GP2A_A0H GP2A_A0H[ 7:0] 0b01000000 33 GP2B_A0L GP2B_A0L[ 7:0] 0b00000000 34 GP2B_A0H GP2B_A0H[ 7:0] 0b01000000 35 GP1C_A0L GP1C_A0L[ 7:0] 0b00000000 36 GP1C_A0H GP1C_A0H[ 7:0] 0b01000000 37 GP1D_A0L GP1D_A0L[ 7:0] 0b00000000 38 GP1D_A0H GP1D_A0H[ 7:0] 0b01000000 39 GP2C_A0L GP2C_A0L[ 7:0] 0b00000000 3a GP2C_A0H GP2C_A0H[ 7:0] 0b01000000 3b GP2D_A0L GP2D_A0L[ 7:0] 0b00000000 3c GP2D_A0H GP2D_A0H[ 7:0] 0b01000000 3d GP1A_A1L GP1A_A1L[ 7:0] 0b00000000 3e GP1A_A1H GP1A_A1H[ 7:0] 0b00000000 3f GP1B_A1L GP1B_A1L[ 7:0] 0b00000000 40 GP1B_A1H GP1B_A1H[ 7:0] 0b00000000 41 GP2A_A1L GP2A_A1L[ 7:0] 0b00000000 42 GP2A_A1H GP2A_A1H[ 7:0] 0b00000000 43 GP2B_A1L GP2B_A1L[ 7:0] 0b00000000 44 GP2B_A1H GP2B_A1H[ 7:0] 0b00000000 45 GP1C_A1L GP1C_A1L[ 7:0] 0b00000000 46 GP1C_A1H GP1C_A1H[ 7:0] 0b00000000 47 GP1D_A1L GP1D_A1L[ 7:0] 0b00000000 48 GP1D_A1H GP1D_A1H[ 7:0] 0b00000000 49 GP2C_A1L GP2C_A1L[ 7:0] 0b00000000 4a GP2C_A1H GP2C_A1H[ 7:0] 0b00000000 4b GP2D_A1L GP2D_A1L[ 7:0] 0b00000000 4c GP2D_A1H GP2D_A1H[ 7:0] 0b00000000 4d GP1A_A2L GP1A_A2L[ 7:0] 0b00000000 4e GP1A_A2H GP1A_A2H[ 7:0] 0b00000000 4f GP1B_A2L GP1B_A2L[ 7:0] 0b00000000 50 GP1B_A2H GP1B_A2H[ 7:0] 0b00000000 51 GP2A_A2L GP2A_A2L[ 7:0] 0b00000000 52 GP2A_A2H GP2A_A2H[ 7:0] 0b00000000 53 GP2B_A2L GP2B_A2L[ 7:0] 0b00000000 54 GP2B_A2H GP2B_A2H[ 7:0] 0b00000000 55 GP1C_A2L GP1C_A2L[ 7:0] 0b00000000 56 GP1C_A2H GP1C_A2H[ 7:0] 0b00000000 57 GP1D_A2L GP1D_A2L[ 7:0] 0b00000000 58 GP1D_A2H GP1D_A2H[ 7:0] 0b00000000 59 GP2C_A2L GP2C_A2L[ 7:0] 0b00000000 5a GP2C_A2H GP2C_A2H[ 7:0] 0b00000000 5b GP2D_A2L GP2D_A2L[ 7:0] 0b00000000 5c GP2D_A2H GP2D_A2H[ 7:0] 0b00000000 5d GP1A_B1L GP1A_B1L[ 7:0] 0b00000000 5e GP1A_B1H GP1A_B1H[ 7:0] 0b00000000 5f GP1B_B1L GP1B_B1L[ 7:0] 0b00000000 60 GP1B_B1H GP1B_B1H[ 7:0] 0b00000000 61 GP2A_B1L GP2A_B1L[ 7:0] 0b00000000 62 GP2A_B1H GP2A_B1H[ 7:0] 0b00000000 63 GP2B_B1L GP2B_B1L[ 7:0] 0b00000000 Datasheet CFR0011-120-00 Rev 5 Revision 3e 66 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential 64 GP2B_B1H GP2B_B1H[ 7:0] 0b00000000 65 GP1C_B1L GP1C_B1L[ 7:0] 0b00000000 66 GP1C_B1H GP1C_B1H[ 7:0] 0b00000000 67 GP1D_B1L GP1D_B1L[ 7:0] 0b00000000 68 GP1D_B1H GP1D_B1H[ 7:0] 0b00000000 69 GP2C_B1L GP2C_B1L[ 7:0] 0b00000000 6a GP2C_B1H GP2C_B1H[ 7:0] 0b00000000 6b GP2D_B1L GP2D_B1L[ 7:0] 0b00000000 6c GP2D_B1H GP2D_B1H[ 7:0] 0b00000000 6d GP1A_B2L GP1A_B2L[ 7:0] 0b00000000 6e GP1A_B2H GP1A_B2H[ 7:0] 0b00000000 6f GP1B_B2L GP1B_B2L[ 7:0] 0b00000000 70 GP1B_B2H GP1B_B2H[ 7:0] 0b00000000 71 GP2A_B2L GP2A_B2L[ 7:0] 0b00000000 72 GP2A_B2H GP2A_B2H[ 7:0] 0b00000000 73 GP2B_B2L GP2B_B2L[ 7:0] 0b00000000 74 GP2B_B2H GP2B_B2H[ 7:0] 0b00000000 75 GP1C_B2L GP1C_B2L[ 7:0] 0b00000000 76 GP1C_B2H GP1C_B2H[ 7:0] 0b00000000 77 GP1D_B2L GP1D_B2L[ 7:0] 0b00000000 78 GP1D_B2H GP1D_B2H[ 7:0] 0b00000000 79 GP2C_B2L GP2C_B2L[ 7:0] 0b00000000 7a GP2C_B2H GP2C_B2H[ 7:0] 0b00000000 7b GP2D_B2L GP2D_B2L[ 7:0] 0b00000000 7c GP2D_B2H GP2D_B2H[ 7:0] 7d GPF_SRC1 GP_2AB_SRC[ 2:0] GP_1AB_SRC[ 2:0] 7e GPF_SRC2 GP_2CD_SRC[ 2:0] GP_1CD_SRC[ 2:0] 7f DSP_CFG DSP_M IX[ 2:0] 81 CHIP_ID 82 INTERFACE IF_BASE_ADDR[ 2:0] 83 ALC_M AX ALC_M ERGE 0b00000000 GP_2CD_EN GP_1CD_EN M RC[ 3:0] GP_2AB_EN 0b01100100 0b01110101 GP_1AB_EN M M RC[ 3:0] 0b00000000 0b00010001 0b00101100 ALC_M AX[ 5:0] 0b01000000 84 ALC_M IN ALC_M IN[ 5:0] 0b00000000 85 ALC_NOIS ALC_NOIS[ 5:0] 0b00000000 86 ALC_ATT ALC_ATT[ 7:0] 0b00000000 87 ALC_REL ALC_REL[ 7:0] 0b00000000 88 ALC_DEL ALC_DEL[ 7:0] 0b00000000 8A A_HID_UNLOCK A_HID_UNLOCK[ 7:0] 0b00000000 8B A_TEST_UNLOCK A_TEST_UNLOCK[ 7:0] 8F A_PLL0 90 A_PLL1 95 A_ADC0 96 A_DAC0 A_CPHP6 A2 A7 A_CP_M ODE Datasheet CFR0011-120-00 Rev 5 0b00000000 SIGDEL DISABLE 0b00000000 VCORST_EN ADC_T2 0b00000000 0b00000000 VM ID_BUFF_EN 0b00000000 CP _RISE_TIM E 0b10000000 A_CP_M ODE[ 7:0] 0b01111110 Revision 3e 67 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential 10.2 Control and status registers Table 39: CONTROL 0x01 Bit Mode Symbol Description Reset 7 R/W WRITE_MODE 2-wire multiple write mode 0 0 = page Write Mode 1 = repeated Write Mode 6:4 R Reserved Reserved 001 3 R/W NOISE_SUP Enable noise suppression mode (see section 8.2.5) 0 2 R/W BIAS_EN Bias current to the entire chip 0 0 = bias off (device power down) 1 = supply bias current (device in operation) 1 R VDDIO_RANGE VDDIO voltage 0 = VDDIO > 2.65 V 0 1 = VDDIO <= 2.65 V Must be set to 1 0 R REG_EN Digital Regulator enable 0 0 = disable 1 = enable Table 40: STATUS 0x02 Bit Mode Symbol Description Reset 7:4 R Reserved Reserved 0000 3 R MUTING 0 = unmute 0 1 = mute 2 R SOFTMUTED 0 = normal mute 1 = softmute (ref. SOFTMUTE section) 0 1 R I2S_LOCK Digital audio interface (DAI) lock status 0 = not locked 0 1 = locked to frame rate lock 0 R PLL_LOCK PLL status 0 0 = PLL not locked 1 = PLL locked Datasheet CFR0011-120-00 Rev 5 Revision 3e 68 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 41: STARTUP 1 0x03 Bit Mode Symbol Description Reset 7 W SC_CLK_DIS System Controller Clock Disable 0 0 = clock enabled 1 = clock disabled (provides power saving) 6:5 R Reserved Reserved 00 4 R/W SC_OVERRIDE Test enable that forces everything to be enabled instantly on the next clock cycle 0 3:1 R Reserved Reserved 00 0 R/W SC_MST_EN System Controller Master Enable. All subsystems should be enabled first before enabling this bit. 0 = everything off 1 = device active 0 Table 42: STARTUP 2 0x04 Bit Mode Symbol Description Reset 7 R Reserved Reserved 0 6:0 R/W STARTUP2 Output standby control. 0000000 0 = normal 1 = standby [6] – DAC R standby [5] – DAC L standby [4] – HP R standby [3] – HP L standby [2] – Reserved [1] – OUT1R standby [0] – OUT1L standby Datasheet CFR0011-120-00 Rev 5 Revision 3e 69 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 43: STARTUP 3 0x05 Bit Mode Symbol Description Reset 7 R Reserved Reserved 0 6:0 R/W STARTUP3 Input standby control. 0 = normal 1 = standby 0000000 [6] – ADC R standby [5] – ADC L standby [4] – Reserved [3] – AUX1_R input standby [2] – AUX1_L input standby [1] – MIC_R input standby [0] – MIC_L input standby Note: Standby is to reduce the power consumption and not necessarily to mute the block. 10.3 Codec registers Table 44: MIC_L 0x07 Bit Mode Symbol Description Reset 7 R/W MIC_L_EN Enable left MIC amplifier 0 0 = disable 1 = enable (must be set beforeRes SC_MST_EN) 6 R/W MICBIAS_EN Enable MICBIAS supply 0 = disable 0 1 = enable 5:4 R/W MICBIAS_SEL MIC bias voltage selection 00 = 1.5 V 01 = 1.6 V 3 R/W MIC_L_MUTE 00 10 = 2.2 V 11 = 2.3 V Mute left MIC amplifier 0 0 = unmute 1 = mute 2:0 R/W MIC_L_VOL Gain of left MIC amplifier 000 = -6 dB 000 001 = 0 dB 010 = +6 dB 011 = +12 dB 100 = +18 dB 101/110/111 = +24 dB Datasheet CFR0011-120-00 Rev 5 Revision 3e 70 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 45: MIC_R 0x08 Bit Mode Symbol Description Reset 7 R/W MIC_R_EN Enable right MIC amplifier 0 0 = disable 1 = enable (must be set before SC_MST_EN) 6:4 R Reserved Reserved 000 3 R/W MIC_R_MUTE Mute right MIC amplifier 0 = unmute 0 1 = mute 2:0 R/W MIC_R_VOL Gain of right MIC amplifier 000 Setting option is the same as L-channel (0x7[2:0]) Table 46: AUX1_L 0x09 Bit Mode Symbol Description Reset 7 R/W AUX1_L_EN Enable left AUX1 amplifier 0 0 = disable 1 = enable (must be set before SC_MST_EN) 6 R Reserved Reserved 0 5:0 R/W AUX1_L_VOL Gain of left AUX1 amplifier 000000 to 010000 (default) = mute 010000 010001 = -54 dB 010010 = -52.5 dB 010011 = -51 dB … continuing in 1.5 dB steps through 110101 = 0 dB, to … 111111 = +15 dB Table 47: AUX1_R 0x0A Bit Mode Symbol Description Reset 7 R/W AUX1_R_EN Enable right AUX1 amplifier 0 = disable 0 1 = enable (must be set before SC_MST_EN) 6 R Reserved Reserved 0 5:0 R/W AUX1_R_VOL Gain of right AUX1 amplifier 010000 000000 to 010000 (default) = mute 010001 = -54 dB 010010 = -52.5 dB 010011 = -51 dB … continuing in 1.5 dB steps through 110101 = 0 dB, to … 111111 = +15 dB Datasheet CFR0011-120-00 Rev 5 Revision 3e 71 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 48: IN_GAIN 0x0C Bit Mode Symbol Description Reset 7:4 R/W INPGA_R_VOL Gain of right input PGA 0000 0000 = -4.5 dB 0001 = -3 dB 0010 = -1.5 dB 0011 = 0 dB 0100 = +1.5 dB 0101 = + 3 dB 0110 = +4.5 dB 0111 = + 6 dB 1000 = + 7.5 dB 1001 = + 9 dB 1010 = +10.5 dB 1011 = +12 dB 1100 = +13.5 dB 1101 = +15 dB 1110 = +16.5 dB 1111 = +18 dB While ALC is active, the gain is controlled by ALC and this register setting is not effective. 3:0 R/W INPGA_L_VOL Gain of left input PGA 0000 0000 = -4.5 dB 0001 = -3 dB 0010 = -1.5 dB 0011 = 0 dB 0100 = +1.5 dB 0101 = + 3 dB 0110 = +4.5 dB 0111 = + 6 dB 1000 = + 7.5 dB 1001 = + 9 dB 1010 = +10.5 dB 1011 = +12 dB 1100 = +13.5 dB 1101 = +15 dB 1110 = +16.5 dB 1111 = +18 dB While ALC is active, the gain is controlled by ALC and this register setting is not effective. Datasheet CFR0011-120-00 Rev 5 Revision 3e 72 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 49: INMIX_L 0x0D Bit Mode Symbol Description Reset 7 R/W IN_L_EN Enable left input PGA 0 0 = disable 1 = enable (must be set before SC_MST_EN) 6:5 R Reserved Reserved 00 4 R/W IN_L_OUTMIX_L 1 = Add OUTMIX_L into input mixer L 0 3 R/W Reserved Reserved 0 2 R/W IN_L_A1_L 1 = Add AUX1_L into input mixer L 0 1 R/W IN_L_MIC_R 1 = Add MIC_R into input mixer L 0 0 R/W IN_L_MIC_L 1 = Add MIC_L into input mixer L 0 Table 50: INMIX_R 0x0E Bit Mode Symbol Description Reset 7 R/W IN_R_EN Enable right input PGA 0 = disable 0 1 = enable (must be set before SC_MST_EN) 6 R Reserved Reserved 0 5 R/W IN_R_IN_L 1 = Add INPGA_L (stereo to mono) 0 4 R/W IN_R_OUTMIX_R 1 = Add OUTMIX_R into input mixer R 0 3 R Reserved Reserved 0 2 R/W IN_R_A1_R 1 = Add AUX1_R into input mixer R 0 1 R/W IN_R_MIC_L 1 = Add MIC_L into input mixer R 0 0 R/W IN_R_MIC_R 1 = Add MIC_R into input mixer R 0 Datasheet CFR0011-120-00 Rev 5 Revision 3e 73 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 51: ADC_HPF 0x0F Bit Mode Symbol Description Reset ADC Voice Filter 7 R/W ADC_VOICE_EN 0 = disable 1 = enable 0 ADC Voice (8 kHz) High pass 3 dB cut-off at: 000 = 2.5 Hz 001 = 25 Hz 010 = 50 Hz 6:4 R/W ADC_VOICE_F0 011 = 100 Hz 100 = 150 Hz 000 101 = 200 Hz 110 = 300 Hz 111 = 400 Hz 3 R/W ADC_HPF_EN ADC High Pass Filter 0 = disable 1 1 = enable 2 R Reserved Reserved 0 ADC High Pass Filter f0 is at 00 = Fs/8192 x π 1:0 R/W ADC_HPF_F0 01 = Fs/4096 x π 10 = Fs/2048 x π 00 11 = Fs/1024 x π Table 52: ADC 0x10 Bit 7 Mode R/W Symbol Description Reset ADC_R_EN Enable right ADC channel 0 = disable 0 1 = enable (must be set before SC_MST_EN) Mute right ADC channel 6 R/W ADC_R_MUTE 0 = unmute 1 = mute 0 5:4 R Reserved Reserved 00 3 R/W ADC_L_EN Enable left ADC channel 0 = disable 0 1 = enable (must be set before SC_MST_EN) Mute left ADC channel 2 R/W ADC_L_MUTE 0 = unmute 1 = mute 0 1 R Reserved Reserved 0 0 RW ALC_EN ALC enable 0 = disable 0 1 = enable Datasheet CFR0011-120-00 Rev 5 Revision 3e 74 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 53: ADC_EQ1_2 0x11 Bit Mode Symbol Description 7:4 R/W ADC_EQ2_VOL Gain of ADC 5-Band EQ band 2: Reset 0000 = +12 dB 0001 =+10.5 dB 0010 =+9 dB 0011 =+7.5 dB 0100 =+6 dB 0101 =+4.5 dB 0110 =+3 dB 0111 =+1.5 dB 0000 1000= 0 dB 1001= - 1.5 dB 1010= - 3 dB 1011= - 4.5 dB 1100= - 6 dB 1101= - 7.5 dB 1110= - 9 dB 1111= -10.5 dB 3:0 R/W ADC_EQ1_VOL Gain of ADC 5-Band EQ band 1: 0000 = +12 dB 0001 =+10.5 dB 0010 =+9 dB 0011 =+7.5 dB 0100 =+6 dB 0101 =+4.5 dB 0110 =+3 dB 0111 =+1.5 dB 1000= 0 dB 0000 1001= - 1.5 dB 1010= - 3 dB 1011= - 4.5 dB 1100= - 6 dB 1101= - 7.5 dB 1110= - 9 dB 1111= -10.5 dB Datasheet CFR0011-120-00 Rev 5 Revision 3e 75 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 54: ADC_EQ3_4 0x12 Bit Mode Symbol Description 7:4 R/W ADC_EQ4_VOL Gain of ADC 5-Band EQ band 4: Reset 0000 = +12 dB 0001 =+10.5 dB 0010 =+9 dB 0011 =+7.5 dB 0100 =+6 dB 0101 =+4.5 dB 0110 =+3 dB 0111 =+1.5 dB 0000 1000= 0 dB 1001= - 1.5 dB 1010= - 3 dB 1011= - 4.5 dB 1100= - 6 dB 1101= - 7.5 dB 1110= - 9 dB 1111= -10.5 dB 3:0 R/W ADC_EQ3_VOL Gain of ADC 5-Band EQ band 3: 0000 = +12 dB 0001 =+10.5 dB 0010 =+9 dB 0011 =+7.5 dB 0100 =+6 dB 0101 =+4.5 dB 0110 =+3 dB 0111 =+1.5 dB 1000= 0 dB 0000 1001= - 1.5 dB 1010= - 3 dB 1011= - 4.5 dB 1100= - 6 dB 1101= - 7.5 dB 1110= - 9 dB 1111= -10.5 dB Datasheet CFR0011-120-00 Rev 5 Revision 3e 76 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 55: ADC_EQ5 0x13 Bit Mode Symbol Description Reset 7 R/W ADC_EQ_EN 0 = disable 1 = enable 7 6 R Reserved Reserved 6 Enable ADC 5-Band EQ Gain of ADC 5-BandEQ: 00 = 0 dB 5:4 R/W ADC_EQ_GAIN 01 = -6 dB 10 = -12 dB 5:4 11 = -18 dB Gain of ADC 5-Band EQ band 5: 0000 = +12 dB 0001 =+10.5 dB 0010 =+9 dB 0011 =+7.5 dB 0100 =+6 dB 0101 =+4.5 dB 3:0 R/W ADC_EQ5_VOL 0110 =+3 dB 0111 =+1.5 dB 3:0 1000= 0 dB 1001= - 1.5 dB 1010= - 3 dB 1011= - 4.5 dB 1100= - 6 dB 1101= - 7.5 dB 1110= - 9 dB 1111= -10.5 dB Datasheet CFR0011-120-00 Rev 5 Revision 3e 77 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 56: DAC_HPF 0x14 Bit Mode Symbol 7 R/W DAC_VOICE_EN Description Reset DAC Voice Filter 0 = disable 1 = enable 0 DAC Voice (8 kHz) High pass 3 dB cut-off at: 000 = 2.5 Hz 001 = 25 Hz 010 = 50 Hz 6:4 R/W DAC_VOICE_F0 011 = 100 Hz 100 = 150 Hz 000 101 = 200 Hz 110 = 300 Hz 111 = 400 Hz For 11.025/12.0 and 16 kHz see Table 26 DAC High Pass Filter 3 R/W DAC_HPF_EN 0 = disable 1 = enable 1 2 R/W DAC_MUTE Mute DAC (both channels) 0 DAC High Pass Filter f0 is at 1:0 R/W DAC_HPF_F0 00 = Fs/8192 x π 01 = Fs/4096 x π 00 10 = Fs/2048 x π 11 = Fs/1024 x π Table 57: DAC_L 0x15 Bit Mode Symbol Description Reset 7 R/W DAC_L_INV left DAC channel inversion 0 = normal 0 1 = Inverted DAC left channel digital volume control 0000000 = 12 db 0000001 = 11.25 dB … 6:0 R/W DAC_L_GAIN continuing in 0.75 dB steps through 0010000 = 0 dB 0010000 0010001 = -0.75 dB …to 1110111 = -77.25 dB 1111xxx = mute Datasheet CFR0011-120-00 Rev 5 Revision 3e 78 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 58: DAC_R 0x16 Bit Mode Symbol 7 R/W DAC_R_INV Description Reset 0 = normal 0 1 = Invert right DAC channel DAC right channel digital volume control 0000000 = 12 db 0000001 = 11.25 dB 6:0 R/W DAC_R_GAIN … continuing in 0.75 dB steps through 0010000 0010000 = 0 dB 0010001 = -0.75 dB …to 1110111 = -77.25 dB 1111xxx = mute Table 59: DAC_SEL 0x17 Bit 7 Mode R/W Symbol Description Reset DAC_R_EN Enable right DAC channel 0 = disable 0 1 = enable (must be set before SC_MST_EN) DAC_R input source selection: 000 = 1AB 001 = 2AB 6:4 R/W DAC_R_SRC 010 = 1CD 011 = 2CD 101 100 = DAI_L 101 = DAI_R 110 = ADC_L 111 = ADC_R 3 R/W DAC_L_EN Enable left DAC channel 0 = disable 0 1 = enable (must be set before SC_MST_EN) DAC_L input source selection: 000 = 1AB 001 = 2AB 010 = 1CD 2:0 R/W DAC_L_SRC 011 = 2CD 100 = DAI_L 100 101 = DAI_R 110 = ADC_L 111 = ADC_R Datasheet CFR0011-120-00 Rev 5 Revision 3e 79 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 60: SOFTMUTE 0x18 Bit Mode Symbol R/W SOFT_MUTE R/W RAMP_EN 7 6 Description Reset Softmute trigger 0 = disabled 1 = start SOFTMUTE Digital gain ramping 0 = disabled (immediate) 0 1 1 = enabled (ramping) 5:3 R Reserved Reserved 000 000 = 1 sample/0.1875 dB 001 = 2 samples/0.1875 dB 010 = 4 samples/0.1875 dB 2:0 R/W MUTE_RATE 011 = 8 samples/0.1875 dB 100 = 16 samples/0.1875 dB 000 101 = 32 samples/0.1875 dB 110 = 64 samples/0.1875 dB 111 = not used Datasheet CFR0011-120-00 Rev 5 Revision 3e 80 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 61: DAC_EQ1_2 0x19 Bit Mode Symbol Description 7:4 R/W DAC_EQ2_VOL Gain of DAC 5-Band EQ band 2: Reset 0000 = +12 dB 0001 =+10.5 dB 0010 =+9 dB 0011 =+7.5 dB 0100 =+6 dB 0101 =+4.5 dB 0110 =+3 dB 0111 =+1.5 dB 0000 1000= 0 dB 1001= - 1.5 dB 1010= - 3 dB 1011= - 4.5 dB 1100= - 6 dB 1101= - 7.5 dB 1110= - 9 dB 1111= -10.5 dB 3:0 R/W DAC_EQ1_VOL Gain of DAC 5-Band EQ band 1: 0000 = +12 dB 0001 =+10.5 dB 0010 =+9 dB 0011 =+7.5 dB 0100 =+6 dB 0101 =+4.5 dB 0110 =+3 dB 0111 =+1.5 dB 1000= 0 dB 0000 1001= - 1.5 dB 1010= - 3 dB 1011= - 4.5 dB 1100= - 6 dB 1101= - 7.5 dB 1110= - 9 dB 1111= -10.5 dB Datasheet CFR0011-120-00 Rev 5 Revision 3e 81 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 62: DAC_EQ3_4 0x1A Bit Mode Symbol Description 7:4 R/W DAC_EQ4_VOL Gain of DAC 5-Band EQ band 4: Reset 0000 = +12 dB 0001 =+10.5 dB 0010 =+9 dB 0011 =+7.5 dB 0100 =+6 dB 0101 =+4.5 dB 0110 =+3 dB 0111 =+1.5 dB 0000 1000= 0 dB 1001= - 1.5 dB 1010= - 3 dB 1011= - 4.5 dB 1100= - 6 dB 1101= - 7.5 dB 1110= - 9 dB 1111= -10.5 dB 3:0 R/W DAC_EQ3_VOL Gain of DAC 5-Band EQ band 3: 0000 = +12 dB 0001 =+10.5 dB 0010 =+9 dB 0011 =+7.5 dB 0100 =+6 dB 0101 =+4.5 dB 0110 =+3 dB 0111 =+1.5 dB 1000= 0 dB 0000 1001= - 1.5 dB 1010= - 3 dB 1011= - 4.5 dB 1100= - 6 dB 1101= - 7.5 dB 1110= - 9 dB 1111= -10.5 dB Datasheet CFR0011-120-00 Rev 5 Revision 3e 82 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 63: DAC_EQ5 0x1B Bit Mode Symbol Description Reset 7 R/W DAC_EQ_EN 0 = disable 1 = enable 0 6:4 R Reserved Reserved 000 Enable DAC 5-Band EQ Gain of DAC 5-Band EQ band 5: 0000 = +12 dB 0001 =+10.5 dB 0010 =+9 dB 0011 =+7.5 dB 0100 =+6 dB 0101 =+4.5 dB 0110 =+3 dB 3:0 R/W DAC_EQ5_VOL 0111 =+1.5 dB 1000= 0 dB 0000 1001= - 1.5 dB 1010= - 3 dB 1011= - 4.5 dB 1100= - 6 dB 1101= - 7.5 dB 1110= - 9 dB 1111= -10.5 dB Table 64: OUTMIX_L 0x1C Bit Mode Symbol Description Reset Enable left output PGA 7 6 R/W R/W OUT_L_EN OUT_L_INV 0 = disable 1 = enable (must be set before SC_MST_EN) 0 OUTMIX left channel inversion 0 = normal 0 1 = Invert (not active for signal routed from DAC_L) 5 R Reserved Reserved 0 4 R/W OUT_L_DAC_L 1 = Add DAC_L 0 3 R/W OUT_L_IN_R 1 = Add IN_R 0 2 R/W OUT_L_IN_L 1 = Add IN_L 0 1 R Reserved Reserved 0 0 R/W OUT_L_A1_L 1 = Add AUX1_L 0 Datasheet CFR0011-120-00 Rev 5 Revision 3e 83 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 65: OUTMIX_R 0x1D Bit Mode Symbol 7 R/W OUT_R_EN 6 R/W OUT_R_INV Description Reset Enable right output PGA 0 = disable 1 = enable (must be set before SC_MST_EN) 0 OUTMIX right channel inversion 0 = normal 0 1 = Invert (not active for signal routed from DAC_L) 5 R Reserved Reserved 0 4 R/W OUT_R_DAC_R 1 = Add DAC_R 0 3 R/W OUT_R_IN_R 1 = Add IN_R 0 2 R/W OUT_R_IN_L 1 = Add IN_L 0 1 R Reserved Reserved 0 0 R/W OUT_R_A1_R 1 = Add AUX1_R 0 Table 66: OUT1_L 0x1E Bit Mode Symbol Description Reset 7 R/W OUT1_L_EN Enable left OUT1 amplifier 0 = disable 0 1 = enable (must be set before SC_MST_EN) OUT1 L single-ended mode selection 6 R/W OUT1_L_SE 0 = differential mode 1 = single-ended mode 0 OUT1 left channel volume control 000000 – 001111 = Reserved 010000 = mute 010001 = -54 dB 5:0 R/W OUT1_L_VOL 010010 = -52.5 dB … continuing in 1.5 dB steps through 110101 110101 = 0 dB (default) to… 111111 = 15 dB Datasheet CFR0011-120-00 Rev 5 Revision 3e 84 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 67: OUT1_R 0x1F Bit Mode Symbol 7 R/W OUT1_R_EN 6 R/W OUT1_R_SE Description Reset Enable right OUT1 amplifier 0 = disable 1 = enable (must be set before SC_MST_EN) 0 OUT1 R single-ended mode selection 0 = differential mode 0 1 = single-ended mode OUT1 right channel volume control 000000 – 001111 = Reserved 010000 = mute 010001 = -54 dB 010010 = -52.5 dB 5:0 R/W OUT1_R_VOL 110101 … continuing in 1.5 dB steps through 110101 = 0 dB (default) to… 111111 = 15 dB Table 68: HP_L_VOL 0x21 Bit Mode Symbol Description Reset 7:6 R Reserved Reserved 00 Head phone left channel volume control 000000 – 001111 = Reserved 010000 = mute (default) 010001 = -54 dB 010010 = -52.5 dB 5:0 R/W HP_L_VOL … continuing in 1.5 dB steps through 110101 = 0 dB 010000 to… 111111 = 15 dB If you wish the right channel volume to be the same as left channel, please refer to 0x23 HP_CFG[5] STEREO_TRACK Datasheet CFR0011-120-00 Rev 5 Revision 3e 85 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 69: HP_R_VOL 0x22 Bit Mode Symbol Description Reset 7:6 R Reserved Reserved 00 Head phone right channel volume control 000000 – 001111 = Reserved 010000 = mute (default) 010001 = -54 dB 010010 = -52.5 dB 5:0 R/W HP_R_VOL … continuing in 1.5 dB steps through 110101 = 0 dB 010000 to… 111111 = 15 dB If you wish the right channel volume to be the same as left channel, please refer to 0x23 HP_CFG[5] STEREO_TRACK Table 70: HP_CFG 0x23 Bit 7 Mode R/W Symbol Description Reset 0 HP_R_EN Enable right headphone amplifier 0 = disable 1 = enable (must be set before SC_MST_EN) 6 R/W Reserved Reserved 0 5 R/W STEREO_TRACK 1 = HP_R volume also controls HP_L 0 4 R/W HP_HIGHZ_R Set right head phone out to high impedance 0 3 R/W HP_L_EN 0 = disable 1 = enable (must be set before SC_MST_EN) 0 2 R/W Reserved Reserved 0 1 R/W HP_2CAP_MODE Set charge pump to 2 capacitor mode 1 0 R/W HP_HIGHZ_L Set left head phone out to high impedance 0 Enable left headphone amplifier Table 71: ZEROX 0x24 Bit Mode Symbol Description Reset 7 R/W HPZX_R_EN Enable zero crossing for right HP gain update 0 6 R/W HPZX_L_EN Enable zero crossing for left HP gain update 0 5 R/W OUTZX_R_EN Enable zero crossing for right OUT1 gain update 0 4 R/W OUTZX_L_EN Enable zero crossing for left OUT1 gain update 0 3 R/W INZX_R_EN Enable zero crossing for right input PGA gain update 0 2 R/W INZX_L_EN Enable zero crossing for left input PGA gain update 0 1 R/W AUX1ZX_R_EN Enable zero crossing for right AUX1 amp gain update 0 0 R/W AUX1ZX_L_EN Enable zero crossing for left AUX1 amp gain update 0 Datasheet CFR0011-120-00 Rev 5 Revision 3e 86 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 72: DAI_SRC_SEL 0x25 Bit Mode Symbol Description Reset 7 R/W DAI_IN_R_MIX 1 = DAI receive right channel is mixed from L+R data 0 DAI_R transmit source selection: 000: = 1AB 001 = 2AB 6:4 R/W DAI_OUT_R_SRC 010 = 1CD 011 = 2CD 111 100 = DAI_L (cross loop back) 101 = DAI_R (loop back) 110 = ADC_L 111 = ADC_R 3 R/W DAI_IN_L_MIX 1 = DAI receive left channel is mixed from L+R data 0 DAI_L transmit source selection: 000: = 1AB 001 = 2AB 010 = 1CD 2:0 R/W DAI_OUT_L_SRC 011 = 2CD 100 = DAI_L (cross loop back) 110 101 = DAI_R (loop back) 110 = ADC_L 111 = ADC_R Table 73: DAI_CFG1 0x26 Bit Mode Symbol 7 R/W DAI_MODE 6:5 R Reserved 4 R/W DAI_TDM_MONO Description Reset 0 = DA7211 is clock slave 0 1 = DA7211 is clock master Reserved 00 0 = TDM mode is stereo 1 = TDM transmits/receives left channel left DAI channel only 0 Data transmission frame length: 00 = 2xDAI_WORD 3:2 R/W DAI_FRAME 01 = 64 bitclocks 10 = 128 bitclocks 00 11 = 256 bitclocks Data word length: 00 = 16 bits 1:0 R/W DAI_WORD 01 = 20 bits 10 = 24 bits 00 11 = 32 bits Table 74: DAI_CFG2 0x27 Bit Mode Symbol Description Reset 7:0 R/W DAI_TDM_OFFS TDM data for device is valid at this offset from beginning of frame. The offset is measured in the number clock cycles. 00000000 Datasheet CFR0011-120-00 Rev 5 Revision 3e 87 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 75: DAI_CFG3 0x28 Bit Mode Symbol Description Reset 7 R/W DAI_EN 0 = disable 1 = enable 7 6:4 R Reserved Reserved 6:4 3 R/W DAI_OE DATOUT enable: 0 = disable (tristate when ADC is disabled) 3 Enable digital audio interface 1 = enabled Tristate DATOUT mode enable 2 R/W DAI_TDM 0 = disable (normal) 1 = enable (TDM mode) 2 Digital Audio Interface format selection 00 = I2S mode 1:0 R/W DAI_FORMAT 01 = Left Justified mode 10 = right justified mode 1:0 11 = DSP mode Table 76: PLL_DIV1 0x29 Bit Mode Symbol Description Reset 7:0 R/W PLL_DIV_H Feedback divider ratio bit [19:12]. Refer to Table 31 and Table 32 for suggested settings. 00000000 Table 77: PLL_DIV2 0x2A Bit Mode Symbol Description Reset 7:0 R/W PLL_DIV_M Feedback divider ratio bit [11:4]. Refer to Table 31 and Table 32 for suggested settings. 00000000 Table 78: PLL_DIV3 0x2B Bit Mode Symbol Description Reset 7 R Reserved Reserved 0 PLL_BYP Bypass PLL 0 = disable (do not disable unless PLL is operational) 1 = enable (PLL bypassed) 0 6 R/W MCLK frequency range: 00 = 32.768 kHz 5:4 R/W MCLK_RANGE 01 = 10-20 MHz 10 = 20-40 MHz 01 11 = 40-80 MHz 3:0 R/W Datasheet CFR0011-120-00 Rev 5 PLL_DIV_L Feedback divider ratio bit [3:0]. Refer to Table 31 and Table 32 for suggested settings. Revision 3e 88 of 105 0000 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 79: PLL 0x2C Bit Mode Symbol 7 R/W PLL_EN 6 R/W MCLK_SRM_EN Description Reset PLL enable 0 = disable and bypass PLL 1 = enable PLL 0 Sample rate tracking 0 = disabled 0 1 = enabled 5 R/W MCLK_DET_EN automatic detection of sample rate 0 = disabled 0 1 = enabled Enable MCLK shaper for low level non TTL signals 4 R/W MCLK_SHAPE_EN 0 = disabled 1 = enabled 0 In MCLK_DET mode, the value read from this register will be the automatically detected sample rate from the PLL track circuitry. This will be updated on the positive edge of the DAI clock. 0000 = reserved 0001 = 8 kHz 0010 = 11.025 kHz 0011 = 12 kHz 0100 = reserved 3:0 R/W FS 0101 = 16 kHz 0110 = 22.05 kHz 1010 0111 = 24 kHz 1000= reserved 1001 = 32 kHz 1010 = 44.1 kHz 1011 = 48 kHz 1100 = reserved 1101 = reserved 1110 = 88.2 kHz 1111 = 96 kHz 10.4 GP filter engine Table 80: GP1A A0L 0x2D Bit Mode Symbol Description Reset 7:0 W GP1A A0L A0L bit 7:0 of A0 coefficient 00000000 Table 81: GP1A A0H 0x2E Bit Mode Symbol Description Reset 7:0 W GP1A A0H A0H bit 15:8 of A0 coefficient 01000000 Datasheet CFR0011-120-00 Rev 5 Revision 3e 89 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 82: GP1B A0L 0x2F Bit Mode Symbol Description Reset 7:0 W GP1B A0L A0L bit 7:0 of A0 coefficient 00000000 Table 83: GP1B A0H 0x30 Bit Mode Symbol Description Reset 7:0 W GP1B A0H A0H bit 15:8 of A0 coefficient 01000000 Table 84: GP2A A0L 0x31 Bit Mode Symbol Description Reset 7:0 W GP2A A0L A0L bit 7:0 of A0 coefficient 00000000 Table 85: GP2A A0H 0x32 Bit Mode Symbol Description Reset 7:0 W GP2A A0H A0H bit 15:8 of A0 coefficient 01000000 Table 86: GP2B_A0L 0x33 Bit Mode Symbol Description Reset 7:0 W GP2B_A0L A0L bit 7:0 of A0 coefficient 00000000 Table 87: GP2B_A0H 0x34 Bit Mode Symbol Description Reset 7:0 W GP2B_A0H A0H bit 15:8 of A0 coefficient 01000000 Table 88: GP1C_A0L 0x35 Bit Mode Symbol Description Reset 7:0 W GP1C_A0L A0L bit 7:0 of A0 coefficient 00000000 Table 89: GP1C_A0H 0x36 Bit Mode Symbol Description Reset 7:0 W GP1C_A0H A0H bit 15:8 of A0 coefficient 01000000 Table 90: GP1D_A0L 0x37 Bit Mode Symbol Description Reset 7:0 W GP1D_A0L A0L bit 7:0 of A0 coefficient 00000000 Table 91: GP1D_A0H 0x38 Bit Mode Symbol Description Reset 7:0 W GP1D_A0H A0H bit 15:8 of A0 coefficient 01000000 Table 92: GP2C_A0L 0x39 Bit Mode Symbol Description Reset 7:0 W GP2C_A0L A0L bit 7:0 of A0 coefficient 00000000 Datasheet CFR0011-120-00 Rev 5 Revision 3e 90 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 93: GP2C_A0H 0x3A Bit Mode Symbol Description Reset 7:0 W GP2C_A0H A0H bit 15:8 of A0 coefficient 01000000 Table 94: GP2D_A0L 0x3B Bit Mode Symbol Description Reset 7:0 W GP2D_A0L A0L bit 7:0 of A0 coefficient 00000000 Table 95: GP2D_A0H 0x3C Bit Mode Symbol Description Reset 7:0 W GP2D_A0H A0H bit 15:8 of A0 coefficient 01000000 Table 96: GP1A_A1L 0x3D Bit Mode Symbol Description Reset 7:0 W GP1A_A1L A1L bit 7:0 of A1 coefficient 00000000 Table 97: GP1A_A1L 0x3E Bit Mode Symbol Description Reset 7:0 W GP1A_A1L A1H bit 15:8 of A1 coefficient 00000000 Table 98: GP1B_A1L 0x3F Bit Mode Symbol Description Reset 7:0 W GP1B_A1L A1L bit 7:0 of A1 coefficient 00000000 Table 99: GP1B_A1H 0x40 Bit Mode Symbol Description Reset 7:0 W GP1B_A1H A1H bit 15:8 of A1 coefficient 00000000 Table 100: GP2A_A1L 0x41 Bit Mode Symbol Description Reset 7:0 W GP2A_A1L A1L bit 7:0 of A1 coefficient 00000000 Table 101: GP2A_A1H 0x42 Bit Mode Symbol Description Reset 7:0 W GP2A_A1H A1H bit 15:8 of A1 coefficient 00000000 Table 102: GP2B_A1L 0x43 Bit Mode Symbol Description Reset 7:0 W GP2B_A1L A1L bit 7:0 of A1 coefficient 00000000 Table 103: GP2B_A1H 0x44 Bit Mode Symbol Description Reset 7:0 W GP2B_A1H A1H bit 15:8 of A1 coefficient 00000000 Datasheet CFR0011-120-00 Rev 5 Revision 3e 91 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 104: GP1C_A1L 0x45 Bit Mode Symbol Description Reset 7:0 W GP1C_A1L A1L bit 7:0 of A1 coefficient 00000000 Table 105: GP1C_A1H 0x46 Bit Mode Symbol Description Reset 7:0 W GP1C_A1H A1H bit 15:8 of A1 coefficient 00000000 Table 106: GP1D_A1L 0x47 Bit Mode Symbol Description Reset 7:0 W GP1D_A1L A1L bit 7:0 of A1 coefficient 00000000 Table 107: GP1D_A1H 0x48 Bit Mode Symbol Description Reset 7:0 W GP1D_A1H A1H bit 15:8 of A1 coefficient 00000000 Table 108: GP2C_A1L 0x49 Bit Mode Symbol Description Reset 7:0 W GP2C_A1L A1L bit 7:0 of A1 coefficient 00000000 Table 109: GP2C_A1H 0x4A Bit Mode Symbol Description Reset 7:0 W GP2C_A1H A1H bit 15:8 of A1 coefficient 00000000 Table 110: GP2D_A1L 0x4B Bit Mode Symbol Description Reset 7:0 W GP2D_A1L A1L bit 7:0 of A1 coefficient 00000000 Table 111: GP2D_A1H 0x4C Bit Mode Symbol Description Reset 7:0 W GP2D_A1H A1H bit 15:8 of A1 coefficient 00000000 Table 112: GP1A_A2L 0x4D Bit Mode Symbol Description Reset 7:0 W GP1A_A2L A2L bit 7:0 of A2 coefficient 00000000 Table 113: GP1A_A2H 0x4E Bit Mode Symbol Description Reset 7:0 W GP1A_A2H A2H bit 15:8 of A2 coefficient 00000000 Table 114: GP1B_A2L 0x4F Bit Mode Symbol Description Reset 7:0 W GP1B_A2L A2L bit 7:0 of A2 coefficient 00000000 Datasheet CFR0011-120-00 Rev 5 Revision 3e 92 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 115: GP1B_A2H 0x50 Bit Mode Symbol Description Reset 7:0 W GP1B_A2H A2H bit 15:8 of A2 coefficient 00000000 Table 116: GP2A_A2L 0x51 Bit Mode Symbol Description Reset 7:0 W GP2A_A2L A2L bit 7:0 of A2 coefficient 00000000 Table 117: GP2A_A2H 0x52 Bit Mode Symbol Description Reset 7:0 W GP2A_A2H A2H bit 15:8 of A2 coefficient 00000000 Table 118: GP2B_A2L 0x53 Bit Mode Symbol Description Reset 7:0 W GP2B_A2L A2L bit 7:0 of A2 coefficient 00000000 Table 119: GP2B_A2H 0x54 Bit Mode Symbol Description Reset 7:0 W GP2B_A2H A2H bit 15:8 of A2 coefficient 00000000 Table 120: GP1C_A2L 0x55 Bit Mode Symbol Description Reset 7:0 W GP1C_A2L A2L bit 7:0 of A2 coefficient 00000000 Table 121: GP1C_A2H 0x56 Bit Mode Symbol Description Reset 7:0 W GP1C_A2H A2H bit 15:8 of A2 coefficient 00000000 Table 122: GP1D_A2L 0x57 Bit Mode Symbol Description Reset 7:0 W GP1D_A2L A2L bit 7:0 of A2 coefficient 00000000 Table 123: GP1D_A2H 0x58 Bit Mode Symbol Description Reset 7:0 W GP1D_A2H A2H bit 15:8 of A2 coefficient 00000000 Table 124: GP2C_A2L 0x59 Bit Mode Symbol Description Reset 7:0 W GP2C_A2L A2L bit 7:0 of A2 coefficient 00000000 Table 125: GP2C_A2H 0x5A Bit Mode Symbol Description Reset 7:0 W GP2C_A2H A2H bit 15:8 of A2 coefficient 00000000 Datasheet CFR0011-120-00 Rev 5 Revision 3e 93 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 126: GP2D_A2L 0x5B Bit Mode Symbol Description Reset 7:0 W GP2D_A2L A2L bit 7:0 of A2 coefficient 00000000 Table 127: GP2D_A2H 0x5C Bit Mode Symbol Description Reset 7:0 W GP2D_A2H A2H bit 15:8 of A2 coefficient 00000000 Table 128: GP1A_B1L 0x5D Bit Mode Symbol Description Reset 7:0 W GP1A_B1L B1L bit 7:0 of B1 coefficient 00000000 Table 129: GP1A_B1H 0x5E Bit Mode Symbol Description Reset 7:0 W GP1A_B1H B1H bit 15:8 of B1 coefficient 00000000 Table 130: GP1B_B1L 0x5F Bit Mode Symbol Description Reset 7:0 W GP1B_B1L B1L bit 7:0 of B1 coefficient 00000000 Table 131: GP1B_B1H 0x60 Bit Mode Symbol Description Reset 7:0 W GP1B_B1H B1H bit 15:8 of B1 coefficient 00000000 Table 132: GP2A_B1L 0x61 Bit Mode Symbol Description Reset 7:0 W GP2A_B1L B1L bit 7:0 of B1 coefficient 00000000 Table 133: GP2A_B1H 0x62 Bit Mode Symbol Description Reset 7:0 W GP2A_B1H B1H bit 15:8 of B1 coefficient 00000000 Table 134: GP2B_B1L 0x63 Bit Mode Symbol Description Reset 7:0 W GP2B_B1L B1L bit 7:0 of B1 coefficient 00000000 Table 135: GP2B_B1H 0x64 Bit Mode Symbol Description Reset 7:0 W GP2B_B1H B1H bit 15:8 of B1 coefficient 00000000 Table 136: GP1C_B1L 0x65 Bit Mode Symbol Description Reset 7:0 W GP1C_B1L B1L bit 7:0 of B1 coefficient 00000000 Datasheet CFR0011-120-00 Rev 5 Revision 3e 94 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 137: GP1C_B1H 0x66 Bit Mode Symbol Description Reset 7:0 W GP1C_B1H B1H bit 15:8 of B1 coefficient 00000000 Table 138: GP1D_B1L 0x67 Bit Mode Symbol Description Reset 7:0 W GP1D_B1L B1L bit 7:0 of B1 coefficient 00000000 Table 139: GP1D_B1H 0x68 Bit Mode Symbol Description Reset 7:0 W GP1D_B1H B1H bit 15:8 of B1 coefficient 00000000 Table 140: GP2C_B1L 0x69 Bit Mode Symbol Description Reset 7:0 W GP2C_B1L B1L bit 7:0 of B1 coefficient 00000000 Table 141: GP2C_B1H 0x6A Bit Mode Symbol Description Reset 7:0 W GP2C_B1H B1H bit 15:8 of B1 coefficient 00000000 Table 142: GP2D_B1L 0x6B Bit Mode Symbol Description Reset 7:0 W GP2D_B1L B1L bit 7:0 of B1 coefficient 00000000 Table 143: GP2D_B1H 0x6C Bit Mode Symbol Description Reset 7:0 W GP2D_B1H B1H bit 15:8 of B1 coefficient 00000000 Table 144: GP1A_B2L 0x6D Bit Mode Symbol Description Reset 7:0 W GP1A_B2L B2L bit 7:0 of B2 coefficient 00000000 Table 145: GP1A_B2H 0x6E Bit Mode Symbol Description Reset 7:0 W GP1A_B2H B2H bit 15:8 of B2 coefficient 00000000 Table 146: GP1B_B2L 0x6F Bit Mode Symbol Description Reset 7:0 W GP1B_B2L B2L bit 7:0 of B2 coefficient 00000000 Table 147: GP1B_B2H 0x70 Bit Mode Symbol Description Reset 7:0 W GP1B_B2H B2H bit 15:8 of B2 coefficient 00000000 Datasheet CFR0011-120-00 Rev 5 Revision 3e 95 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 148: GP2A_B2L 0x71 Bit Mode Symbol Description Reset 7:0 W GP2A_B2L B2L bit 7:0 of B2 coefficient 00000000 Table 149: GP2A_B2H 0x72 Bit Mode Symbol Description Reset 7:0 W GP2A_B2H B2H bit 15:8 of B2 coefficient 00000000 Table 150: GP2B_B2L 0x73 Bit Mode Symbol Description Reset 7:0 W GP2B_B2L B2L bit 7:0 of B2 coefficient 00000000 Table 151: GP2B_B2H 0x74 Bit Mode Symbol Description Reset 7:0 W GP2B_B2H B2H bit 15:8 of B2 coefficient 00000000 Table 152: GP1C_B2L 0x75 Bit Mode Symbol Description Reset 7:0 W GP1C_B2L B2L bit 7:0 of B2 coefficient 00000000 Table 153: GP1C_B2H 0x76 Bit Mode Symbol Description Reset 7:0 W GP1C_B2H B2H bit 15:8 of B2 coefficient 00000000 Table 154: GP1D_B2L 0x77 Bit Mode Symbol Description Reset 7:0 W GP1D_B2L B2L bit 7:0 of B2 coefficient 00000000 Table 155: GP1D_B2H 0x78 Bit Mode Symbol Description Reset 7:0 W GP1D_B2H B2H bit 15:8 of B2 coefficient 00000000 Table 156: GP2C_B2L 0x79 Bit Mode Symbol Description Reset 7:0 W GP2C_B2L B2L bit 7:0 of B2 coefficient 00000000 Table 157: GP2C_B2H 0x7A Bit Mode Symbol Description Reset 7:0 W GP2C_B2H B2H bit 15:8 of B2 coefficient 00000000 Table 158: GP2D_B2L 0x7B Bit Mode Symbol Description Reset 7:0 W GP2D_B2L B2L bit 7:0 of B2 coefficient 00000000 Datasheet CFR0011-120-00 Rev 5 Revision 3e 96 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 159: GP2D_B2H 0x7C Bit Mode Symbol Description Reset 7:0 W GP2D_B2H B2H bit 15:8 of B2 coefficient 00000000 Table 160: GPF_SRC1 0x7D Bit Mode Symbol Description Reset 7 R Reserved Reserved 0 GP Filter 2AB source selection: 000 = 1AB 001 = reserved 6:4 R/W GP_2AB_SRC 010 = 1CD 011 = reserved 110 100 = DAI_L 101 = DAI_R 110 = ADC_L 111 = ADC_R 3 R Reserved Reserved 0 GP Filter 1AB source selection: 000 = reserved 2:0 R/W GP_1AB_SRC 001 = reserved 010 = reserved 011 = reserved 100 = DAI_L 100 101 = DAI_R 110 = ADC_L 111 = ADC_R Datasheet CFR0011-120-00 Rev 5 Revision 3e 97 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 161: GPF_SRC2 0x7E Bit Mode Symbol Description Reset 7 R Reserved Reserved 0 GP Filter 2CD source selection: 000 = 1AB 001 = 2AB 6:4 R/W GP_2CD_SRC 010 = 1CD 011 = reserved 111 100 = DAI_L 101 = DAI_R 110 = ADC_L 111 = ADC_R 3 R Reserved Reserved 0 GP Filter 1CD source selection: 000 = 1AB 001 = reserved 010 = reserved 2:0 R/W GP_1CD_SRC 011 = reserved 100 = DAI_L 101 101 = DAI_R 110 = ADC_L 111 = ADC_R Table 162: DSP_CFG 0x7F Bit Mode Symbol Description Reset 7 R Reserved Reserved 0 6 R/W DSP_MIX_3 1 = Output of section 2AB is mixed with 2CD 0 5 R/W DSP_MIX_2 1 = Output of section 1CD is mixed with 2AB 0 4 R/W DSP_MIX_1 1 = Output of section 1AB is mixed with 1CD 0 Enable GP section 2CD 3 2 R/W R/W GP2CD_EN GP1CD_EN 0 = disable 1 = enable Enable GP section 1CD 0 = disable 0 0 1 = enable Enable GP section 2AB 1 R/W GP2AB_EN 0 = disable 1 = enable 0 Enable GP section 1AB 0 R/W Datasheet CFR0011-120-00 Rev 5 GP1AB_EN 0 = disable 1 = enable Revision 3e 98 of 105 0 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 163: CHIP_ID 0x81 Bit Mode Symbol 7:4 R MRC 3:0 R MMRC Description Reset Read back of mask revision code (MRC) 0001 – code 0 for AA release Read back of metal mask release code (MMRC) – starts with a code 0 0001 Description Reset Table 164: INTERFACE 0x82 Bit Mode Symbol 7:5 R IF_BASE_ADDR 4:0 R Reserved 3 MSB of 2-wire control interface base address XXX1010 + R/W 001 00110100 = 0x34 (write address) 00110101 = 0x35 (read address) Reserved 00000 10.5 ALC level controls Table 165: ALC_MAX 0x83 Bit Mode Symbol Description Reset 7 R Reserved Reserved 0 6 R/W ALC_MERGE 5:0 R/W ALC_MAX ALC joined stereo mode 0 = disabled (channels updates independently) 1 = enabled (channels update synchronously) 1 ALC max control level (refer to Table 20) maximum value of ALC_MAX = 3Ch = -0.5 dB 000000 Table 166: ALC_MIN 0x84 Bit Mode Symbol Description Reset 7:6 R Reserved Reserved 00 5:0 R/W ALC_MIN ALC min control level: (refer to Table 20) maximum value of ALC_MIN = 3Bh = -2 dB 000000 Table 167: ALC_NOIS 0x85 Bit Mode Symbol Description Reset 7:6 R Reserved Reserved 00 5:0 R/W ALC_NOIS ALC noise gate level: (refer to Table 20) Note that the minimum value of ALC_NOIS is 86 dB 000000 Table 168: ALC_ATT 0x86 Bit 7:0 Mode R/W Symbol Description Reset ALC_ATT ALC attack rate: Number of sample periods between two gain steps of 0.25 dB 00000000 00000000 = 0.25 dB/sample period Datasheet CFR0011-120-00 Rev 5 Revision 3e 99 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 169: ALC_REL 0x87 Bit Mode Symbol Description Reset ALC release rate: 7:0 R/W ALC_REL Number of periods between two gain steps of 0.25 dB in increments of 4 sample periods 00000000 00000000 = 0.0625 dB/sample period Table 170: ALC_DEL 0x88 Bit Mode Symbol Description Reset 7:0 R/W ALC_DEL ALC release delay: Time delay before ALC release starts in increments of ALC_REL periods 00000000 Description Reset Table 171: A_HID_UNLOCK 0x8A Bit Mode Symbol 7:0 W A_HID_UNLOCK Register unlock: Set to 0x8B (10001011) to use the registers below 00000000 Table 172: A_TST_UNLOCK 0x8B Bit Mode Symbol Description Reset 7:0 W A_TST_UNLOCK Register unlock: Set to 0xB4 (10110100) to use the registers below 00000000 Table 173: A_PLL0 0x8F Unlocking registers 0x8A and 0x8B is required to access this register Bit Mode Symbol Description Reset Disable sigma delta modulator in the analogue PLL. 0 W SIGDEL_DISABLE 7:6 W Reserved If = 1, reduces current when using internal oscillator. Must be enabled when using PLL Reserved 0 0000000 Table 174: A_PLL1 0x90 Unlocking registers 0x8A and 0x8B is required to access this register Bit Mode Symbol Description Reset 7:1 W Reserved Reserved 0000000 0 W VCORST_EN Separate power-down signal for the VCO reset controller 0 = disabled 1 1 = enabled for all PLL operations Datasheet CFR0011-120-00 Rev 5 Revision 3e 100 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Table 175: A_ADC0 0x95 Unlocking registers 0x8A and 0x8B is required to access this register Bit Mode Symbol Description Reset 7:4 W Reserved Reserved 0000 3 W ADC_T2 0 = default current 1 = increased current; improved THD performance 0 2:0 W Reserved Reserved 000 ADC bias current increase: Table 176: A_DAC0 0x96 Unlocking registers 0x8A and 0x8B is required to access this register Bit Mode Symbol Description Reset 7:3 W Reserved Reserved 00000 2:0 W VMID_BUFF_EN VMID buffer disable during ADC and analogue only modes to save power 000 = VMID buffer disabled 111 = VMID buffer enabled 111 Table 177: A_CPHP6 0xA2 Unlocking registers 0x8A and 0x8B is required to access this register Bit Mode Symbol Description Reset 7:0 W CP_RISE_TIME Set 0x80 (10000000) for maximum output power. Set 0x84 (10000100) for reduced inrush current 10000000 Table 178: A_CP_MODE 0xA7 Unlocking registers 0x8A and 0x8B is required to access this register Bit Mode Symbol 7:0 W A_CP_MODE Datasheet CFR0011-120-00 Rev 5 Description Headphone charge pump enable: Set 0x7C (01111110) Revision 3e 101 of 105 Reset 01111110 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential 11 Package information 11.1 Package outlines Figure 49: 36 bump WL-CSP 0.5mm pitch package outline drawing 11.2 Soldering information Refer to the JEDEC standard J-STD-020 for relevant soldering information. This document can be downloaded from http://www.jedec.org. 12 Ordering information The ordering number consists of the part number followed by a suffix indicating the packing method. For details and availability, please contact Dialog Semiconductor’s local sales representative. Table 179: Ordering information Part number Package DA7211-01UA2 DA7211-01UA6 Datasheet CFR0011-120-00 Rev 5 Size (mm) Shipment form Pack quantity 36-bump CSP Pb-free/green Tape and Reel 2,000 pcs. 36-bump CSP Pb-free/green Waffle Pack (engineering samples only - not for mass production) 900 pcs. Revision 3e 102 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential 13 Applications information 13.1 Supporting information The bass response of the analogue inputs and outputs is determined by the output coupling capacitor and associated resistive load. If smaller footprint, low value capacitors are preferred, then the low frequency cut-off will be increased. To maintain maximum audio bandwidth, larger capacitors are recommended, taking into account the relationship Low frequency cut-off = 1 2RC The analogue outputs can support between 32 Ω (16 Ω for headphone outputs) and line level loads (e.g. >=10 kΩ), so the range of capacitor values is wider, and care is required when making the selection. 13.2 Minimum component recommendations To ensure datasheet performance is maintained it is recommended that the following minimum component criteria are met. Figure 49 shows recommended components and input/output configurations. Figure 49: DA7211 36-pin CSP component recommendations ● It is recommended that ceramic capacitors are used where possible for low ESR. ● It is recommended that C0G or X7R dielectric is used where possible to minimise distortion. ● The voltage rating of any capacitor used should be much greater than the maximum peak signal amplitude expected. It has been shown that capacitors with a large voltage rating introduce less distortion into the signal paths. Datasheet CFR0011-120-00 Rev 5 Revision 3e 103 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential ● For example the voltage rating of the 1 µF capacitors in the output paths should be chosen as 16 V ● All capacitors >=10 µF should use minimum dielectric specification X5R where possible. ● All 100 nF power supply decoupling capacitors should be placed as close as possible to associated pins. Reference: C1, C18 and C28. ● All 1 µF voltage reference capacitors should be placed as close as possible to associated pins. Reference: C7, C15-17. ● The headphone output amplifier is driven by a PWM based charge pump. To maintain efficiency the 1 µF charge pump capacitors should be placed as close as possible to associated pins. Reference: C2-C5. ● The control interface data I/O pin, SI, is open drain and therefore requires an external pull-up. If the control interface data output of the system processor does not support an internal pull-up, then an external resistor R2 is required. 13.3 General component suggestions The following components and input/output configurations are suggested below. ● Headphone output and microphone input connectors shown in Figure 49 are of the 3.5 mm RCA/phono type, but any other suitable connector is acceptable. ● J1 is configured as a mono microphone input. The ground reference connection MICN_R, pin 5D, is internally referenced to a voltage 0.45*AVDD and therefore must be connected to AGND (or ground plane if connected to AGND) through C23. Similarly MICP_R, pin 6C, should be connected to the signal input via C22. ● MICBIAS, pin 5C, can supply up to 2 mA of current for biasing electret microphones. The MICBIAS pin must be separated from the mic input by ≈200 Ω resistor. ● A capacitive load of 100 nF is also required for output stability and doubles as a decoupling capacitor. ● If two microphones are supplied by this pin, then separate RC circuits are implemented for each microphone to provide isolation between inputs, as shown in Figure 49. ● J2 is configured as a differential microphone input. The positive signal input is connected to MICP_L, pin 6B, the inputs pins are internally referenced to voltage 0.45*AVDD and therefore must be connected through C20. Similarly, the negative signal input is connected to MICN_L, pin 4D, through C21. To maintain balance the value of R4 should match that of R3. ● When the line outputs are used to drive a differential load of 32 Ω, coupling caps are not required ● If the analogue outputs, excluding the headphone outputs, are used with line level loads (e.g. ≈10 kΩ) and minimum bass response of the outputs is not deemed important, it could be acceptable to reduce the coupling capacitors for OUT1L/R analogue output pins to less than 1 µF. An absolute minimum value of 100 nF is recommended. Reference: C10-13. ● It is unlikely that the bass response of the microphone used will be much lower than 100 Hz. The microphone inputs have an impedance ≈15 kΩ, it could therefore be acceptable to use coupling capacitors less than 1 µF without significantly affecting the input signal bandwidth. An absolute minimum value of 100 nF is recommended. ● The input impedance of the analogue inputs is ≈30 kΩ. If minimum bass response of the analogue inputs is not deemed important, the input coupling capacitors for MICL/R and AUX1L/R can be reduced to less than 1 µF. An absolute minimum value of 100 nF is recommended. Reference: C21-27. Datasheet CFR0011-120-00 Rev 5 Revision 3e 104 of 105 15-Oct-2015 © 2015 Dialog Semiconductor DA7211 Ultra-low power stereo codec Company confidential Status definitions Revision Datasheet status Product status Definition 1.<n> Target Development This datasheet contains the design specifications for product development. Specifications may be changed in any manner without notice. 2.<n> Preliminary Qualification This datasheet contains the specifications and preliminary characterisation data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design. 3.<n> Final Production This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via Customer Product Notifications. 4.<n> Obsolete Archived This datasheet contains the specifications for discontinued products. The information is provided for reference only. Disclaimer Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor. Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications. Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect. Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor. All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor’s Standard Terms and Conditions of Sale, unless otherwise stated. © Dialog Semiconductor. All rights reserved. RoHS compliance Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU concerning Restriction of Hazardous Substances (RoHS/RoHS2). Dialog Semiconductor’s statement on RoHS can be found on the customer portal https://support.diasemi.com/. RoHS certificates from our suppliers are available on request. Contacting Dialog Semiconductor United Kingdom (Headquarters) Dialog Semiconductor (UK) LTD Phone: +44 1793 757700 North America Dialog Semiconductor Inc. Phone: +1 408 845 8500 Singapore Dialog Semiconductor Singapore Phone: +65 64 8499 29 China (Shenzhen) Dialog Semiconductor China Phone: +86 755 2981 3669 Germany Dialog Semiconductor GmbH Phone: +49 7021 805-0 Japan Dialog Semiconductor K. K. Phone: +81 3 5425 4567 Hong Kong Dialog Semiconductor Hong Kong Phone: +852 3769 5200 China (Shanghai) Dialog Semiconductor China Phone: +86 21 5424 9058 The Netherlands Dialog Semiconductor B.V. Phone: +31 73 640 8822 Taiwan Dialog Semiconductor Taiwan Phone: +886 281 786 222 Korea Dialog Semiconductor Korea Phone: +82 2 3469 8200 Email: [email protected] Web site: www.dialog-semiconductor.com Datasheet CFR0011-120-00 Rev 5 Revision 3e 105 of 105 15-Oct-2015 © 2015 Dialog Semiconductor