C4D30120D VRRM Silicon Carbide Schottky Diode 1200 V IF (TC=135˚C) = 43A** Z-Rec Rectifier ® Qc Features • • • • • = = 155nC** Package 1.2kV Schottky Rectifier Zero Reverse Recovery Current High-Frequency Operation Temperature-Independent Switching Extremely Fast Switching Benefits • • • • • TO-247-3 Replace Bipolar with Unipolar Rectifiers Essentially No Switching Losses Higher Efficiency Reduction of Heat Sink Requirements Parallel Devices Without Thermal Runaway Applications • • • Switch Mode Power Supplies Power Factor Correction Motor Drives Part Number Package Marking C4D30120D TO-247-3 C4D30120 Maximum Ratings (TC=25°C unless otherwise specified) Symbol Parameter 1 Unit Test Conditions VRRM Repetitive Peak Reverse Voltage 1200 V VRSM Surge Peak Reverse Voltage 1300 V VR DC Peak Reverse Voltage 1200 V IF Continuous Forward Current (Per Leg/Device) 44/88 21.5/43 15/30 A TC=25˚C TC=135˚C TC=152˚C IFRM Repetitive Peak Forward Surge Current 68* 44* A TC=25˚C, tP=10 ms, Half Sine Pulse TC=110˚C, tP=10 ms, Half Sine Pulse IFSM Non-Repetitive Forward Surge Current 100* 85* A TC=25˚C, tP=10 ms, Half Sine Pulse TC=110˚C, tP=10 ms, Half Sine Pulse IF,Max Non-Repetitive Peak Forward Current 900* 750* A TC=25˚C, tP=10 ms, Pulse TC=110˚C, tP=10 ms, Pulse 220/440 95/190 W TC=25˚C TC=110˚C Ptot Power Dissipation (Per Leg/Device) TJ Operating Junction Range -55 to +175 ˚C Tstg Storage Temperature Range -55 to +135 ˚C 1 8.8 Nm lbf-in TO-247 Mounting Torque * Value Per Leg, ** Per Device C4D30120D Rev. B M3 Screw 6-32 Screw Note Electrical Characteristics (Per Leg) Symbol Parameter Typ. Max. Unit Test Conditions Note VF Forward Voltage 1.6 2.3 1.8 3 V IF = 15 A TJ=25°C IF = 15 A TJ=175°C IR Reverse Current 35 120 200 300 μA VR = 1200 V TJ=25°C VR = 1200 V TJ=175°C QC Total Capacitive Charge 77.5 nC VR = 800 V, IF = 15A di/dt = 200 A/μs TJ = 25°C C Total Capacitance 1200 70 50 pF VR = 0 V, TJ = 25°C, f = 1 MHz VR = 400 V, TJ = 25˚C, f = 1 MHz VR = 800 V, TJ = 25˚C, f = 1 MHz 1. Note:This is a majority carrier diode, so there is no reverse recovery charge. Thermal Characteristics Symbol Parameter Typ. RθJC Thermal Resistance from Junction to Case 0.34** 0.68* Max. Unit Test Conditions Note °C/W ** ** Per Device, * Per Leg Typical Performance (Per Leg) 2 30 TJ=-55°C TJ= 25°C TJ= 75°C TJ =125°C TJ =175°C 25 1.8 1.6 1.4 IR (mA) IF (A) 20 15 10 1.2 1 0.8 TJ=-55°C TJ= 25°C TJ= 75°C TJ =125°C TJ =175°C 0.6 0.4 5 0.2 0 0 0 0.5 1 1.5 2 2.5 3 VF (V) Figure 1. Forward Characteristics 2 C4D30120D Rev. B 3.5 4 200 400 600 800 1000 1200 1400 VR (V) Figure 2. Reverse Characteristics 1600 1800 Typical Performance (Per Leg) 160 240 220 140 IF(peak) (A) 120 100 200 Duty Duty Duty Duty Duty 180 160 PTot (W) 10% 20% 30% 50% 70% DC 80 60 140 120 100 80 40 60 40 20 20 0 25 50 75 100 125 150 0 175 25 50 75 TC ˚C 100 125 150 175 TC ˚C Figure 3. Current Derating Figure 4. Power Derating 90 1400 80 1200 70 1000 50 C (pF) Qrr (nC) 60 40 30 600 400 20 200 10 0 0 200 400 600 800 VR (V) Figure 5. Recovery Charge vs. Reverse Voltage 3 800 C4D30120D Rev. B 1000 0 0.1 1 10 100 VR (V) Figure 6. Capacitance vs. Reverse Voltage 1000 Typical Performance (Per Leg) 40 40.0 1000 1000 35 35.0 EC Capacitive Energy (uJ) C 30 30.0 (A) IFSMIFSM (A) E (mJ) 25 25.0 20 20.0 15 15.0 100 100 TJ = 25°C TJ = 110°C 10.0 10 5.05 10 10 1E-05 1E-04 1E-03 1E-02 1.E-05 1.E-04 1.E-03 1.E-02 0.00 0 200 400 600 800 1000 0 200 400 600 800 1000 tp(s) tp (s) VR Reverse Voltage (V) VR (V) Figure 8. Non-Repetitive Peak Forward Surge Current versus Pulse Duration (sinusoidal waveform) Figure 7. Typical Capacitance Stored Energy Thermal Resistance (˚C/W) 1 0.1 0.01 0.001 1E-6 10E-6 100E-6 1E-3 T (Sec) 10E-3 Figure 9. Transient Thermal Impedance 4 C4D30120D Rev. B 100E-3 1 10 Package Dimensions Package TO-247-3 POS X Z W Inches Min Y AA CC Min Max A .605 .635 15.367 16.130 B .800 .831 20.320 21.10 C .780 .800 19.810 20.320 D .095 .133 2.413 3.380 E .046 .052 1.168 1.321 F .060 .095 1.524 2.410 G BB Millimeters Max .215 TYP 5.460 TYP H .175 .205 4.450 5.210 J .075 .085 1.910 2.160 K 6˚ 21˚ 6˚ 21˚ 6˚ L 4˚ 6˚ 4˚ M 2˚ 4˚ 2˚ 4˚ N 2˚ 4˚ 2˚ 4˚ P .090 .100 2.286 2.540 Q .020 .030 .508 .762 R 9˚ 11˚ 9˚ 11˚ S 9˚ 11˚ 9˚ 11˚ T 2˚ 8˚ 2˚ 8˚ U 2˚ 8˚ 2˚ 8˚ V .137 .144 3.487 3.658 W .210 .248 5.334 6.300 X .502 .557 12.751 14.150 Y .637 .695 16.180 17.653 Z .038 .052 0.964 1.321 AA .110 .140 2.794 3.556 BB .030 .046 0.766 1.168 CC .161 .176 4.100 4.472 Recommended Solder Pad Layout Part Number Package Marking C4D30120D TO-247-3 C4D30120 TO-247-3 Note: Recommended soldering profiles can be found in the applications note here: http://www.cree.com/power_app_notes/soldering 5 C4D30120D Rev. B Diode Model Diode Model CSD04060 Vf T = V T + If*R Vf = VT T T + If * RT VT= 0.965 + (Tj * -1.3*10-3) RT= 0.096 + (Tj * 1.06*10-3) VT = 0.97 + (Tj * -2.12*10-3) RT = 0.031 + (Tj * 3.92*10-4) VT RT Note: Tj = Diode Junction Temperature In Degrees Celsius, valid from 25°C to 175°C Notes • RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. • REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. • This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems. Copyright © 2014 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 6 C4D30120D Rev. B Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power