AVAGO AT-41532-TR1G General purpose, low current npn silicon bipolar transistor Datasheet

AT-41532
General Purpose, Low Current NPN Silicon Bipolar Transistor
Data Sheet
Description
Features
Avago’s AT-41532 is a general purpose NPN bipolar transistor that has been optimized for maximum ft at low voltage
operation, making it ideal for use in battery powered
applications in cellular/PCS and other wireless markets.
The AT-41532 uses the miniature 3-lead SOT-323 (SC-70)
plastic package.
• General Purpose NPN Bipolar Transistor Optimized for
Low Current, Low Voltage Applications at 900 MHz,
1.8 GHz, and 2.4 GHz
Optimized performance at 5 V makes this device ideal
for use in 900 MHz, 1.8 GHz, and 2.4 GHz systems. Typical
amplifier design at 900 MHz yields 1 dB NF and 15.5 dB associated gain at 5 V and 5 mA bias. High gain capability
at 1 V and 1 mA makes this device a good fit for 900 MHz
pager applications. A good noise match near 50 ohms at
900 MHz makes this a very user-friendly device. Moreover,
voltage breakdowns are high enough to support operation
at 10 V.
The AT-41532 belongs to Avago’s AT-4XXXX series bipolar
transistors. It exhibits excellent device uniformity, performance, and reliability as a result of ion-implantation,
self-alignment techniques, and gold metalization in the
fabrication process.
3-Lead SC-70 (SOT-323)
Surface Mount Plastic Package
Pin Configuration
COLLECTOR
41
BASE
EMITTER
• Performance (5 V, 5 mA)
0.9 GHz: 1 dB NF, 15.5 dB GA
1.8 GHz: 1.4 dB NF, 10.5 dB GA
2.4 GHz: 1.9 dB NF, 9 dB GA
• Characterized for 3, 5, and 8 V Use
• Miniature 3-lead SOT-323 (SC-70) Plastic Package
• High Breakdown Voltage (can be operated up to 10 V)
• Lead-free
Applications
• LNA, Oscillator, Driver Amplifier, Buffer Amplifier, and
Down Converter for Cellular and PCS Handsets and
Cordless Telephones
• LNA, Oscillator, Mixer, and Gain Amplifier for Pagers
• Power Amplifier and Oscillator for RF-ID Tag
• LNA and Gain Amplifier for GPS
• LNA for CATV Set-Top Box
AT-41532 Absolute Maximum Ratings
Symbol
Parameter
Units
Absolute
Maximum[1]
VEBO
Emitter-Base Voltage
V
1.5
VCBO
Collector-Base Voltage
V
20
VCEO
Collector-Emitter Voltage
V
12
IC
Collector Current
mA
50
PT
Power Dissipation[2, 3]
mW
225
Tj
Junction Temperature
°C
150
TSTG
Storage Temperature
°C
-65 to 150
Thermal Resistance [2]:
qjc = 350°C/W
Notes:
1. Operation of this device above any one of
these parameters may cause permanent
damage.
2. Tmounting surface = 25°C.
3. Derate at 2.86 mW/°C for Tmounting surface
> 72°C.
Electrical Specifications, TA = 25°C
Symbol
Parameters and Test Conditions
Units
Min
Typ
Max
hFE
Forward Current Transfer Ratio
VCE = 5 V,
IC = 5 mA
–
30
150
270
ICBO
Collector Cutoff Current
VCB = 3 V
mA
0.2
IEBO
Emitter Cutoff Current
VEB = 1 V
mA
1.0
Characterization Information, TA = 25°C
Symbol
Parameters and Test Conditions
NF
Noise Figure
VCE = 5 V, IC = 5 mA
GA
Associated Gain
VCE = 5 V, IC = 5 mA
Units
Min
Typ
f = 0.9 GHz
f = 1.8 GHz
f = 2.4 GHz
dB
1.0
1.4
1.9
f = 0.9 GHz
f = 1.8 GHz
f = 2.4 GHz
dB
15.5
10.5
9.0
P1dB
Power at 1 dB Gain Compression (opt tuning)
VCE = 5 V, IC = 25 mA
f = 0.9 GHz
dBm
14.5
G1dB
Gain at 1 dB Gain Compression (opt tuning)
VCE = 5 V, IC = 25 mA
f = 0.9 GHz
dB
14.5
IP3
Output Third Order Intercept Point (opt tuning)
VCE = 5 V, IC = 25 mA
f = 0.9 GHz
dBm
25
|S21E|2
Gain in 50 Ω System
VCE = 5 V, IC = 5 mA
f = 0.9 GHz
f = 2.4 GHz
dB
12.5
13.25
5.2
AT-41532 Typical Performance
4.0
3.5
3.5
NOISE FIGURE (dB)
NOISE FIGURE (dB)
2.5
2.0
1.5
1.0
2.5
2.0
1.5
1.0
0.5
0.5
0
1.0
2.0
3.0
0
4.0
0
1.0
3.0
1.5
1.0
0
4.0
0
1.0
2.0
16
2 mA
5 mA
GAIN (dB)
12
GAIN (dB)
12
4
8
4
2
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
1.0
1.5
FREQUENCY (GHz)
2.0
2.5
3.0
3.5
4.0
FREQUENCY (GHz)
Figure 4. AT-41532 Associated Gain vs.
Frequency at 1 V, 1 mA.
8
7
G1 dB (dB)
10
5
0
6
5
4
3
2
2.7 V
5V
-5
0
5
10
15
20
2.7 V
5V
1
25
COLLECTOR CURRENT (mA)
Figure 7. AT-41532 P1 dB vs. Collector Current
and Voltage (valid up to 2.4 GHz).
0
0
5
10
15
1.0
1.5
2.0
2.5
3.0
3.5
Figure 6. AT-41532 Associated Gain vs.
Frequency and Current at 5 V.
9
15
0
0.5
FREQUENCY (GHz)
Figure 5. AT-41532 Associated Gain vs.
Frequency and Current at 2.7 V.
20
8
4
0
0.5
4.0
4.0
Figure 3. AT-41532 Typical Noise Figure vs.
Frequency and Current at 5 V.
2 mA
5 mA
6
3.0
FREQUENCY (GHz)
16
8
GAIN (dB)
2.0
Figure 2. AT-41532 Typical Noise Figure vs.
Frequency and Current at 2.7 V.
10
P1 dB (dBm)
2.0
FREQUENCY (GHz)
Figure 1. AT-41532 Typical Noise Figure vs.
Frequency at 1 V, 1 mA.
2.5
0.5
FREQUENCY (GHz)
-10
2 mA
5 mA
3.0
NOISE FIGURE (dB)
3.0
3.0
0
3.5
2 mA
5 mA
20
25
COLLECTOR CURRENT (mA)
Figure 8. AT-41532 G1 dB vs. Collector Current
and Voltage (valid up to 2.4 GHz).
4.0
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 1 V, IC = 1 mA
Freq.
GHz
S11
S21
S12
S22
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.787
-75
8.79
2.750
125
-20.18
0.098
49
0.860
-22
0.75
0.697
-104
7.28
2.311
106
-18.74
0.116
38
0.785
-28
1.0
0.620
-128
5.84
1.960
90
-18.40
0.120
31
0.734
-32
1.5
0.554
-166
3.40
1.480
66
-18.80
0.115
30
0.678
-40
2.0
0.538
-164
1.52
1.191
48
-18.69
0.116
42
0.653
-50
3.0
0.543
118
-1.06
0.886
22
-13.30
0.216
60
0.620
-73
4.0
0.559
79
-2.61
0.741
5
-8.03
0.397
47
0.568
-102
5.0
0.561
47
-3.06
0.703
-7
-4.83
0.574
24
0.487
-137
6.0
0.545
28
-2.81
0.724
-20
-3.11
0.699
0
0.398
-180
7.0
0.534
14
-2.46
0.754
-35
-2.30
0.768
-23
0.362
130
8.0
0.544
2
-2.38
0.761
-52
-2.08
0.787
-44
0.407
88
9.0
0.563
-10
-2.49
0.751
-68
-2.18
0.778
-63
0.467
58
10.0
0.597
-23
-2.79
0.725
-84
-2.52
0.748
-80
0.523
35
11.0
0.655
-34
-3.39
0.677
-100
-3.15
0.696
-96
0.593
16
12.0
0.703
-42
-4.03
0.629
-112
-3.76
0.649
-110
0.665
-6
AT-41532 Typical Noise Parameters,
Common Emitter, ZO = 50 Ω, VCE = 1 V, IC = 1 mA
0.9
1.50
gmax
dB(S|2,1|)
k
Mag
Ang
Rn
ohms
Gassoc
dB
16
1.4
0.44
92
12.4
9.4
12
1.00
1.8
1.8
0.57
-183
3.0
7.6
8
0.75
2.0
1.9
0.60
-169
3.3
6.7
2.5
2.2
0.66
-140
10.1
5.7
4
0.50
3.0
2.6
0.71
-116
27.6
4.6
0
0.25
3.5
3.1
0.75
-95
59.9
3.5
-4
4.0
3.6
0.77
-77
103.0
2.1
0
1
2
3
4
1.25
5
0
6
FREQUENCY (GHz)
Figure 9. Gain vs. Frequency at 1 V, 1 mA.
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
MAG =
S21
(k ± √ k2–1)
S12
MSG = |S21| /|S12|
1 – |S11|2 – |S22|2 + |D|2
k=
; D = S11S22 – S12 S21
2*|S12| |S21|
Note: dB(|S 21|) = 20 * log(|S 21|)
k
Fmin
dB
GAIN (dB)
Freq.
GHz
20
Γopt
AT-32032 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 2 mA
Freq.
GHz
S11
S21
S12
S22
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.647
-82
13.45
4.702
119
-23.97
0.063
52
0.808
-21
0.75
0.532
-111
11.34
3.691
101
-22.60
0.074
46
0.737
-24
1.0
0.455
-134
9.54
3.000
88
-21.87
0.081
46
0.696
-27
1.5
0.394
-171
6.70
2.162
68
-20.48
0.095
52
0.658
-33
2.0
0.382
160
4.64
1.707
51
-18.50
0.119
59
0.643
-40
3.0
0.397
116
1.87
1.240
26
-13.56
0.210
61
0.627
-59
4.0
0.434
80
0.03
1.004
5
-9.26
0.344
50
0.604
-81
5.0
0.474
50
-1.20
0.871
-10
-6.05
0.498
32
0.556
-108
6.0
0.497
30
-1.81
0.812
-23
-3.84
0.643
11
0.470
-142
7.0
0.501
15
-1.88
0.805
-36
-2.40
0.759
-12
0.377
174
8.0
0.512
4
-1.89
0.804
-51
-1.73
0.819
-34
0.361
123
9.0
0.532
-9
-1.99
0.796
-67
-1.61
0.831
-55
0.411
82
10.0
0.569
-22
-2.31
0.767
-83
-1.86
0.808
-74
0.476
52
11.0
0.643
-32
-2.37
0.762
-97
-2.41
0.758
-93
0.562
27
12.0
0.687
-40
-3.51
0.668
-112
-3.10
0.700
-107
0.639
1
AT-32032 Typical Noise Parameters,
Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 2 mA
0.9
20
Γopt
Mag
Ang
Rn
ohms
1.2
0.35
100
8.7
12.9
1.8
1.6
0.48
-179
3.3
9.7
2.0
1.7
0.51
-165
3.7
9.1
2.5
1.9
0.60
-136
8.9
8.0
3.0
2.2
0.65
-112
21.0
6.9
0
3.5
2.5
0.70
-91
42.0
5.9
-4
4.0
2.9
0.74
-74
72.0
5.1
1.2
gmax
dB(S|2,1|)
k
Gassoc
dB
16
12
0.8
8
0.6
4
0.4
0.2
0
1
2
3
4
1
5
k
Fmin
dB
GAIN (dB)
Freq.
GHz
0
6
FREQUENCY (GHz)
Figure 10. Gain vs. Frequency at 2.7 V, 2 mA.
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
MAG =
S21
(k ± √ k2–1)
S12
MSG = |S21| /|S12|
1 – |S11|2 – |S22|2 + |D|2
k=
; D = S11S22 – S12 S21
2*|S12| |S21|
Note: dB(|S 21|) = 20 * log(|S 21|)
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 5 mA
Freq.
GHz
S11
S21
S12
S22
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.400
-102
17.03
7.106
106
-25.97
0.050
59
0.671
-22
0.75
0.312
-130
14.15
5.101
91
-23.86
0.064
60
0.615
-24
1.0
0.270
-152
11.97
3.969
80
-22.09
0.079
61
0.588
-25
1.5
0.247
175
8.82
2.762
64
-19.10
0.111
63
0.564
-30
2.0
0.253
149
6.67
2.154
50
-16.60
0.148
62
0.553
-37
3.0
0.280
112
3.86
1.559
26
-12.48
0.238
55
0.535
-54
4.0
0.323
80
2.07
1.269
6
-9.19
0.347
43
0.514
-75
5.0
0.379
55
0.80
1.097
-12
-6.55
0.471
27
0.472
-99
6.0
0.434
38
-0.13
0.986
-28
-4.50
0.595
9
0.398
-130
7.0
0.480
24
-0.72
0.920
-43
-2.96
0.711
-11
0.309
-174
8.0
0.522
10
-1.20
0.871
-58
-2.07
0.788
-32
0.299
131
9.0
0.557
-5
-1.64
0.828
-72
-1.73
0.820
-53
0.366
87
10.0
0.595
-19
-2.17
0.779
-87
-1.86
0.808
-73
0.449
55
11.0
0.662
-29
-2.38
0.761
-99
-2.43
0.756
-92
0.533
27
12.0
0.709
-39
-3.56
0.664
-115
-3.03
0.705
-107
0.633
3
AT-41532 Typical Noise Parameters,
Fmin
dB
0.9
Γopt
25
1.2
Gassoc
dB
20
1
15
0.8
10
0.6
5
0.4
Mag
Ang
Rn
ohms
1.2
0.283
106
7.3
14.0
1.8
1.4
0.41
-165
3.9
10.7
2.0
1.5
0.44
-151
4.8
9.8
2.5
1.7
0.53
-126
9.2
8.5
3.0
1.9
0.60
-106
18.4
7.5
3.5
2.2
0.67
-86
35.0
6.6
4.0
2.5
0.71
-69
58.0
5.8
GAIN (dB)
Freq.
GHz
gmax
dB(S|2,1|)
k
-5
0
1
2
0
k
Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 5 mA
0.2
3
4
5
0
6
FREQUENCY (GHz)
Figure 11. Gain vs. Frequency at 2.7 V, 5 mA.
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
MAG =
S21
(k ± √ k2–1)
S12
MSG = |S21| /|S12|
1 – |S11|2 – |S22|2 + |D|2
k=
; D = S11S22 – S12 S21
2*|S12| |S21|
Note: dB(|S 21|) = 20 * log(|S 21|)
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 10 mA
Freq.
GHz
S11
S21
S12
S22
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.243
-122
18.39
8.310
97
-26.90
0.045
68
0.586
-21
0.75
0.199
-149
15.19
5.751
85
-23.99
0.063
69
0.552
-21
1.0
0.184
-169
12.88
4.408
76
-21.74
0.082
69
0.536
-23
1.5
0.186
161
9.64
3.034
62
-18.35
0.121
67
0.520
-28
2.0
0.199
139
7.44
2.354
49
-15.79
0.162
63
0.510
-35
3.0
0.232
107
4.61
1.700
27
-11.93
0.253
52
0.491
-52
4.0
0.275
79
2.84
1.387
6
-9.00
0.355
39
0.467
-72
5.0
0.334
56
1.60
1.202
-12
-6.66
0.465
24
0.424
-95
6.0
0.399
41
0.66
1.079
-29
-4.79
0.576
7
0.349
-125
7.0
0.462
27
-0.02
0.997
-45
-3.30
0.684
-12
0.261
-167
8.0
0.521
14
-0.67
0.926
-60
-2.34
0.764
-32
0.251
134
9.0
0.566
-2
-1.26
0.865
-75
-1.89
0.805
-52
0.328
88
10.0
0.609
-18
-1.88
0.805
-90
-1.92
0.802
-72
0.422
56
11.0
0.678
-28
-2.97
0.711
-101
-2.32
0.766
-91
0.485
29
12.0
0.722
-39
-3.38
0.678
-116
-3.02
0.706
-106
0.620
3
S21
(k ± √ k2–1)
S12
MSG = |S21| /|S12|
1 – |S11|2 – |S22|2 + |D|2
k=
; D = S11S22 – S12 S21
2*|S12| |S21|
25
1.25
20
1
15
0.75
10
0.5
5
0.25
k
MAG =
GAIN (dB)
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
gmax
dB(S|2,1|)
k
0
0
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 12. Gain vs. Frequency at 2.7 V, 10 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 5 V, IC = 2 mA
Freq.
GHz
S11
S21
S12
S22
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.659
-79
13.43
4.696
121
-25.16
0.055
53
0.836
-18
0.75
0.540
-108
11.41
3.720
103
-23.78
0.065
48
0.774
-22
1.0
0.456
-131
9.64
3.034
89
-23.06
0.070
48
0.738
-24
1.5
0.387
-169
6.81
2.190
69
-21.69
0.082
55
0.705
-30
2.0
0.371
162
4.74
1.726
53
-19.63
0.104
63
0.694
-37
3.0
0.387
116
1.91
1.247
27
-14.40
0.191
67
0.685
-54
4.0
0.428
79
0.01
1.001
7
-9.89
0.320
56
0.673
-75
5.0
0.472
49
-1.31
0.860
-8
-6.47
0.475
38
0.635
-100
6.0
0.494
28
-1.96
0.798
-20
-4.05
0.627
17
0.556
-131
7.0
0.490
13
-1.95
0.799
-33
-2.36
0.762
-5
0.448
-170
8.0
0.489
2
-1.81
0.812
-48
-1.51
0.840
-29
0.388
141
9.0
0.506
-10
-1.84
0.810
-64
-1.28
0.863
-51
0.408
96
10.0
0.541
-22
-2.07
0.788
-80
-1.51
0.841
-71
0.462
62
11.0
0.634
-33
-2.46
0.754
-94
-2.09
0.786
-90
0.539
35
12.0
0.670
-39
-3.23
0.689
-109
-2.75
0.729
-105
0.625
6
AT-41532 Typical Noise Parameters,
Fmin
dB
0.9
Γopt
25
1.2
Gassoc
dB
20
1
15
0.8
10
0.6
5
0.4
Mag
Ang
Rn
ohms
1.2
0.35
100
8.5
13.5
1.8
1.5
0.48
178
3.4
10.6
2.0
1.6
0.51
-166
3.7
9.7
2.5
1.9
0.60
-137
8.8
8.8
3.0
2.2
0.65
-112
21.7
7.8
3.5
2.5
0.70
-92
44.6
7.1
4.0
2.9
0.74
-73
79.5
6.0
GAIN (dB)
Freq.
GHz
gmax
dB(S|2,1|)
k
-5
0
1
2
0
0.2
3
4
5
0
6
FREQUENCY (GHz)
Figure 13. Gain vs. Frequency at 5 V, 2 mA.
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
MAG =
S21
(k ± √ k2–1)
S12
MSG = |S21| /|S12|
1 – |S11|2 – |S22|2 + |D|2
k=
; D = S11S22 – S12 S21
2*|S12| |S21|
Note: dB(|S 21|) = 20 * log(|S 21|)
k
Common Emitter, ZO = 50 Ω, VCE = 5 V, IC = 2 mA
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 5 V, IC = 5 mA
Freq.
GHz
S11
S21
S12
S22
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.402
-98
17.27
7.303
107
-27.15
0.044
60
0.713
-19
0.75
0.304
-124
14.42
5.260
92
-25.04
0.056
61
0.663
-21
1.0
0.255
-147
12.25
4.095
82
-23.26
0.069
63
0.640
-23
1.5
0.225
178
9.09
2.848
65
-20.23
0.097
66
0.621
-28
2.0
0.227
151
6.92
2.218
52
-17.66
0.131
65
0.613
-34
3.0
0.256
111
4.06
1.596
28
-13.38
0.214
59
0.603
-51
4.0
0.301
79
2.22
1.291
8
-9.92
0.319
48
0.592
-69
5.0
0.359
53
0.92
1.111
-10
-7.07
0.443
33
0.562
-92
6.0
0.414
36
-0.02
0.997
-26
-4.78
0.577
16
0.498
-120
7.0
0.457
22
-0.60
0.933
-40
-2.97
0.711
-4
0.401
-156
8.0
0.496
10
-1.00
0.891
-55
-1.84
0.809
-26
0.344
154
9.0
0.531
-4
-1.42
0.849
-70
-1.37
0.854
-49
0.374
105
10.0
0.573
-19
-1.89
0.805
-85
-1.44
0.847
-69
0.441
67
11.0
0.633
-28
-2.40
0.759
-95
-2.03
0.792
-88
0.516
38
12.0
0.696
-38
-3.32
0.682
-113
-2.63
0.739
-105
0.624
8
AT-41532 Typical Noise Parameters,
Fmin
dB
0.9
Γopt
25
1.2
Gassoc
dB
20
1
15
0.8
10
0.6
5
0.4
Mag
Ang
Rn
ohms
1.1
0.29
110
7.0
14.8
1.8
1.4
0.41
-167
3.9
11.3
2.0
1.5
0.44
-153
4.7
10.5
2.5
1.7
0.53
-127
9.3
9.3
3.0
1.9
0.60
-106
18.6
8.4
3.5
2.2
0.67
-86
36.8
7.5
4.0
2.4
0.71
-70
59.5
6.7
GAIN (dB)
Freq.
GHz
gmax
dB(S|2,1|)
k
-5
0
1
2
0
0.2
3
4
5
0
6
FREQUENCY (GHz)
Figure 14. Gain vs. Frequency at 5 V, 5 mA.
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
MAG =
S21
(k ± √ k2–1)
S12
MSG = |S21| /|S12|
1 – |S11|2 – |S22|2 + |D|2
k=
; D = S11S22 – S12 S21
2*|S12| |S21|
Note: dB(|S 21|) = 20 * log(|S 21|)
k
Common Emitter, ZO = 50 Ω, VCE = 5 V, IC = 5 mA
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 5 V, IC = 10 mA
Freq.
GHz
S11
S21
S12
S22
Mag
Ang
dB
Mag
Ang
dB
Mag
Ang
Mag
Ang
0.5
0.239
-113
18.69
8.601
98
-28.05
0.040
69
0.641
-18
0.75
0.182
-140
15.51
5.966
86
-25.18
0.055
70
0.611
-19
1.0
0.160
-162
13.20
4.571
78
-22.94
0.071
71
0.597
-20
1.5
0.155
164
9.95
3.144
63
-19.50
0.106
69
0.585
-26
2.0
0.167
140
7.75
2.440
51
-16.89
0.143
66
0.578
-33
3.0
0.201
105
4.87
1.751
29
-12.90
0.226
57
0.566
-49
4.0
0.246
76
3.05
1.421
9
-9.80
0.324
45
0.553
-67
5.0
0.306
54
1.79
1.229
-10
-7.24
0.434
31
0.523
-88
6.0
0.369
40
0.86
1.105
-26
-5.11
0.555
14
0.461
-115
7.0
0.430
27
0.23
1.027
-42
-3.33
0.682
-5
0.366
-149
8.0
0.489
14
-0.35
0.961
-58
-2.11
0.785
-26
0.308
161
9.0
0.539
-1
-0.91
0.900
-73
-1.49
0.842
-47
0.342
110
10.0
0.588
-16
-1.58
0.834
-88
-1.45
0.846
-68
0.419
70
11.0
0.638
-29
-3.09
0.701
-102
-1.93
0.801
-88
0.501
40
12.0
0.713
-38
-3.24
0.689
-115
-2.58
0.743
-104
0.616
9
S21
(k ± √ k2–1)
S12
MSG = |S21| /|S12|
1 – |S11|2 – |S22|2 + |D|2
k=
; D = S11S22 – S12 S21
2*|S12| |S21|
25
1.25
20
1
15
0.75
10
0.5
5
0.25
k
MAG =
GAIN (dB)
gmax = maximum available gain (MAG) if k > 1
gmax = maximum stable gain (MSG) if k < 1
k = stability factor
gmax
dB(S|2,1|)
k
0
0
1
2
3
4
5
0
6
FREQUENCY (GHz)
Figure 15. Gain vs. Frequency at 5 V, 10 mA.
Note: dB(|S 21|) = 20 * log(|S 21|)
10
AT-41532 Application Information
The AT-41532 is described in a low noise amplifier for use
in the 800 to 900 MHz frequency range. The amplifier is
designed for use with .032 inch thickness FR-4 printed
circuit board material.
AT-3XX32
AT-4XX32
IN
01/98 AJW
.062 FR-4
OUT
900 MHz LNA Design
The amplifier is designed for a VCE of 5 volts and IC of 5
mA. and a minimum power supply voltage of 5.25 volts.
Higher power supply voltages will require an additional
resistance to be inserted at the power supply terminal.
The amplifier schematic is shown in Figure 16.
A component list is shown in Figure 17. The artwork
including component placement is shown in Figure 18.
INPUT
C3
C2
Zo C1
C4
L1 Q1 R6
L3 C4
L2
R1
OUTPUT
Zo
R5
R2
R4
C5
VCC = 5.25 V
R3
Figure 16. Schematic Diagram.
Vcc
Figure 18. 1X Artwork showing Component Placement.
The input matching network uses a series inductor for the
noise match. Some fine tuning for lowest noise figure and
improved input VSWR can be accomplished by adding
capacitance at C2. The shunt C is accomplished with an
open circuited stub while a chip inductor is used for the
series element. The output impedance matching network
is a high pass structure consisting of a series capacitor and
shunt inductor. A resistor is paralleled across the shunt
inductor to enhance broad band stability through 10 GHz.
Bias insertion is accomplished through the use of the
shunt inductor appropriately bypassed. Surface mount
Coilcraft inductors were chosen for their small size.
Biasing
C1,C4
10 pF chip capacitor
C2
Open circuited stub – see text
C3
2.7 pF chip capacitor
C5
1000 pF chip capacitor
L1
8 nH chip inductor (Coilcraft 1008CS-080)
L2
Optional (see R1)
L3
15 nH chip inductor (Coilcraft 1008CS-150)
Q1
Avago AT-41532 Silicon Bipolar Transistor
R1
10K Ω chip resistor (may want to substitute a
180 nH chip inductor and 50 Ω resistor for
lower noise figure , better low freq stability,
then readjust R2)
R2
48 K Ω chip resistor (adjust for rated Ic)
R3
3.32 K Ω chip resistor
R4
3.32 K Ω chip resistor
R5
51.1 Ω chip resistor
R6
1.1K Ω chip resistor (see text)
Zo
50 Ω microstripline
Figure 17. Component Parts List.
11
The bias network is designed for a nominal power supply
voltage of 5.25 volts. Resistors R1 and R2 are used to
adjust collector current. Resistor R4 can be attached to the
junction of R5 and C5 to improve bias point stability.
Performance
Modifications to Original Demo Board
The measured gain of the completed amplifier is shown in
Figure 19. The gain varies
The original demo board dated 01/98 requires some
modification to work as described in this application note.
The modification is to add resistor R6 in series with the
collector lead. This is accomplished by cutting the etch at
the output of Q1 such that resistor R6 can be placed on
the circuit board as shown in ­ Figure 17. Inductor L3 will
then have be placed at a 90 degree angle with respect to
its original intended location. L3 is then connected to the
junction of R6 and L4 with a small piece of wire or etch.
from 14 to 15 dB over the 800 to 900 MHz frequency
range. Noise figure versus frequency is shown in Figure
20. Best performance occurs at 850 MHz providing a near
1 dB noise figure.
Measured input and output return loss is shown in Figure
21. The input return loss is 10 dB at 850 MHz and can be
improved with slight tuning at C2. Output return loss was
measured at almost 10 dB at 850 MHz.
There is considerable tuning interaction between input
and output matching networks in any single stage
amplifier. Having a somewhat better input return loss coincident with low noise figure may necessitate a compromise in output return loss.
Using the AT-41532 at Other Frequencies
The demo board and design techniques presented here
can be used to build low noise amplifiers for other frequencies in the VHF through 1.9 GHz frequency range.
Output intercept point, IP3, was measured at 850 MHz to
be +12 dBm. Removing the 1.1 KΩ resistor at R6 increases
IP3 to +13.6 dBm. Resistor R6 was originally added to
enhance stability; caution is urged when removing this
resistor or increasing its value without careful analysis.
Another alternative to the shunt resistor R6 would be to
incorporate a resistor in series with the transistor collector
lead. This resistor would be in the 10 to 27Ω range and
has similar effects on circuit stability. A third alternative
is to re-optimize the output match for power as opposed
to matching for lowest output VSWR. This may make the
output return loss less than 10 dB but it would enhance
power output.
NOISE FIGURE (dB)
GAIN (dB)
14
12
10
8
6
500
1.6
0
1.5
-2
RETURN LOSS (dB)
16
1.4
1.3
1.2
700
800
900
FREQUENCY (MHz)
Figure 17. AT-41532 Gain vs. Frequency.
Figure 19. Gain vs Frequency.
1000
-6
-8
-10
1.1
600
-4
1
500
-12
600
700
800
900
1000
FREQUENCY (MHz)
Figure 18. AT-41532 Noise Figure vs. Frequency.
Figure 20. Noise Figure vs Frequency.
-14
500
Input
Output
600
700
800
900
FREQUENCY (MHz)
Figure 19. Input/Output Return Loss.
Figure 21. Input/Output Return Loss.
1000
Ordering Information
Part Numbers
No. of Devices
Comments
AT-41532-BLK
100
Bulk
AT-41532-BLKG
100
Bulk
AT-41532-TR1
3000
7" Reel
AT-41532-TR1G
3000
7" Reel
AT-41532-TR2
10000
13" Ree
AT-41532-TR2G
10000
13" Reel
Note: Order part number with a “G” suffix if lead-free option is desired.
Package Dimensions
SOT-323 Plastic Package
e1
XXX
E
E1
e
L
B
C
D
DIMENSIONS (mm)
A
A1
Notes:
XXX-package marking
Drawings are not to scale
SYMBOL
A
A1
B
C
D
E1
e
e1
E
L
MIN.
MAX.
0.80
1.00
0.00
0.10
0.15
0.40
0.08
0.25
1.80
2.25
1.10
1.40
0.65 typical
1.30 typical
1.80
2.40
0.26
0.46
Tape Dimensions and Product Orientation
For Outline SOT-323 (SC-70 3 Lead)
P
P2
D
P0
E
F
W
C
D1
t1 (CARRIER TAPE THICKNESS)
K0
8° MAX.
5° MAX.
A0
DESCRIPTION
Tt (COVER TAPE THICKNESS)
B0
SYMBOL
SIZE (mm)
SIZE (INCHES)
CAVITY
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
A0
B0
K0
P
D1
2.24 ± 0.10
2.34 ± 0.10
1.22 ± 0.10
4.00 ± 0.10
1.00 + 0.25
0.088 ± 0.004
0.092 ± 0.004
0.048 ± 0.004
0.157 ± 0.004
0.039 + 0.010
PERFORATION
DIAMETER
PITCH
POSITION
D
P0
E
1.55 ± 0.05
4.00 ± 0.10
1.75 ± 0.10
0.061 ± 0.002
0.157 ± 0.004
0.069 ± 0.004
CARRIER TAPE
WIDTH
THICKNESS
W
t1
8.00 ± 0.30
0.255 ± 0.013
0.315 ± 0.012
0.010 ± 0.0005
COVER TAPE
WIDTH
TAPE THICKNESS
C
Tt
5.4 ± 0.10
0.062 ± 0.001
0.205 ± 0.004
0.0025 ± 0.00004
DISTANCE
CAVITY TO PERFORATION
(WIDTH DIRECTION)
F
3.50 ± 0.05
0.138 ± 0.002
CAVITY TO PERFORATION
(LENGTH DIRECTION)
P2
2.00 ± 0.05
0.079 ± 0.002
MGA-81563 Tape Dimensions
MGA-81563 Tape Dimensions chart
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. Obsoletes 5989-2650EN
AV02-1964EN - June 9, 2009
Similar pages