AFEM-S257 2.5-2.7 GHz WiMAX Coexistence Front End Module Data Sheet Description Features Avago Technologies AFEM-S257 WiMAX Coexistence Front End Module (FEM) is designed for mobile and fixed wireless data applications in the 2.5 to 2.7 GHz frequency range. The FEM is optimized for IEEE 802.16 WiMAX modulation. AFEM-S257 exhibits flat gain and good match while providing linear power efficiency to meet stringent mask conditions and supports two antenna connections for RX diversity or two simultaneous RX signals. GaAs E-pHEMT, pHEMT and FBAR technology This module utilizes Avago Technologies proprietary GaAs pHEMT, and FBAR technology for superior performance across voltage and temperature levels while providing excellent out of band rejection. AFEM-S257 is in a 5x7x1 mm MCOB package for space-constrained applications. TX gain of 34 dB Typical Size: 5 x 7 x 1 mm 3 to 5 V supply (Tx Path) Meets 802.16 masks at 24 dBm Pout , 16 QAM WiMAX with 3.6 V and 420 mA 16 QAM WiMAX EVM -34 dB (2.5%) at 24 dBm PAE of 18% at SEM compliant Pout = 24 dBm 23 dB TX gain step in low power mode with reduced Idsq Low power Idd, 95 mA at Pout = 0 dBm, 23 dB Gain Step Functional Block Diagram 35 dBc rejection at WiFi ISM band RX-1 Preselector ByPass LNA 3.5 dB Noise Figure from ANT to RX 25 dB of TX/RX Isolation Coex BPF 25 dB of Rx1/Rx2 Isolation ANT-1 T/R-1 TX ISMN Coex BPF Applications Portable and fixed WiMAX applications Coex Linear Amplifier T/R-2 RX Div. TX/ RX Switch Package Diagram TRSW22 25 24 VDD1_TX 7 GND GND Rx1 GND TX 6 8 9 29 GND 30 GND 31 GND 32 GND 40 GND 41 GND 42 GND 33 GND 39 GND 44 GND 43 GND 34 GND 38 GND 37 GND 36 GND 35 GND 23 22 21 20 GND LNA2_MOD 5 19 18 17 16 15 TRSW11 26 4 TRSW12 VREF 3 GND PA_MOD 27 2 ANT1 28 1 GND PA_EN GND Coex BPF ANT2 ByPass LNA Rx2 RX-2 Preselector GND nfo & OMN GND ANT SW TRSW21 ANT-2 50 all RF ports TOP VIEW 10 VDD2_TX 11 VDD_RX 12 LNA1_MOD 13 ANTSW1 14 ANTSW2 Electrical Specifications Absolute Minimum and Maximum Ratings Table 1. Minimum and Maximum Ratings Parameter Specifications Description Pin Min. Max. Unit Supply Voltage VDD1_TX 2.9 5.5 V Supply Voltage VDD2_TX 2.9 5.5 V Supply Voltage VDD_RX 2.7 5.5 V LNA1 High/Low Gain LNA1_MODE 0 3.3 V LNA2 High/Low Gain LNA2_MODE 0 3.3 V PA Bias Control VREF 5.5 V PA Mode Control PA_MODE 1.65 5.5 V PA Enable PA_EN 1.65 5.5 V Switch Select ANT1 ANTSW1 0 4.8 V Switch Select ANT2 ANTSW2 0 4.8 V Switch Select RX1 TRSW11 0 4.8 V Switch Select TX1 TRSW12 0 4.8 V Switch Select RX2 TRSW21 0 4.8 V Switch Select TX2 TRSW22 0 4.8 V RF Input TX 15 dBm Using 16 QAM 3/4 RF Output ANT1 25 dBm Using 16 QAM 3/4 RF Output ANT2 25 dBm Using 16 QAM 3/4 Ch. 1 Receiver Output RX1 10 dBm Ch. 2 Receiver Output RX2 10 dBm 150 °C 150 °C Channel Temperature Storage Temperature 2 -65 Comments Table 2. Recommended Operating Range Parameter Specifications Description Pin Min. Supply Voltage VDD1_TX 3 Typical Max. 3.6 5 80 Supply Voltage VDD2_TX 3 Supply Voltage VDD_RX 2.7 3.6 5 LNA1,2 Low/High Gain VREF Control LNA1_MODE LNA2_MODE VREF 2.7 Switch Select ANT1,2 PA_MODE PA_EN mA V 35 mA ANTSW1 ANTSW2 V Logic High 0 V Logic Low 2 A 20K 2.75 2.8 2.7 2.85 3.0 TRSW11 TRSW12 TRSW21 TRSW22 V 3.6 V Logic High 0.2 V Logic Low 25 A 3.0 V Logic High 0 V Logic Low 2 A s Switch time 10K 20K Input Impedance 2.7 3.0 V Logic High 0 V Logic Low 2 uA 1 10K Frequency Range Input Impedance mA 1 Switch Select RX1,TX1 Pout = 24 dBm 3.0 10K 1.65 Pout = 24 dBm V 5 1 PA Mode, PA_Enable Control Comments V mA 340 3.3 Unit 20K 2.5 2.7 us Switch time Input Impedance GHz Thermal Resistance, ch-b 22.6 °C/W Channel to board (Tx Only) Thermal Resistance, ch-b 48.1 °C/W Channel to board (Rx Only) Ambient Temperature 3 -40 +85 °C All data measured on an FR4 demo board at VDD1_TX = VDD2_TX = 3.6 V, VREF = 2.8 V, Tc = 25° C, 50 at all ports. Unless otherwise specified, all data is taken with OFDM 16-QAM ¾ convolutional coding modulated signal per IEEE 802.16e with 10 MHz BW. Table 3. TX-ANT Electrical Characteristics (25° C, 3.6 V and 50 ) Parameter Performance Min. Typical Input Return Loss 6 Gain Flatness Gain Variation (VCC) High Power Mode Unit 10 dB 1 dB Over any 10 MHz -1 1 dB 3 V to 5 V -34 -30 dB Vcc = 3.6 V & Po = 24 dBm SEM-A @ 5.05 MHz -16 -13 dBm/100 kHz IBW = 100 kHz SEM-B @ 6.5 MHz -18 -13 dBm/MHz IBW = 1 MHz SEM-C @ 10.5 MHz -24 -19 SEM-D @ 11.5 MHz -27 -25 SEM-E @ 15.5 MHz -33 -29.5 -40 -37 dBm WiMAX Forum Pout = 24 dBm Pout (SEM Compliant) +24 Total DC Current Gain 29 EVM Gain Step 19 Total DC Current 2fo @ 24 dBm Pout Settling Time TX leakage current 420 475 mA 34 36.5 dB -37 -30 dB 23 26 dB 95 115 -33 3fo @ 24 dBm Pout 0.2 mA -32 dBm/MHz S 5 Pout = 0 dBm Pout = 0 dBm dBm/MHz 0.5 Output Load Mismatch Ruggednes 30 A Max defined at +85° C 8:1 VSWR No permanent degradation or damage at all phase angles TX Path Out of Band Rejection 698 – 720 MHz 80 dBc 800 – 915 MHz 70 dBc 1574 – 1576 MHz 50 dBc 1805 – 1880 MHz 40 dBc 1930 – 1990 MHz 30 dBc 2110 – 2170 MHz 10 dBc 2400 – 2468 MHz 35 dBc 2451 – 2473 MHz 25 dBc 3300 – 3800 MHz 30 dBc 5000 – 5380 MHz 60 dBc >7200 MHz 60 dBc 900 MHz -147 dBm/Hz 1575 MHz -148 dBm/Hz 1800 MHz -148 dBm/Hz 1990 MHz -148 dBm/Hz 2470 MHz -135 dBm/Hz 2473 MHz -134 dBm/Hz 2481 MHz -124 dBm/Hz TX Noise Power (24 dBm Output Power) 4 Comments EVM SEM-F @ 20.5 MHz Low Power Mode Max. ANT1 – RX1 and ANT2 – RX2 Electrical Characteristics Table 4. Electrical Characteristics (25° C, 3.3 V and 50 ) Performance Parameter Min. Typical Input Return Loss 10 12 dB 0.5 dB dB Gain Ripple Max. Unit Comments Over any 10 MHz LNA Gain LNA Gain 15 High Gain Mode Total DC Current per Receiver 10 15 mA 13.5 dB ANT to RX dBm CW Single Tone By-pass Mode RX Gain 6 10 Input P1dB -3 0 Noise Figure 3.5 4.6 dB Total DC Current per Receiver 0.25 0.5 mA RX Gain -10 dB ANT to RX Input P1dB 14 dBm CW Single Tone Rx1 to Rx2 Isolation Tx/RX-1 and TX/RX2 Isolation Tx/Rx Isolation 25 25 Turn On Time Rx leakage current dB 25 1 dB Switch Isolation dB TX to any RX path isolation 2 S 10 A RX Path Out of Band Rejection 698 – 720 MHz 70 dBc 800 – 915 MHz 70 dBc 1574 – 1576 MHz 35 dBc 1805 – 1880 MHz 30 dBc 1930 – 1990 MHz 30 dBc 2110 – 2170 MHz 35 dBc 2400 – 2468 MHz 30 dBc 2451 – 2473 MHz 30 dBc 3300 – 3800 MHz 30 dBc 5 Max defined at +85° C Table 5. Logic Table TX ANT1 LPM PA_EN LNA1_ MODE LNA2_ MODE PA_ MODE ANTSW1 ANTSW2 TRSW12 TRSW11 TRSW22 TRSW21 DIAGRAM H L L L H L H L H L ANT1 RX1 ANT2 RX2 TX 1 TRSW2 TX ANT1 HPM H L L H H L H L H L ANT1 RX1 TX ANT2 1 RX2 TRSW2 TX ANT2 LPM H L L L L H H L H L ANT1 RX1 ANT2 RX2 TX 1 TRSW2 TX ANT2 HPM H L L H L H H L H L ANT1 RX1 TX ANT2 1 RX2 TRSW2 RX1_ANT1_Hi_Gain RX2_ANT2_Lo_Gain L H L L X X L H L H RX1 ANT1 TX ANT2 1 RX2 TRSW2 RX1_ANT1_Lo_Gain RX2_ANT2_Lo_Gain L L L L X X L H L H RX1 ANT1 TX ANT2 1 RX2 TRSW2 RX2_ANT2_Hi_Gain RX1_ANT1_Lo_Gain L L H L X X L H L H RX1 ANT1 TX ANT2 1 RX2 TRSW2 RX1_ANT1_Hi_Gain RX2_ANT2_Hi_Gain L H H L X X L H L H RX1 ANT1 TX ANT2 1 TRSW2 FEM Shutdown (1) L L L L L L Notes: 1. VREF is High for all modes except in shutdown mode. In shutdown mode VREF = 0 V. 6 L L L L VREF = 0 RX2 Evaluation Board Description Table 6. Pin Description: Top Pin No. Function 1 VDD2_TX 2 VDD2_Sense 3 VDD_RX 4 GND 5 VDD1_TX 6 GND 7 ANTSW1 8 GND 9 PAMODE 10 TRSW11 11 TRSW12 12 TRSW21 13 TRSW22 14 PA_EN 15 VREF 16 GND 17 LNA1_MODE 18 GND Recommended turn on sequence Apply VDD1_TX and VDD2_TX Apply VDD_RX Apply VREF Apply TRSW11,12,21 and 22 Apply ANTSW1 and ANTSW2 Apply PA_EN For TX HPM Apply PAMOD HI For TX LPM Apply PAMOD LO For RX HG Apply LNA1,2 Mode HI For RX LG Apply LNA1,2 Mode LO Apply RF Input not to exceed 10 dBm 19 LNA2_MODE 20 ANTSW2 Turn off in reverse order Bottom Pin No. Function Table 7. TX Typical Test Conditions: TX ANT1 PIN HPM LPM Function VDD1,2_TX 3.6 V 3.6 V Battery PA_MODE 3.0 V 0V Low Power Mode VREF 2.8 V 2.8 V Bias Control PA_EN 3.0 V 3.0 V PA Enable ANTSW1,2 H L ANT Select TRSW12,11,22,21 H L H L Figure 1. Pins on back of Demoboard RX/TX Select Table 8. RX Typical Test Conditions: ANT1 RX1 ANT2 RX2 PIN HG LG Function VDD_RX 3.3 V 3.3 V Battery LNA1_MODE 3.0 V 0V LNA1 Control LNA2_MODE 3.0 V 0V LNA2 Control VREF 2.8 V 2.8 V Bias Control ANTSW1,2 X TRSW12,11,22,21 L 7 X H L ANT Select H RX/TX Select Notes: VDD1_TX, VDD2_TX can be tied together to reduce supply voltages, but VREF needs to be a regulated voltage which is optimized for 2.8 V at VDD of 3.6 V. PA_EN and PAMODE are CMOS compatible pin; however, this can be driven with 3 V0 for logic high. Use jumpers on eval board to set control signal for desired mode of operation. Table 9. Eval Board Configuration: Jumper Position Function PA_EN PA_Enable PA_MODE High Power Mode LNA1MODE LNA1 = High Gain LNA2MODE LNA2 = Low Gain Note: There is no shutdown mode for LNA only low gain mode. TX to ANT1 Figure 2. Front of Demoboard Jumper Position TRSW11 Jumper TRSW12 TX Path TRSW21 TRSW22 TX Path ANTSW1 ANTSW2 ANT1 TX to ANT2 Jumper Position Jumper TRSW11 TRSW12 TX Path TRSW21 TRSW22 TX Path ANTSW1 ANTSW2 ANT2 ANT1 to RX1 & ANT2 to RX2 8 Jumper Position Jumper TRSW11 TRSW12 RX1 TRSW21 TRSW22 RX2 ANTSW1 ANTSW2 Application Circuit AFEM-S257 VDD_RX VDD2_TX R22 100 VDD_RX ANTSW1 LNA1MODE C1 0.1 MF + C21 47 MF Size B C2 10 MF VCTRL VDD1_TX PAEN PAMODE LNA1MODE LNA2MODE C3 1.0 MF JP4-7 R21 10K R20 10K R19 10K C5 0.1 MF 10 11 12 13 14 J1 SMA-39W 1 R18 10K RFRX1 J2 SMA-39W 1 RFTX J3 SMA-39W ANTSW2 TRSW22 JP2 3 2 1 R17 3.3 K 1 3 2 1 R13 3.3 K TRSW21 VCTRL R14 3.3 K ANTSW1 LNA2MODE ANTSW2 JP1 3 2 1 VCTRL R12 3.3 K TRSW11 Figure 3. Demoboard Schematic Land Pattern TOP VIEW LAND PATTERN 6.30 0.70 15 16 17 18 19 20 21 0.55 14 22 23 24 Ø0.25 0.70 13 4.30 25 12 26 29 3.20 11 27 5.20 0.50 SQ 10 28 9 Common GND metal 8 7 6 5 4 3 2 1 Add large array of thermal vias under the entire center GND pad of the module. Via size and precise location are not critical. Thermal vias are filled and then capped with copper. Thicker Via Cu plating and larger number of vias will improve the thermal performance. Figure 4. Recommended footprint 9 RFRX2 C6 0.1 MF R15 3.3 K TRSW12 trsw11 trsw12 gnd6 ant1 gnd7 gnd8 ant2 gnd9 trsw21 PAMODE TRSW11 TRSW12 TRSW21 TRSW22 PAEN 2.8 V VREF JP3 VCTRL vdd1_tx gnd5 rx1 gnd4 gnd3 tx gnd2 rx2 gnd1 VDD_RX U1 CoWi Module 28 27 26 25 24 R16 3.3 K 9 8 7 6 5 4 3 2 1 vdd2_tx vdd_rx lna1_mode antsw1 antsw2 2 4 6 8 pa_en pa_mode vref lna2_mode trsw22 1 3 5 7 15 16 17 18 19 20 21 22 23 J4 SMA-39W 1 ANT1 J5 SMA-39W ANT2 1 TOP VIEW 7.00 7.00 ±0.075 1.00 ±0.10 0.25 1 2 28 5.00 ±0.075 AVAGO AFEM-S257 PYYWW XXXXX 3 29 1.09 4 5 30 6 7 8 31 9 10 32 27 5.00 40 41 42 33 39 44 43 34 38 37 36 35 26 12 25 24 0.90 23 0.64 TYPICAL 0.95 22 21 20 19 18 17 16 14 0.40 SQ 0.50 Note: There is no Solder Mask at the bottom layer. There is an oxide layer surrounding the GND and IO pads. The overlap is 50 Mm. The oxide thickness ia negligible (1 Mm) and should not be factored in the contactor design. 0.30 SQ 0.70 16 17 18 19 20 21 22 23 15 14 24 14 13 25 13 26 12 27 11 28 10 0.70 4.30 0.40 SQ 5.10 12 29 3.10 11 0.22 10 16 17 18 19 20 21 22 23 2.15 1.15 24 32 31 25 26 1.55 30 27 29 28 2.55 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 TOP VIEW SOLDERMASK 2 1 R0.05 All corners 5.60 RECOMMENDED STENCIL THICKNESS = 4 mils, Stainless Steel, Laser Cut Figure 6. Recommended Soldermask Typical phone board IO pad construction Pad is mask defined Metal pad 0.5mm SQ Mask opening 0.4mm SQ Solder paste stencil 0.3mm SQ with rounded corners. 0.05 0.50 1 0.30 Figure 7. Recommended Stencil 10 0.95 0.15 15 Figure 5. Package dimensions 15 0.25 13 0.30 P : Manufacturing Site Code YYWW : Build Work Year and Work Week XXXX : Production Lot Code 0.59 11 0.40 Handling and Storage tp Tp Critical Zone TL to Tp Temperature Ramp-up TL tL Tsmax Tsmin Ramp-down ts Preheat 25 t 25° C to Peak Time Typical SMT Reflow Profile for Maximum Temperature = 260 +0/-5° C Profile Feature Sn-Pb Solder Pb-Free Solder Average ramp-up rate (TL to TP) 3°C/sec max 3°C/sec max Preheat – Temperature Min (Tsmin) – Temperature Max (Tsmax) – Time (min to max) (ts) 100° C 150° C 60-120 sec 150° C 200° C 60-180 sec Tsmax to TL – Ramp-up Rate Time maintained above: – Temperature (TL) – Time (TL) 3°C/sec max 183° C 60-150 sec 217° C 60-150 sec Peak temperature (Tp) 240 +0/-5° C 260 +0/-5° C Time within 5° C of actual Peak Temperature (Tp) 10-30 sec 10-30 sec Ramp-down Rate 6°C/sec max 6°C/sec max Time 25° C to Peak Temperature 6 min max. 8 min max. 11 Device Orientation REEL USER FEED DIRECTION TOP VIEW COVER TAPE Avago AFEM-S257 PWWYY XXXX 5.0 mm 7.0 mm Tape Dimensions 8.00 ±0.10 (0.315 ±0.004) 1.50 ±0.10 (0.059 ±0.004) 4.00 ±0.10 (0.157 ±0.004) 2.00 ±0.10 (0.079 ±0.004) 1.75 ±0.10 (0.069 ±0.004) 7.50 ±0.10 (0.295 ±0.004) 16.00 +0.30 0.10 (0.630 +0.012 0.004) 1.50 +0.25 (0.059 +0.010) 0.318 ±0.13 (0.0125 ±0.0005) 8° MAX 5.33 ±0.10 (0.210 ±0.004) A. 12 7° MAX 1.66 ±0.10 (0.065 ±0.004) K. 7.40 ±0.10 (0.291 ±0.004) B. Avago AFEM-S257 PWWYY XXXX CARRIER TAPE Avago AFEM-S257 PWWYY XXXX Avago AFEM-S257 PWWYY XXXX USER FEED DIRECTION END VIEW Reel Information FRONT VIEW T Tape Start Slot CCD/KEAC MADE IN MALAYSIA 6 1.5 Mi n PS 20.2 Min 330 Max Diameter BACK VIEW CCD/KEAC MADE IN MALAYSIA SIDE VIEW 6 PS W1 Measured At Hub 13+/0.20 Arbor Hole Measured At Hub W2 13 TAPE WIDTH T 16 mm 7 ±0.50 W1 W2 W3 16.4 +2.0 22.4 Max 15.9 Min 0.0 19.4 Max W3 Measured At Outer Edge 100+/0.50 Hub Dia. AFEM-S257 Part Number Ordering Information Part Number Devices Per Container Container AFEM-S257-BLKG 100 Antistatic bag AFEM-S257-TR1G 1000 13” Reel AFEM-S257-TR2G 3000 13” Reel For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. AV02-2970EN - July 19, 2011