SILABS EFR32MG1B732F256IM32-C0 Efr32mg1 mighty gecko soc with integrated serial flash data sheet Datasheet

EFR32MG1 Mighty Gecko SoC with
Integrated Serial Flash Data Sheet
The Mighty Gecko family of SoCs is part of the Wireless Gecko
multi-protocol portfolio.
The EFR32MG1x632 and EFR32MG1x732 Mighty Gecko ICs integrate a 512 kB serial
flash in the package to support over the air updates. This 5x5 QFN32 package is ideal
for space constrained products that need to support ZigBee, Thread, BLE and proprietary networks.
Mighty Gecko applications include:
KEY FEATURES
• 32-bit ARM® Cortex®-M4 core with 40
MHz maximum operating frequency
• Scalable Radio configuration options
available in QFN32 package
• 512 kB co-packaged serial flash for over
the air updates
• 12-channel Peripheral Reflex System
enabling autonomous interaction of MCU
peripherals
• Connected Home
• Lighting
• Home and Building Automation and Security
• Autonomous Hardware Crypto Accelerator
and Random Number Generator
• Integrated 2.4 GHz balun and PA with up
to 19.5 dBm transmit power
• 125 °C operating temperature ideal for
connected lighting applications
Core / Memory
ARM CortexTM M4 processor
with DSP extensions and FPU
Flash
Program
Memory
Serial Flash
Memory
Clock Management
Memory
Protection Unit
RAM
Memory
Debug
Interface
DMA
Controller
Energy Management
Other
High Frequency
Crystal
Oscillator
High Frequency
RC Oscillator
Voltage
Regulator
Voltage Monitor
CRYPTO
Low Frequency
RC Oscillator
Auxiliary High
Frequency RC
Oscillator
DC-DC
Converter
Power-On Reset
CRC
Low Frequency
Crystal
Oscillator
Ultra Low
Frequency RC
Oscillator
Brown-Out
Detector
32-bit bus
Peripheral Reflex System
RFSENSE
Serial
Interfaces
FRC
DEMOD
LNA
PGA
IFADC
I/O Ports
Timers and Triggers
External
Interrupts
Timer/Counter
Protocol Timer
ADC
Low Energy
UARTTM
General
Purpose I/O
Low Energy
Timer
Watchdog Timer
Analog
Comparator
Q
I2C
Pin Reset
Pulse Counter
Real Time
Counter and
Calendar
IDAC
AGC
Frequency
Synthesizer
RAC
PA
Analog I/F
USART
RF Frontend
CRC
BALUN
I
BUFC
Radio Transceiver
MOD
Pin Wakeup
Cryotimer
Lowest power mode with peripheral operational:
EM0—Active
EM1—Sleep
silabs.com | Smart. Connected. Energy-friendly.
EM2—Deep Sleep
EM3—Stop
EM4—Hibernate
EM4—Shutoff
Rev. 1.0
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Feature List
1. Feature List
The EFR32MG1 highlighted features are listed below.
• Low Power Wireless System-on-Chip.
• High Performance 32-bit 40 MHz ARM Cortex®-M4 with
DSP instruction and floating-point unit for efficient signal
processing
• 256 kB flash program memory
• 512 kB integrated serial flash memory
• 32 kB RAM data memory
• 2.4 GHz radio operation
• TX power up to 19.5 dBm
• Low Energy Consumption
• 8.7 mA RX current at 2.4 GHz (1 Mbps GFSK)
• 9.8 mA RX current at 2.4 GHz (250 kbps O-QPSK DSSS)
• 8.2 mA TX current @ 0 dBm output power at 2.4 GHz
• 63 μA/MHz in Active Mode (EM0)
• 5.5 μA EM2 DeepSleep current (full RAM retention and
RTCC running from LFXO)
• 5.1 μA EM3 Stop current (State/RAM retention)
• Wake on Radio with signal strength detection, preamble
pattern detection, frame detection and timeout
• High Receiver Performance
• -92.5 dBm sensitivity @ 1 Mbit/s GFSK
• -99 dBm sensitivity @ 250 kbps O-QPSK DSSS
• Supported Modulation Format
• 2-FSK / 4-FSK with fully configurable shaping
• Shaped OQPSK / (G)MSK
• Supported Protocols:
• Bluetooth Smart
• ZigBee®
• Thread
• 2.4 GHz Proprietary Protocols
• Support for Internet Security
• General Purpose CRC
• Random Number Generation
• Hardware Cryptographic Acceleration for AES 128/256,
SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC
silabs.com | Smart. Connected. Energy-friendly.
• Wide selection of MCU peripherals
• 12-bit 1 Msps SAR Analog to Digital Converter (ADC)
• 2× Analog Comparator (ACMP)
• Digital to Analog Current Converter (IDAC)
• Up to 16 pins connected to analog channels (APORT)
shared between Analog Comparators, ADC, and IDAC
• Up to 16 General Purpose I/O pins with output state retention and asynchronous interrupts
• 8 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS)
• 2×16-bit Timer/Counter
• 3 + 4 Compare/Capture/PWM channels
• 32-bit Real Time Counter and Calendar
• 16-bit Low Energy Timer for waveform generation
• 32-bit Ultra Low Energy Timer/Counter for periodic wake-up
from any Energy Mode
• 16-bit Pulse Counter with asynchronous operation
• Watchdog Timer with dedicated RC oscillator @ 50nA
• Universal Synchronous/Asynchronous Receiver/Transmitter
(UART/SPI/SmartCard (ISO 7816)/IrDA)
• Low Energy UART (LEUART™)
• I2C interface with SMBus support and address recognition
in EM3 Stop
• Wide Operating Range
• 2.3 V to 3.6 V single power supply
• Integrated DC-DC, down to 1.8 V output with up to 200 mA
load current for system
• Standard (-40 °C to 85 °C) and Extended (-40 °C to 125 °C)
temperature grades available
• QFN32 5x5 mm Package
Rev. 1.0 | 1
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Ordering Information
2. Ordering Information
Ordering Code
Protocol Stack
Frequency Band
@ Max TX Power
Flash
(kB)
Serial
Flash
(kB)
RAM
(kB)
Temp
Range
EFR32MG1P732F256GM32-C0
• Bluetooth
Smart
• ZigBee
• Thread
• ZigBee RC
• Proprietary
2.4 GHz @ 19.5 dBm
256
512
32
-40 to +85
EFR32MG1P732F256IM32-C0
• Bluetooth
Smart
• ZigBee
• Thread
• ZigBee RC
• Proprietary
2.4 GHz @ 19.5 dBm
256
512
32
-40 to
+125
EFR32MG1P632F256GM32-C0
• Bluetooth
Smart
• ZigBee
• Thread
• ZigBee RC
• Proprietary
2.4 GHz @ 16.5 dBm
256
512
32
-40 to +85
EFR32MG1P632F256IM32-C0
• Bluetooth
Smart
• ZigBee
• Thread
• ZigBee RC
• Proprietary
2.4 GHz @ 16.5 dBm
256
512
32
-40 to
+125
EFR32MG1B732F256GM32-C0
• ZigBee
• Thread
• ZigBee RC
2.4 GHz @ 19.5 dBm
256
512
32
-40 to +85
EFR32MG1B732F256IM32-C0
• ZigBee
• Thread
• ZigBee RC
2.4 GHz @ 19.5 dBm
256
512
32
-40 to
+125
EFR32MG1B632F256GM32-C0
• ZigBee
• Thread
• ZigBee RC
2.4 GHz @ 16.5 dBm
256
512
32
-40 to +85
EFR32MG1B632F256IM32-C0
• ZigBee
• Thread
• ZigBee RC
2.4 GHz @ 16.5 dBm
256
512
32
-40 to
+125
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 2
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Ordering Information
EFR32 X G 1 P 132 F 256 G M 32 – C0 R
Tape and Reel (Optional)
Revision
Pin Count
Package – M (QFN), J (CSP)
Temperature Grade – G (-40 to +85 °C), -I (-40 to +125 °C)
Flash Memory Size in kB
Memory Type (Flash)
Feature Set Code – r2r1r0
r2: Reserved
r1: RF Type – 3 (TRX), 2 (RX), 1 (TX)
r0: Frequency Band – 1 (Sub-GHz), 2 (2.4 GHz), 3 (Dual-Band)
Performance Grade – P (Performance), B (Basic), V (Value)
Generation
Gecko
Family – M (Mighty), B (Blue), F (Flex)
Wireless Gecko 32-bit
Figure 2.1. OPN Decoder
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 3
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
System Overview
3. System Overview
3.1 Introduction
The EFR32 product family combines an energy-friendly MCU with a highly integrated radio transceiver. This section gives a short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32 Reference Manual.
A block diagram of the EFR32MG1 family is shown in Figure 3.1 Detailed EFR32MG1 Block Diagram on page 4. The diagram
shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult
Ordering Information.
Radio Transciever
RF Frontend
I
IFADC
PGA
FRC
Digital Peripherals
LETIMER
LNA
BALUN
PA
Frequency
Synthesizer
Q
AGC
MOD
CRYOTIMER
RAC
2G4RF_ION
IOVDD
TIMER
CRC
2G4RF_IOP
PCNT
RTC / RTCC
Port
Mapper
USART
ARM Cortex-M4 Core
Energy Management
PAVDD
RFVDD
IOVDD
Voltage
Monitor
DVDD
VREGVDD
VREGSW
CRYPTO
Up to 32 kB RAM
CRC
Floating Point Unit
bypass
DC-DC
Converter
RESETn
A A
H P
B B
Co-Packaged Resources
Voltage
Regulator
Serial Wire Debug /
Programming
Watchdog
Timer
Brown Out /
Power-On
Reset
Analog Peripherals
Internal
Reference
VDD
ULFRCO
AUXHFRCO
12-bit ADC
HFXTAL_P
LFXTAL_P / N
LFXO
HFXO
Port C
Drivers
PCn
Port D
Drivers
PDn
Port F
Drivers
PFn
VDD
Temp
Sensor
LFRCO
HFRCO
HFXTAL_N
PBn
IDAC
VREF
Clock Management
Reset
Management
Unit
Port B
Drivers
512 kB Serial Flash Memory
DMA Controller
DECOUPLE
VSS
VREGVSS
RFVSS
PAVSS
I2C
Up to 256 kB ISP Flash
Program Memory
Memory Protection Unit
PAn
LEUART
Input MUX
AVDD
Port A
Drivers
APORT
RFSENSE
BUFC
Port I/O Configuration
DEMOD
+
Analog Comparator
Figure 3.1. Detailed EFR32MG1 Block Diagram
3.2 Radio
The Mighty Gecko family features a highly configurable radio transceiver supporting a wide range of wireless protocols.
3.2.1 Antenna Interface
The 2.4 GHz antenna interface consists of two pins (2G4RF_IOP and 2G4RF_ION) that interface directly to the on-chip BALUN. The
2G4RF_ION pin should be grounded externally.
The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching
Networks section.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 4
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
System Overview
3.2.2 Fractional-N Frequency Synthesizer
The EFR32MG1 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is
used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly
generate the modulated RF carrier.
The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz, with
low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to
optimize system energy consumption.
3.2.3 Receiver Architecture
The EFR32MG1 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion
mixer, employing a crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital
converter (IFADC).
The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency.
The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. Devices are production-calibrated to improve image rejection performance.
Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and
compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by
block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS).
A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received
frame and the dynamic RSSI measurement can be monitored throughout reception.
The EFR32MG1 features integrated support for antenna diversity to improve link budget, using complementary control outputs to an
external switch. Internal configurable hardware controls automatic switching between antennae during RF receive detection operations.
3.2.4 Transmitter Architecture
The EFR32MG1 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls
phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping
filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping.
Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by
the EFR32MG1. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access.
3.2.5 Wake on Radio
The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32MG1 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals.
3.2.6 RFSENSE
The RFSENSE module generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing
true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4.
RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by
enabling normal RF reception.
Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using
available timer peripherals.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 5
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
System Overview
3.2.7 Flexible Frame Handling
EFR32MG1 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols.
The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/
Demodulator:
• Highly adjustable preamble length
• Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts
• Frame disassembly and address matching (filtering) to accept or reject frames
• Automatic ACK frame assembly and transmission
• Fully flexible CRC generation and verification:
• Multiple CRC values can be embedded in a single frame
• 8, 16, 24 or 32-bit CRC value
• Configurable CRC bit and byte ordering
• Selectable bit-ordering (least significant or most significant bit first)
• Optional data whitening
• Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding
• Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing
• Optional symbol interleaving, typically used in combination with FEC
• Symbol coding, such as Manchester or DSSS, or biphase space encoding using FEC hardware
• UART encoding over air, with start and stop bit insertion / removal
• Test mode support, such as modulated or unmodulated carrier output
• Received frame timestamping
3.2.8 Packet and State Trace
The EFR32MG1 Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It
features:
• Non-intrusive trace of transmit data, receive data and state information
• Data observability on a single-pin UART data output, or on a two-pin SPI data output
• Configurable data output bitrate / baudrate
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream
3.2.9 Data Buffering
The EFR32MG1 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64
bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.
3.2.10 Radio Controller (RAC)
The Radio Controller controls the top level state of the radio subsystem in the EFR32MG1. It performs the following tasks:
• Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry
• Run-time calibration of receiver, transmitter and frequency synthesizer
• Detailed frame transmission timing, including optional LBT or CSMA-CA
3.2.11 Random Number Generator
The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain.
The data is suitable for use in cryptographic applications.
Output from the random number generator can be used either directly or as a seed or entropy source for software-based random number generator algorithms such as Fortuna.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 6
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
System Overview
3.3 Power
The EFR32MG1 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only a
single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator can
be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor.
Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB
components, supplying up to a total of 200 mA.
3.3.1 Energy Management Unit (EMU)
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM
blocks, and it contains control registers for the dc-dc regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple
supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has fallen
below a chosen threshold.
3.3.2 DC-DC Converter
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2
and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Patented RF noise mitigation allows operation
of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting,
short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low
for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance
switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current transients.
3.4 General Purpose Input/Output (GPIO)
EFR32MG1 has up to 16 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input.
More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin.
The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals.
The GPIO subsystem supports asynchronous external pin interrupts.
3.5 Clocking
3.5.1 Clock Management Unit (CMU)
The Clock Management Unit controls oscillators and clocks in the EFR32MG1. Individual enabling and disabling of clocks to all peripheral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility
allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and
oscillators.
3.5.2 Internal and External Oscillators
The EFR32MG1 supports two crystal oscillators and fully integrates four RC oscillators, listed below.
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can
also be applied to the HFXO input for improved accuracy over temperature.
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The
HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial
Wire debug port with a wide frequency range.
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required.
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 7
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
System Overview
3.6 Counters/Timers and PWM
3.6.1 Timer/Counter (TIMER)
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional
dead-time insertion available in timer unit TIMER_0 only.
3.6.2 Real Time Counter and Calendar (RTCC)
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving
frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy
and convenient data storage in all energy modes.
3.6.3 Low Energy Timer (LETIMER)
The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC.
3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER)
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation.
3.6.5 Pulse Counter (PCNT)
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from
among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2
Deep Sleep, and EM3 Stop.
3.6.6 Watchdog Timer (WDOG)
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can
also monitor autonomous systems driven by PRS.
3.7 Communications and Other Digital Peripherals
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting:
• ISO7816 SmartCards
• IrDA
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication
possible with a minimum of software intervention and energy consumption.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 8
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
System Overview
3.7.3 Inter-Integrated Circuit Interface (I2C)
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and
supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10
kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes.
3.7.4 Peripheral Reflex System (PRS)
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.
3.8 Security Features
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check)
The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the
needs of the application.
3.8.2 Crypto Accelerator (CRYPTO)
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support various levels of hardware-accelerated encryption, depending on the part number. AES-only devices support AES encryption and
decryption with 128- or 256-bit keys. Full crypto support adds ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and
SHA-256).
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.
The CRYPTO is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on data
buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations.
3.9 Analog
3.9.1 Analog Port (APORT)
The Analog Port (APORT) is an analog interconnect matrix allowing access to analog modules ADC, ACMP, and IDAC on a flexible
selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs.
3.9.2 Analog Comparator (ACMP)
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the
programmable threshold.
3.9.3 Analog to Digital Converter (ADC)
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 MSamples/s. The
output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple
samples. The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide
range of sources, including pins configurable as either single-ended or differential.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 9
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
System Overview
3.9.4 Digital to Analog Current Converter (IDAC)
The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin
or routed to the selected ADC input pin for capacitive sensing. The current is programmable between 0.05 µA and 64 µA with several
ranges with various step sizes.
3.10 Reset Management Unit (RMU)
The RMU is responsible for handling reset of the EFR32MG1. A wide range of reset sources are available, including several power
supply monitors, pin reset, software controlled reset, core lockup reset and watchdog reset.
3.11 Core and Memory
3.11.1 Processor Core
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:
• ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz
• Memory Protection Unit (MPU) supporting up to 8 memory segments
• Up to 256 kB flash program memory
• Up to 32 kB RAM data memory
• Configuration and event handling of all modules
• 2-pin Serial-Wire debug interface
3.11.2 Serial Flash
512 kB of high-speed, low-power serial flash is included in the system, accessible via a dedicated serial interface. The serial flash is
internal to the package, requiring no additional area on the PCB. Software libraries enable easy API-level access to this memory space.
3.11.3 Memory System Controller (MSC)
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a
read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active and EM1 Sleep.
3.11.4 Linked Direct Memory Access Controller (LDMA)
The Linked Direct Memory Access (LDMA) controller features 8 channels capable of performing memory operations independently of
software. This reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling sophisticated operations to be implemented.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 10
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
System Overview
3.12 Memory Map
The EFR32MG1 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.
Figure 3.2. EFR32MG1 Memory Map — Core Peripherals and Code Space
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 11
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
System Overview
Figure 3.3. EFR32MG1 Memory Map — Peripherals
3.13 Configuration Summary
The features of the EFR32MG1 are a subset of the feature set described in the device reference manual. The table below describes
device specific implementation of the features. Remaining modules support full configuration.
Table 3.1. Configuration Summary
Module
Configuration
Pin Connections
USART0
IrDA SmartCard
US0_TX, US0_RX, US0_CLK, US0_CS
TIMER0
with DTI
TIM0_CC[2:0], TIM0_CDTI[2:0]
TIMER1
silabs.com | Smart. Connected. Energy-friendly.
TIM1_CC[3:0]
Rev. 1.0 | 12
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4. Electrical Specifications
4.1 Electrical Characteristics
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.
• Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output power-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,
unless stated otherwise.
Refer to Table 4.2 General Operating Conditions on page 15 for more details about operational supply and temperature limits.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 13
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.1 Absolute Maximum Ratings
Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of
the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.
Table 4.1. Absolute Maximum Ratings
Parameter
Symbol
Storage temperature range
TSTG
Min
Typ
Max
Unit
-50
—
150
°C
External main supply voltage VDDMAX
0
—
3.6
V
External main supply voltage VDDRAMPMAX
ramp rate
—
—
1
V / μs
-0.3
—
Min of 5.25
and IOVDD
+2
V
-0.3
—
IOVDD+0.3
V
-0.3
—
1.4
V
Voltage on any 5V tolerant
GPIO pin1
VDIGPIN
Voltage on non-5V tolerant
GPIO pins
Test Condition
Voltage on HFXO pins
VHFXOPIN
Input RF level on pins
2G4RF_IOP and
2G4RF_ION
PRFMAX2G4
—
—
10
dBm
Voltage differential between
RF pins (2G4RF_IOP 2G4RF_ION)
VMAXDIFF2G4
-50
—
50
mV
Absolute Voltage on RF pins VMAX2G4
2G4RF_IOP and
2G4RF_ION
-0.3
—
3.3
V
Total current into VDD power IVDDMAX
lines (source)
—
—
200
mA
Total current into VSS
ground lines (sink)
IVSSMAX
—
—
200
mA
Current per I/O pin (sink)
IIOMAX
—
—
50
mA
—
—
50
mA
—
—
200
mA
—
—
200
mA
Current per I/O pin (source)
Current for all I/O pins (sink)
IIOALLMAX
Current for all I/O pins
(source)
Voltage difference between
AVDD and VREGVDD
ΔVDD
—
—
0.3
V
Junction Temperature for -G
grade devices
TJ
-40
—
105
°C
-40
—
125
°C
Junction Temperature for -I
grade devices
Note:
1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 14
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.2 Operating Conditions
When assigning supply sources, the following requirements must be observed:
• VREGVDD must be the highest voltage in the system
• VREGVDD = AVDD
• DVDD ≤ AVDD
• IOVDD ≤ AVDD
• RFVDD ≤ AVDD
• PAVDD ≤ AVDD
4.1.2.1 General Operating Conditions
Table 4.2. General Operating Conditions
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
-G temperature grade, Ambient
Temperature
-40
25
85
°C
-I temperature grade, Junction
Temperature
-40
25
125
°C
2.3
3.3
3.6
V
DCDC in regulation
2.4
3.3
3.6
V
DCDC in bypass 50mA load
2.3
3.3
3.6
V
DCDC not in use. DVDD externally shorted to VREGVDD
2.3
3.3
3.6
V
DCDC in bypass, Tamb ≤ 85 °C
—
—
200
mA
DCDC in bypass, Tamb > 85 °C
—
—
100
mA
1.62
—
VVREGVDD
V
DVDD Operating supply volt- VDVDD
age
1.62
—
VVREGVDD
V
PAVDD Operating supply
voltage
VPAVDD
1.62
—
VVREGVDD
V
IOVDD Operating supply
voltage
VIOVDD
2.3
—
VVREGVDD
V
—
—
0.1
V
0 wait-states (MODE = WS0) 3
—
—
26
MHz
1 wait-states (MODE = WS1) 3
—
38.4
40
MHz
Operating temperature range TOP
AVDD Supply voltage1
VAVDD
VREGVDD Operating supply VVREGVDD
voltage1 2
VREGVDD Current
RFVDD Operating supply
voltage
IVREGVDD
VRFVDD
Difference between AVDD
dVDD
and VREGVDD, ABS(AVDDVREGVDD)
HFCLK frequency
fCORE
Note:
1. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.
2. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for
other loads can be calculated as VDVDD_min+ILOAD * RBYP_max
3. In MSC_READCTRL register
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 15
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.3 Thermal Characteristics
Table 4.3. Thermal Characteristics
Parameter
Symbol
Test Condition
Thermal Resistance
THETAJA
silabs.com | Smart. Connected. Energy-friendly.
Min
Typ
Max
Unit
QFN32 Package, 2-Layer PCB,
Air velocity = 0 m/s
—
85.2
—
°C/W
QFN32 Package, 2-Layer PCB,
Air velocity = 1 m/s
—
67.1
—
°C/W
QFN32 Package, 2-Layer PCB,
Air velocity = 2 m/s
—
58.3
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 0 m/s
—
36.9
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 1 m/s
—
32.4
—
°C/W
QFN32 Package, 4-Layer PCB,
Air velocity = 2 m/s
—
31
—
°C/W
Rev. 1.0 | 16
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.4 DC-DC Converter
Test conditions: LDCDC=4.7 µH (Murata LQH3NPN4R7MM0L), CDCDC=1.0 µF (Murata GRM188R71A105KA61D), VDCDC_I=3.3 V,
VDCDC_O=1.8 V, IDCDC_LOAD=50 mA, Heavy Drive configuration, FDCDC_LN=7 MHz, unless otherwise indicated.
Table 4.4. DC-DC Converter
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Input voltage range
VDCDC_I
Bypass mode, IDCDC_LOAD = 50
mA
2.3
—
VVREGVDD_
V
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 100 mA, or
Low power (LP) mode, 1.8 V output, IDCDC_LOAD = 10 mA
2.4
Low noise (LN) mode, 1.8 V output, IDCDC_LOAD = 200 mA
2.6
Output voltage programmable range1
VDCDC_O
Regulation DC Accuracy
ACCDC
Regulation Window2
WINREG
MAX
—
VVREGVDD_
V
MAX
—
VVREGVDD_
V
MAX
1.8
—
VVREGVDD
V
Low noise (LN) mode, 1.8 V target
output
1.7
—
1.9
V
Low power (LP) mode,
LPCMPBIAS3 = 0, 1.8 V target
output, IDCDC_LOAD ≤ 75 μA
1.63
—
2.2
V
Low power (LP) mode,
LPCMPBIAS3 = 3, 1.8 V target
output, IDCDC_LOAD ≤ 10 mA
1.63
—
2.1
V
Steady-state output ripple
VR
Radio disabled.
—
3
—
mVpp
Output voltage under/overshoot
VOV
CCM Mode (LNFORCECCM3 =
1), Load changes between 0 mA
and 100 mA
—
—
150
mV
DCM Mode (LNFORCECCM3 =
0), Load changes between 0 mA
and 10 mA
—
—
150
mV
Overshoot during LP to LN
CCM/DCM mode transitions compared to DC level in LN mode
—
200
—
mV
Undershoot during BYP/LP to LN
CCM (LNFORCECCM3 = 1) mode
transitions compared to DC level
in LN mode
—
50
—
mV
Undershoot during BYP/LP to LN
DCM (LNFORCECCM3 = 0) mode
transitions compared to DC level
in LN mode
—
125
—
mV
DC line regulation
VREG
Input changes between
VVREGVDD_MAX and 2.4 V
—
0.1
—
%
DC load regulation
IREG
Load changes between 0 mA and
100 mA in CCM mode
—
0.1
—
%
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 17
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max load current
ILOAD_MAX
Low noise (LN) mode, Heavy
Drive4, Tamb ≤ 85 °C
—
—
200
mA
Low noise (LN) mode, Heavy
Drive4, Tamb > 85 °C
—
—
100
mA
Low noise (LN) mode, Medium
Drive4
—
—
100
mA
Low noise (LN) mode, Light
Drive4
—
—
50
mA
Low power (LP) mode,
LPCMPBIAS3 = 0
—
—
75
μA
Low power (LP) mode,
LPCMPBIAS3 = 3
—
—
10
mA
CDCDC
25% tolerance
1
1
1
μF
DCDC nominal output induc- LDCDC
tor
20% tolerance
4.7
4.7
4.7
μH
—
1.2
2.5
Ω
DCDC nominal output capacitor
Resistance in Bypass mode
RBYP
Note:
1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD
2. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits
3. In EMU_DCDCMISCCTRL register
4. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medium Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 18
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.5 Current Consumption
4.1.5.1 Current Consumption 3.3 V without DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 3.3 V. TOP = 25 °C.
EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C. See Figure 5.1 EFR32MG1 Typical Application
Circuit: Direct Supply Configuration without DC-DC converter on page 64.
Table 4.5. Current Consumption 3.3V without DC/DC
Parameter
Symbol
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash1
—
130
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
88
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
100
105
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
112
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
102
106
μA/MHz
1 MHz HFRCO, CPU running
while loop from flash
—
222
350
μA/MHz
38.4 MHz crystal1
—
65
—
μA/MHz
38 MHz HFRCO
—
35
38
μA/MHz
26 MHz HFRCO
—
37
41
μA/MHz
1 MHz HFRCO
—
157
275
μA/MHz
Full RAM retention and RTCC
running from LFXO, serial flash in
deep power down
—
6.3
—
μA
4 kB RAM retention and RTCC
running from LFRCO, serial flash
in deep power down
—
6
9.2
μA
Current consumption in EM3 IEM3
Stop mode
Full RAM retention and CRYOTIMER running from ULFRCO,
serial flash in deep power down
—
5.8
9.2
μA
Current consumption in
EM4H Hibernate mode
128 byte RAM retention, RTCC
running from LFXO
—
4.1
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
3.65
—
μA
128 byte RAM retention, no RTCC
—
3.65
4.7
μA
no RAM retention, no RTCC
—
3.04
3.6
μA
Current consumption in EM0 IACTIVE
Active mode with all peripherals disabled
Current consumption in EM1 IEM1
Sleep mode with all peripherals disabled
Current consumption in EM2 IEM2
Deep Sleep mode.
Current consumption in
EM4S Shutoff mode
IEM4
IEM4S
Test Condition
Note:
1. CMU_HFXOCTRL_LOWPOWER=0
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 19
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.5.2 Current Consumption 3.3 V using DC-DC Converter
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V DC-DC
output. TOP = 25 °C. Minimum and maximum values in this table represent the worst conditions across supply voltage and process
variation at TOP = 25 °C. See Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from
VDCDC) on page 64.
Table 4.6. Current Consumption 3.3V with DC-DC
Parameter
Symbol
Current consumption in EM0 IACTIVE
Active mode with all peripherals disabled, DCDC in Low
Noise DCM mode1.
Current consumption in EM0
Active mode with all peripherals disabled, DCDC in Low
Noise CCM mode3.
Current consumption in EM1 IEM1
Sleep mode with all peripherals disabled, DCDC in Low
Noise DCM mode1.
Test Condition
Min
Typ
Max
Unit
38.4 MHz crystal, CPU running
while loop from flash2
—
88
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
63
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
71
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
78
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
76
—
μA/MHz
38.4 MHz crystal, CPU running
while loop from flash2
—
98
—
μA/MHz
38 MHz HFRCO, CPU running
Prime from flash
—
75
—
μA/MHz
38 MHz HFRCO, CPU running
while loop from flash
—
81
—
μA/MHz
38 MHz HFRCO, CPU running
CoreMark from flash
—
88
—
μA/MHz
26 MHz HFRCO, CPU running
while loop from flash
—
94
—
μA/MHz
38.4 MHz crystal2
—
49
—
μA/MHz
38 MHz HFRCO
—
32
—
μA/MHz
26 MHz HFRCO
—
38
—
μA/MHz
Current consumption in EM1
Sleep mode with all peripherals disabled, DCDC in Low
Noise CCM mode3.
38.4 MHz crystal2
—
61
—
μA/MHz
38 MHz HFRCO
—
45
—
μA/MHz
26 MHz HFRCO
—
58
—
μA/MHz
Current consumption in EM2 IEM2
Deep Sleep mode. DCDC in
Low Power mode4.
Full RAM retention and RTCC
running from LFXO, serial flash in
deep power down
—
5.5
—
μA
4 kB RAM retention and RTCC
running from LFRCO, serial flash
in deep power down
—
5.2
—
μA
Full RAM retention and CRYOTIMER running from ULFRCO,
serial flash in deep power down
—
5.1
—
μA
Current consumption in EM3 IEM3
Stop mode
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 20
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Current consumption in
EM4H Hibernate mode
IEM4
Current consumption in
EM4S Shutoff mode
IEM4S
Min
Typ
Max
Unit
128 byte RAM retention, RTCC
running from LFXO
—
3.86
—
μA
128 byte RAM retention, CRYOTIMER running from ULFRCO
—
3.58
—
μA
128 byte RAM retention, no RTCC
—
3.58
—
μA
no RAM retention, no RTCC
—
3.04
—
μA
Note:
1. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD
2. CMU_HFXOCTRL_LOWPOWER=0
3. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD
4. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPBIAS=3, LPCILIMSEL=1, ANASW=DVDD
4.1.5.3 Current Consumption Using Radio
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. TOP = 25 °C.
Minimum and maximum values in this table represent the worst conditions across supply voltage and process variation at TOP = 25 °C.
See Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 or
Figure 5.1 EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter on page 64.
Table 4.7. Current Consumption Using Radio 3.3 V with DC-DC
Parameter
Symbol
Test Condition
Current consumption in receive mode, active packet
reception (MCU in EM1 @
38.4 MHz, peripheral clocks
disabled)
IRX
Current consumption in
transmit mode (MCU in EM1
@ 38.4 MHz, peripheral
clocks disabled)
ITX
RFSENSE current consump- IRFSENSE
tion
silabs.com | Smart. Connected. Energy-friendly.
Min
Typ
Max
Unit
1 Mbit/s, 2GFSK, F = 2.4 GHz,
Radio clock prescaled by 4
—
8.7
—
mA
802.15.4 receiving frame, F = 2.4
GHz, Radio clock prescaled by 3
—
9.8
—
mA
F = 2.4 GHz, CW, 0 dBm output
power, Radio clock prescaled by 3
—
8.2
—
mA
F = 2.4 GHz, CW, 3 dBm output
power
—
16.5
—
mA
F = 2.4 GHz, CW, 8 dBm output
power
—
23.3
—
mA
F = 2.4 GHz, CW, 10.5 dBm output power
—
32.7
—
mA
F = 2.4 GHz, CW, 16.5 dBm output power, PAVDD connected directly to external 3.3V supply
—
83.9
—
mA
F = 2.4 GHz, CW, 19.5 dBm output power, PAVDD connected directly to external 3.3V supply
—
126.7
—
mA
—
51
—
nA
Rev. 1.0 | 21
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.6 Wake up times
Table 4.8. Wake up times
Parameter
Symbol
Test Condition
Wake up from EM2 Deep
Sleep
tEM2_WU
Wakeup time from EM1
Sleep
tEM1_WU
Wake up from EM3 Stop
tEM3_WU
Wake up from EM4H Hibernate1
tEM4H_WU
Wake up from EM4S Shutoff1
tEM4S_WU
Min
Typ
Max
Unit
Code execution from flash
—
10.7
—
μs
Code execution from RAM
—
3
—
μs
Executing from flash
—
3
—
AHB
Clocks
Executing from RAM
—
3
—
AHB
Clocks
Executing from flash
—
10.7
—
μs
Executing from RAM
—
3
—
μs
Executing from flash
—
60
—
μs
—
290
—
μs
Min
Typ
Max
Unit
Note:
1. Time from wakeup request until first instruction is executed. Wakeup results in device reset.
4.1.7 Brown Out Detector
Table 4.9. Brown Out Detector
Parameter
Symbol
Test Condition
DVDDBOD threshold
VDVDDBOD
DVDD rising
—
—
1.62
V
DVDD falling
1.35
—
—
V
DVDD BOD hysteresis
VDVDDBOD_HYST
—
24
—
mV
DVDD response time
tDVDDBOD_DELAY Supply drops at 0.1V/μs rate
—
2.4
—
μs
AVDD BOD threshold
VAVDDBOD
AVDD rising
—
—
1.85
V
AVDD falling
1.62
—
—
V
AVDD BOD hysteresis
VAVDDBOD_HYST
—
21
—
mV
AVDD response time
tAVDDBOD_DELAY Supply drops at 0.1V/μs rate
—
2.4
—
μs
EM4 BOD threshold
VEM4DBOD
AVDD rising
—
—
1.7
V
AVDD falling
1.45
—
—
V
—
46
—
mV
—
300
—
μs
EM4 BOD hysteresis
VEM4BOD_HYST
EM4 response time
tEM4BOD_DELAY
silabs.com | Smart. Connected. Energy-friendly.
Supply drops at 0.1V/μs rate
Rev. 1.0 | 22
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.8 Frequency Synthesizer Characteristics
Table 4.10. Frequency Synthesizer Characteristics
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
RF Synthesizer Frequency
range
FRANGE_2400
2.4 GHz frequency range
2400
—
2483.5
MHz
LO tuning frequency resolution with 38.4 MHz crystal
FRES_2400
2400 - 2483.5 MHz
—
—
73
Hz
Maximum frequency deviation with 38.4 MHz crystal
ΔFMAX_2400
—
—
1677
kHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 23
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.9 2.4 GHz RF Transceiver Characteristics
4.1.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.11. RF Transmitter General Characteristics for 2.4 GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Maximum TX power1
POUTMAX
19.5 dBm-rated part numbers.
PAVDD connected directly to external 3.3V supply2
—
19.5
—
dBm
16.5 dBm-rated part numbers.
PAVDD connected directly to external 3.3V supply
—
16.5
—
dBm
-30
—
dBm
Minimum active TX Power
POUTMIN
CW
Output power step size
POUTSTEP
-5 dBm< Output power < 0 dBm
—
1
—
dB
0 dBm < output power <
POUTMAX
—
0.5
—
dB
1.85 V < VVREGVDD < 3.3 V,
PAVDD connected directly to external supply, for output power >
10.5 dBm.
—
4.5
—
dB
1.85 V < VVREGVDD < 3.3 V using
DC-DC converter
—
2.2
—
dB
From -40 to +85 °C, PAVDD connected to DC-DC output
—
1.5
—
dB
From -40 to +125 °C, PAVDD
connected to DC-DC output
—
2.2
—
dB
From -40 to +85 °C, PAVDD connected to external supply
—
1.5
—
dB
From -40 to +125 °C, PAVDD
connected to external supply
—
3.4
—
dB
Over RF tuning frequency range
—
0.4
—
dB
2400
—
2483.5
MHz
Output power variation vs
supply at POUTMAX
Output power variation vs
temperature at POUTMAX
POUTVAR_V
POUTVAR_T
Output power variation vs RF POUTVAR_F
frequency at POUTMAX
RF tuning frequency range
FRANGE
Note:
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of 2. Ordering Information
2. For Bluetooth, the Maximum TX power on Channel 2456 is limited to +15 dBm to comply with In-band Spurious emissions.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 24
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.9.2 RF Receiver General Characteristics for the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according
to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and
Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.12. RF Receiver General Characteristics for 2.4 GHz Band
Parameter
Symbol
RF tuning frequency range
FRANGE
Receive mode maximum
spurious emission
SPURRX
Max spurious emissions dur- SPURRX_FCC
ing active receive mode, per
FCC Part 15.109(a)
Level above which
RFSENSE will trigger1
RFSENSETRIG
Level below which
RFSENSE will not trigger1
RFSENSETHRES
1% PER Sensitivity
SENS2GFSK
0.1% BER Sensitivity
Test Condition
Min
Typ
Max
Unit
2400
—
2483.5
MHz
30 MHz to 1 GHz
—
-57
—
dBm
1 GHz to 12 GHz
—
-47
—
dBm
216 MHz to 960 MHz, Conducted
Measurement
—
-55.2
—
dBm
Above 960 MHz, Conducted
Measurement
—
-47.2
—
dBm
CW at 2.45 GHz
—
-24
—
dBm
—
-50
—
dBm
2 Mbps 2GFSK signal2
—
-89.2
—
dBm
250 kbps 2GFSK signal
—
-99.1
—
dBm
Note:
1. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.
2. Channel at 2420 MHz will have degraded sensitivity. Sensitivity could be as high as -83dBm on this channel.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 25
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.44 GHz. Test circuit according to
Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.13. RF Transmitter Characteristics for Bluetooth Smart in the 2.4GHz Band
Parameter
Symbol
Transmit 6dB bandwidth
TXBW
Power spectral density limit
PSDLIMIT
Min
Typ
Max
Unit
—
740
—
kHz
Per FCC part 15.247 at 10 dBm
—
-6.5
—
dBm/
3kHz
Per FCC part 15.247 at 20 dBm
—
-2.6
—
dBm/
3kHz
Per ETSI 300.328 at 10 dBm/1
MHz
—
10
—
dBm
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band
—
1.1
—
MHz
In-band spurious emissions
at 10 dBm, with allowed exceptions1
At ±2 MHz
—
-39.8
—
dBm
At ±3 MHz
—
-42.1
—
dBm
At ±2 MHz
—
—
-20
dBm
At ±3 MHz
—
—
-30
dBm
2nd,3rd, 5, 6, 8, 9,10 harmonics;
continuous transmission of modulated carrier
—
-47
—
dBm
Spurious emissions out-ofSPUROOB_FCC
band, per FCC part 15.247,
excluding harmonics captured in SPURHARM,FCC. Restricted Bands
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier3
—
-47
—
dBm
Spurious emissions out-ofband, per FCC part 15.247,
excluding harmonics captured in SPURHARM,FCC.
Non Restricted Bands
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier
—
-26
—
dBc
[2400-BW to 2400] MHz, [2483.5
to 2483.5+BW] MHz
—
-16
—
dBm
[2400-2BW to 2400-BW] MHz,
[2483.5+BW to 2483.5+2BW]
MHz per ETSI 300.328
—
-26
—
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
—
-60
—
dBm
25-1000 MHz
—
-42
—
dBm
1-12 GHz
—
-36
—
dBm
SPURINB
In-band spurious emissions
at 20 dBm, with allowed exceptions1 2
Emissions of harmonics outof-band, per FCC part
15.247
Spurious emissions out-ofband; per ETSI 300.328
SPURHRM_FCC
SPURETSI328
Spurious emissions per ETSI SPURETSI440
EN300.440
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Rev. 1.0 | 26
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Per Bluetooth Core_4.2, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency
which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.
2. For 2456 MHz, a maximum output power of 15 dBm is used to achieve this value.
3. For 2480 MHz, a maximum duty cycle of 20% is used to achieve this value.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 27
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: TOP = 25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according
to Figure 5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and
Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.14. RF Receiver Characteristics for Bluetooth Smart in the 2.4GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max usable receiver input
level, 0.1% BER
SAT
Signal is reference signal1. Packet
length is 20 bytes.
—
10
—
dBm
Sensitivity, 0.1% BER2
SENS
Signal is reference signal1. Using
DC-DC converter
—
-92.5
—
dBm
With non-ideal signals as specified in RF-PHY.TS.4.2.2, section
4.6.1
—
-92
—
dBm
Signal to co-channel interfer- C/ICC
er, 0.1% BER
Desired signal 3 dB above reference sensitivity
—
8.3
—
dB
N+1 adjacent channel (1
C/I1+
MHz) selectivity, 0.1% BER,
with allowable exceptions.
Desired is reference signal at
-67 dBm
Interferer is reference signal at +1
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-3
—
dB
N-1 adjacent channel (1
C/I1MHz) selectivity, 0.1% BER,
with allowable exceptions.
Desired is reference signal at
-67 dBm
Interferer is reference signal at -1
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-0.5
—
dB
Alternate (2 MHz) selectivity, C/I2
0.1% BER, with allowable
exceptions. Desired is reference signal at -67 dBm
Interferer is reference signal at ± 2
MHz offset. Desired frequency
2402 MHz ≤ Fc ≤ 2480 MHz
—
-43
—
dB
Alternate (3 MHz) selectivity, C/I3
0.1% BER, with allowable
exceptions. Desired is reference signal at -67 dBm
Interferer is reference signal at ±3
MHz offset. Desired frequency
2404 MHz ≤ Fc ≤ 2480 MHz
—
-46.7
—
dB
Selectivity to image frequen- C/IIM
cy, 0.1% BER. Desired is reference signal at -67 dBm
Interferer is reference signal at image frequency with 1 MHz precision
—
-38.7
—
dB
Selectivity to image frequency +1 MHz, 0.1% BER. Desired is reference signal at
-67 dBm
Interferer is reference signal at image frequency +1 MHz with 1
MHz precision
—
-48.2
—
dB
Interferer frequency 30 MHz ≤ f ≤
2000 MHz
—
-27
—
dBm
Interferer frequency 2003 MHz ≤ f
≤ 2399 MHz
—
-32
—
dBm
Interferer frequency 2484 MHz ≤ f
≤ 2997 MHz
—
-32
—
dBm
Interferer frequency 3 GHz ≤ f ≤
12.75 GHz
—
-27
—
dBm
C/IIM+1
Blocking, 0.1% BER, Desired BLOCKOOB
is reference signal at -67
dBm. Interferer is CW in
OOB range.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 28
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
—
-25.8
—
dBm
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
4
—
—
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
—
—
-101
dBm
—
—
0.5
dB
Intermodulation performance IM
RSSI resolution
RSSIRES
Test Condition
Per Core_4.1, Vol 6, Part A, Section 4.4 with n = 3
Over RSSIMIN to RSSIMAX
Note:
1. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9;
interferer data = PRBS15; frequency accuracy better than 1 ppm
2. Receive sensitivity on Bluetooth Smart channel 26 is -86 dBm
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 29
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T=25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD
and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Test circuit according to Figure
5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and Figure
5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.15. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Error vector magnitude (offset EVM), per
802.15.4-2011, not including
2415 MHz channel1
EVM
Average across frequency. Signal
is DSSS-OQPSK reference packet2
—
5.5
—
% rms
Power spectral density limit
PSDLIMIT
Relative, at carrier ±3.5 MHz
—
-26
—
dBc
Absolute, at carrier ±3.5 MHz3
—
-36
—
dBm
Per FCC part 15.247
—
-4.2
—
dBm/
3kHz
Output power level which meets
10dBm/MHz ETSI 300.328 specification
—
12
—
dBm
Occupied channel bandwidth OCPETSI328
per ETSI EN300.328
99% BW at highest and lowest
channels in band
—
2.25
—
MHz
Spurious emissions of harSPURHRM_FCC_
monics in restricted bands
R
per FCC Part 15.205/15.209,
Emissions taken at
Pout_Max power level of
19.5 dBm, PAVDD connected to external 3.3 V supply,
Test Frequency is 2450 MHz
Continuous transmission of modulated carrier
—
-45.8
—
dBm
—
-26
—
dBc
Spurious emissions of harmonics in harmonics in nonrestricted bands per FCC
Part 15.247/15.35, Emissions taken at Pout_Max
power level of 19.5 dBm,
PAVDD connected to external 3.3 V supply, Test Frequency is 2450 MHz
SPURHRM_FCC_
NRR
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 30
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Spurious emissions out-ofband in restricted bands
(30-88 MHz), per FCC part
15.205/15.209, Emissions
taken at Pout_Max power
level of 19.5 dBm, PAVDD
connected to external 3.3 V
supply, Test Frequency =
2450 MHz
SPUROOB_FCC_
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier4
—
-52
—
dBm
Spurious emissions out-ofband in restricted bands
(88-216 MHz), per FCC part
15.205/15.209, Emissions
taken at Pout_Max power
level of 19.5 dBm, PAVDD
connected to external 3.3 V
supply, Test Frequency =
2450 MHz
—
-62
—
dBm
Spurious emissions out-ofband in restricted bands
(216-960 MHz), per FCC
part 15.205/15.209, Emissions taken at Pout_Max
power level of 19.5 dBm,
PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz
—
-57
—
dBm
Spurious emissions out-ofband in restricted bands
(>960 MHz), per FCC part
15.205/15.209, Emissions
taken at Pout_Max power
level of 19.5 dBm, PAVDD
connected to external 3.3 V
supply, Test Frequency =
2450 MHz
—
-48
—
dBm
R
Spurious emissions out-ofSPUROOB_FCC_
band in non-restricted bands NR
per FCC Part 15.247, Emissions taken at Pout_Max
power level of 19.5 dBm,
PAVDD connected to external 3.3 V supply, Test Frequency = 2450 MHz
Above 2.483 GHz or below 2.4
GHz; continuous transmission of
modulated carrier
—
-26
—
dBc
Spurious emissions out-ofband; per ETSI 300.3285
[2400-BW to 2400], [2483.5 to
2483.5+BW];
—
-16
—
dBm
[2400-2BW to 2400-BW],
[2483.5+BW to 2483.5+2BW]; per
ETSI 300.328
—
-26
—
dBm
47-74 MHz,87.5-108 MHz,
174-230 MHz, 470-862 MHz
—
-60
—
dBm
25-1000 MHz, excluding above
frequencies
—
-42
—
dBm
1G-14G
—
-36
—
dBm
SPURETSI328
Spurious emissions per ETSI SPURETSI440
EN300.4405
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 31
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. Typical EVM for the 2415 MHz channel is 7.9%
2. Reference packet is defined as 20 octet PSDU, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz band, with
pseudo-random packet data content
3. For 2415 MHz, a maximum duty cycle of 50% is used to achieve this value.
4. For 2480 MHz, a maximum duty cycle of 20% is used to achieve this value.
5. Specified at maximum power output level of 10 dBm
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 32
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band
Unless otherwise indicated, typical conditions are: T=25 °C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD
and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.445 GHz. Test circuit according to Figure
5.2 EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC) on page 64 and Figure
5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 65.
Table 4.16. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Max usable receiver input
level, 1% PER
SAT
Signal is reference signal1. Packet
length is 20 octets.
—
10
—
dBm
Sensitivity, 1% PER2
SENS
Signal is reference signal. Packet
length is 20 octets. Using DC-DC
converter.
—
-99
—
dBm
Signal is reference signal. Packet
length is 20 octets. Without DCDC converter.
—
-99
—
dBm
Co-channel interferer rejection, 1% PER
CCR
Desired signal 10 dB above sensitivity limit
—
-2.6
—
dB
High-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
level3
ACR+1
Interferer is reference signal at +1
channel-spacing.
—
33.75
—
dB
Interferer is filtered reference signal4 at +1 channel-spacing.
—
52.2
—
dB
Interferer is CW at +1 channelspacing.5
—
58.6
—
dB
Interferer is reference signal at -1
channel-spacing.
—
35
—
dB
Interferer is filtered reference signal4 at -1 channel-spacing.
—
54.7
—
dB
Interferer is CW at -1 channelspacing.
—
60.1
—
dB
Interferer is reference signal at ±2
channel-spacing
—
45.9
—
dB
Interferer is filtered reference signal4 at ±2 channel-spacing
—
56.8
—
dB
Interferer is CW at ±2 channelspacing
—
65.5
—
dB
Image rejection , 1% PER,
IR
Desired is reference signal at
3dB above reference sensitivity level3
Interferer is CW in image band5
—
49.3
—
dB
Blocking rejection of all other BLOCK
channels. 1% PER, Desired
is reference signal at 3dB
above reference sensitivity
level3. Interferer is reference
signal.
Interferer frequency < Desired frequency - 3 channel-spacing
—
57.2
—
dB
Interferer frequency > Desired frequency + 3 channel-spacing
—
57.9
—
dB
Blocking rejection of 802.11g BLOCK80211G
signal centered at +12MHz
or -13MHz
Desired is reference signal at 6dB
above reference sensitivity level3
—
51.6
—
dB
Low-side adjacent channel
rejection, 1% PER. Desired
is reference signal at 3dB
above reference sensitivity
level3
Alternate channel rejection,
1% PER. Desired is reference signal at 3dB above
reference sensitivity level3
ACR-1
ACR2
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 33
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Min
Typ
Max
Unit
Upper limit of input power
RSSIMAX
range over which RSSI resolution is maintained
5
—
—
dBm
Lower limit of input power
RSSIMIN
range over which RSSI resolution is maintained
—
—
-98
dBm
—
0.25
—
dB
—
±1
—
dB
RSSI resolution
RSSIRES
RSSI accuracy in the linear
region as defined by
802.15.4-2003
RSSILIN
Test Condition
over RSSIMIN to RSSIMAX
Note:
1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksymbols/s
2. Receive sensitivity on 802.15.4 channel 14 is -98 dBm
3. Reference sensitivity level is -85 dBm
4. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15 MHz from the adjacent carrier.
5. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker
tests place the Interferer center frequency at the Desired frequency ±5 MHz on the channel raster, whereas the image rejection
test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.
4.1.10 Modem Features
Table 4.17. Modem Features
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Receive Bandwidth
RXBandwidth
Configurable range with 38.4 MHz
crystal
0.1
—
2530
kHz
IF Frequency
IFFreq
Configurable range with 38.4 MHz
crystal. Selected steps available.
150
—
1371
kHz
DSSS symbol length
DSSSRange
Configurable in steps of 1 chip
2
—
32
chips
DSSS Bits per symbol
DSSSBitPerSym
Configurable
1
—
4
bits/
symbol
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 34
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.11 Oscillators
4.1.11.1 LFXO
Table 4.18. LFXO
Parameter
Symbol
Crystal frequency
Test Condition
Min
Typ
Max
Unit
fLFXO
—
32.768
—
kHz
Supported crystal equivalent
series resistance (ESR)
ESRLFXO
—
—
70
kΩ
Supported range of crystal
load capacitance 1
CLFXO_CL
6
—
18
pF
On-chip tuning cap range 2
CLFXO_T
8
—
40
pF
On-chip tuning cap step size
SSLFXO
—
0.25
—
pF
Current consumption after
startup 3
ILFXO
ESR = 70 kΩ, CL = 7 pF, GAIN4 =
3, AGC4 = 1
—
273
—
nA
Start- up time
tLFXO
ESR=70 kΩ, CL=7 pF, GAIN4 =2
—
308
—
ms
On each of LFXTAL_N and
LFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register
4. In CMU_LFXOCTRL register
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 35
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.11.2 HFXO
Table 4.19. HFXO
Parameter
Symbol
Crystal Frequency
fHFXO
Supported crystal equivalent
series resistance (ESR)
ESRHFXO
Supported range of crystal
load capacitance 1
CHFXO_CL
On-chip tuning cap range 2
CHFXO_T
On-chip tuning capacitance
step
SSHFXO
Startup time
tHFXO
Frequency Tolerance for the
crystal
FTHFXO
Test Condition
Min
Typ
Max
Unit
38
38.4
40
MHz
—
—
60
Ω
6
—
12
pF
9
20
25
pF
—
0.04
—
pF
38.4 MHz, ESR = 50 Ω, CL = 10
pF
—
300
—
μs
38.4 MHz, ESR = 50 Ω, CL = 10
pF
-40
—
40
ppm
Crystal frequency 38.4 MHz
On each of HFXTAL_N and
HFXTAL_P pins
Note:
1. Total load capacitance as seen by the crystal
2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the
two caps will be seen in series by the crystal.
4.1.11.3 LFRCO
Table 4.20. LFRCO
Parameter
Symbol
Test Condition
Oscillation frequency
fLFRCO
Startup time
tLFRCO
Current consumption 1
ILFRCO
Min
Typ
Max
Unit
ENVREF = 1 in
CMU_LFRCOCTRL, TAMB ≤ 85
°C
30.474
32.768
34.243
kHz
ENVREF = 1 in
CMU_LFRCOCTRL, TAMB > 85
°C
30.474
—
39.7
kHz
ENVREF = 0 in
CMU_LFRCOCTRL
30.474
32.768
33.915
kHz
—
500
—
μs
ENVREF = 1 in
CMU_LFRCOCTRL
—
342
—
nA
ENVREF = 0 in
CMU_LFRCOCTRL
—
494
—
nA
Note:
1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 36
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.11.4 HFRCO and AUXHFRCO
Table 4.21. HFRCO and AUXHFRCO
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Frequency Accuracy
fHFRCO
Any frequency band, across supply voltage and temperature
-2.5
—
2.5
%
Start-up time
tHFRCO
fHFRCO ≥ 19 MHz
—
300
—
ns
4 < fHFRCO < 19 MHz
—
1
—
μs
fHFRCO ≤ 4 MHz
—
2.5
—
μs
fHFRCO = 38 MHz
—
204
228
μA
fHFRCO = 32 MHz
—
171
190
μA
fHFRCO = 26 MHz
—
147
164
μA
fHFRCO = 19 MHz
—
126
138
μA
fHFRCO = 16 MHz
—
110
120
μA
fHFRCO = 13 MHz
—
100
110
μA
fHFRCO = 7 MHz
—
81
91
μA
fHFRCO = 4 MHz
—
33
35
μA
fHFRCO = 2 MHz
—
31
35
μA
fHFRCO = 1 MHz
—
30
35
μA
Coarse (% of period)
—
0.8
—
%
Fine (% of period)
—
0.1
—
%
—
0.2
—
% RMS
Min
Typ
Max
Unit
0.95
1
1.07
kHz
Current consumption on all
supplies
Step size
Period Jitter
IHFRCO
SSHFRCO
PJHFRCO
4.1.11.5 ULFRCO
Table 4.22. ULFRCO
Parameter
Symbol
Oscillation frequency
fULFRCO
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Rev. 1.0 | 37
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.12 Primary Flash Memory Characteristics
Table 4.23. Primary Flash Memory Characteristics1
Parameter
Symbol
Flash erase cycles before
failure
ECFLASH
Flash data retention
RETFLASH
Test Condition
Min
Typ
Max
Unit
10000
—
—
cycles
TAMB ≤ 85 °C
10
—
—
years
TAMB ≤ 125 °C
10
—
—
years
Word (32-bit) programming
time
tW_PROG
20
26
40
μs
Page erase time
tPERASE
20
27
40
ms
Mass erase time
tMERASE
20
27
40
ms
Device erase time2
tDERASE
TAMB ≤ 85 °C
—
60
74
ms
TAMB ≤ 125 °C
—
60
78
ms
—
—
3
mA
—
—
5
mA
—
—
3
mA
Page erase current3
IERASE
Mass or Device erase current3
Write current3
IWRITE
Note:
1. Flash data retention information is published in the Quarterly Quality and Reliability Report.
2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock
Word (ULW)
3. Measured at 25°C
4.1.13 Serial Flash Memory Characteristics
Table 4.24. Serial Flash Memory Characteristics
Parameter
Symbol
Serial flash erase cycles before failure
ECSFLASH
Serial flash data retention
RETSFLASH
Page Program Time
tPPROG
Erase Time
tERASE
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Min
Typ
Max
Unit
100000
—
—
cycles
20
—
—
years
1 to 256 Bytes
—
0.5
0.8
ms
4 kByte Sector
—
70
300
ms
32 kByte Block
—
130
500
ms
64 kByte Block
—
200
1000
ms
Full Erase
—
1.5
3
s
Rev. 1.0 | 38
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.14 GPIO
Table 4.25. GPIO
Parameter
Symbol
Input low voltage
Test Condition
Min
Typ
Max
Unit
VIOIL
—
—
IOVDD*0.3
V
Input high voltage
VIOIH
IOVDD*0.7
—
—
V
Output high voltage relative
to IOVDD
VIOOH
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
IOVDD*0.8
—
—
V
IOVDD*0.6
—
—
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
—
—
IOVDD*0.2
V
—
—
IOVDD*0.4
V
All GPIO except LFXO pins, GPIO
≤ IOVDD, Tamb ≤ 85 °C
—
0.1
30
nA
LFXO Pins, GPIO ≤ IOVDD, Tamb
≤ 85 °C
—
0.1
50
nA
All GPIO except LFXO pins, GPIO
≤ IOVDD, TAMB > 85 °C
—
—
110
nA
LFXO Pins, GPIO ≤ IOVDD, TAMB
> 85 °C
—
—
250
nA
IOVDD < GPIO ≤ IOVDD + 2 V
—
3.3
15
μA
Sourcing 3 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
Sourcing 1.2 mA, IOVDD ≥ 2.3 V,
DRIVESTRENGTH1 = WEAK
Sourcing 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sourcing 8 mA, IOVDD ≥ 2.3 V,
DRIVESTRENGTH1 = STRONG
Output low voltage relative to VIOOL
IOVDD
Sinking 3 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = WEAK
Sinking 1.2 mA, IOVDD ≥ 2.3 V,
DRIVESTRENGTH1 = WEAK
Sinking 20 mA, IOVDD ≥ 3 V,
DRIVESTRENGTH1 = STRONG
Sinking 8 mA, IOVDD ≥ 2.3 V,
DRIVESTRENGTH1 = STRONG
Input leakage current
IIOLEAK
Input leakage current on
5VTOL pads above IOVDD
I5VTOLLEAK
I/O pin pull-up resistor
RPU
30
43
65
kΩ
I/O pin pull-down resistor
RPD
30
43
65
kΩ
20
25
35
ns
Pulse width of pulses retIOGLITCH
moved by the glitch suppression filter
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 39
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Output fall time, From 70%
to 30% of VIO
tIOOF
CL = 50 pF,
Min
Typ
Max
Unit
—
1.8
—
ns
—
4.5
—
ns
—
2.2
—
ns
—
7.4
—
ns
Min
Typ
Max
Unit
DRIVESTRENGTH1 = STRONG,
SLEWRATE1 = 0x6
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Output rise time, From 30%
to 70% of VIO
tIOOR
CL = 50 pF,
DRIVESTRENGTH1 = STRONG,
SLEWRATE = 0x61
CL = 50 pF,
DRIVESTRENGTH1 = WEAK,
SLEWRATE1 = 0x6
Note:
1. In GPIO_Pn_CTRL register
4.1.15 VMON
Table 4.26. VMON
Parameter
Symbol
Test Condition
VMON Supply Current
IVMON
In EM0 or EM1, 1 supply monitored
—
5.8
8.26
μA
In EM0 or EM1, 4 supplies monitored
—
11.8
16.8
μA
In EM2, EM3 or EM4, 1 supply
monitored
—
62
—
nA
In EM2, EM3 or EM4, 4 supplies
monitored
—
99
—
nA
In EM0 or EM1
—
2
—
μA
In EM2, EM3 or EM4
—
2
—
nA
1.62
—
3.4
V
Coarse
—
200
—
mV
Fine
—
20
—
mV
Supply drops at 1V/μs rate
—
460
—
ns
—
26
—
mV
VMON Loading of Monitored ISENSE
Supply
Threshold range
VVMON_RANGE
Threshold step size
NVMON_STESP
Response time
tVMON_RES
Hysteresis
VVMON_HYST
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 40
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.16 ADC
Table 4.27. ADC
Parameter
Symbol
Resolution
VRESOLUTION
Input voltage range
VADCIN
Test Condition
Single ended
Differential
Input range of external refer- VADCREFIN_P
ence voltage, single ended
and differential
Min
Typ
Max
Unit
6
—
12
Bits
0
—
2*VREF
V
-VREF
—
VREF
V
1
—
VAVDD
V
Power supply rejection1
PSRRADC
At DC
—
80
—
dB
Analog input common mode
rejection ratio
CMRRADC
At DC
—
80
—
dB
1 Msps / 16 MHz ADCCLK,
—
301
350
μA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 1 3
—
149
—
μA
62.5 ksps / 1 MHz ADCCLK,
—
91
—
μA
—
51
—
μA
—
9
—
μA
—
117
—
μA
—
79
—
μA
—
345
—
μA
250 ksps / 4 MHz ADCCLK, BIASPROG = 6, GPBIASACC = 0 3
—
191
—
μA
62.5 ksps / 1 MHz ADCCLK,
—
132
—
μA
Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_LP
Continous operation. WARMUPMODE2 = KEEPADCWARM
BIASPROG = 0, GPBIASACC = 1
3
BIASPROG = 15, GPBIASACC =
13
Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK,
ing internal reference buffer.
BIASPROG = 0, GPBIASACC = 1
Duty-cycled operation. WAR3
2
MUPMODE = NORMAL
5 ksps / 16 MHz ADCCLK
BIASPROG = 0, GPBIASACC = 1
3
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_LP
Duty-cycled operation.
AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 1
3
35 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 1
3
Current from all supplies, us- IADC_CONTIing internal reference buffer. NOUS_HP
Continous operation. WARMUPMODE2 = KEEPADCWARM
1 Msps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
3
BIASPROG = 15, GPBIASACC =
03
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 41
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK,
ing internal reference buffer.
BIASPROG = 0, GPBIASACC = 0
Duty-cycled operation. WAR3
2
MUPMODE = NORMAL
5 ksps / 16 MHz ADCCLK
Min
Typ
Max
Unit
—
102
—
μA
—
17
—
μA
—
162
—
μA
—
123
—
μA
—
140
—
μA
BIASPROG = 0, GPBIASACC = 0
3
Current from all supplies, us- IADC_STANDing internal reference buffer. BY_HP
Duty-cycled operation.
AWARMUPMODE2 = KEEPINSTANDBY or KEEPINSLOWACC
125 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
3
35 ksps / 16 MHz ADCCLK,
BIASPROG = 0, GPBIASACC = 0
3
Current from HFPERCLK
IADC_CLK
ADC Clock Frequency
fADCCLK
—
—
16
MHz
Throughput rate
fADCRATE
—
—
1
Msps
Conversion time4
tADCCONV
6 bit
—
7
—
cycles
8 bit
—
9
—
cycles
12 bit
—
13
—
cycles
WARMUPMODE2 = NORMAL
—
—
5
μs
WARMUPMODE2 = KEEPINSTANDBY
—
—
2
μs
WARMUPMODE2 = KEEPINSLOWACC
—
—
1
μs
Internal reference, 2.5 V full-scale,
differential (-1.25, 1.25)
58
67
—
dB
vrefp_in = 1.25 V direct mode with
2.5 V full-scale, differential
—
68
—
dB
Startup time of reference
generator and ADC core
SNDR at 1Msps and fin =
10kHz
tADCSTART
SNDRADC
HFPERCLK = 16 MHz
Spurious-Free Dynamic
Range (SFDR)
SFDRADC
1 MSamples/s, 10 kHz full-scale
sine wave
—
75
—
dB
Input referred ADC noise,
rms
VREF_NOISE
Including quantization noise and
distortion
—
380
—
μV
Offset Error
VADCOFFSETERR
-3
0.25
3
LSB
Gain error in ADC
VADC_GAIN
Using internal reference
—
-0.2
5
%
Using external reference
—
-1
—
%
Differential non-linearity
(DNL)
DNLADC
12 bit resolution
-1
—
2
LSB
Integral non-linearity (INL),
End point method
INLADC
12 bit resolution
-6
—
6
LSB
Temperature Sensor Slope
VTS_SLOPE
—
-1.84
—
mV/°C
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 42
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Note:
1. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL
2. In ADCn_CNTL register
3. In ADCn_BIASPROG register
4. Derived from ADCCLK
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 43
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.17 IDAC
Table 4.28. IDAC
Parameter
Symbol
Number of Ranges
NIDAC_RANGES
Output Current
IIDAC_OUT
Linear steps within each
range
NIDAC_STEPS
Step size
SSIDAC
Total Accuracy, STEPSEL1 = ACCIDAC
0x10
Start up time
tIDAC_SU
silabs.com | Smart. Connected. Energy-friendly.
Test Condition
Min
Typ
Max
Unit
—
4
—
-
RANGSEL1 = RANGE0
0.05
—
1.6
μA
RANGSEL1 = RANGE1
1.6
—
4.7
μA
RANGSEL1 = RANGE2
0.5
—
16
μA
RANGSEL1 = RANGE3
2
—
64
μA
—
32
—
RANGSEL1 = RANGE0
—
50
—
nA
RANGSEL1 = RANGE1
—
100
—
nA
RANGSEL1 = RANGE2
—
500
—
nA
RANGSEL1 = RANGE3
—
2
—
μA
EM0 or EM1, AVDD=3.3 V, T = 25
°C
-2
—
2
%
EM0 or EM1
-18
—
22
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE0,
AVDD=3.3 V, T = 25 °C
—
-2
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE1,
AVDD=3.3 V, T = 25 °C
—
-1.7
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE2,
AVDD=3.3 V, T = 25 °C
—
-0.8
—
%
EM2 or EM3, Source mode,
RANGSEL1 = RANGE3,
AVDD=3.3 V, T = 25 °C
—
-0.5
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE0, AVDD=3.3 V, T
= 25 °C
—
-0.7
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE1, AVDD=3.3 V, T
= 25 °C
—
-0.6
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE2, AVDD=3.3 V, T
= 25 °C
—
-0.5
—
%
EM2 or EM3, Sink mode, RANGSEL1 = RANGE3, AVDD=3.3 V, T
= 25 °C
—
-0.5
—
%
Output within 1% of steady state
value
—
5
—
μs
Rev. 1.0 | 44
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Settling time, (output settled tIDAC_SETTLE
within 1% of steady state value)
Range setting is changed
—
5
—
μs
Step value is changed
—
1
—
μs
Current consumption in EM0 IIDAC
or EM1 2
Source mode, excluding output
current
—
8.9
13
μA
Sink mode, excluding output current
—
12
16
μA
Source mode, excluding output
current, duty cycle mode, T = 25
°C
—
1.04
—
μA
Sink mode, excluding output current, duty cycle mode, T = 25 °C
—
1.08
—
μA
Source mode, excluding output
current, duty cycle mode, T ≥ 85
°C
—
8.9
—
μA
Sink mode, excluding output current, duty cycle mode, T ≥ 85 °C
—
12
—
μA
RANGESEL1=0, output voltage =
min(VIOVDD, VAVDD2-100 mv)
—
0.04
—
%
RANGESEL1=1, output voltage =
min(VIOVDD, VAVDD2-100 mV)
—
0.02
—
%
RANGESEL1=2, output voltage =
min(VIOVDD, VAVDD2-150 mV)
—
0.02
—
%
RANGESEL1=3, output voltage =
min(VIOVDD, VAVDD2-250 mV)
—
0.02
—
%
RANGESEL1=0, output voltage =
100 mV
—
0.18
—
%
RANGESEL1=1, output voltage =
100 mV
—
0.12
—
%
RANGESEL1=2, output voltage =
150 mV
—
0.08
—
%
RANGESEL1=3, output voltage =
250 mV
—
0.02
—
%
Current consumption in EM2
or EM32
Output voltage compliance in ICOMP_SRC
source mode, source current
change relative to current
sourced at 0 V
Output voltage compliance in ICOMP_SINK
sink mode, sink current
change relative to current
sunk at IOVDD
Note:
1. In IDAC_CURPROG register
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects between AVDD (0) and DVDD (1).
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 45
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.18 Analog Comparator (ACMP)
Table 4.29. ACMP
Parameter
Symbol
Test Condition
Input voltage range
VACMPIN
ACMPVDD =
ACMPn_CTRL_PWRSEL 1
Supply Voltage
VACMPVDD
Active current not including
voltage reference
IACMP
Current consumption of inter- IACMPREF
nal voltage reference
Hysteresis (VCM = 1.25 V,
BIASPROG2 = 0x10, FULLBIAS2 = 1)
VACMPHYST
silabs.com | Smart. Connected. Energy-friendly.
Min
Typ
Max
Unit
0
—
VACMPVDD
V
BIASPROG2 ≤ 0x10 or FULLBIAS2 = 0
1.85
—
VVREGVDD_
V
0x10 < BIASPROG2 ≤ 0x20 and
FULLBIAS2 = 1
2.1
BIASPROG2 = 1, FULLBIAS2 = 0
—
50
—
nA
BIASPROG2 = 0x10, FULLBIAS2
=0
—
306
—
nA
BIASPROG2 = 0x20, FULLBIAS2
=1
—
74
95
μA
VLP selected as input using 2.5 V
Reference / 4 (0.625 V)
—
50
—
nA
VLP selected as input using VDD
—
20
—
nA
VBDIV selected as input using
1.25 V reference / 1
—
4.1
—
μA
VADIV selected as input using
VDD/1
—
2.4
—
μA
HYSTSEL3 = HYST0
-1.75
0
1.75
mV
HYSTSEL3 = HYST1
10
18
26
mV
HYSTSEL3 = HYST2
21
32
46
mV
HYSTSEL3 = HYST3
27
44
63
mV
HYSTSEL3 = HYST4
32
55
80
mV
HYSTSEL3 = HYST5
38
65
100
mV
HYSTSEL3 = HYST6
43
77
121
mV
HYSTSEL3 = HYST7
47
86
148
mV
HYSTSEL3 = HYST8
-4
0
4
mV
HYSTSEL3 = HYST9
-27
-18
-10
mV
HYSTSEL3 = HYST10
-47
-32
-18
mV
HYSTSEL3 = HYST11
-64
-43
-27
mV
HYSTSEL3 = HYST12
-78
-54
-32
mV
HYSTSEL3 = HYST13
-93
-64
-37
mV
HYSTSEL3 = HYST14
-113
-74
-42
mV
HYSTSEL3 = HYST15
-135
-85
-47
mV
MAX
—
VVREGVDD_
V
MAX
Rev. 1.0 | 46
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Comparator delay4
tACMPDELAY
BIASPROG2 = 1, FULLBIAS2 = 0
—
30
—
μs
BIASPROG2 = 0x10, FULLBIAS2
=0
—
3.7
—
μs
BIASPROG2 = 0x20, FULLBIAS2
=1
—
35
—
ns
-35
—
35
mV
Offset voltage
VACMPOFFSET
BIASPROG2 =0x10, FULLBIAS2
=1
Reference Voltage
VACMPREF
Internal 1.25 V reference
1
1.25
1.47
V
Internal 2.5 V reference
2
2.5
2.8
V
CSRESSEL5 = 0
—
inf
—
kΩ
CSRESSEL5 = 1
—
15
—
kΩ
CSRESSEL5 = 2
—
27
—
kΩ
CSRESSEL5 = 3
—
39
—
kΩ
CSRESSEL5 = 4
—
51
—
kΩ
CSRESSEL5 = 5
—
102
—
kΩ
CSRESSEL5 = 6
—
164
—
kΩ
CSRESSEL5 = 7
—
239
—
kΩ
Capacitive Sense Internal
Resistance
RCSRES
Note:
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD
2. In ACMPn_CTRL register
3. In ACMPn_HYSTERESIS register
4. ±100 mV differential drive
5. In ACMPn_INPUTSEL register
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given as:
IACMPTOTAL = IACMP + IACMPREF
IACMPREF is zero if an external voltage reference is used.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 47
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.19 I2C
I2C Standard-mode (Sm)
Table 4.30. I2C Standard-mode (Sm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
100
kHz
SCL clock low time
tLOW
4.7
—
—
μs
SCL clock high time
tHIGH
4
—
—
μs
SDA set-up time
tSU,DAT
250
—
—
ns
SDA hold time3
tHD,DAT
100
—
3450
ns
Repeated START condition
set-up time
tSU,STA
4.7
—
—
μs
(Repeated) START condition tHD,STA
hold time
4
—
—
μs
STOP condition set-up time
tSU,STO
4
—
—
μs
Bus free time between a
STOP and START condition
tBUF
4.7
—
—
μs
Note:
1. For CLHR set to 0 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 48
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
I2C Fast-mode (Fm)
Table 4.31. I2C Fast-mode (Fm)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
400
kHz
SCL clock low time
tLOW
1.3
—
—
μs
SCL clock high time
tHIGH
0.6
—
—
μs
SDA set-up time
tSU,DAT
100
—
—
ns
SDA hold time3
tHD,DAT
100
—
900
ns
Repeated START condition
set-up time
tSU,STA
0.6
—
—
μs
(Repeated) START condition tHD,STA
hold time
0.6
—
—
μs
STOP condition set-up time
tSU,STO
0.6
—
—
μs
Bus free time between a
STOP and START condition
tBUF
1.3
—
—
μs
Note:
1. For CLHR set to 1 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW)
I2C Fast-mode Plus (Fm+)
Table 4.32. I2C Fast-mode Plus (Fm+)1
Parameter
Symbol
SCL clock frequency2
Test Condition
Min
Typ
Max
Unit
fSCL
0
—
1000
kHz
SCL clock low time
tLOW
0.5
—
—
μs
SCL clock high time
tHIGH
0.26
—
—
μs
SDA set-up time
tSU,DAT
50
—
—
ns
SDA hold time
tHD,DAT
100
—
—
ns
Repeated START condition
set-up time
tSU,STA
0.26
—
—
μs
(Repeated) START condition tHD,STA
hold time
0.26
—
—
μs
STOP condition set-up time
tSU,STO
0.26
—
—
μs
Bus free time between a
STOP and START condition
tBUF
0.5
—
—
μs
Note:
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 49
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.1.20 USART SPI
SPI Master Timing
Table 4.33. SPI Master Timing
Parameter
Symbol
SCLK period 1 2
tSCLK
CS to MOSI 1 2
Test Condition
Min
Typ
Max
Unit
2*
tHFPERCLK
—
—
ns
tCS_MO
0
—
8
ns
SCLK to MOSI 1 2
tSCLK_MO
3
—
20
ns
MISO setup time 1 2
tSU_MI
IOVDD = 2.3 V
56
—
—
ns
IOVDD = 3.0 V
37
—
—
ns
6
—
—
ns
tH_MI
MISO hold time 1 2
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD)
CS
tCS_MO
tSCKL_MO
SCLK
CLKPOL = 0
tSCLK
SCLK
CLKPOL = 1
MOSI
tSU_MI
tH_MI
MISO
Figure 4.1. SPI Master Timing Diagram
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 50
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
SPI Slave Timing
Table 4.34. SPI Slave Timing
Parameter
Symbol
SCKL period 1 2
Test Condition
Min
Typ
Max
Unit
tSCLK_sl
2*
tHFPERCLK
—
—
ns
SCLK high period1 2
tSCLK_hi
3*
tHFPERCLK
—
—
ns
SCLK low period 1 2
tSCLK_lo
3*
tHFPERCLK
—
—
ns
CS active to MISO 1 2
tCS_ACT_MI
4
—
50
ns
CS disable to MISO 1 2
tCS_DIS_MI
4
—
50
ns
MOSI setup time 1 2
tSU_MO
4
—
—
ns
MOSI hold time 1 2
tH_MO
3+2*
tHFPERCLK
—
—
ns
SCLK to MISO 1 2
tSCLK_MI
16 +
tHFPERCLK
—
66 + 2 *
tHFPERCLK
ns
Note:
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD)
CS
tCS_ACT_MI
tCS_DIS_MI
SCLK
CLKPOL = 0
SCLK
CLKPOL = 1
tSCLK_HI
tSU_MO
tSCLK_LO
tSCLK
tH_MO
MOSI
tSCLK_MI
MISO
Figure 4.2. SPI Slave Timing Diagram
4.2 Typical Performance Curves
Typical performance curves indicate typical characterized performance under the stated conditions.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 51
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.2.1 Supply Current
Figure 4.3. EM0 Active Mode Typical Supply Current
Figure 4.4. EM1 Sleep Mode Typical Supply Current
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 52
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 53
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.2.2 DC-DC Converter
Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 1.0 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz
Figure 4.6. DC-DC Converter Typical Performance Characteristics
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 54
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Load Step Response in LN (CCM) mode
(Heavy Drive)
LN (CCM) and LP mode transition (load: 5mA)
DVDD
DVDD
60mV/div
offset:1.8V
50mV/div
offset:1.8V
100mA
VSW
ILOAD
2V/div
offset:1.8V
1mA
100μs/div
10μs/div
Figure 4.7. DC-DC Converter Transition Waveforms
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 55
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.2.3 Internal Oscillators
Figure 4.8. HFRCO and AUXHFRCO Typical Performance at 38 MHz
Figure 4.9. HFRCO and AUXHFRCO Typical Performance at 32 MHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 56
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Figure 4.10. HFRCO and AUXHFRCO Typical Performance at 26 MHz
Figure 4.11. HFRCO and AUXHFRCO Typical Performance at 19 MHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 57
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Figure 4.12. HFRCO and AUXHFRCO Typical Performance at 16 MHz
Figure 4.13. HFRCO and AUXHFRCO Typical Performance at 13 MHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 58
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Figure 4.14. HFRCO and AUXHFRCO Typical Performance at 7 MHz
Figure 4.15. HFRCO and AUXHFRCO Typical Performance at 4 MHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 59
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Figure 4.16. HFRCO and AUXHFRCO Typical Performance at 2 MHz
Figure 4.17. HFRCO and AUXHFRCO Typical Performance at 1 MHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 60
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Figure 4.18. LFRCO Typical Performance at 32.768 kHz
Figure 4.19. ULFRCO Typical Performance at 1 kHz
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 61
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
4.2.4 2.4 GHz Radio
Figure 4.20. 2.4 GHz RF Transmitter Output Power
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 62
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Electrical Specifications
Figure 4.21. 2.4 GHz RF Receiver Sensitivity
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 63
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Typical Connection Diagrams
5. Typical Connection Diagrams
5.1 Power
Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure.
VDD
Main
Supply
+
–
VREGVDD
AVDD
VREGSW
IOVDD
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
DECOUPLE
RFVDD
PAVDD
Figure 5.1. EFR32MG1 Typical Application Circuit: Direct Supply Configuration without DC-DC converter
Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13dBm, the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm.
VDD
Main
Supply
+
–
VREGVDD
VDCDC
AVDD
VREGSW
IOVDD
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
DECOUPLE
RFVDD
PAVDD
Figure 5.2. EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC)
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 64
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Typical Connection Diagrams
VDD
Main
Supply
+
–
VREGVDD
VDCDC
AVDD
VREGSW
IOVDD
HFXTAL_N
VREGVSS
HFXTAL_P
DVDD
LFXTAL_N
LFXTAL_P
DECOUPLE
RFVDD
PAVDD
Figure 5.3. EFR32MG1 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDD)
5.2 RF Matching Networks
Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on
page 65 for applications in the 2.4GHz band. Application-specific component values can be found in the EFR32 Reference Manual.
For low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power
RF transmission, the four-element match is recommended for high RF transmit power (> 13dBm).
4-Element Match for 2.4GHz Band
2-Element Match for 2.4GHz Band
PAVDD
PAVDD
PAVDD
2G4RF_IOP
2G4RF_ION
PAVDD
L0
50Ω
C0
L0
L1
50Ω
2G4RF_IOP
2G4RF_ION
C0
C1
Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits
5.3 Other Connections
Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware Design Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 65
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
6. Pin Definitions
6.1 EFR32MG1 QFN32 2.4 GHz Definition
Figure 6.1. EFR32MG1 QFN32 2.4 GHz Pinout
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 66
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
Table 6.1. QFN32 2.4 GHz Device Pinout
QFN32 Pin# and
Name
Pin
#
Pin Name
0
VSS
1
2
3
PF0
PF1
PF2
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
TIM0_CC0 #24
TIM0_CC1 #23
TIM0_CC2 #22
TIM0_CDTI0 #21
TIM0_CDTI1 #20
TIM0_CDTI2 #19
TIM1_CC0 #24
TIM1_CC1 #23
TIM1_CC2 #22
TIM1_CC3 #21 LETIM0_OUT0 #24
LETIM0_OUT1 #23
PCNT0_S0IN #24
PCNT0_S1IN #23
US0_TX #24
US0_RX #23
US0_CLK #22
US0_CS #21
US0_CTS #20
US0_RTS #19
LEU0_TX #24
LEU0_RX #23
I2C0_SDA #24
I2C0_SCL #23
FRC_DCLK #24
FRC_DOUT #23
FRC_DFRAME #22
MODEM_DCLK #24
MODEM_DIN #23
MODEM_DOUT #22
MODEM_ANT0 #21
MODEM_ANT1 #20
PRS_CH0 #0
PRS_CH1 #7
PRS_CH2 #6
PRS_CH3 #5
ACMP0_O #24
ACMP1_O #24
DBG_SWCLKTCK
#0
TIM0_CC0 #25
TIM0_CC1 #24
TIM0_CC2 #23
TIM0_CDTI0 #22
TIM0_CDTI1 #21
TIM0_CDTI2 #20
TIM1_CC0 #25
TIM1_CC1 #24
TIM1_CC2 #23
TIM1_CC3 #22 LETIM0_OUT0 #25
LETIM0_OUT1 #24
PCNT0_S0IN #25
PCNT0_S1IN #24
US0_TX #25
US0_RX #24
US0_CLK #23
US0_CS #22
US0_CTS #21
US0_RTS #20
LEU0_TX #25
LEU0_RX #24
I2C0_SDA #25
I2C0_SCL #24
FRC_DCLK #25
FRC_DOUT #24
FRC_DFRAME #23
MODEM_DCLK #25
MODEM_DIN #24
MODEM_DOUT #23
MODEM_ANT0 #22
MODEM_ANT1 #21
PRS_CH0 #1
PRS_CH1 #0
PRS_CH2 #7
PRS_CH3 #6
ACMP0_O #25
ACMP1_O #25
DBG_SWDIOTMS
#0
TIM0_CC0 #26
TIM0_CC1 #25
TIM0_CC2 #24
TIM0_CDTI0 #23
TIM0_CDTI1 #22
TIM0_CDTI2 #21
TIM1_CC0 #26
TIM1_CC1 #25
TIM1_CC2 #24
TIM1_CC3 #23 LETIM0_OUT0 #26
LETIM0_OUT1 #25
PCNT0_S0IN #26
PCNT0_S1IN #25
US0_TX #26
US0_RX #25
US0_CLK #24
US0_CS #23
US0_CTS #22
US0_RTS #21
LEU0_TX #26
LEU0_RX #25
I2C0_SDA #26
I2C0_SCL #25
FRC_DCLK #26
FRC_DOUT #25
FRC_DFRAME #24
MODEM_DCLK #26
MODEM_DIN #25
MODEM_DOUT #24
MODEM_ANT0 #23
MODEM_ANT1 #22
CMU_CLK0 #6
PRS_CH0 #2
PRS_CH1 #1
PRS_CH2 #0
PRS_CH3 #7
ACMP0_O #26
ACMP1_O #26
DBG_TDO #0
DBG_SWO #0
GPIO_EM4WU0
Ground
BUSAX [ADC0:
APORT1XCH16
ACMP0:
APORT1XCH16
ACMP1:
APORT1XCH16]
BUSBY [ADC0:
APORT2YCH16
ACMP0:
APORT2YCH16
ACMP1:
APORT2YCH16]
BUSAY [ADC0:
APORT1YCH17
ACMP0:
APORT1YCH17
ACMP1:
APORT1YCH17]
BUSBX [ADC0:
APORT2XCH17
ACMP0:
APORT2XCH17
ACMP1:
APORT2XCH17]
BUSAX [ADC0:
APORT1XCH18
ACMP0:
APORT1XCH18
ACMP1:
APORT1XCH18]
BUSBY [ADC0:
APORT2YCH18
ACMP0:
APORT2YCH18
ACMP1:
APORT2YCH18]
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 67
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
QFN32 Pin# and
Name
Pin
#
Pin Name
Pin Alternate Functionality / Description
Analog
BUSAY [ADC0:
APORT1YCH19
ACMP0:
APORT1YCH19
ACMP1:
APORT1YCH19]
Timers
Communication
Radio
Other
TIM0_CC0 #27
TIM0_CC1 #26
TIM0_CC2 #25
TIM0_CDTI0 #24
TIM0_CDTI1 #23
TIM0_CDTI2 #22
TIM1_CC0 #27
TIM1_CC1 #26
TIM1_CC2 #25
TIM1_CC3 #24 LETIM0_OUT0 #27
LETIM0_OUT1 #26
PCNT0_S0IN #27
PCNT0_S1IN #26
US0_TX #27
US0_RX #26
US0_CLK #25
US0_CS #24
US0_CTS #23
US0_RTS #22
LEU0_TX #27
LEU0_RX #26
I2C0_SDA #27
I2C0_SCL #26
FRC_DCLK #27
FRC_DOUT #26
FRC_DFRAME #25
MODEM_DCLK #27
MODEM_DIN #26
MODEM_DOUT #25
MODEM_ANT0 #24
MODEM_ANT1 #23
CMU_CLK1 #6
PRS_CH0 #3
PRS_CH1 #2
PRS_CH2 #1
PRS_CH3 #0
ACMP0_O #27
ACMP1_O #27
DBG_TDI #0
4
PF3
5
RFVDD
6
HFXTAL_N
High Frequency Crystal input pin.
7
HFXTAL_P
High Frequency Crystal output pin.
8
RESETn
Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low
during reset, and let the internal pull-up ensure that reset is released.
9
RFVSS
Radio Ground
10
PAVSS
Power Amplifier (PA) voltage regulator VSS
11
2G4RF_ION
2.4 GHz Differential RF input/output, negative path. This pin should be externally grounded.
12
2G4RF_IOP
2.4 GHz Differential RF input/output, positive path.
13
PAVDD
Power Amplifier (PA) voltage regulator VDD input
14
PD13
BUSBX [ADC0:
APORT2XCH19
ACMP0:
APORT2XCH19
ACMP1:
APORT2XCH19]
Radio power supply
BUSCY [ADC0:
APORT3YCH5
ACMP0:
APORT3YCH5
ACMP1:
APORT3YCH5
IDAC0:
APORT1YCH5]
BUSDX [ADC0:
APORT4XCH5
ACMP0:
APORT4XCH5
ACMP1:
APORT4XCH5]
silabs.com | Smart. Connected. Energy-friendly.
TIM0_CC0 #21
TIM0_CC1 #20
TIM0_CC2 #19
TIM0_CDTI0 #18
TIM0_CDTI1 #17
TIM0_CDTI2 #16
TIM1_CC0 #21
TIM1_CC1 #20
TIM1_CC2 #19
TIM1_CC3 #18 LETIM0_OUT0 #21
LETIM0_OUT1 #20
PCNT0_S0IN #21
PCNT0_S1IN #20
US0_TX #21
US0_RX #20
US0_CLK #19
US0_CS #18
US0_CTS #17
US0_RTS #16
LEU0_TX #21
LEU0_RX #20
I2C0_SDA #21
I2C0_SCL #20
FRC_DCLK #21
FRC_DOUT #20
FRC_DFRAME #19
MODEM_DCLK #21
MODEM_DIN #20
MODEM_DOUT #19
MODEM_ANT0 #18
MODEM_ANT1 #17
PRS_CH3 #12
PRS_CH4 #4
PRS_CH5 #3
PRS_CH6 #15
ACMP0_O #21
ACMP1_O #21
Rev. 1.0 | 68
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
QFN32 Pin# and
Name
Pin
#
15
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Radio
Other
PD14
BUSCX [ADC0:
APORT3XCH6
ACMP0:
APORT3XCH6
ACMP1:
APORT3XCH6
IDAC0:
APORT1XCH6]
TIM0_CC0 #22
TIM0_CC1 #21
TIM0_CC2 #20
TIM0_CDTI0 #19
TIM0_CDTI1 #18
TIM0_CDTI2 #17
TIM1_CC0 #22
TIM1_CC1 #21
TIM1_CC2 #20
TIM1_CC3 #19 LETIM0_OUT0 #22
LETIM0_OUT1 #21
PCNT0_S0IN #22
PCNT0_S1IN #21
US0_TX #22
US0_RX #21
US0_CLK #20
US0_CS #19
US0_CTS #18
US0_RTS #17
LEU0_TX #22
LEU0_RX #21
I2C0_SDA #22
I2C0_SCL #21
FRC_DCLK #22
FRC_DOUT #21
FRC_DFRAME #20
MODEM_DCLK #22
MODEM_DIN #21
MODEM_DOUT #20
MODEM_ANT0 #19
MODEM_ANT1 #18
CMU_CLK0 #5
PRS_CH3 #13
PRS_CH4 #5
PRS_CH5 #4
PRS_CH6 #16
ACMP0_O #22
ACMP1_O #22
GPIO_EM4WU4
TIM0_CC0 #23
TIM0_CC1 #22
TIM0_CC2 #21
TIM0_CDTI0 #20
TIM0_CDTI1 #19
TIM0_CDTI2 #18
TIM1_CC0 #23
TIM1_CC1 #22
TIM1_CC2 #21
TIM1_CC3 #20 LETIM0_OUT0 #23
LETIM0_OUT1 #22
PCNT0_S0IN #23
PCNT0_S1IN #22
US0_TX #23
US0_RX #22
US0_CLK #21
US0_CS #20
US0_CTS #19
US0_RTS #18
LEU0_TX #23
LEU0_RX #22
I2C0_SDA #23
I2C0_SCL #22
FRC_DCLK #23
FRC_DOUT #22
FRC_DFRAME #21
MODEM_DCLK #23
MODEM_DIN #22
MODEM_DOUT #21
MODEM_ANT0 #20
MODEM_ANT1 #19
CMU_CLK1 #5
PRS_CH3 #14
PRS_CH4 #6
PRS_CH5 #5
PRS_CH6 #17
ACMP0_O #23
ACMP1_O #23
DBG_SWO #2
TIM0_CC0 #0
TIM0_CC1 #31
TIM0_CC2 #30
TIM0_CDTI0 #29
TIM0_CDTI1 #28
TIM0_CDTI2 #27
TIM1_CC0 #0
TIM1_CC1 #31
TIM1_CC2 #30
TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31
PCNT0_S0IN #0
PCNT0_S1IN #31
US0_TX #0
US0_RX #31
US0_CLK #30
US0_CS #29
US0_CTS #28
US0_RTS #27
LEU0_TX #0
LEU0_RX #31
I2C0_SDA #0
I2C0_SCL #31
FRC_DCLK #0
FRC_DOUT #31
FRC_DFRAME #30
MODEM_DCLK #0
MODEM_DIN #31
MODEM_DOUT #30
MODEM_ANT0 #29
MODEM_ANT1 #28
CMU_CLK1 #0
PRS_CH6 #0
PRS_CH7 #10
PRS_CH8 #9
PRS_CH9 #8
ACMP0_O #0
ACMP1_O #0
BUSDY [ADC0:
APORT4YCH6
ACMP0:
APORT4YCH6
ACMP1:
APORT4YCH6]
16
PD15
BUSCY [ADC0:
APORT3YCH7
ACMP0:
APORT3YCH7
ACMP1:
APORT3YCH7
IDAC0:
APORT1YCH7]
BUSDX [ADC0:
APORT4XCH7
ACMP0:
APORT4XCH7
ACMP1:
APORT4XCH7]
ADC0_EXTN
17
PA0
BUSCX [ADC0:
APORT3XCH8
ACMP0:
APORT3XCH8
ACMP1:
APORT3XCH8
IDAC0:
APORT1XCH8]
BUSDY [ADC0:
APORT4YCH8
ACMP0:
APORT4YCH8
ACMP1:
APORT4YCH8]
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 69
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
QFN32 Pin# and
Name
Pin
#
Pin Name
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
TIM0_CC0 #1
TIM0_CC1 #0
TIM0_CC2 #31
TIM0_CDTI0 #30
TIM0_CDTI1 #29
TIM0_CDTI2 #28
TIM1_CC0 #1
TIM1_CC1 #0
TIM1_CC2 #31
TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0
PCNT0_S0IN #1
PCNT0_S1IN #0
US0_TX #1
US0_RX #0
US0_CLK #31
US0_CS #30
US0_CTS #29
US0_RTS #28
LEU0_TX #1
LEU0_RX #0
I2C0_SDA #1
I2C0_SCL #0
FRC_DCLK #1
FRC_DOUT #0
FRC_DFRAME #31
MODEM_DCLK #1
MODEM_DIN #0
MODEM_DOUT #31
MODEM_ANT0 #30
MODEM_ANT1 #29
CMU_CLK0 #0
PRS_CH6 #1
PRS_CH7 #0
PRS_CH8 #10
PRS_CH9 #9
ACMP0_O #1
ACMP1_O #1
TIM0_CC0 #6
TIM0_CC1 #5
TIM0_CC2 #4
TIM0_CDTI0 #3
TIM0_CDTI1 #2
TIM0_CDTI2 #1
TIM1_CC0 #6
TIM1_CC1 #5
TIM1_CC2 #4
TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5
PCNT0_S0IN #6
PCNT0_S1IN #5
US0_TX #6
US0_RX #5
US0_CLK #4
US0_CS #3
US0_CTS #2
US0_RTS #1
LEU0_TX #6
LEU0_RX #5
I2C0_SDA #6
I2C0_SCL #5
FRC_DCLK #6
FRC_DOUT #5
FRC_DFRAME #4
MODEM_DCLK #6
MODEM_DIN #5
MODEM_DOUT #4
MODEM_ANT0 #3
MODEM_ANT1 #2
PRS_CH6 #6
PRS_CH7 #5
PRS_CH8 #4
PRS_CH9 #3
ACMP0_O #6
ACMP1_O #6
TIM0_CC0 #7
TIM0_CC1 #6
TIM0_CC2 #5
TIM0_CDTI0 #4
TIM0_CDTI1 #3
TIM0_CDTI2 #2
TIM1_CC0 #7
TIM1_CC1 #6
TIM1_CC2 #5
TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6
PCNT0_S0IN #7
PCNT0_S1IN #6
US0_TX #7
US0_RX #6
US0_CLK #5
US0_CS #4
US0_CTS #3
US0_RTS #2
LEU0_TX #7
LEU0_RX #6
I2C0_SDA #7
I2C0_SCL #6
FRC_DCLK #7
FRC_DOUT #6
FRC_DFRAME #5
MODEM_DCLK #7
MODEM_DIN #6
MODEM_DOUT #5
MODEM_ANT0 #4
MODEM_ANT1 #3
PRS_CH6 #7
PRS_CH7 #6
PRS_CH8 #5
PRS_CH9 #4
ACMP0_O #7
ACMP1_O #7
ADC0_EXTP
18
PA1
BUSCY [ADC0:
APORT3YCH9
ACMP0:
APORT3YCH9
ACMP1:
APORT3YCH9
IDAC0:
APORT1YCH9]
BUSDX [ADC0:
APORT4XCH9
ACMP0:
APORT4XCH9
ACMP1:
APORT4XCH9]
19
PB11
BUSCY [ADC0:
APORT3YCH27
ACMP0:
APORT3YCH27
ACMP1:
APORT3YCH27
IDAC0:
APORT1YCH27]
BUSDX [ADC0:
APORT4XCH27
ACMP0:
APORT4XCH27
ACMP1:
APORT4XCH27]
20
PB12
BUSCX [ADC0:
APORT3XCH28
ACMP0:
APORT3XCH28
ACMP1:
APORT3XCH28
IDAC0:
APORT1XCH28]
BUSDY [ADC0:
APORT4YCH28
ACMP0:
APORT4YCH28
ACMP1:
APORT4YCH28]
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 70
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
QFN32 Pin# and
Name
Pin
#
21
Pin Alternate Functionality / Description
Pin Name
Analog
Timers
Communication
Radio
Other
PB13
BUSCY [ADC0:
APORT3YCH29
ACMP0:
APORT3YCH29
ACMP1:
APORT3YCH29
IDAC0:
APORT1YCH29]
TIM0_CC0 #8
TIM0_CC1 #7
TIM0_CC2 #6
TIM0_CDTI0 #5
TIM0_CDTI1 #4
TIM0_CDTI2 #3
TIM1_CC0 #8
TIM1_CC1 #7
TIM1_CC2 #6
TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7
PCNT0_S0IN #8
PCNT0_S1IN #7
US0_TX #8
US0_RX #7
US0_CLK #6
US0_CS #5
US0_CTS #4
US0_RTS #3
LEU0_TX #8
LEU0_RX #7
I2C0_SDA #8
I2C0_SCL #7
FRC_DCLK #8
FRC_DOUT #7
FRC_DFRAME #6
MODEM_DCLK #8
MODEM_DIN #7
MODEM_DOUT #6
MODEM_ANT0 #5
MODEM_ANT1 #4
PRS_CH6 #8
PRS_CH7 #7
PRS_CH8 #6
PRS_CH9 #5
ACMP0_O #8
ACMP1_O #8
DBG_SWO #1
GPIO_EM4WU9
TIM0_CC0 #9
TIM0_CC1 #8
TIM0_CC2 #7
TIM0_CDTI0 #6
TIM0_CDTI1 #5
TIM0_CDTI2 #4
TIM1_CC0 #9
TIM1_CC1 #8
TIM1_CC2 #7
TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8
PCNT0_S0IN #9
PCNT0_S1IN #8
US0_TX #9
US0_RX #8
US0_CLK #7
US0_CS #6
US0_CTS #5
US0_RTS #4
LEU0_TX #9
LEU0_RX #8
I2C0_SDA #9
I2C0_SCL #8
FRC_DCLK #9
FRC_DOUT #8
FRC_DFRAME #7
MODEM_DCLK #9
MODEM_DIN #8
MODEM_DOUT #7
MODEM_ANT0 #6
MODEM_ANT1 #5
CMU_CLK1 #1
PRS_CH6 #9
PRS_CH7 #8
PRS_CH8 #7
PRS_CH9 #6
ACMP0_O #9
ACMP1_O #9
TIM0_CC0 #10
TIM0_CC1 #9
TIM0_CC2 #8
TIM0_CDTI0 #7
TIM0_CDTI1 #6
TIM0_CDTI2 #5
TIM1_CC0 #10
TIM1_CC1 #9
TIM1_CC2 #8
TIM1_CC3 #7 LETIM0_OUT0 #10
LETIM0_OUT1 #9
PCNT0_S0IN #10
PCNT0_S1IN #9
US0_TX #10
US0_RX #9
US0_CLK #8
US0_CS #7
US0_CTS #6
US0_RTS #5
LEU0_TX #10
LEU0_RX #9
I2C0_SDA #10
I2C0_SCL #9
FRC_DCLK #10
FRC_DOUT #9
FRC_DFRAME #8
MODEM_DCLK #10
MODEM_DIN #9
MODEM_DOUT #8
MODEM_ANT0 #7
MODEM_ANT1 #6
CMU_CLK0 #1
PRS_CH6 #10
PRS_CH7 #9
PRS_CH8 #8
PRS_CH9 #7
ACMP0_O #10
ACMP1_O #10
BUSDX [ADC0:
APORT4XCH29
ACMP0:
APORT4XCH29
ACMP1:
APORT4XCH29]
22
AVDD
Analog power supply.
LFXTAL_N
23
PB14
BUSCX [ADC0:
APORT3XCH30
ACMP0:
APORT3XCH30
ACMP1:
APORT3XCH30
IDAC0:
APORT1XCH30]
BUSDY [ADC0:
APORT4YCH30
ACMP0:
APORT4YCH30
ACMP1:
APORT4YCH30]
LFXTAL_P
24
PB15
BUSCY [ADC0:
APORT3YCH31
ACMP0:
APORT3YCH31
ACMP1:
APORT3YCH31
IDAC0:
APORT1YCH31]
BUSDX [ADC0:
APORT4XCH31
ACMP0:
APORT4XCH31
ACMP1:
APORT4XCH31]
25
VREGVSS
Voltage regulator VSS
26
VREGSW
DCDC regulator switching node
27
VREGVDD
Voltage regulator VDD input
28
DVDD
29
DECOUPLE
Digital power supply.
Decouple output for on-chip voltage regulator. An external decoupling capacitor is required at this pin.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 71
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
QFN32 Pin# and
Name
Pin
#
Pin Name
30
IOVDD
31
32
PC10
PC11
Pin Alternate Functionality / Description
Analog
Timers
Communication
Radio
Other
TIM0_CC0 #15
TIM0_CC1 #14
TIM0_CC2 #13
TIM0_CDTI0 #12
TIM0_CDTI1 #11
TIM0_CDTI2 #10
TIM1_CC0 #15
TIM1_CC1 #14
TIM1_CC2 #13
TIM1_CC3 #12 LETIM0_OUT0 #15
LETIM0_OUT1 #14
PCNT0_S0IN #15
PCNT0_S1IN #14
US0_TX #15
US0_RX #14
US0_CLK #13
US0_CS #12
US0_CTS #11
US0_RTS #10
LEU0_TX #15
LEU0_RX #14
I2C0_SDA #15
I2C0_SCL #14
FRC_DCLK #15
FRC_DOUT #14
FRC_DFRAME #13
MODEM_DCLK #15
MODEM_DIN #14
MODEM_DOUT #13
MODEM_ANT0 #12
MODEM_ANT1 #11
CMU_CLK1 #3
PRS_CH0 #12
PRS_CH9 #15
PRS_CH10 #4
PRS_CH11 #3
ACMP0_O #15
ACMP1_O #15
GPIO_EM4WU12
TIM0_CC0 #16
TIM0_CC1 #15
TIM0_CC2 #14
TIM0_CDTI0 #13
TIM0_CDTI1 #12
TIM0_CDTI2 #11
TIM1_CC0 #16
TIM1_CC1 #15
TIM1_CC2 #14
TIM1_CC3 #13 LETIM0_OUT0 #16
LETIM0_OUT1 #15
PCNT0_S0IN #16
PCNT0_S1IN #15
US0_TX #16
US0_RX #15
US0_CLK #14
US0_CS #13
US0_CTS #12
US0_RTS #11
LEU0_TX #16
LEU0_RX #15
I2C0_SDA #16
I2C0_SCL #15
FRC_DCLK #16
FRC_DOUT #15
FRC_DFRAME #14
MODEM_DCLK #16
MODEM_DIN #15
MODEM_DOUT #14
MODEM_ANT0 #13
MODEM_ANT1 #12
CMU_CLK0 #3
PRS_CH0 #13
PRS_CH9 #16
PRS_CH10 #5
PRS_CH11 #4
ACMP0_O #16
ACMP1_O #16
DBG_SWO #3
Digital IO power supply.
BUSAX [ADC0:
APORT1XCH10
ACMP0:
APORT1XCH10
ACMP1:
APORT1XCH10]
BUSBY [ADC0:
APORT2YCH10
ACMP0:
APORT2YCH10
ACMP1:
APORT2YCH10]
BUSAY [ADC0:
APORT1YCH11
ACMP0:
APORT1YCH11
ACMP1:
APORT1YCH11]
BUSBX [ADC0:
APORT2XCH11
ACMP0:
APORT2XCH11
ACMP1:
APORT2XCH11]
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 72
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
6.1.1 EFR32MG1 QFN32 2.4 GHz GPIO Overview
The GPIO pins are organized as 16-bit ports indicated by letters (A, B, C...), and the individual pins on each port are indicated by a
number from 15 down to 0.
Table 6.2. QFN32 2.4 GHz GPIO Pinout
Port
Pin
15
Pin
14
Pin
13
Pin
12
Pin
11
Pin
10
Port A
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA1
PA0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Port B
Port C
Port D
Port F
PB15 PB14
-
-
PB13 PB12 PB11
(5V) (5V) (5V)
-
PD15 PD14 PD13
(5V) (5V) (5V)
-
-
-
-
PC11 PC10
(5V) (5V)
Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF3
(5V)
PF2
(5V)
PF1
(5V)
PF0
(5V)
Note:
1. GPIO with 5V tolerance are indicated by (5V).
2. The pins PB13, PB12, PB11, PD15, PD14, and PD13 will not be 5V tolerant on all future devices. In order to preserve upgrade
options with full hardware compatibility, do not use these pins with 5V domains.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 73
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
6.2 Alternate Functionality Pinout
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout
is shown in the column corresponding to LOCATION 0.
Table 6.3. Alternate functionality overview
Alternate
Functionality
ACMP0_O
ACMP1_O
LOCATION
0-3
4-7
0: PA0
1: PA1
6: PB11
7: PB12
0: PA0
1: PA1
6: PB11
7: PB12
8: PB13
9: PB14
10: PB15
16 - 19
20 - 23
16: PC11
15: PC10
8: PB13
9: PB14
10: PB15
28 - 31
Description
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
Analog comparator
ACMP0, digital output.
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
Analog comparator
ACMP1, digital output.
16: PC11
15: PC10
24 - 27
Analog to digital
converter ADC0 external reference input negative pin
0: PA1
Analog to digital
converter ADC0 external reference input positive pin
ADC0_EXTP
0: PA1
1: PB15
5: PD14
6: PF2
Clock Management
Unit, clock output
number 0.
5: PD15
6: PF3
Clock Management
Unit, clock output
number 1.
3: PC11
CMU_CLK1
12 - 15
0: PA0
ADC0_EXTN
CMU_CLK0
8 - 11
0: PA0
1: PB14
3: PC10
0: PF0
DBG_SWCLKTCK
Debug-interface
Serial Wire clock
input and JTAG
Test Clock.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull down.
0: PF1
DBG_SWDIOTMS
silabs.com | Smart. Connected. Energy-friendly.
Debug-interface
Serial Wire data input / output and
JTAG Test Mode
Select.
Note that this function is enabled to
the pin out of reset,
and has a built-in
pull up.
Rev. 1.0 | 74
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
Alternate
Functionality
DBG_SWO
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
Debug-interface
Serial Wire viewer
Output.
0: PF2
1: PB13
2: PD15
3: PC11
Note that this function is not enabled
after reset, and
must be enabled by
software to be
used.
Debug-interface
JTAG Test Data In.
0: PF3
Note that this function is enabled to
pin out of reset,
and has a built-in
pull up.
DBG_TDI
Debug-interface
JTAG Test Data
Out.
0: PF2
DBG_TDO
FRC_DCLK
Description
Note that this function is enabled to
pin out of reset.
0: PA0
1: PA1
6: PB11
7: PB12
4: PB11
5: PB12
6: PB13
7: PB14
FRC_DFRAME
0: PA1
5: PB11
6: PB12
7: PB13
FRC_DOUT
0: PF2
GPIO_EM4WU0
0: PD14
GPIO_EM4WU4
0: PB13
GPIO_EM4WU9
0: PC10
GPIO_EM4WU12
silabs.com | Smart. Connected. Energy-friendly.
8: PB13
9: PB14
10: PB15
16: PC11
21: PD13
22: PD14
23: PD15
15: PC10
8: PB15
13: PC10
14: PC11
19: PD13
8: PB14
9: PB15
14: PC10
15: PC11
24: PF0
25: PF1
26: PF2
27: PF3
20: PD14
21: PD15
22: PF0
23: PF1
24: PF2
25: PF3
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
Frame Controller,
Data Sniffer Clock.
30: PA0
31: PA1
31: PA0
Frame Controller,
Data Sniffer Frame
active
Frame Controller,
Data Sniffer Output.
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Pin can be used to
wake the system
up from EM4
Rev. 1.0 | 75
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
0: PA1
5: PB11
6: PB12
7: PB13
I2C0_SCL
I2C0_SDA
LETIM0_OUT0
0: PA0
1: PA1
6: PB11
7: PB12
0: PA0
1: PA1
6: PB11
7: PB12
0: PA1
5: PB11
6: PB12
7: PB13
LETIM0_OUT1
0: PA1
5: PB11
6: PB12
7: PB13
LEU0_RX
LEU0_TX
0: PA0
1: PA1
6: PB11
7: PB12
8 - 11
12 - 15
16 - 19
8: PB14
9: PB15
20: PD13
21: PD14
22: PD15
23: PF0
14: PC10
15: PC11
8: PB13
9: PB14
10: PB15
20 - 23
16: PC11
24 - 27
28 - 31
24: PF1
25: PF2
26: PF3
I2C0 Serial Clock
Line input / output.
31: PA0
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
I2C0 Serial Data input / output.
15: PC10
21: PD13
22: PD14
23: PD15
24: PF0
25: PF1
26: PF2
27: PF3
Low Energy Timer
LETIM0, output
channel 0.
14: PC10
15: PC11
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
14: PC10
15: PC11
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
15: PC10
8: PB13
9: PB14
10: PB15
16: PC11
8: PB14
9: PB15
8: PB14
9: PB15
8: PB13
9: PB14
10: PB15
16: PC11
21: PD13
22: PD14
23: PD15
15: PC10
31: PA0
31: PA0
LEUART0 Transmit
output. Also used
as receive input in
half duplex communication.
24: PF0
25: PF1
26: PF2
27: PF3
Low Frequency
Crystal (typically
32.768 kHz) negative pin. Also used
as an optional external clock input
pin.
LFXTAL_N
0: PB15
Low Frequency
Crystal (typically
32.768 kHz) positive pin.
LFXTAL_P
3: PB11
MODEM_ANT1
MODEM_DCLK
2: PB11
3: PB12
4: PB12
5: PB13
6: PB14
7: PB15
12: PC10
13: PC11
4: PB13
5: PB14
6: PB15
12: PC11
11: PC10
0: PA0
1: PA1
6: PB11
7: PB12
0: PA1
MODEM_DIN
Low Energy Timer
LETIM0, output
channel 1.
LEUART0 Receive
input.
0: PB14
MODEM_ANT0
Description
5: PB11
6: PB12
7: PB13
silabs.com | Smart. Connected. Energy-friendly.
8: PB13
9: PB14
10: PB15
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
17: PD13
18: PD14
19: PD15
20: PF0
21: PF1
22: PF2
23: PF3
16: PC11
15: PC10
21: PD13
22: PD14
23: PD15
14: PC10
15: PC11
20: PD13
21: PD14
22: PD15
23: PF0
8: PB14
9: PB15
24: PF3
29: PA0
30: PA1
28: PA0
29: PA1
24: PF0
25: PF1
26: PF2
27: PF3
MODEM antenna
control output 0,
used for antenna
diversity.
MODEM antenna
control output 1,
used for antenna
diversity.
MODEM data clock
out.
24: PF1
25: PF2
26: PF3
MODEM data in.
31: PA0
Rev. 1.0 | 76
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
MODEM_DOUT
PCNT0_S0IN
4-7
8 - 11
4: PB11
5: PB12
6: PB13
7: PB14
8: PB15
0: PA0
1: PA1
6: PB11
7: PB12
0: PA1
5: PB11
6: PB12
7: PB13
PCNT0_S1IN
PRS_CH0
PRS_CH1
12 - 15
16 - 19
20 - 23
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
13: PC10
14: PC11
8: PB13
9: PB14
10: PB15
16: PC11
15: PC10
21: PD13
22: PD14
23: PD15
14: PC10
15: PC11
20: PD13
21: PD14
22: PD15
23: PF0
8: PB14
9: PB15
0: PF0
1: PF1
2: PF2
3: PF3
12: PC10
13: PC11
0: PF1
1: PF2
2: PF3
0: PF3
12: PD13
13: PD14
14: PD15
5: PF0
6: PF1
7: PF2
6: PB11
7: PB12
0: PA1
5: PB11
6: PB12
7: PB13
PRS_CH7
8: PB13
9: PB14
10: PB15
8: PB14
9: PB15
10: PA0
PRS_CH8
8: PB15
9: PA0
10: PA1
PRS_CH9
4: PB12
5: PB13
6: PB14
7: PB15
8: PA0
9: PA1
silabs.com | Smart. Connected. Energy-friendly.
16: PD14
17: PD15
15: PD13
4: PB11
5: PB12
6: PB13
7: PB14
3: PB11
24: PF1
25: PF2
26: PF3
31: PA0
Pulse Counter
PCNT0 input number 1.
Peripheral Reflex
System PRS, channel 5.
3: PD13
PRS_CH6
Pulse Counter
PCNT0 input number 0.
Peripheral Reflex
System PRS, channel 4.
4: PD14
5: PD15
0: PA0
1: PA1
24: PF0
25: PF1
26: PF2
27: PF3
MODEM data out.
Peripheral Reflex
System PRS, channel 3.
4: PD13
5: PD14
6: PD15
PRS_CH5
30: PA0
31: PA1
Peripheral Reflex
System PRS, channel 2.
6: PF0
7: PF1
PRS_CH4
24: PF2
25: PF3
Description
Peripheral Reflex
System PRS, channel 1.
0: PF2
1: PF3
PRS_CH3
28 - 31
Peripheral Reflex
System PRS, channel 0.
7: PF0
PRS_CH2
24 - 27
Peripheral Reflex
System PRS, channel 6.
Peripheral Reflex
System PRS, channel 7.
Peripheral Reflex
System PRS, channel 8.
16: PC11
15: PC10
Peripheral Reflex
System PRS, channel 9.
Rev. 1.0 | 77
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
8 - 11
12 - 15
16 - 19
20 - 23
24 - 27
28 - 31
4: PC10
5: PC11
PRS_CH10
Peripheral Reflex
System PRS, channel 10.
4: PC11
Peripheral Reflex
System PRS, channel 11.
PRS_CH11
3: PC10
TIM0_CC0
0: PA0
1: PA1
6: PB11
7: PB12
0: PA1
5: PB11
6: PB12
7: PB13
TIM0_CC1
4: PB11
5: PB12
6: PB13
7: PB14
TIM0_CC2
TIM0_CDTI0
3: PB11
TIM0_CDTI1
TIM0_CDTI2
TIM1_CC0
2: PB11
3: PB12
1: PB11
2: PB12
3: PB13
TIM1_CC3
3: PB11
US0_CLK
14: PC10
15: PC11
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
24: PF2
25: PF3
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF3
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
20: PF0
21: PF1
22: PF2
23: PF3
28: PA0
29: PA1
11: PC10
17: PD13
18: PD14
19: PD15
20: PF1
21: PF2
22: PF3
28: PA1
10: PC10
11: PC11
16: PD13
17: PD14
18: PD15
19: PF0
8: PB14
9: PB15
8: PB15
13: PC10
14: PC11
4: PB14
5: PB15
4: PB11
5: PB12
6: PB13
7: PB14
8: PB13
9: PB14
10: PB15
silabs.com | Smart. Connected. Energy-friendly.
31: PA0
30: PA0
31: PA1
29: PA0
30: PA1
27: PA0
16: PC11
24: PF0
25: PF1
26: PF2
27: PF3
15: PC10
21: PD13
22: PD14
23: PD15
14: PC10
15: PC11
20: PD13
21: PD14
22: PD15
23: PF0
24: PF1
25: PF2
26: PF3
24: PF2
25: PF3
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
24: PF3
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
24: PF2
25: PF3
19: PD13
20: PD14
21: PD15
22: PF0
23: PF1
8: PB14
9: PB15
8: PB15
13: PC10
14: PC11
4: PB12
5: PB13
6: PB14
7: PB15
4: PB11
5: PB12
6: PB13
7: PB14
Timer 0 Capture
Compare input /
output channel 0.
15: PC10
12: PC11
5: PB11
6: PB12
7: PB13
24: PF0
25: PF1
26: PF2
27: PF3
21: PD13
22: PD14
23: PD15
4: PB13
5: PB14
6: PB15
0: PA1
TIM1_CC2
16: PC11
12: PC10
13: PC11
6: PB11
7: PB12
TIM1_CC1
8: PB13
9: PB14
10: PB15
4: PB12
5: PB13
6: PB14
7: PB15
0: PA0
1: PA1
Description
12: PC10
13: PC11
8: PB15
13: PC10
14: PC11
Timer 0 Capture
Compare input /
output channel 1.
Timer 0 Capture
Compare input /
output channel 2.
Timer 0 Complimentary Dead Time
Insertion channel 0.
Timer 0 Complimentary Dead Time
Insertion channel 1.
Timer 0 Complimentary Dead Time
Insertion channel 2.
Timer 1 Capture
Compare input /
output channel 0.
31: PA0
30: PA0
31: PA1
29: PA0
30: PA1
30: PA0
31: PA1
Timer 1 Capture
Compare input /
output channel 1.
Timer 1 Capture
Compare input /
output channel 2.
Timer 1 Capture
Compare input /
output channel 3.
USART0 clock input / output.
Rev. 1.0 | 78
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
Alternate
Functionality
LOCATION
0-3
4-7
12: PC10
13: PC11
3: PB11
4: PB12
5: PB13
6: PB14
7: PB15
4: PB13
5: PB14
6: PB15
12: PC11
US0_CS
US0_CTS
US0_RTS
2: PB11
3: PB12
1: PB11
2: PB12
3: PB13
US0_TX
12 - 15
16 - 19
20 - 23
18: PD13
19: PD14
20: PD15
21: PF0
22: PF1
23: PF2
20: PF0
21: PF1
22: PF2
23: PF3
28: PA0
29: PA1
11: PC10
17: PD13
18: PD14
19: PD15
20: PF1
21: PF2
22: PF3
28: PA1
10: PC10
11: PC11
16: PD13
17: PD14
18: PD15
19: PF0
4: PB14
5: PB15
0: PA1
5: PB11
6: PB12
7: PB13
US0_RX
8 - 11
0: PA0
1: PA1
6: PB11
7: PB12
silabs.com | Smart. Connected. Energy-friendly.
8: PB14
9: PB15
8: PB13
9: PB14
10: PB15
16: PC11
15: PC10
28 - 31
21: PD13
22: PD14
23: PD15
Description
24: PF3
29: PA0
30: PA1
27: PA0
20: PD13
21: PD14
22: PD15
23: PF0
14: PC10
15: PC11
24 - 27
USART0 Clear To
Send hardware
flow control input.
USART0 Request
To Send hardware
flow control output.
USART0 Asynchronous Receive.
24: PF1
25: PF2
26: PF3
31: PA0
24: PF0
25: PF1
26: PF2
27: PF3
USART0 chip select input / output.
USART0 Synchronous mode Master
Input / Slave Output (MISO).
USART0 Asynchronous Transmit. Also used as receive
input in half duplex
communication.
USART0 Synchronous mode Master
Output / Slave Input (MOSI).
Rev. 1.0 | 79
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
6.3 Analog Port (APORT)
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,
and DACs. The APORT consists of wires, switches, and control needed to configurably implement the routes. Please see the device
Reference Manual for a complete description.
PF0
PF2
PC10
BUSAX
BUSBY
PF1
PF3
PC11
BUSAY
BUSBX
PB14
PD14
PA0
PB12
BUSCX
BUSDY
PD13
PD15
PA1
PB11
PB13
PB15
BUSCY
BUSDX
1X1Y2X2Y3X3Y4X4Y
ACMP0
1X1Y2X2Y3X3Y4X4Y
ACMP1
1X1Y2X2Y3X3Y4X4Y
ADC0
1X1Y
IDAC0
Figure 6.2. EFR32MG1 APORT
Table 6.4. APORT Client Map
Analog Module
ACMP0
ACMP0
ACMP0
Analog Module Channel
APORT1XCH10
Shared Bus
BUSAX
Pin
PC10
APORT1XCH16
PF0
APORT1XCH18
PF2
APORT1YCH11
BUSAY
PC11
APORT1YCH17
PF1
APORT1YCH19
PF3
APORT2XCH11
BUSBX
PC11
APORT2XCH17
PF1
APORT2XCH19
PF3
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 80
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
Analog Module
ACMP0
ACMP0
ACMP0
ACMP0
ACMP0
ACMP1
ACMP1
ACMP1
ACMP1
Analog Module Channel
APORT2YCH10
Shared Bus
BUSBY
Pin
PC10
APORT2YCH16
PF0
APORT2YCH18
PF2
APORT3XCH6
BUSCX
PD14
APORT3XCH8
PA0
APORT3XCH28
PB12
APORT3XCH30
PB14
APORT3YCH5
BUSCY
PD13
APORT3YCH7
PD15
APORT3YCH9
PA1
APORT3YCH27
PB11
APORT3YCH29
PB13
APORT3YCH31
PB15
APORT4XCH5
BUSDX
PD13
APORT4XCH7
PD15
APORT4XCH9
PA1
APORT4XCH27
PB11
APORT4XCH29
PB13
APORT4XCH31
PB15
APORT4YCH6
BUSDY
PD14
APORT4YCH8
PA0
APORT4YCH28
PB12
APORT4YCH30
PB14
APORT1XCH10
BUSAX
PC10
APORT1XCH16
PF0
APORT1XCH18
PF2
APORT1YCH11
BUSAY
PC11
APORT1YCH17
PF1
APORT1YCH19
PF3
APORT2XCH11
BUSBX
PC11
APORT2XCH17
PF1
APORT2XCH19
PF3
APORT2YCH10
BUSBY
PC10
APORT2YCH16
PF0
APORT2YCH18
PF2
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 81
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
Analog Module
ACMP1
ACMP1
ACMP1
ACMP1
ADC0
ADC0
ADC0
ADC0
ADC0
Analog Module Channel
APORT3XCH6
Shared Bus
BUSCX
Pin
PD14
APORT3XCH8
PA0
APORT3XCH28
PB12
APORT3XCH30
PB14
APORT3YCH5
BUSCY
PD13
APORT3YCH7
PD15
APORT3YCH9
PA1
APORT3YCH27
PB11
APORT3YCH29
PB13
APORT3YCH31
PB15
APORT4XCH5
BUSDX
PD13
APORT4XCH7
PD15
APORT4XCH9
PA1
APORT4XCH27
PB11
APORT4XCH29
PB13
APORT4XCH31
PB15
APORT4YCH6
BUSDY
PD14
APORT4YCH8
PA0
APORT4YCH28
PB12
APORT4YCH30
PB14
APORT1XCH10
BUSAX
PC10
APORT1XCH16
PF0
APORT1XCH18
PF2
APORT1YCH11
BUSAY
PC11
APORT1YCH17
PF1
APORT1YCH19
PF3
APORT2XCH11
BUSBX
PC11
APORT2XCH17
PF1
APORT2XCH19
PF3
APORT2YCH10
BUSBY
PC10
APORT2YCH16
PF0
APORT2YCH18
PF2
APORT3XCH6
BUSCX
PD14
APORT3XCH8
PA0
APORT3XCH28
PB12
APORT3XCH30
PB14
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 82
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Pin Definitions
Analog Module
ADC0
ADC0
ADC0
IDAC0
IDAC0
Analog Module Channel
APORT3YCH5
Shared Bus
BUSCY
Pin
PD13
APORT3YCH7
PD15
APORT3YCH9
PA1
APORT3YCH27
PB11
APORT3YCH29
PB13
APORT3YCH31
PB15
APORT4XCH5
BUSDX
PD13
APORT4XCH7
PD15
APORT4XCH9
PA1
APORT4XCH27
PB11
APORT4XCH29
PB13
APORT4XCH31
PB15
APORT4YCH6
BUSDY
PD14
APORT4YCH8
PA0
APORT4YCH28
PB12
APORT4YCH30
PB14
APORT1XCH6
BUSCX
PD14
APORT1XCH8
PA0
APORT1XCH28
PB12
APORT1XCH30
PB14
APORT1YCH5
BUSCY
PD13
APORT1YCH7
PD15
APORT1YCH9
PA1
APORT1YCH27
PB11
APORT1YCH29
PB13
APORT1YCH31
PB15
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 83
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
QFN32 Package Specifications
7. QFN32 Package Specifications
7.1 QFN32 Package Dimensions
Figure 7.1. QFN32 Package Drawing
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 84
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
QFN32 Package Specifications
Table 7.1. QFN32 Package Dimensions
Dimension
Min
Typ
Max
A
0.80
0.85
0.90
A1
0.00
0.02
0.05
A3
0.20 REF
b
0.18
0.25
0.30
D/E
4.90
5.00
5.10
D2/E2
3.40
3.50
3.60
E
0.50 BSC
L
0.30
0.40
0.50
K
0.20
—
—
R
0.09
—
0.14
aaa
0.15
bbb
0.10
ccc
0.10
ddd
0.05
eee
0.08
fff
0.10
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 85
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
QFN32 Package Specifications
7.2 QFN32 PCB Land Pattern
Figure 7.2. QFN32 PCB Land Pattern Drawing
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 86
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
QFN32 Package Specifications
Table 7.2. QFN32 PCB Land Pattern Dimensions
Dimension
Typ
S1
4.01
S
4.01
L1
3.50
W1
3.50
e
0.50
W
0.26
L
0.86
Note:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm
minimum, all the way around the pad.
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
5. The stencil thickness should be 0.125 mm (5 mils).
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.
7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad.
8. A No-Clean, Type-3 solder paste is recommended.
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 87
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
QFN32 Package Specifications
7.3 QFN32 Package Marking
EFR32
PPPPPPPPP
YYWWTTTTTT
Figure 7.3. QFN32 Package Marking
The package marking consists of:
• PPPPPPPPP – The part number designation.
1. Family Code (B | M | F)
2. G (Gecko)
3. Series (1, 2,...)
4. Performance Grade (P | B | V)
5. Feature Code (1 to 7)
6. TRX Code (3 = TXRX | 2= RX | 1 = TX)
7. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band)
8. Flash (G = 256K | F = 128K | E = 64K | D = 32K)
9. Temperature Grade (G = -40 to 85 | I = -40 to 125)
• YY – The last 2 digits of the assembly year.
• WW – The 2-digit workweek when the device was assembled.
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 88
EFR32MG1 Mighty Gecko SoC with Integrated Serial Flash Data Sheet
Revision History
8. Revision History
8.1 Revision 1.0
2016-Jul-22
• Added -I temperature grade OPN's and associated sections
• Electrical Characteristics: Minimum and maximum value statement changed to cover full operating temperature range.
• Finalized Specification Tables. Tables with condition/min/typ/max or footnote changes include:
• Absolute Maximum Ratings
• General Operating Conditions
• DC-DC Converter
• Current Consumption Using Radio 3.3V with DC-DC
• RF Transmitter General Characteristics for 2.4 GHz Band
• RF Receiver General Characteristics for 2.4 GHz Band
• RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band
• RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
• RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band
• LFRCO
• HFRCO and AUXHFRCO
• Primary Flash Memory Characteristics
• GPIO
• ADC
• IDAC
• Updated Typical Performance Graphs.
• Added external ground note to 2G4RF_ION pin descriptions.
• Added note for 5V tolerance to pinout GPIO Overview sections.
• Updated OPN decoder with latest revision.
• Updated Package Marking text with latest descriptions.
8.2 Revision 0.95
2016-05-12
• All OPNs changed to rev C0. Note the following:
• All OPNs ending in -B0 are Engineering Samples based on an older revision of silicon and are being removed from the OPN
table. These older revisions should be used for evaluation only and will not be supported for production.
• OPNs ending in -C0 are the Current Revision of Silicon and are intended for production.
• Electrical specification tables updated with latest characterization data and production test limits.
8.3 Revision 0.2
2016-03-29
• Initial version.
silabs.com | Smart. Connected. Energy-friendly.
Rev. 1.0 | 89
Table of Contents
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1 Introduction.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 4
3.2 Radio. . . . . . . . . . . .
3.2.1 Antenna Interface . . . . . . .
3.2.2 Fractional-N Frequency Synthesizer.
3.2.3 Receiver Architecture. . . . . .
3.2.4 Transmitter Architecture . . . . .
3.2.5 Wake on Radio . . . . . . . .
3.2.6 RFSENSE . . . . . . . . .
3.2.7 Flexible Frame Handling. . . . .
3.2.8 Packet and State Trace . . . . .
3.2.9 Data Buffering . . . . . . . .
3.2.10 Radio Controller (RAC). . . . .
3.2.11 Random Number Generator . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3.3 Power . . . . . . . . . .
3.3.1 Energy Management Unit (EMU) .
3.3.2 DC-DC Converter . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 7
. 7
. 7
3.4 General Purpose Input/Output (GPIO).
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 7
3.5 Clocking . . . . . . . . . .
3.5.1 Clock Management Unit (CMU) .
3.5.2 Internal and External Oscillators .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 7
. 7
. 7
3.6 Counters/Timers and PWM . . . . . . . .
3.6.1 Timer/Counter (TIMER) . . . . . . . . .
3.6.2 Real Time Counter and Calendar (RTCC) . . .
3.6.3 Low Energy Timer (LETIMER). . . . . . .
3.6.4 Ultra Low Power Wake-up Timer (CRYOTIMER)
3.6.5 Pulse Counter (PCNT) . . . . . . . . .
3.6.6 Watchdog Timer (WDOG) . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8
8
8
8
8
8
8
3.7 Communications and Other Digital Peripherals . . . . . . . . .
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)
3.7.3 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . .
3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
8
8
8
9
9
3.8 Security Features. . . . . . . . . . . . . . .
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check) .
3.8.2 Crypto Accelerator (CRYPTO). . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
. 9
. 9
3.9 Analog . . . . . . . . . . . . .
3.9.1 Analog Port (APORT) . . . . . . .
3.9.2 Analog Comparator (ACMP) . . . . .
3.9.3 Analog to Digital Converter (ADC) . . .
3.9.4 Digital to Analog Current Converter (IDAC)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. 9
. 9
. 9
. 9
.10
Table of Contents
90
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4
4
5
5
5
5
5
6
6
6
6
6
3.10 Reset Management Unit (RMU)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
3.11 Core and Memory . . . . . . . . . . .
3.11.1 Processor Core . . . . . . . . . . .
3.11.2 Serial Flash . . . . . . . . . . . .
3.11.3 Memory System Controller (MSC) . . . . .
3.11.4 Linked Direct Memory Access Controller (LDMA)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.10
.10
.10
.10
.10
3.12 Memory Map .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.11
3.13 Configuration Summary .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.12
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .
13
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .
4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . .
4.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . .
4.1.2.1 General Operating Conditions . . . . . . . . . . . . . . . . . .
4.1.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . .
4.1.4 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . .
4.1.5 Current Consumption. . . . . . . . . . . . . . . . . . . . . .
4.1.5.1 Current Consumption 3.3 V without DC-DC Converter . . . . . . . . . .
4.1.5.2 Current Consumption 3.3 V using DC-DC Converter . . . . . . . . . .
4.1.5.3 Current Consumption Using Radio . . . . . . . . . . . . . . . .
4.1.6 Wake up times . . . . . . . . . . . . . . . . . . . . . . . .
4.1.7 Brown Out Detector . . . . . . . . . . . . . . . . . . . . . .
4.1.8 Frequency Synthesizer Characteristics . . . . . . . . . . . . . . . .
4.1.9 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . .
4.1.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band . . . . . . .
4.1.9.2 RF Receiver General Characteristics for the 2.4 GHz Band . . . . . . . .
4.1.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band . . . .
4.1.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band. . . . .
4.1.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band .
4.1.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band. .
4.1.10 Modem Features . . . . . . . . . . . . . . . . . . . . . . .
4.1.11 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.11.1 LFXO . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.11.2 HFXO . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.11.3 LFRCO . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.11.4 HFRCO and AUXHFRCO . . . . . . . . . . . . . . . . . . .
4.1.11.5 ULFRCO . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.12 Primary Flash Memory Characteristics . . . . . . . . . . . . . . .
4.1.13 Serial Flash Memory Characteristics . . . . . . . . . . . . . . . .
4.1.14 GPIO. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.15 VMON . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.16 ADC . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.17 IDAC . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.18 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . .
4.1.19 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.20 USART SPI . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.13
.14
.15
.15
.16
.17
.19
.19
.20
.21
.22
.22
.23
.24
.24
.25
.26
.28
.30
.33
.34
.35
.35
.36
.36
.37
.37
.38
.38
.39
.40
.41
.44
.46
.48
.50
4.2 Typical Performance Curves .
4.2.1 Supply Current . . . . .
4.2.2 DC-DC Converter . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.51
.52
.54
Table of Contents
91
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
4.2.3 Internal Oscillators.
4.2.4 2.4 GHz Radio . .
.
.
.56
.62
5. Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . .
64
5.1 Power
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.64
5.2 RF Matching Networks .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.65
5.3 Other Connections .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.65
6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
.
6.1 EFR32MG1 QFN32 2.4 GHz Definition . . .
6.1.1 EFR32MG1 QFN32 2.4 GHz GPIO Overview
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.66
.73
6.2 Alternate Functionality Pinout
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.74
6.3 Analog Port (APORT) .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.80
7. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . .
84
.
.
7.1 QFN32 Package Dimensions .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.84
7.2 QFN32 PCB Land Pattern .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.86
7.3 QFN32 Package Marking .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.88
8. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
89
8.1 Revision 1.0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.89
8.2 Revision 0.95 .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.89
8.3 Revision 0.2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.89
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
90
Table of Contents
92
.
Simplicity Studio
One-click access to MCU and
wireless tools, documentation,
software, source code libraries &
more. Available for Windows,
Mac and Linux!
IoT Portfolio
www.silabs.com/IoT
SW/HW
www.silabs.com/simplicity
Quality
www.silabs.com/quality
Support and Community
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand
names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com
Similar pages