STMicroelectronics AN4511 Common mode filter Datasheet

AN4511
Application note
Common mode filters
Introduction
In our connected world, data exchange very fast and their content is shown in a large screen
with high-definition capabilities. These features include high-speed serial links, working in
different modes and increasing data rate. However, fast transition times and long lines may
induce radiations due to common mode noise. In order to avoid these issues, the most
efficient device to use is a common mode filter. In this article, the basic parameters of this
device and its benefits are described.
July 2014
DocID026455 Rev 1
1/21
www.st.com
Contents
AN4511
Contents
1
Single-ended and differential links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Risks of EMI on differential links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Common mode filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
The main parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5
Benefits of the common mode filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.1
Effect on skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2
Effect on the radiated noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6
Specific benefits of ECMF series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/21
DocID026455 Rev 1
AN4511
1
Single-ended and differential links
Single-ended and differential links
Single-ended configuration is dedicated to frequencies lower than 300 MHz. For higher data
rates, differential signaling is preferred. One advantage of this method is that the return
current to ground is near zero and there isn’t any ground bounce issue (Figure 1).
Figure 1. Differential signaling
The ideal differential link presents two tracks with tightly-controlled impedance, same length
and perfect symmetry. Radiation, from low to high transition on a track, is canceled by the
radiation from high to low transition on the other track. Therefore, the ideal differential link
does not radiate.
DocID026455 Rev 1
3/21
21
Risks of EMI on differential links
2
AN4511
Risks of EMI on differential links
Flex connectors, like processors or camera, are quite used. Figure 2 presents an extreme
case.
Figure 2. Example of skew between interior and exterior traces on a flex
Flex connector is shielded and the link radiates and generates a large amount of noise,
which causes antenna desense on the mobile handset limiting drastically the receiver
sensitivity (Figure 3).
Figure 3. Radiations induced by skew on a differential link
The most efficient way to cancel this noise is to insert a filter to suppress it. This filter is
called: common mode filter (Figure 4).
4/21
DocID026455 Rev 1
AN4511
Risks of EMI on differential links
Figure 4. Common mode filter on a differential link
DocID026455 Rev 1
5/21
21
Common mode filters
3
AN4511
Common mode filters
The common mode filter is based on two coupled inductors (Figure 5).
Figure 5. Symbol of the common mode filter
The couple coefficient is called k. If L1 and L2 are two inductance values and M the mutual
inductance, the following equation is given:
Equation 1
M
k = ---------------------L 1 × L2
If I1 and I2 are the currents flowing to each inductor, and R1 and R2 their DC resistance,
their impedances are as follows:
Equation 2
I2
Z 1 = R 1 + jωL 1 + jωM × ---I1
and
Equation 3
I1
Z 2 = R 2 + jωL 2 + jωM × ---I2
assuming that L1 ≈ L2=L and k ≈ 1:
Equation 4
M = k × L1 × L 2
6/21
DocID026455 Rev 1
AN4511
Common mode filters
so
Equation 5
M = L
in differential mode, I2 = -I1
Equation 6
Z1 = R 1 + jω ( ( L 1 – M ) ≈ R 1 )
and
Equation 7
Z2 = R 2 + jω ( ( L 2 – M ) ≈ R 2 )
The filter presents a low resistive impedance equal to DC resistance of inductances
therefore a low attenuation of the high-speed differential signal (see Figure 6).
In common mode I2 = I1, therefore
Equation 8
Z 1 = R1 + jω ( L 1 + M ) = R 1 + jω × 2L
and
Equation 9
Z 2 = R2 + jω ( L 2 + M ) = R 2 + jω × 2L
The filter presents a high inductive impedance, therefore a high rejection of the common
mode noise (see Figure 6).
DocID026455 Rev 1
7/21
21
Common mode filters
AN4511
Figure 6. Common mode and differential mode in CMF
8/21
DocID026455 Rev 1
AN4511
4
The main parameters
The main parameters
This section shows how to measure the common mode and the differential mode
impedance, see Figure 7. The equipment can be an impedance meter such as the E4991A
from Agilent technology, working up to 3 GHz.
Figure 7. Differential and common mode impedance measurement
Figure 8 shows the variation of impedance versus frequency. Differential impedance at low
frequency represents the sum of inductance resistances of the filter.
Figure 8. Typical common mode and differential mode impedance vs. frequency
(ECMF04-4HSM10)
However, CMF can be chosen by using insertion losses. Two main parameters are defined:
•
SCC21 common mode rejection, the filter efficiency cuts the unwanted noise in a
specific frequency range
•
SDD21 defines the differential bandwidth of the filter, the filter ability to drive the main
signal without distortion
DocID026455 Rev 1
9/21
21
The main parameters
AN4511
Two other parameters, defining the differential return losses of the filter are below indicated:
•
SDD11 and SDD22
These four characteristics, called mixed-mode S parameters, are calculated by S parameter
results of four-port measurements (see Figure 9).
Figure 9. CMF four-port measurements
Equations are below indicated:
•
SCC21=0.5 x (S21+S23+S41+S43)
•
SDD21=0.5 x (S21+S23+S41+S43)
•
SDD11=0.5 x (S11+S31+S13+S33)
•
SDD22=0.5 x (S22+S42+S24+S44)
Figure 10 shows the typical common mode rejection versus ECMF04-4HSM10 frequency.
In this curve, t the maximum rejection level of -32 dB is achieved at 900 MHz which is a
critical area in mobile applications.
Figure 10. Typical common mode rejection vs. frequency (ECMF04-4HSM10)
Other filters can be chosen according to the application. Figure 11 shows SCC21 response of
the device with USB3.0 filtering. The rejection range is wider, and a specific rejection point
at 5 GHz of -20 dB is implemented to eliminate this unwanted harmonic, which can disturb
some systems.
10/21
DocID026455 Rev 1
AN4511
The main parameters
Figure 11. Typical common mode rejection response of ECFM02-2HSMX6 (USB3.0
dedicated device)
To keep the integrity of the differential signal, SDD21 parameter has to be considered. The
lower the attenuation, the better the bandwidth. This parameter is measured at -3dB (see
Figure 12).
Figure 12. Typical differential mode attenuation (ECMF04-4HSM10)
The right filter bandwidth has to be chosen, therefore the filter should pass the eye diagram
template of the standard. Figure 13 shows the eye diagram of a device dedicated to HDMI
filtering application. This device works up to 3.35 Gbps.
DocID026455 Rev 1
11/21
21
The main parameters
AN4511
Figure 13. ECMF04-4HSM10 HDMI eye diagram compliance
Some standards also specify the minimum return losses on the link, and CMF has to comply
with these limits. Figure 14 shows an example of these values for MIPI D-PHY standard,
coming from the interconnection specification.
Figure 14. SDD11 and SDD22 characteristics of ECMF04-4HSM10 vs. MIPI D-PHY
standard
12/21
DocID026455 Rev 1
AN4511
5
Benefits of the common mode filter
Benefits of the common mode filter
The improvement given by the common mode filter is shown by two examples:
1.
The skew brought by two different trace lengths
2.
Radiated noise on a USB-MHL cable
Another example is described in AN4356.
5.1
Effect on skew
Figure 15 shows the used simulation schematic. MHL link is built at 2.25 Gbps.
Figure 15. Skew simulation schematic
The common mode noise levels are compared when the two lines have the same length
and when there is a difference of two millimeters, 10% difference. The common mode noise
is not equal to zero (Figure 16).
Figure 16. Common mode noise with and without skew
The spectral content of the common mode signal is shown in Figure 17. This figure shows
the more polluting frequencies. In this case filtering is necessary.
DocID026455 Rev 1
13/21
21
Benefits of the common mode filter
AN4511
Figure 17. Spectral content of the common mode signal with skew
In the ECMF02-3HSM6 a link can be inserted, a common mode filter dedicated to MHL link
(Figure 18). Its S parameter represents the device.
Figure 18. Skew simulation schematic with ECMF02-3HSM6 common mode filter
The spectral content of the common mode signal on the filter output can be observed. Noise
level decreases drastically up to 20 dB (Figure 19).
14/21
DocID026455 Rev 1
AN4511
Benefits of the common mode filter
Figure 19. Improvement on the noise level due to ECMF02-3HSM6
5.2
Effect on the radiated noise
To establish CMF effect of the radiated noise, a phone is placed into an anechoic chamber.
To avoid measuring unwanted frequencies, the phone is in a shielded box.
The ECMF02-3HSM6 is inserted on USB connector output. A one-meter MHL cable is
connected from MHL to HDMI converter, which is connected to a TV set outside the
chamber.
The phone plays a video. To get the noise, an antenna connected to a spectrum analyzer is
placed 3 m far from the system (Figure 20 and Figure 21).
Figure 20. Radiated noise test setting (anechoic chamber view)
DocID026455 Rev 1
15/21
21
Benefits of the common mode filter
AN4511
Figure 21. Radiated noise test conditions
Figure 22 shows the spectral density measured with and without filtering. The noise level is
drastically reduced, especially in the range where the filter gets its better rejection, from 700
MHz to 900 MHz.
Figure 22. Noise measurement with and without filtering
16/21
DocID026455 Rev 1
AN4511
6
Specific benefits of ECMF series
Specific benefits of ECMF series
The ECMF series integrates ESD protection clamping the surges up to acceptable levels
thanks to sensitive digital circuits (Figure 23), improving system quality and reliability.
Figure 23. ECMF with integrated ESD protection
Figure 24 shows a typical TLP characteristic. If a +8 kV ESD surge (IEC61000-4-2
standard) is applied to the device, only 16 V are measured on the output after 30 ns. This
value is also measured on the application environment, see Figure 25.
Figure 24. ECMF02-2HSLMX6 TLP characteristic
DocID026455 Rev 1
17/21
21
Specific benefits of ECMF series
AN4511
Figure 25. ECMF02-2HSLMX6 +8 kV contact (IEC61000-4-2) ESD clamping
Varistor solutions do not provide a protection level, even on clamping voltage and
robustness against repetitive strikes. The difference is very important in low capacitance
devices for high-speed links at low ESD strike, here +1 kV (Figure 26).
Figure 26. Varistor and ECMF clamping comparison
18/21
DocID026455 Rev 1
AN4511
7
Conclusion
Conclusion
The common mode filter is the best solution to avoid issues like common mode noise
induced by radiated or conducted RF or skew between tracks. It allows a system to improve
its EMI robustness.
This application note helps the user to choose the filter with more accuracy, fitting it to his
needs, the equipment and the standards used.
The wide range of filters offered by STMicroelectronics covers many applications (MIPI,
HDMI, MHL, USB.) and includes internal ESD protection allowing the equipment to be more
robust against external disturbances.
DocID026455 Rev 1
19/21
21
Revision history
8
AN4511
Revision history
Table 1. Document revision history
20/21
Date
Revision
29-Jul-2014
1
Changes
Initial release.
DocID026455 Rev 1
AN4511
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2014 STMicroelectronics – All rights reserved
DocID026455 Rev 1
21/21
21
Similar pages