FEDL9478C-01 Issue Date: Apr. 25, 2012 ML9478C Static, 1/2 Duty, 1/3 Duty, 1/4 Duty 80 Outputs LCD Driver GENERAL DESCRIPTION The ML9478C is an LCD driver LSI, consists of a 80-bit shift register, a 320-bit data latch, 80 sets of LCD drivers, and a common signal generation circuit. It can directly drive an LCD up to 80 segments for static display, 160 segments for 1/2-duty display, 240 segments for 1/3-duty display, and 320 segments for 1/4-duty display. The three-wire serial interface and I2C interface are selectable. FEATURES Logic power supply voltage : 2.7 to 5.5 V LCD drive power supply voltage : 4.5 to 5.5 V Maximum number of segments Static display : 80 segments 1/2-duty display : 160 segments 1/3-duty display : 240 segments 1/4-duty display : 320 segments Interface with microcomputer : Serial interface : DATA, CLOCK, LOAD CLOCK transfer speed up to 1 MHz : SDA, SCL, SDAACK I2C interface SCL transfer speed up to 400 kHz Built-in CR oscillator circuit using the internal resistor or External resistor Cascade connectable (up to sixteen chips) Built-in common signal generation circuit Built-in common output intermediate-value voltage generation circuit Built-in POC (Power On Clear) circuit Gold bump chip (ML9478CDVWA) 1/31 FEDL9478C-01 ML9478C BLOCK DIAGRAM SEG1 SEG80 VLCD BIAS 80-Dot Segment Driver Bias Resi. 80-Ch Data Selector Duty0 Duty1 M/S 80 80 80 80 80-Bit Latch4 80-Bit Latch3 80-Bit Latch2 80-Bit Latch1 LATCH SELECTOR 80 I2C LOAD DATA(SDA) CLOCK(SCL) Command Decoder 80-bit Shift Register SDAACK SA1 SA0 A1 A0 OSC I/E OSC1 OSCR OSC2 COM1 OSC TIMING GENERATOR COMMON Driver COM2 COM3 COM4 CKO SYNCB POCEB RESETB POC Circuit TEST1 TEST2 VDD GND 2/31 FEDL9478C-01 ML9478C ABSOLUTE MAXIMUM RATINGS Item Logic power supply voltage LCD drive power supply voltage Input voltage Output short-circuit current Chip temperature Storage temperature Symbol VDD VLCD VI Is Tc TSTG Condition Ta = 25°C Ta = 25°C Ta = 25°C Ta = 25°C — — Rating -0.3 to 6.0 -0.3 to 6.0 – 0.3 to VDD + 0.3 -2.0 to +2.0 125 -55 to +150 Unit V V V mA °C °C Note: Do not use the ML9478C by short-circuiting one output pin to another output pin as well as to other pin (input pin, input/output pin, or power supply pin). RECOMMENDED OPERATION CONDITIONS Item Logic power supply voltage LCD drive power supply voltage OSC IN clock frequency Data clock frequency SCL clock frequency Operating temperature Symbol Condition Range Unit VDD* VLCD* fCP1 fCP2 fSCL Ta — — — — — — 2.7 to 5.5 4.5 to 5.5 up to 10 up to 1.0 up to 400 -40 to +105 V V kHz MHz kHz °C Note(*): Use at VDD VLCD. The relation between OSC IN clock frequency and frame frequency is as the equation below. fFRM = fOSC /24 Recommended setting range for external component (oscillator circuit) Item Oscillation resistor Frame frequency (VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta= –40 to +105°C) Min TYP Max Unit Symbol Condition Rf — 423 470 517 kΩ fFRM (F1,F0)=(0,1) 47 75 114 Hz The relation between oscillation resistor and frame frequency is as the equation below. fFRM = fOSC /(16 x 24) fosc = 1 / (Device coefficient x External resistor Rf) Device coefficient = 73.8 x 10-12 ± 25% 3/31 FEDL9478C-01 ML9478C ELECTRICAL CHARACTERISTICS DC Characteristics Item "H" input voltage "L" input voltage Input leakage current 1 Symbol VIH VIL IL1 Input leakage current 2 IL2 Pull-up current Ipu "H" output voltage "L" output voltage 1 "L" output voltage 2 Driver ON resistor VOH VOL1 VOL2 (VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta= -40 to +105°C) Condition Min. Typ. Max. Unit Applicable pin — 0.8VDD — VDD V (*1) — GND — 0.2VDD V (*1) VI = VDD or 0 V -1.0 — 1.0 μA (*1) VI = VDD or 0V -1.0 — 1.0 μA RESETB POCEB="H" VDD = 5.0V,VI = 0 V 30 — 140 μA RESETB POCEB = "L" IO = -600uA 0.9VDD — — V CKO, SYNCB IO = 600uA — — 0.1VDD V CKO, SYNCB IO = 600uA — — 0.1VDD V SDAACK Segment VOHS VLCD = 5V — 5 15 kΩ SEG1 to SEG80 Common VOHC VLCD = 5V — 5 12 kΩ COM 1 to COM4 (*1) : DATA(SDA), CLOCK(SCL), LOAD, M/S, SYNCB, Duty1, Duty0, BIAS, SA1,SA0, A1, A0, OSC1, OSC I/E, I2C, POCEB Item Static supply current Dynamic supply current 1 Dynamic supply current 2 Dynamic supply current 3 Dynamic supply current 4 (VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta= -40 to +105°C) Applicable Min. Typ. Max. Unit pin Symbol Condition IDDS VDD=VLCD=5.5 V Input pin fixed to "H" or "L" Oscillation stopped, output no-load POCEB="L" VDD=VLCD= 5.5 V (*2)(*3) (*6) Clock OSC1 external input (*7) fCP1=1.8kHz — 8 15 μA VDD — 9 15 μA VLCD — 10 18 μA VDD — 9 15 μA VLCD (*6) — 61 90 μA VDD (*7) — 9 15 μA VLCD — 130 250 μA VDD — 9 15 μA VLCD — 202 330 μA VDD — 9 15 μA VLCD ILCDS IDD1 ILCD1 IDD2 ILCD2 IDD3 ILCD3 IDD4 ILCD4 VDD=VLCD= 5.5 V (*2)(*3) Internal oscillation VDD=VLCD= 5.5 V (*2)(*4)(*6) Internal oscillation At three-wire serial IF data input VDD=VLCD= 5.5 V (*2)(*5)(*6) Internal oscillation 2 At I C IF data input (*2) : M/S = "H", 1/4-duty, 1/3-bias, (F1,F0) = (1,1) 95 Hz, POCEB = "L", output pin no-load. (*3) : Three-wire serial or I2C interface. Input pin fixed to "H" or "L". (*4) : Serial interface, data input frequency = 1 MHz. (*5) : I2C interface, data input frequency = 400 kHz. (*6) : Alternately inputs "0" and "1" for LCD display data (checkered display). (*7) : Inputs all "1s" for LCD display data (all illuminated). 4/31 FEDL9478C-01 ML9478C Switching Characteristics OSC timing Item OSC IN clock frequency (external input) Clock pulse width (External input) Clock rise and fall time (external input) (VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta = -40 to +105°C) Condition Min. Typ. Max. Unit Applicable pin Symbol fCP1 tWCP1 Clock input from OSC1. OSC2 and OSCR open. OSC I/E = "L" tOSC External Rf clock frequency (Internal oscillation) fOSC1 Internal clock frequency (Internal oscillation) fOSC2 Between OSC1 and OSC2 Rf = 470kΩ (F1,F0)=(0,1) OSCR open. OSC I/E = "H" OSC1 open. (F1,F0)=(0,1) OSC2 and OSCR short-circuited. OSC I/E = "H" — 1.8 10 kHz OSC1 40 — — μs OSC1 — — (*1) μs OSC1 18 28.8 44 kHz OSC1, OSC2 18 28.8 44 kHz OSC1, OSCR, OSC2 The relation between OSC IN clock frequency and frame frequency is as the equation below. fFRM = fOSC /24 (*1) tOSC is a reference value. The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value. Make the rise as steep as possible. Reference value: max=2μs. Serial interface timing Item Data clock frequency Data clock pulse width Data setup time Data hold time CLOCK-LOAD timing LOAD-CLOCK timing LOAD pulse width Symbol fCP2 tWCP2 tSU tHD tCL tLC tWLD Signal rise and fall time tsr,tsf (VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta = -40 to +105°C) Condition Min. Typ. Max. Unit Applicable pin — — 1 MHz CLOCK 100 — — ns CLOCK 50 — — ns DATA 50 — — ns CLOCK 100 — — ns CLOCK 100 — — ns LOAD 100 — — ns LOAD CLOCK,DATA, — — (*2) ns LOAD (*2) tsr and tsf shall be reference values. The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value. Make the rise as steep as possible. Reference value: max=10ns. 5/31 FEDL9478C-01 ML9478C I2C interface timing Item SCL clock frequency Hold time (repeat) "STATRT" condition SCL "L" pulse width SCL "H" pulse width Setup time for repeat "START" condition Data hold time Data setup time Setup time for "STOP" condition Bus free time between "STOP" condition and "START" condition Data valid acknowledge time Signal rise and fall time Data bus load capacitance Noise pulse width tolerance Symbol fSCL (VDD = 2.7 to 5.5 V, VLCD = 4.5 to 5.5 V, Ta = -40 to +105°C) Condition Min. Typ. Max. Unit Applicable pin — — 400 kHz SCL tHD,STA 0.6 — — μs SCL,SDA tLOW tHIGH 1.3 0.6 — — — — μs μs SCL SCL tSU,STA 0.6 — — μs SCL,SDA tHD,DAT tSU,DAT 0 200 — — — — ns ns SCL,SDA SCL,SDA tSU,STO 0.6 — — μs SCL,SDA tBUF 1.3 — — μs SCL tVD,ACK — — 1.2 μs SCL,SDAAACK tir,tif — — (*3) μs SCL,SDA Cb — — 400 pF SDA,SDAACK twf — — 50 ns SCL,SDA (*3) tir and tif shall be reference values. The longer the clock rise and fall time, the more susceptible to extraneous noises around the threshold value. Make the rise as steep as possible. Reference value: max=0.1μs. 6/31 FEDL9478C-01 ML9478C Timing chart (OSC1) 1/fCP1 tWCP1 VIH OSC1 (External clock) tWCP1 VIH V IH V IL V IL tOSC Timing chart (Serial interface) VIH DATA V IH VIL VIL tSU tsf tWCP2 tsr VIH VIH V IL V IL V IL tHD tWCP2 CLOCK VIH V IH V IL V IH VIH V IL V IL VIL 1/f CP2 tCL tWLD tsr t LC tsf V IH VIH LOAD V IL V IL tsr tsf Timing chart (I2C interface) tVD;ACK VIH VIH SDA VIH VIL VIL tBUF VIH VIH SCL tHD;STA VIL tf tLOW VIH VIL VIL VIH VIL tHiGH tHD;DAT tr VIH VIH VIL VIL tSU;DAT VIH SDA tSU;STA VIL tSU;STO 7/31 FEDL9478C-01 ML9478C REFERENCE DATA Frame frequency Characteristics VDD=5.5V/2.7V Rf=470Ω Frame frequency fFRM = fOSC /(16 x 24) fosc = 1 / (Device coefficient x External resistor Rf) Device coefficient = 73.8 x 10-12 ± 25% Frame frequency Characteristics Rf=470k,VDD=5.5V 120 Frame Frequency fFRM[Hz] 110 (F1,F0)=(1,1) 100 (F1,F0)=(1,0) 90 (F1,F0)=(0,1) 80 (F1,F0)=(0,0) 70 60 50 -60 -40 -20 0 20 40 60 80 100 120 Temp Ta[℃] Frame frequency Characteristics Rf=470k,VDD=2.7V 130 120 Frame Frequency fFRM[Hz] (F1,F0)=(1,1) 110 (F1,F0)=(1,0) 100 90 (F1,F0)=(0,1) 80 (F1,F0)=(0,0) 70 60 50 -60 -40 -20 0 20 40 60 80 100 120 Temp Ta[℃] 8/31 FEDL9478C-01 ML9478C POWER ON/OFF TIMING To turn on the power supply, raise the logic power supply first, then LCD drive power supply in order to prevent the IC from malfunctioning. To fall the power supply, fall the LCD drive power supply first, then the logic power supply. For a VDD pin ranging from 0 V to VDDmin, set VDD ≥ VLCD and t1 ≥ 0 [ns]. To enable the Internal POC circuit, the VDD power supply rise time t2 range needs to be 100 [µs] t2 500 [ms]. For the VDD power supply to turn OFF then turn ON again, it is necessary to secure the POC discharge time t3 100 [ms]. Voltage VLCD VDD VDD 0.9VDD t3 t1 t2 t1 Time INITIALIZATION SIGNAL TIMING When RESETB signal is externally input The RESETB pin input is valid both for POCEB = "L" and "H". Usable in combination with the POC. Keep the RESETB pin at "L" level until the VDD reaches VDDmin. (t4 ≥ 200[ns]) VDD VDDmin RESETB VIL t4 When Internal POC circuit is used When using the Internal POC circuit in the initialization, set the POCEB pin to "L". At this time, the power ON/OFF timing conditions are t1 to t3 above mentioned. When RESETB pin POC circuit is used If the power ON/OFF timing conditions t1 to t3 cannot be kept, the RESETB pin needs to have a capacitance to configure the POC circuit. For this case, connect a capacitance value according to the power supply rise time. For the power supply rise time t2 and external capacitance value, use the following formula as a guide: CRST [F] > t2 [sec]/(30×103) 9/31 FEDL9478C-01 ML9478C PIN DESCRIPTIONS Pad number Symbol I/O 67-68 M/S I 6-7 4-5 Duty0 Duty1 *1 I 73-74 BIAS I 14-15 12-13 10-11 8-9 SA1 SA0 A1 A0 71-72 OSC I/E Description This is the input to switch between the master and slave modes. It has a schmitt circuit. When this pin is "H", the mode is master. When this pin is "L", the mode is slave. Display duty switch pins. These have schmitt circuits. Duty0="L", Duty1="L" : Static (COM1=COM2=COM3=COM4) Duty0="H", Duty1="L" : 1/2Duty (COM1=COM3, COM2=COM4) Duty0="L", Duty1="H" : 1/3Duty (COM2=COM4) Duty0="H", Duty1="H" : 1/4Duty This pin sets the LCD bias. It has a schmitt circuit. BIAS="L": 1/3bias BIAS="H": 1/2bias I Slave address input pins. These have schmitt circuits. I Sub address input pins. These have schmitt circuits. I This input selects whether to use the external clock input mode or to use the Internal oscillation mode or external oscillation mode. It has a schmitt circuit. When this pin is "H", the mode is the Internal or external Rf oscillation mode. When this pin is "L", the mode is the external clock input mode. Use the slave chip as it is connected to GND. 46-48 53-55 49-52 OSC1, OSCR, OSC2 *2 I I O 56-56 CKO O These pins are for the oscillator circuit to generate common signals. The OSC1 and OSCR pins are input pins and have a schmitt circuit. OSC2 is an output pin. It becomes an output when the OSC I/E pin = "H" and a high impedance when the OSC I/E pin = "L". 【In the master mode (M/S pin ="H") 】 Three types are selectable: Internal oscillation mode, external oscillation mode, and external clock input mode. •Internal oscillation mode: Set the OSC I/E pin to "H", short the OSCR and OSC2 pins, and open the OSC1 pin. •External Rf oscillation mode: Set the OSC I/E pin to "H", connect an oscillation resistor Rf between the OSC1 and OSC2 pins, and open the OSCR pin. •External clock input mode: Set the OSC I/E pin to "L", open the OSCR and OSC2 pins, and input the external clock to the OSC1 pin. 【 In the slave mode (M/S pin ="L") 】 Open the OSCR and OSC2 pins and connect the OSC1 pin to the ML9478C's CKO pin that has been set to the master mode. Clock output pin. In the master mode (M/S pin = "H"), the 1/16 division signal of the oscillation frequency is output. In the slave mode (M/S pin = "L"), the output is fixed to "L". For a cascade connection, connect this pin to the OSC1 pin of the chip that has been set to the slave mode. 10/31 FEDL9478C-01 ML9478C 60-63 SYNCB I/O 65-66 I2C I 20-21 DATA (SDA) I 22-23 CLOCK (SCL) I 24-25 LOAD I 17-19 SDAACK O 69-70 POCEB I 44-45 RESETB *3 I Input/output pin for common synchronization. It has a schmitt circuit. It becomes the synchronization signal output pin in the master mode (M/S pin = "H"). It becomes the synchronization signal input pin in the slave mode (M/S pin = "L"). For cascade connection, connect all of the involved ML9478Cs' SYNC pins by the common line. Interface switching pin. It has a schmitt circuit. 2 When this pin is "H", the interface is I C. When this pin is "L", the interface is three-wire serial. Display data input pin. It has a schmitt circuit. I2C="L": Serial interface; DATA Input the display data in the order of SEG80, SEG79, ... , SEG2, and SEG1. The display data turns on at "H" and turns off at "L". 2 I2C="H": I C interface; SDA Input the display data in units of 8 bits. The display data turns on at "H" and turns off at "L". This pin has a built-in noise filter through which noises in widths up to 50 ns are removed. This noise filter is valid only when I2C = "H". Shift clock input pin for display data. It has a schmitt circuit. I2C="L": Serial interface; CLOCK The display data input to the DATA pin is serially input to the shift register at the CLOCK signal rise. 2 I2C="H": I C interface; SCL The display data input to the SDA pin is serially input to the shift register at the SCL signal rise. This pin has a built-in noise filter through which noises in widths up to 50 ns are removed. This noise filter is valid only when I2C = "H". Input pin for the load signal of display data. It has a schmitt circuit. I2C="L": Serial interface; LOAD The display data in the shift register is transmitted as is to the segment driver for the "H" duration. When this pin is brought into "L", the shift register is disconnected from the segment driver. The display data in the shift register immediately before it become "L" is held in the data latch and transmitted to the segment driver. 2 I2C="H": I C interface Use this pin as it is connected to GND. I2C="L": Serial interface Use this pin as it is opened. 2 I2C="H": I C interface 2 The I C bus acknowledge output signal. Normally, use it as it is connected with the SDA pin. Connect an external pull-up resistor whenever necessary, as it is an open drain pin. The pull-up connection destination supply voltage shall be the VDD supply voltage or less. Internal POC circuit enable pin. It has a schmitt circuit. When this pin is "H", the POC circuit becomes OFF and the constant current (8µA) is cut. The RESETB pin pull-up resistor is cut as well. When this pin is "L", the POC circuit becomes ON. The RESETB pin is connected to a pull-up resistor. Reset signal input pin for initializing inside the IC. It has a schmitt circuit. The "L" level enables the reset. This pin has an Internal pull-up resistor. Open when POCEB = "H". Pull-up when POCEB = "L". The power-on reset operation is available by connecting an external capacitor. 11/31 FEDL9478C-01 ML9478C 32-37 VDD - Pin for testing the IC. It has an Internal pull-down resistor. Use it as it is connected to GND. Outputs for LCD display. Connected to the segment pins on the LCD panel. In the display off mode, all the outputs are fixed to GND. Outputs for LCD display. Connected to the common pins on the LCD panel. The output pins are located at three positions: both ends of the chip and between SEG40 and SEG41. Each is connected inside the chip. Use the COM pins in accordance with the panel to be used. In the display off mode, all the outputs are fixed to GND. When the slave is set (M/S=”L”), COM1 to COM4 outputs are GND level fixed. Power supply pin for logic circuit. 38-43 VLCD - Power supply pin for LCD driver. 26-31 16 64 3 79 1-2 80-84 89-94 179-182 187-190 GND - VDDO - GNDO - Ground pin. VDD output pin. Use this pin when fixing the mode setting input pin to "H" on the COG. Ground output pin. Use this pin when fixing the mode setting input pin to "L" on the COG. DUMMY - 77-78 75-76 95-134 139-178 TEST1 TEST2 SEG1 SEG80 85-88 135-138 183-186 COM1 COM4 I O O Floating pin. At this time, avoid this pin from shorting with pins other than DUMMY in the wiring on the COG. *1: For details of the COM /SEG waveform when a duty is selected, refer to "Common waveform" on page 18 and "Common Segment waveform" on page 19 to 23. *2: Oscillator circuit configuration • When M/S = "H", OSC I/E = "H" [Internal Rf oscillation mode] OPEN [External Rf oscillation mode] OSC1 OSC1 Rf OSC2 OSC2 OSCR OPEN OSCR 12/31 FEDL9478C-01 ML9478C • External clock input mode when M/S = "H" and OSC I/E = "L" External clock OSC1 OPEN OSC2 OPEN OSCR • M/S = "L", slave mode, external clock input mode Master CKO OSC1 OPEN OSC2 OPEN OSCR *3: Reset circuit configuration • External input to RESTB when POCEB = "H" VDD External input RESETB • POC circuit configuration when POCEB = "L" VDD Crst RESETB 13/31 FEDL9478C-01 ML9478C DESCRIPTION Operation description (Serial interface) • Display data input As described in the Data configuration section, the display data consists of the data field that corresponds to each segment on/off and the command field that indicates the display data input. When inputting the display data, the "F3" command is set in the command field. When the "F1" or "F2" command is set in the command field, the display data in the data field becomes invalid. The data input to the DATA pin is loaded to the shift register at the CLOCK pulse rise, transferred to the display data latch during the LOAD pulse at the "H" level, then output via the segment driver. CLOCK DATA D1 D2 D3 D4 D80 C0 C1 C2 C3 C4 C5 C6 C7 Command field Data field LOAD Display output Old data New data • Display on, Display off The display becomes off at power-on reset. To display, write the display on command. The display off is the command that makes all segments off. Writing the display off command turns off the lights regardless of the display data. The display on is the command to release the display off. Writing the display on command returns the display to the original state. CLOCK DATA D1 D2 C6 C7 C4 C5 C6 C7 C4 C5 C6 C7 LOAD Display ON/OFF RESET Display data input Display on Display off command write command write 14/31 FEDL9478C-01 ML9478C List of Commands Command name F0 C7 C6 C5 C4 C3 C2 C1 C0 Operation 0 0 0 0 x x x x Disabled F1 0 1 F1 (*2) F0 (*2) x x x x F2 1 0 1 D (*2) x x x x F3(*1) 1 1 SA1 SA0 A1 A0 Co1 Co0 Frame frequency setting (F1,F0)=(0, 0): 65Hz (F1,F0)=(0, 1): 75Hz (F1,F0)=(1, 0): 85Hz (F1,F0)=(1, 1): 95Hz (valid for Internal CR oscillation) Display on/off "0" : Off (COM=SEG=GND) "1" : On Data write address setting (Co1,Co0)=(0, 0): Corresponding to common 1 (Co1,Co0)=(0, 1): Corresponding to common 2 (Co1,Co0)=(1, 0): Corresponding to common 3 (Co1,Co0)=(1, 1): Corresponding to common 4 SA1, SA0, A1, A0: Chip address x: Don't care (*1): For the I2C interface, SA1 and SA0 are set at a slave address. These bits become "Don't care". (*2): The register is set to the following value by the RESETB = "L" input or by the power-on POC. F1="0", F0="0", D="0" Data configuration • Data configuration (Serial interface) First bit Corresponding to SEG80 Corresponding to SEG1 C7 C6 C5 C4 C3 C2 Command C1 C0 D80 D79 D78 D3 D2 D1 LCD display data Note 1 : The commands F1 and F2 settings become valid when the least four bits of C4 to C7 are input. (The bits from D1 to D80 and from C0 to C3 are not necessary.) Note 2 : If the dummy bit is needed for the reason of number of transfer bits, put it on the first bit side. Note 3 : The command execution follows the contents of the C7 to C0 registers immediately before the LOAD becomes "H". 15/31 FEDL9478C-01 ML9478C • Data configuration (I2C interface) S 0 Slave address 1 1 0 0 SA1 SA0 R/W 0 A CO RS Control byte DATA/Command A LSB MSB P Salve address: 0 1 1 0 0 1 CO: Consecutive control byte setting bit 0: Last control byte, 1: Consecutive control byte RS: Command/data setting bit 0: Command data, 1: Display data For the I2C interface, each IC is assigned with a 7-bit slave address. The first one byte in the transfer consists of this 7-bit slave address and the R/W bit that indicates the data transfer direction. Always input "0" to the eighth R/W bit because the ML9478C is a write-only LSI. The eight bits next to the slave address is a control byte. The first one bit is CO: consecutive command setting bit and the next one bit is RS: command/data setting bit (the remaining six bits are the Don't care bits). When CO = "0": Means the last control byte. When CO = "1": Means the control bytes are successively input. When RS = "0": Means the data to be input next is the command data. When RS = "1": Means the data to be input next is the display data. The display data can be successively input. Example of Data Setting When inputting two commands When inputting two commands S 0 1 0 0 1 0 0 SA1 SA0 0 A 1 0 COMMAND A COMMAND A A COMMAND A A Display data A A Display data A A A P When inputting the command and display data S 0 1 0 1 1 0 0 SA1 SA0 0 A A Display data A 1 0 Display data P 16/31 FEDL9478C-01 ML9478C Data write method • Serial interface The data is written to the address set by the data write setting command (F3). For the Serial interface, the data is written in units of 80 bits. Written from D80 to SEG1, D79 to SEG2, ... , D2 to SEG79, and D1 to SEG80. MSB COM1 COM2 COM3 COM4 1 2 3 4 D80 D80 D80 D80 D79 D79 D79 D79 D78 D78 D78 D78 D77 D77 D77 D77 MSB 41 COM1 COM2 COM3 COM4 D40 D40 D40 D40 42 D39 D39 D39 D39 43 D38 D38 D38 D38 44 D37 D37 D37 D37 Segment output 32 33 34 35 36 37 38 39 D49 D49 D49 D49 D48 D48 D48 D48 D47 D47 D47 D47 D46 D46 D46 D46 D45 D45 D45 D45 D44 D44 D44 D44 D43 D43 D43 D43 D42 D42 D42 D42 Segment output 72 173 74 75 76 77 78 79 D9 D9 D9 D9 D8 D8 D8 D8 D7 D7 D7 D7 D6 D6 D6 D6 D5 D5 D5 D5 D4 D4 D4 D4 D3 D3 D3 D3 D2 D2 D2 D2 LSB 40 D41 D41 D41 D41 LSB 80 D1 D1 D1 D1 • I2C interface The data is written to the address set by the slave address. For the I2C interface, the data is written to the specified address starting with the LSB side in units of 8 bits. (The data is written in the order from SEG73-80, SEG65-SEG72, ... , SEG9-16, and SEG1-SEG8.) LSB COM1 COM2 COM3 COM4 2 3 4 32 33 34 35 36 37 38 39 D1 D1 D1 D1 D2 D2 D2 D2 D3 D3 D3 D3 D4 D4 D4 D4 D8 D8 D8 D8 D1 D1 D1 D1 D2 D2 D2 D2 D3 D3 D3 D3 D4 D4 D4 D4 D5 D5 D5 D5 D6 D6 D6 D6 D7 D7 D7 D7 LSB 41 COM1 COM2 COM3 COM4 Segment output 1 D1 D1 D1 D1 42 D2 D2 D2 D2 43 D3 D3 D3 D3 44 D4 D4 D4 D4 Segment output 72 73 74 75 76 77 78 79 D8 D8 D8 D8 D1 D1 D1 D1 D2 D2 D2 D2 D3 D3 D3 D3 D4 D4 D4 D4 D5 D5 D5 D5 D6 D6 D6 D6 D7 D7 D7 D7 MSB 40 D8 D8 D8 D8 MSB 80 D8 D8 D8 D8 17/31 FEDL9478C-01 ML9478C Common waveforms (1) At static VLCD COM1~4 GND (2) At 1/2-duty At 1/2-bias VLCD COM1 COM3 VLCD/2 GND VLCD COM2 COM4 VLCD/2 GND At 1/3-bias COM1 COM3 COM2 COM4 VLCD 2VLCD/3 VLCD/3 GND VLCD 2VLCD/3 VLCD/3 GND (3) At 1/3-duty COM1 COM2 COM4 COM3 VLCD 2VLCD/3 VLCD/3 GND VLCD 2VLCD/3 VLCD/3 GND VLCD 2VLCD/3 VLCD/3 GND (4) At 1/4-duty COM1 COM2 COM3 COM4 VLCD 2VLCD/3 VLCD/3 GND VLCD 2VLCD/3 VLCD/3 GND VLCD 2VLCD/3 VLCD/3 GND VLCD 2VLCD/3 VLCD/3 GND 18/31 FEDL9478C-01 ML9478C ● Common segment output waveform ・At Static Display example COM1 S E G 1 S E G 2 S E G 3 On Off COM1 COM2 COM3 COM4 VLCD 2VLCD/3 VLCD/3 GND SEG1 VLCD 2VLCD/3 VLCD/3 GND SEG2 VLCD 2VLCD/3 VLCD/3 GND SEG3 VLCD 2VLCD/3 VLCD/3 GND 19/31 FEDL9478C-01 ML9478C ● Common and segment output waveforms ・At 1/2Duty, 1/2bias Display example S E G 1 S E G 2 S E G 3 COM1 On COM2 Off VLCD COM1 COM3 VLCD/2 GND VLCD COM2 COM4 VLCD/2 GND VLCD SEG1 VLCD/2 GND VLCD SEG2 VLCD/2 GND VLCD SEG3 VLCD/2 GND 20/31 FEDL9478C-01 ML9478C ● Common and segment output waveforms ・At 1/2Duty, 1/3bias Display example COM1 COM3 S E G 1 S E G 2 S E G 3 COM1 On COM2 Off VLCD 2VLCD/3 VLCD/3 GND COM2 COM4 VLCD 2VLCD/3 VLCD/3 GND SEG1 VLCD 2VLCD/3 VLCD/3 GND SEG2 VLCD 2VLCD/3 VLCD/3 GND SEG3 VLCD 2VLCD/3 VLCD/3 GND 21/31 FEDL9478C-01 ML9478C ● Common and segment output waveforms ・At 1/3Duty, 1/3bias Display example S E G 1 S E G 2 S E G 3 COM1 On COM2 Off COM3 VLCD COM1 2VLCD/3 VLCD/3 GND VLCD COM2 COM4 2VLCD/3 VLCD/3 GND VLCD COM3 2VLCD/3 VLCD/3 GND VLCD SEG1 2VLCD/3 VLCD/3 GND VLCD SEG2 2VLCD/3 VLCD/3 GND VLCD SEG3 2VLCD/3 VLCD/3 GND 22/31 FEDL9478C-01 ML9478C ● Common and segment output waveforms ・At 1/4Duty, 1/3bias Display example S E G 1 S E G 2 S E G 3 COM1 COM2 On COM3 Off COM4 COM1 VLCD 2VLCD/3 VLCD/3 GND COM2 VLCD 2VLCD/3 VLCD/3 GND COM3 VLCD 2VLCD/3 VLCD/3 GND COM4 SEG1 VLCD 2VLCD/3 VLCD/3 GND VLCD 2VLCD/3 VLCD/3 GND SEG2 VLCD 2VLCD/3 VLCD/3 GND SEG3 VLCD 2VLCD/3 VLCD/3 GND 23/31 FEDL9478C-01 ML9478C EXAMPLE OF APPLICATION CIRCUIT Cascade configuration 1 Serial interface Internal CR oscillator circuit used 1/4Duty RESETB pin + external capacitance connection to configure POC circuit The common outputs of the slave chip output GND-level. So Com1 to Com4 set to open. [External component] Cp = 0.1 [µF] (bypass capacitor between power supplies) Crst = 4.7 [µF] (capacitance for external POC circuit) Crst SEG80 (Slave) OSC1 OSC2 OSCR CKO OPEN OPEN OPEN RESETB Crst SYNCB RESETB ML9478C SDAACK OPEN M/S BIAS OSCI/E POCEB Duty0 Duty1 I2C SA1 SA0 A1 A0 TEST1 TEST2 GND CLOCK OSC1 OSC2 OSCR CKO Cp DATA Cp (Master) OPEN VLCD VDD SEG1 SEG80 ML9478C COM1 COM2 COM3 COM4 LOAD M/S BIAS OSCI/E POCEB Duty0 Duty1 I2C SA1 SA0 A1 A0 TEST1 TEST2 GND SYNCB Cp CLOCK Cp OPEN 5V 5V SDAACK VLCD VDD DATA 5V 5V LOAD COM1 COM2 COM3 COM4 SEG1 Liquid crystal panel 1/4-duty x 80 x n segments OPEN CPU 24/31 FEDL9478C-01 ML9478C Cascade configuration 2 II2C interface External Rf-based CR oscillator circuit used 1/4Duty External RESETB signal input The common outputs of the slave chip output GND-level. So Com1 to Com4 set to open. [External component] Cp = 0.1 [µF] (bypass capacitor between power supplies), Rf = 470 [k] (external R, resistor for CR oscillator circuit), Rup = Resistor for SDA data bus pull-up SEG80 (Slave) OSC1 OSC2 OSCR CKO OPEN OPEN OPEN RESETB SYNCB SDAACK OPEN ML9478C SCL RESETB Rf M/S BIAS OSCI/E POCEB Duty0 Duty1 I2C SA1 SA0 A1 A0 TEST1 TEST2 GND SEG1 SEG80 OSC1 OSC2 OSCR CKO Cp SDA Rup VLCD VDD Cp (Master) COM1 COM2 COM3 COM4 LOAD 5V M/S BIAS OSCI/E POCEB Duty0 Duty1 I2C SA1 SA0 A1 A0 TEST1 TEST2 GND SYNCB Cp SDAACK Cp OPEN 5V 5V ML9478C SDA VLCD VDD SCL 5V 5V LOAD COM1 COM2 COM3 COM4 SEG1 Liquid crystal panel 1/4-duty x 80 x n segments CPU 25/31 FEDL9478C-01 ML9478C PAD CONFIGURATION Pad layout (pattern face) Chip size Chip thickness Minimum bump pitch Bump height B : 4.80 mm x 0.90 mm : 400 m ± 20 m : 50 m : 15 m ±3 m 93 180 Y 181 (0,0) 190 92 X 82 1 81 A Bump and alignment mark dimensions (pattern face) : 32 m x 80 m PAD No.181 PAD No.82190 : 30 m x 84 m Alignment marks A and B : See below [Mark A] [Mark B] Coordinate position Coordinate position 30μm 47μm 30μm 55μm 30μm 30μm 30μm 30μm Aluminum (top metal) Passivation Alignment mark Mark A Mark B X-coordinate (m) 2289 -2289 47μm 55μm Aluminum (top metal) Passivation Y-coordinate (m) -308 309 26/31 FEDL9478C-01 ML9478C Pad center coordinates Pad number 1 Pad name DUMMY X-coordinate Y-coordinate (m) (m) -2206 -308 Pad number 41 VLCD X-coordinate (m) 27 Y-coordinate (m) -308 VLCD 81 -308 Pad name 2 DUMMY -2149 -308 42 3 GNDO -2092 -308 43 VLCD 135 -308 4 Duty1 -2035 -308 44 RESETB 192 -308 5 Duty1 -1978 -308 45 RESETB 244 -308 6 Duty0 -1921 -308 46 OSC1 298 -308 7 Duty0 -1869 -308 47 OSC1 350 -308 8 A0 -1815 -308 48 OSC1 404 -308 9 A0 -1763 -308 49 OSC2 458 -308 10 A1 -1709 -308 50 OSC2 510 -308 11 A1 -1657 -308 51 OSC2 564 -308 12 SA0 -1603 -308 52 OSC2 618 -308 13 SA0 -1549 -308 53 OSCR 672 -308 14 SA1 -1492 -308 54 OSCR 724 -308 15 SA1 -1436 -308 55 OSCR 776 -308 16 VDDO -1379 -308 56 CKO 830 -308 17 SDAACK -1322 -308 57 CKO 882 -308 18 SDAACK -1265 -308 58 CKO 934 -308 19 SDAACK -1208 -308 59 CKO 986 -308 20 DATA(SDA) -1151 -308 60 SYNCB 1040 -308 21 DATA(SDA) -1094 -308 61 SYNCB 1092 -308 22 CLOCK(SCL) -1037 -308 62 SYNCB 1144 -308 23 CLOCK(SCL) -980 -308 63 SYNCB 1196 -308 24 LOAD -923 -308 64 VDDO 1250 -308 25 LOAD -866 -308 65 I2C 1304 -308 26 GND -809 -308 66 I2C 1356 -308 27 GND -752 -308 67 M/S 1413 -308 28 GND -695 -308 68 M/S 1465 -308 29 GND -638 -308 69 POCEB 1522 -308 30 GND -581 -308 70 POCEB 1574 -308 31 GND -524 -308 71 OSCI/E 1628 -308 32 VDD -467 -308 72 OSCI/E 1680 -308 33 VDD -412 -308 73 BIAS 1737 -308 34 VDD -357 -308 74 BIAS 1789 -308 35 VDD -302 -308 75 TEST2 1846 -308 36 VDD -247 -308 76 TEST2 1900 -308 37 VDD -192 -308 77 TEST1 1957 -308 38 VLCD -135 -308 78 TEST1 2014 -308 39 VLCD -81 -308 79 GNDO 2071 -308 40 VLCD -27 -308 80 DUMMY 2128 -308 27/31 FEDL9478C-01 ML9478C 125 SEG31 X-coordinate (m) 585 82 83 DUMMY DUMMY 2289 2289 -232 -182 126 127 SEG32 SEG33 535 485 309 309 84 85 DUMMY COM1 2289 2289 -132 -82 128 129 SEG34 SEG35 435 385 309 309 86 87 COM2 COM3 2289 2289 -32 18 130 131 SEG36 SEG37 335 285 309 309 88 89 COM4 DUMMY 2289 2289 68 118 132 133 SEG38 SEG39 235 185 309 309 90 91 DUMMY DUMMY 2289 2289 168 218 134 135 SEG40 COM1 135 85 309 309 92 93 DUMMY DUMMY 2289 2185 268 309 136 137 COM2 COM3 35 -15 309 309 94 95 DUMMY SEG1 2135 2085 309 309 138 139 COM4 SEG41 -65 -115 309 309 96 97 SEG2 SEG3 2035 1985 309 309 140 141 SEG42 SEG43 -165 -215 309 309 98 99 SEG4 SEG5 1935 1885 309 309 142 143 SEG44 SEG45 -265 -315 309 309 100 101 SEG6 SEG7 1835 1785 309 309 144 145 SEG46 SEG47 -365 -415 309 309 102 103 SEG8 SEG9 1735 1685 309 309 146 147 SEG48 SEG49 -465 -515 309 309 104 105 SEG10 SEG11 1635 1585 309 309 148 149 SEG50 SEG51 -565 -615 309 309 106 107 SEG12 SEG13 1535 1485 309 309 150 151 SEG52 SEG53 -665 -715 309 309 108 109 SEG14 SEG15 1435 1385 309 309 152 153 SEG54 SEG55 -765 -815 309 309 110 111 SEG16 SEG17 1335 1285 309 309 154 155 SEG56 SEG57 -865 -915 309 309 112 113 SEG18 SEG19 1235 1185 309 309 156 157 SEG58 SEG59 -965 -1015 309 309 114 115 SEG20 SEG21 1135 1085 309 309 158 159 SEG60 SEG61 -1065 -1115 309 309 116 117 SEG22 SEG23 1035 985 309 309 160 161 SEG62 SEG63 -1165 -1215 309 309 118 119 SEG24 SEG25 935 885 309 309 162 163 SEG64 SEG65 -1265 -1315 309 309 120 121 SEG26 SEG27 835 785 309 309 164 165 SEG66 SEG67 -1365 -1415 309 309 122 123 SEG28 SEG29 735 685 309 309 166 167 SEG68 SEG69 -1465 -1515 309 309 124 SEG30 635 309 168 SEG70 -1565 309 Pad number 81 Pad name DUMMY X-coordinate Y-coordinate (m) (m) 2185 -308 Pad number Pad name Y-coordinate (m) 309 28/31 FEDL9478C-01 ML9478C Pad number 169 170 Pad name SEG71 SEG72 X-coordinate Y-coordinate (m) (m) -1615 309 -1665 309 171 172 SEG73 SEG74 -1715 -1765 309 309 173 174 SEG75 SEG76 -1815 -1865 309 309 175 176 SEG77 SEG78 -1915 -1965 309 309 177 178 SEG79 SEG80 -2015 -2065 309 309 179 180 DUMMY DUMMY -2115 -2165 309 309 181 182 DUMMY DUMMY -2289 -2289 203 153 183 184 COM4 COM3 -2289 -2289 103 53 185 186 COM2 COM1 -2289 -2289 3 -47 187 188 DUMMY DUMMY -2289 -2289 -97 -147 189 190 DUMMY DUMMY -2289 -2289 -197 -247 Pad number Pad name X-coordinate Y-coordinate (m) (m) 29/31 FEDL9478C-01 ML9478C REVISION HISTORY Page Document No. Issue Date Previous Edition New Edition FEDL9478C-01 Apr .25,2012 – – Description Final edition 1 issued 30/31 FEDL9478C-01 ML9478C NOTICE No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing LAPIS Semiconductor's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from LAPIS Semiconductor upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Copyright 2012 LAPIS Semiconductor Co., Ltd. 31/31