MB9B300B Series 32-bit Arm® Cortex®-M3 FM3 Microcontroller The MB9B300B Series are a highly integrated 32-bit microcontroller that target for high-performance and cost-sensitive embedded control applications. The MB9B300B Series are based on the Arm® Cortex®-M3 Processor and on-chip Flash memory and SRAM, and peripheral functions, including Motor Control Timers, ADCs and Communication Interfaces (USB, UART, CSIO, I2C, LIN). The products which are described in this datasheet are placed into TYPE0 product categories in FM3 Family Peripheral Manual. Features 32-bit Arm® Cortex®-M3 Core [USB host] Processor version: r2p0 USB2.0 Full/Low-speed supported Up to 80 MHz Frequency Operation Bulk-transfer and interrupt-transfer and Isochronous-transfer Memory Protection Unit (MPU): improve the reliability of an embedded system Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 48 peripheral interrupts and 16 priority levels 24-bit System timer (Sys Tick): System timer for OS task management support USB Device connected/dis-connected automatically detect IN/OUT token handshake packet automatically Max 256-byte packet-length supported Wake-up function supported Multi-function Serial Interface (Max. 8 channels) On-chip Memories 4 channels with 16steps × 9bit FIFO (ch.4-ch.7), 4 channels without FIFO (ch.0-ch.3) [Flash memory] Operation mode is selectable from the followings for each Up to 512 KB Read cycle: 0 wait-cycle @ up to 60 MHz, 2 wait-cycle[1] above [1]: Instruction pre-fetch buffer is included. So when CPU access continuously, it becomes 0 wait-cycle channel. UART CSIO LIN I2 C Security function for code protection [UART] [SRAM] Full-duplex double buffer This series contain a total of up to 64 KB on-chip SRAM. This is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is connected to I-code bus and D-code bus of CortexM3 core. SRAM1 is connected to System bus. SRAM0: Up to 32 KB Selection with or without parity supported Built-in dedicated baud rate generator External clock available as a serial clock Hardware Flow control: Automatically control the SRAM1: Up to 32 KB transmission by CTS/RTS (only ch.4) USB Interface Various error detect functions available (parity errors, The USB interface is composed of Device and Host. PLL for USB is built-in, USB clock can be generated by multiplication of Main clock. [CSIO] [USB Device] Overrun error detect function available Max 6 EndPoint supported EndPoint transfer Full-duplex double buffer Built-in dedicated baud rate generator USB2.0 Full-Speed supported EndPoint framing errors, and overrun errors) 0 is control transfer 1 - 5 can be selected bulk-transfer or interrupt- Endpoint1-5 is comprised Double Buffers. Cypress Semiconductor Corporation Document Number: 002-05612 Rev. *D • 198 Champion Court • San Jose , CA 95134-1709 • 408-943-2600 Revised October 24, 2017 MB9B300B Series [LIN] Base Timer (Max. 8 channels) LIN protocol Rev.2.1 supported Operation mode is selectable from the followings for each channel. Full duplex double buffer 16-bit PWM timer Master/Slave mode supported 16-bit PPG timer LIN break field generate (can be changed 13-16 bit length) 16-/32-bit reload timer LIN break delimiter generate (can be changed 1- 4 bit 16-/32-bit PWC timer Various error detect functions available (parity errors, Multi-function Timer (Max. 2 units) length) framing errors, and overrun errors) [I2C] Standard-mode (Max.100 kbps) / Fast-mode (Max 400 kbps) supported External Bus Interface Supports SRAM, NOR& NAND Flash device Up to 8 chip selects 8-/16-bit Data width Up to 25-bit Address bit Maximum area size: Up to 256 MB DMA Controller (8 channels) DMA Controller has an independent bus for CPU, so CPU and DMA Controller can process simultaneously. The Multi-function timer is composed of the following blocks. 16-bit free-run timer × 3ch/unit Input capture × 4ch/unit Output compare × 6ch/unit A/D activation compare × 3ch/unit Waveform generator × 3ch/unit 16-bit PPG timer × 3ch/unit The following function can be used to achieve the motor control. PWM signal output function DC chopper waveform output function Dead time function 8 independently configured and operated channels Input capture function Transfer can be started by software or request from the built- A/D convertor activate function in peripherals Transfer address area: 32 bit (4GB) DTIF (Motor emergency stop) interrupt function Transfer mode: Block transfer/Burst transfer/Demand Quadrature Position/Revolution Counter (QPRC) (Max. 2 units) Transfer data type: byte/half-word/word Transfer block count: 1 to 16 The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use up/down counter. Number of transfers: 1 to 65536 The detection edge of the three external event input pins A/D Converter (Max. 16 channels) 16-bit position counter [12-bit A/D Converter] 16-bit revolution counter Successive Approximation Register type Two 16-bit compare registers Built-in 3unit Dual Timer (Two 32/16-bit Down Counter) Conversion time: 1.0 μs @ 5 V Scanning conversion mode The Dual Timer consists of two programmable 32/16-bit down counters. Operation mode is selectable from the followings for each channel. Built-in FIFO for conversion data storage (for SCAN Free-running transfer Priority conversion available (priority at 2 levels) conversion: 16 steps, for Priority conversion: 4steps) AIN, BIN and ZIN is configurable. Periodic (=Reload) One-shot Document Number: 002-05612 Rev. *D Page 2 of 112 MB9B300B Series Watch Counter [Resets] The Watch counter is used for wake up from sleep mode. Interval timer: up to 64 s (Max.) @ Sub Clock: 32.768 kHz Reset requests from INITX pins Power-on reset Watch dog Timer (2 channels) Software reset A watchdog timer can generate interrupts or a reset when a time-out value is reached. Watchdog timers reset This series consists of two different watchdogs, a "Hardware" watchdog and a "Software" watchdog. "Hardware" watchdog timer is clocked by the built-in lowspeed CR oscillator. Therefore, “Hardware" watchdog is active in any low-power consumption modes except STOP mode. External Interrupt Controller Unit Low-voltage detector reset Clock supervisor reset Clock Super Visor (CSV) Clocks generated by CR oscillators are used to supervise abnormality of the external clocks. External OSC clock failure (clock stop) is detected, reset is asserted. Up to 16 external vectors Include one non-maskable interrupt(NMI) General Purpose I/O Port External OSC frequency anomaly is detected, interrupt or reset is asserted. This series can use its pins as general-purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated. Low Voltage Detector (LVD) Capable of pull-up control per pin LVD1: error reporting via interrupt Capable of reading pin level directly LVD2: auto-reset operation Built-in the port relocate function Low-Power Consumption Mode Up to 100 high-speed general-purpose I/O Ports @ 120pin Package This series include 2-stage monitoring of voltage on the VCC. When the voltage falls below the voltage has been set, Low Voltage Detector generates an interrupt or reset. Three low-power consumption modes supported. SLEEP CRC (Cyclic Redundancy Check) Accelerator TIMER The CRC accelerator helps a verify data transmission or storage integrity. STOP CCITT CRC16 and IEEE-802.3 CRC32 are supported. Debug CCITT CRC16 Generator Polynomial: 0x1021 Serial Wire JTAG Debug Port (SWJ-DP) IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7 Embedded Trace Macrocells (ETM) provide comprehensive debug and trace facilities. Clock and Reset [Clocks] Power Supply Five clock sources (2 ext. osc, 2 CR osc, and Main PLL) that are dynamically selectable. VCC = 2.7 V to 5.5 V: Correspond to the wide range voltage. USBVCC = 3.0 V to 3.6 V: for USB I/O voltage, when USB is used. Main Clock : 4 MHz to 48 MHz Sub Clock : 32.768 kHz Built-in high-speed CR Clock : 4 MHz Built-in low-speed CR Clock : 100 kHz Two Power Supplies = 2.7 V to 5.5 V: when GPIO is used.[1] Main PLL Clock Document Number: 002-05612 Rev. *D Page 3 of 112 MB9B300B Series Contents 1. Product Lineup .................................................................................................................................................................. 6 2. Packages ........................................................................................................................................................................... 7 3. Pin Assignment ................................................................................................................................................................. 8 4. List of Pin Functions....................................................................................................................................................... 11 5. I/O Circuit Type................................................................................................................................................................ 38 6. Handling Precautions ..................................................................................................................................................... 42 6.1 Precautions for Product Design ................................................................................................................................... 42 6.2 Precautions for Package Mounting .............................................................................................................................. 43 6.3 Precautions for Use Environment ................................................................................................................................ 44 7. Handling Devices ............................................................................................................................................................ 45 8. Block Diagram ................................................................................................................................................................. 47 9. Memory Size .................................................................................................................................................................... 48 10. Memory Map .................................................................................................................................................................... 48 11. Pin Status in Each CPU State ........................................................................................................................................ 51 12. Electrical Characteristics ............................................................................................................................................... 55 12.1 Absolute Maximum Ratings ......................................................................................................................................... 55 12.2 Recommended Operating Conditions.......................................................................................................................... 57 12.3 DC Characteristics....................................................................................................................................................... 58 12.3.1 Current Rating .............................................................................................................................................................. 58 12.3.2 Pin Characteristics ....................................................................................................................................................... 60 12.4 AC Characteristics ....................................................................................................................................................... 61 12.4.1 Main Clock Input Characteristics .................................................................................................................................. 61 12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 62 12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 63 12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL) ................................... 64 12.4.5 Operating Conditions of Main PLL (In the case of using built-in high speed CR) ......................................................... 64 12.4.6 Reset Input Characteristics .......................................................................................................................................... 66 12.4.7 Power-on Reset Timing................................................................................................................................................ 66 12.4.8 External Bus Timing ..................................................................................................................................................... 67 12.4.9 Base Timer Input Timing .............................................................................................................................................. 71 12.4.10 CSIO/UART Timing .................................................................................................................................................. 72 12.4.11 External Input Timing ................................................................................................................................................ 80 12.4.12 Quadrature Position/Revolution Counter timing ........................................................................................................ 81 12.4.13 I2C Timing ................................................................................................................................................................. 83 12.4.14 ETM Timing .............................................................................................................................................................. 84 12.4.15 JTAG Timing ............................................................................................................................................................. 85 12.5 12-bit A/D Converter .................................................................................................................................................... 86 12.6 USB Characteristics .................................................................................................................................................... 89 12.7 Low-Voltage Detection Characteristics ........................................................................................................................ 93 12.7.1 Low-Voltage Detection Reset ....................................................................................................................................... 93 12.7.2 Interrupt of Low-Voltage Detection ............................................................................................................................... 93 12.8 Flash Memory Write/Erase Characteristics ................................................................................................................. 94 12.8.1 Write / Erase time......................................................................................................................................................... 94 12.8.2 Erase/write cycles and data hold time .......................................................................................................................... 94 12.9 Return Time from Low-Power Consumption Mode ...................................................................................................... 95 12.9.1 Return Factor: Interrupt ................................................................................................................................................ 95 12.9.2 Return Factor: Reset .................................................................................................................................................... 97 Document Number: 002-05612 Rev. *D October 23, 2017 Page 4 of 112 MB9B300B Series 13. Example of Characteristic .............................................................................................................................................. 99 14. Ordering Information .................................................................................................................................................... 101 15. Package Dimensions .................................................................................................................................................... 102 16. Errata.............................................................................................................................................................................. 105 16.1 Part Numbers Affected .............................................................................................................................................. 105 16.2 Qualification Status.................................................................................................................................................... 105 16.3 Errata Summary ........................................................................................................................................................ 105 16.4 Errata Detail .............................................................................................................................................................. 105 16.4.1 Timer and stop mode issue ........................................................................................................................................ 105 16.4.2 USB HOST issue ....................................................................................................................................................... 106 16.4.3 Gap Between Watch Counter Value and Real Time at Return in Timer Mode ........................................................... 106 17. Major Changes .............................................................................................................................................................. 108 Document History ............................................................................................................................................................... 110 Sales, Solutions, and Legal Information........................................................................................................................... 112 Document Number: 002-05612 Rev. *D October 23, 2017 Page 5 of 112 MB9B300B Series 1. Product Lineup Memory Size Product device On-chip Flash memory On-chip SRAM MB9BF304NB/RB MB9BF305NB/RB 256 KB 32 KB MB9BF306NB/RB 384 KB 48 KB 512 KB 64 KB Function MB9BF304NB MB9BF305NB MB9BF306NB Product device Pin count 100 Cortex-M3 80 MHz 2.7 V to 5.5 V 1 ch 8 ch Addr: 25-bit (Max.) Data:8-/16-bit CS: 5 (Max.) Support: SRAM, NOR Flash CPU Freq. Power supply voltage range USB2.0 (Device/Host) DMAC External Bus Interface Multi-function Serial Interface (UART/CSIO/LIN/I2C) Base Timer (PWC/ Reload timer/PWM/PPG) A/D activation compare Input capture Free-run timer MFTimer Output compare Waveform generator PPG QPRC Dual Timer Watch Counter CRC Accelerator Watchdog timer External Interrupts I/O ports 12 bit A/D converter CSV (Clock Super Visor) LVD (Low Voltage Detector) High-speed Built-in CR Low-speed Debug Function MB9BF304RB MB9BF305RB MB9BF306RB 120 Addr: 25-bit (Max.) Data:8-/16-bit CS: 8 (Max.) Support: SRAM, NOR & NAND Flash 8 ch (Max.) 8 ch (Max.) 3 ch. 4 ch. 3 ch. 6 ch. 3 ch. 3 ch. 2 units (Max.) 2 ch (Max.) 1 unit 1 unit Yes 1ch(SW) + 1ch(HW) 16 pins (Max.) + NMI × 1 80 pins (Max.) 16 ch (3 units) Yes 2 ch 4 MHz 100 kHz SWJ-DP/ETM 100 pins (Max.) Note: − All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the General I/O port according to your function use. See "12. Electrical Characteristics 12.4. AC Characteristics 12.4.3. Built-in CR Oscillation Characteristics” for accuracy of built-in CR. Document Number: 002-05612 Rev. *D October 23, 2017 Page 6 of 112 MB9B300B Series 2. Packages Product name Package MB9BF304NB MB9BF305NB MB9BF306NB MB9BF304RB MB9BF305RB MB9BF306RB LQFP : LQI100 (0.5 mm pitch) - LQFP: LQM120 (0.5 mm pitch) - FBGA: LBC112 (0.8 mm pitch) - : Supported Note: − Refer to “15. Package Dimensions” for detailed information on each package. Document Number: 002-05612 Rev. *D October 23, 2017 Page 7 of 112 MB9B300B Series 3. Pin Assignment LQI100 P03/TMS/SWDIO P02/TDI P01/TCK/SWCLK P00/TRSTX VCC 80 79 78 77 76 P05/TRACED0/TIOA5_2/SIN4_2/INT00_1 P04/TDO/SWO 82 81 P07/TRACED2/ADTG_0/SCK4_2 P06/TRACED1/TIOB5_2/SOT4_2/INT01_1 85 84 83 P0A/SIN4_0/INT00_2/FRCK1_0/MAD07 P09/TRACECLK/TIOB0_2/RTS4_2 87 86 P08/TRACED3/TIOA0_2/CTS4_2 P0C/SCK4_0/TIOA6_1/IC11_0/MAD05 P0B/SOT4_0/TIOB6_1/IC10_0/MAD06 89 88 P0E/CTS4_0/TIOB3_2/IC13_0/MAD03 P0D/RTS4_0/TIOA3_2/IC12_0/MAD04 92 91 90 P62/SCK5_0/ADTG_3/MAD00 P63/INT03_0/MAD01 94 93 P0F/NMIX/MAD02 P60/SIN5_0/TIOA2_2/INT15_1 P61/SOT5_0/TIOB2_2/UHCONX 96 95 P80/UDM0 USBVCC 98 99 97 VSS P81/UDP0 100 (TOP VIEW) VCC 1 75 VSS P50/INT00_0/AIN0_2/SIN3_1/RTO10_0/MDATA0 2 74 P20/INT05_0/CROUT/AIN1_1 P51/INT01_0/BIN0_2/SOT3_1/RTO11_0/MDATA1 3 73 P21/SIN0_0/INT06_1/BIN1_1 P52/INT02_0/ZIN0_2/SCK3_1/RTO12_0/MDATA2 4 72 P22/SOT0_0/TIOB7_1/ZIN1_1 P53/SIN6_0/TIOA1_2/INT07_2/RTO13_0/MDATA3 5 71 P23/SCK0_0/TIOA7_1/RTO00_1 P54/SOT6_0/TIOB1_2/RTO14_0/MDATA4 6 70 P1F/AN15/ADTG_5/FRCK0_1/MDATA15 P55/SCK6_0/ADTG_1/RTO15_0/MDATA5 7 69 P1E/AN14/RTS4_1/DTTI0X_1/MDATA14 P56/INT08_2/DTTI1X_0/MCSX7 8 68 P1D/AN13/CTS4_1/IC03_1/MDATA13 P30/AIN0_0/TIOB0_1/INT03_2/MDATA6 9 67 P1C/AN12/SCK4_1/IC02_1/MDATA12 P31/BIN0_0/TIOB1_1/SCK6_1/INT04_2/MDATA7 10 66 P1B/AN11/SOT4_1/IC01_1/MDATA11 P32/ZIN0_0/TIOB2_1/SOT6_1/INT05_2/MDQM0 11 65 P1A/AN10/SIN4_1/INT05_1/IC00_1/MDATA10 P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MDQM1 12 64 P19/AN09/SCK2_2/MDATA9 P34/FRCK0_0/TIOB4_1/MAD24 13 63 P18/AN08/SOT2_2/MDATA8 P35/IC03_0/TIOB5_1/INT08_1/MAD23 14 62 AVSS P36/IC02_0/SIN5_2/INT09_1/MCSX3 15 61 AVRH P37/IC01_0/SOT5_2/INT10_1/MCSX2 16 60 AVCC P38/IC00_0/SCK5_2/INT11_1 17 59 P17/AN07/SIN2_2/INT04_1/MWEX P39/DTTI0X_0/ADTG_2 18 58 P16/AN06/SCK0_1/MOEX P3A/RTO00_0/TIOA0_1 19 57 P15/AN05/SOT0_1/MCSX0 P3B/RTO01_0/TIOA1_1 20 56 P14/AN04/SIN0_1/INT03_1/MCSX1 P3C/RTO02_0/TIOA2_1 21 55 P13/AN03/SCK1_1/MAD08 P3D/RTO03_0/TIOA3_1 22 54 P12/AN02/SOT1_1/MAD09 P3E/RTO04_0/TIOA4_1 23 53 P11/AN01/SIN1_1/INT02_1 P3F/RTO05_0/TIOA5_1 24 52 P10/AN00 VSS 25 51 VCC 48 49 50 X1 X0 VSS 46 47 MD1 P4E/TIOB5_0/INT06_2/SIN7_1/ZIN1_2/MAD10 MD0 44 45 P4D/TIOB4_0/FRCK1_1/SOT7_1/BIN1_2/MAD11 41 42 43 P4B/TIOB2_0/IC12_1/ZIN0_1/MAD13 P4C/TIOB3_0/IC13_1/SCK7_1/AIN1_2/MAD12 39 40 P48/DTTI1X_1/INT14_1/SIN3_2/MAD16 P49/TIOB0_0/IC10_1/AIN0_1/SOT3_2/MAD15 INITX P4A/TIOB1_0/IC11_1/BIN0_1/SCK3_2/MAD14 37 38 P47/X1A 34 35 36 VCC P46/X0A 32 33 C P45/TIOA5_0/RTO15_1/MAD17 VSS 30 31 P44/TIOA4_0/RTO14_1/MAD18 P42/TIOA2_0/RTO12_1/MAD20 P43/TIOA3_0/RTO13_1/ADTG_7/MAD19 28 29 P41/TIOA1_0/RTO11_1/INT13_1/MAD21 26 27 VCC P40/TIOA0_0/RTO10_1/INT12_1/MAD22 LQ FP - 100 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05612 Rev. *D October 23, 2017 Page 8 of 112 MB9B300B Series LQM120 VCC 91 P02/TDI P01/TCK/SWCLK P00/TRSTX 94 93 92 P05/TRACED0/TIOA5_2/SIN4_2/INT00_1 P04/TDO/SWO P03/TMS/SWDIO 97 96 95 P08/TRACED3/TIOA0_2/CTS4_2 P07/TRACED2/ADTG_0/SCK4_2 P06/TRACED1/TIOB5_2/SOT4_2/INT01_1 99 101 100 98 P0B/SOT4_0/TIOB6_1/IC10_0/MAD06 P0A/SIN4_0/INT00_2/FRCK1_0/MAD07 P09/TRACECLK/TIOB0_2/RTS4_2 103 102 P0E/CTS4_0/TIOB3_2/IC13_0/MAD03 P0D/RTS4_0/TIOA3_2/IC12_0/MAD04 P0C/SCK4_0/TIOA6_1/IC11_0/MAD05 106 105 104 P68/SCK3_0/TIOB7_2/INT12_2 P0F/NMIX/MAD02 108 107 P65/TIOB7_0/SCK5_1 P66/SIN3_0/ADTG_8/INT11_2 P67/SOT3_0/TIOA7_2 111 110 109 P62/SCK5_0/ADTG_3/MAD00 P63/INT03_0/SIN5_1/MAD01 P64/TIOA7_0/SOT5_1/INT10_2 114 113 112 USBVCC P60/SIN5_0/TIOA2_2/INT15_1 P61/SOT5_0/TIOB2_2/UHCONX 115 118 117 116 VSS P81/UDP0 P80/UDM0 120 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 VSS 57 58 MD0 59 MD1 X0 P74/SCK2_0 X1 54 55 56 P73/SOT2_0/INT15_2 53 P72/SIN2_0/INT14_2 50 51 52 P70/TIOA4_2 P71/INT13_2/TIOB4_2 48 49 P4C/TIOB3_0/IC13_1/SCK7_1/AIN1_2/MAD12 P4E/TIOB5_0/INT06_2/SIN7_1/ZIN1_2/MAD10 P4B/TIOB2_0/IC12_1/ZIN0_1/MAD13 P4D/TIOB4_0/FRCK1_1/SOT7_1/BIN1_2/MAD11 45 46 47 P49/TIOB0_0/IC10_1/AIN0_1/SOT3_2/MAD15 P4A/TIOB1_0/IC11_1/BIN0_1/SCK3_2/MAD14 43 44 INITX P48/DTTI1X_1/INT14_1/SIN3_2/MAD16 40 41 42 VCC P46/X0A P47/X1A 37 38 39 C P45/TIOA5_0/RTO15_1/MAD17 VSS 36 P44/TIOA4_0/RTO14_1/MAD18 33 34 35 P42/TIOA2_0/RTO12_1/MAD20 P43/TIOA3_0/RTO13_1/ADTG_7/MAD19 31 32 VCC P40/TIOA0_0/RTO10_1/INT12_1/MAD22 LQFP - 120 P41/TIOA1_0/RTO11_1/INT13_1/MAD21 VCC P50/INT00_0/AIN0_2/SIN3_1/RTO10_0/MDATA0 P51/INT01_0/BIN0_2/SOT3_1/RTO11_0/MDATA1 P52/INT02_0/ZIN0_2/SCK3_1/RTO12_0/MDATA2 P53/SIN6_0/TIOA1_2/INT07_2/RTO13_0/MDATA3 P54/SOT6_0/TIOB1_2/RTO14_0/MDATA4 P55/SCK6_0/ADTG_1/RTO15_0/MDATA5 P56/SIN1_0/INT08_2/DTTI1X_0/MCSX7 P57/SOT1_0/MNALE P58/SCK1_0/MNCLE P59/SIN7_0/INT09_2/MNWEX P5A/SOT7_0/MNREX P5B/SCK7_0 P30/AIN0_0/TIOB0_1/INT03_2/MDATA6 P31/BIN0_0/TIOB1_1/SCK6_1/INT04_2/MDATA7 P32/ZIN0_0/TIOB2_1/SOT6_1/INT05_2/MDQM0 P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MDQM1 P34/FRCK0_0/TIOB4_1/MAD24 P35/IC03_0/TIOB5_1/INT08_1/MAD23 P36/IC02_0/SIN5_2/INT09_1/MCSX3 P37/IC01_0/SOT5_2/INT10_1/MCSX2 P38/IC00_0/SCK5_2/INT11_1 P39/DTTI0X_0/ADTG_2 P3A/RTO00_0/TIOA0_1 P3B/RTO01_0/TIOA1_1 P3C/RTO02_0/TIOA2_1 P3D/RTO03_0/TIOA3_1 P3E/RTO04_0/TIOA4_1 P3F/RTO05_0/TIOA5_1 VSS 119 (TOP VIEW) VSS P20/INT05_0/CROUT/AIN1_1 P21/SIN0_0/INT06_1/BIN1_1 P22/SOT0_0/TIOB7_1/ZIN1_1 P23/SCK0_0/TIOA7_1/RTO00_1 P24/SIN2_1/INT01_2/RTO01_1 P25/SOT2_1/RTO02_1 P26/SCK2_1/RTO03_1/MCSX4 P27/INT02_2/RTO04_1/MCSX5 P28/ADTG_4/RTO05_1/MCSX6 P1F/AN15/ADTG_5/FRCK0_1/MDATA15 P1E/AN14/RTS4_1/DTTI0X_1/MDATA14 P1D/AN13/CTS4_1/IC03_1/MDATA13 P1C/AN12/SCK4_1/IC02_1/MDATA12 P1B/AN11/SOT4_1/IC01_1/MDATA11 P1A/AN10/SIN4_1/INT05_1/IC00_1/MDATA10 P19/AN09/SCK2_2/MDATA9 P18/AN08/SOT2_2/MDATA8 AVSS AVRH AVCC P17/AN07/SIN2_2/INT04_1/MWEX P16/AN06/SCK0_1/MOEX P15/AN05/SOT0_1/MCSX0 P14/AN04/SIN0_1/INT03_1/MCSX1 P13/AN03/SCK1_1/MAD08 P12/AN02/SOT1_1/MAD09 P11/AN01/SIN1_1/INT02_1 P10/AN00 VCC Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05612 Rev. *D October 23, 2017 Page 9 of 112 MB9B300B Series LBC112 Note: − The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05612 Rev. *D October 23, 2017 Page 10 of 112 MB9B300B Series 4. List of Pin Functions List of pin numbers The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin no. BGA-112 LQFP-100 1 B1 1 I/O circuit type Pin name LQFP-120 VCC Pin state type - P50 INT00_0 AIN0_2 2 C1 2 SIN3_1 E H E H E H E H E I RTO10_0 (PPG10_0) MDATA0 P51 INT01_0 BIN0_2 3 C2 3 SOT3_1 (SDA3_1) RTO11_0 (PPG10_0) MDATA1 P52 INT02_0 ZIN0_2 4 B3 4 SCK3_1 (SCL3_1) RTO12_0 (PPG12_0) MDATA2 P53 SIN6_0 TIOA1_2 5 D1 5 INT07_2 RTO13_0 (PPG12_0) MDATA3 P54 SOT6_0 (SDA6_0) 6 D2 6 TIOB1_2 RTO14_0 (PPG14_0) MDATA4 Document Number: 002-05612 Rev. *D October 23, 2017 Page 11 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state type P55 SCK6_0 (SCL6_0) 7 D3 7 ADTG_1 E I E H E I E I E H E I E I E H RTO15_0 (PPG14_0) MDATA5 P56 SIN1_0 (120pin only) 8 D5 8 INT08_2 DTTI1X_0 MCSX7 P57 - - 9 SOT1_0 (SDA1_0) MNALE P58 - - 10 SCK1_0 (SCL1_0) MNCLE P59 SIN7_0 - - 11 INT09_2 MNWEX P5A - - 12 SOT7_0 (SDA7_0) MNREX P5B - - 13 SCK7_0 (SCL7_0) P30 AIN0_0 9 E1 14 TIOB0_1 INT03_2 MDATA6 Document Number: 002-05612 Rev. *D October 23, 2017 Page 12 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state type P31 BIN0_0 TIOB1_1 10 E2 15 SCK6_1 (SCL6_1) E H E H E H E I E H E H E H E H INT04_2 MDATA7 P32 ZIN0_0 TIOB2_1 11 E3 16 SOT6_1 (SDA6_1) INT05_2 MDQM0 P33 INT04_0 12 E4 17 TIOB3_1 SIN6_1 ADTG_6 MDQM1 P34 13 F1 18 FRCK0_0 TIOB4_1 MAD24 P35 IC03_0 14 F2 19 TIOB5_1 INT08_1 MAD23 P36 IC02_0 15 F3 20 SIN5_2 INT09_1 MCSX3 P37 IC01_0 16 G1 21 SOT5_2 (SDA5_2) INT10_1 MCSX2 P38 IC00_0 17 G2 22 SCK5_2 (SCL5_2) INT11_1 Document Number: 002-05612 Rev. *D October 23, 2017 Page 13 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state type P39 18 F4 23 DTTI0X_0 E I G I ADTG_2 P3A 19 G3 24 - B2 - RTO00_0 (PPG00_0) TIOA0_1 VSS - P3B 20 H1 25 RTO01_0 (PPG00_0) G I G I G I G I G I TIOA1_1 P3C 21 H2 26 RTO02_0 (PPG02_0) TIOA2_1 P3D 22 G4 27 RTO03_0 (PPG02_0) TIOA3_1 P3E 23 H3 28 RTO04_0 (PPG04_0) TIOA4_1 P3F RTO05_0 (PPG04_0) 24 J2 29 25 L1 30 VSS - 26 J1 31 VCC - TIOA5_1 P40 TIOA0_0 27 J4 32 RTO10_1 (PPG10_1) G H G H INT12_1 MAD22 P41 TIOA1_0 28 L5 33 RTO11_1 (PPG10_1) INT13_1 MAD21 Document Number: 002-05612 Rev. *D October 23, 2017 Page 14 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state type P42 TIOA2_0 29 K5 34 RTO12_1 (PPG12_1) G I G I MAD20 P43 TIOA3_0 30 J5 35 RTO13_1 (PPG12_1) ADTG_7 MAD19 - K2 - VSS - - J3 - VSS - - H4 - VSS - P44 TIOA4_0 31 H5 36 RTO14_1 (PPG14_1) G I G I MAD18 P45 TIOA5_0 32 L6 37 33 L2 38 C - 34 L4 39 VSS - 35 K1 40 VCC - RTO15_1 (PPG14_1) MAD17 36 L3 41 37 K3 42 38 K4 43 P46 X0A P47 X1A INITX D M D N B C E H E I P48 DTTI1X_1 39 K6 44 INT14_1 SIN3_2 MAD16 P49 TIOB0_0 IC10_1 40 J6 45 AIN0_1 SOT3_2 (SDA3_2) MAD15 Document Number: 002-05612 Rev. *D October 23, 2017 Page 15 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state type P4A TIOB1_0 IC11_1 41 L7 46 BIN0_1 E I E I E I E I E H E I E H E H SCK3_2 (SCL3_2) MAD14 P4B TIOB2_0 42 K7 47 IC12_1 ZIN0_1 MAD13 P4C TIOB3_0 IC13_1 43 H6 48 SCK7_1 (SCL7_1) AIN1_2 MAD12 P4D TIOB4_0 FRCK1_1 44 J7 49 SOT7_1 (SDA7_1) BIN1_2 MAD11 P4E TIOB5_0 45 K8 50 INT06_2 SIN7_1 ZIN1_2 MAD10 - - 51 - - 52 P70 TIOA4_2 P71 INT13_2 TIOB4_2 P72 - - 53 SIN2_0 INT14_2 Document Number: 002-05612 Rev. *D October 23, 2017 Page 16 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state type P73 - - 54 SOT2_0 (SDA2_0) E H INT15_2 P74 - - 55 SCK2_0 (SCL2_0) E I 46 K9 56 MD1 C D 47 L8 57 MD0 C D 48 L9 58 X0 A A 49 L10 59 X1 A B 50 L11 60 VSS - 51 K11 61 VCC - 52 J11 62 P10 AN00 F K F L P11 53 J10 63 AN01 SIN1_1 INT02_1 - K10 - VSS - - J9 - VSS - P12 AN02 54 J8 64 SOT1_1 (SDA1_1) F K F K F L F K MAD09 P13 AN03 55 H10 65 SCK1_1 (SCL1_1) MAD08 P14 AN04 56 H9 66 SIN0_1 INT03_1 MCSX1 P15 AN05 57 H7 67 SOT0_1 (SDA0_1) MCSX0 Document Number: 002-05612 Rev. *D October 23, 2017 Page 17 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state type P16 AN06 58 G10 68 SCK0_1 (SCL0_1) F K F L MOEX P17 AN07 59 G9 69 SIN2_2 INT04_1 MWEX 60 H11 70 AVCC - 61 F11 71 AVRH - 62 G11 72 AVSS - P18 AN08 63 G8 73 SOT2_2 (SDA2_2) F K F K F L MDATA8 P19 AN09 64 F10 74 SCK2_2 (SCL2_2) MDATA9 P1A AN10 65 F9 75 SIN4_1 INT05_1 IC00_1 MDATA10 - H8 - VSS - P1B AN11 66 E11 76 SOT4_1 (SDA4_1) F K F K IC01_1 MDATA11 P1C AN12 67 E10 77 SCK4_1 (SCL4_1) IC02_1 MDATA12 Document Number: 002-05612 Rev. *D October 23, 2017 Page 18 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state type P1D AN13 68 F8 78 CTS4_1 F K F K F K E I E H E I E I IC03_1 MDATA13 P1E AN14 69 E9 79 RTS4_1 DTTI0X_1 MDATA14 P1F AN15 70 D11 80 ADTG_5 FRCK0_1 MDATA15 P28 ADTG_4 - - 81 RTO05_1 (PPG04_1) MCSX6 P27 INT02_2 - - 82 RTO04_1 (PPG04_1) MCSX5 P26 - - 83 SCK2_1 (SCL2_1) RTO03_1 (PPG02_1) MCSX4 P25 - - 84 SOT2_1 (SDA2_1) RTO02_1 (PPG02_1) - B10 - VSS - - C9 - VSS - P24 SIN2_1 - - 85 INT01_2 E H RTO01_1 (PPG00_1) Document Number: 002-05612 Rev. *D October 23, 2017 Page 19 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state type P23 SCK0_0 (SCL0_0) 71 D10 86 TIOA7_1 E I E I E H E H RTO00_1 (PPG00_1) P22 72 E8 87 SOT0_0 (SDA0_0) TIOB7_1 ZIN1_1 P21 73 C11 88 SIN0_0 INT06_1 BIN1_1 P20 INT05_0 74 C10 89 75 A11 90 VSS - 76 A10 91 VCC - 77 A9 92 78 B9 93 CROUT AIN1_1 P00 TRSTX E E E E E E E E E E E F P01 TCK SWCLK 79 B11 94 80 A8 95 P02 TDI P03 TMS SWDIO P04 81 B8 96 TDO SWO P05 TRACED0 82 C8 97 TIOA5_2 SIN4_2 INT00_1 - D8 Document Number: 002-05612 Rev. *D - VSS October 23, 2017 - Page 20 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state type P06 TRACED1 83 D9 98 TIOB5_2 SOT4_2 (SDA4_2) E F E G E G E G E H E I E I E I INT01_1 P07 TRACED2 84 A7 99 ADTG_0 SCK4_2 (SCL4_2) P08 85 B7 100 TRACED3 TIOA0_2 CTS4_2 P09 86 C7 101 TRACECLK TIOB0_2 RTS4_2 P0A SIN4_0 87 D7 102 INT00_2 FRCK1_0 MAD07 P0B SOT4_0 (SDA4_0) 88 A6 103 TIOB6_1 IC10_0 MAD06 P0C 89 B6 104 SCK4_0 (SCL4_0) TIOA6_1 IC11_0 MAD05 P0D RTS4_0 90 C6 105 TIOA3_2 IC12_0 MAD04 Document Number: 002-05612 Rev. *D October 23, 2017 Page 21 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state typet P0E CTS4_0 91 A5 106 TIOB3_2 E I IC13_0 MAD03 - D4 - VSS - - C3 - VSS - P0F 92 B5 107 NMIX E J E H E I E H E I E H E H E I E I MAD02 P68 - - 108 SCK3_0 (SCL3_0) TIOB7_2 INT12_2 P67 - - 109 SOT3_0 (SDA3_0) TIOA7_2 P66 - - 110 SIN3_0 ADTG_8 INT11_2 P65 - - 111 TIOB7_0 SCK5_1 (SCL5_1) P64 TIOA7_0 - - 112 SOT5_1 (SDA5_1) INT10_2 P63 93 - D6 113 - INT03_0 MAD01 SIN5_1 P62 94 C5 114 SCK5_0 (SCL5_0) ADTG_3 MAD00 P61 95 B4 115 SOT5_0 (SDA5_0) TIOB2_2 UHCONX Document Number: 002-05612 Rev. *D October 23, 2017 Page 22 of 112 MB9B300B Series Pin no. BGA-112 LQFP-100 I/O circuit type Pin name LQFP-120 Pin state type P60 96 C4 116 97 A4 117 98 A3 118 99 A2 119 100 A1 120 SIN5_0 TIOA2_2 E H INT15_1 Document Number: 002-05612 Rev. *D USBVCC P80 UDM0 P81 UDP0 VSS October 23, 2017 H O H O - Page 23 of 112 MB9B300B Series List of pin functions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Module ADC Base Timer 0 Base Timer 1 Base Timer 2 Pin name ADTG_0 ADTG_1 ADTG_2 ADTG_3 ADTG_4 ADTG_5 ADTG_6 ADTG_7 ADTG_8 AN00 AN01 AN02 AN03 AN04 AN05 AN06 AN07 AN08 AN09 AN10 AN11 AN12 AN13 AN14 AN15 TIOA0_0 TIOA0_1 TIOA0_2 TIOB0_0 TIOB0_1 TIOB0_2 TIOA1_0 TIOA1_1 TIOA1_2 TIOB1_0 TIOB1_1 TIOB1_2 TIOA2_0 TIOA2_1 TIOA2_2 TIOB2_0 TIOB2_1 TIOB2_2 Document Number: 002-05612 Rev. *D Function A/D converter external trigger input pin. A/D converter analog input pin. ANxx describes ADC ch.xx. Base timer ch.0 TIOA pin. Base timer ch.0 TIOB pin. Base timer ch.1 TIOA pin. Base timer ch.1 TIOB pin. Base timer ch.2 TIOA pin. Base timer ch.2 TIOB pin. October 23, 2017 LQFP-100 84 7 18 94 70 12 30 52 53 54 55 56 57 58 59 63 64 65 66 67 68 69 70 27 19 85 40 9 86 28 20 5 41 10 6 29 21 96 42 11 95 Pin No. BGA-112 A7 D3 F4 C5 D11 E4 J5 J11 J10 J8 H10 H9 H7 G10 G9 G8 F10 F9 E11 E10 F8 E9 D11 J4 G3 B7 J6 E1 C7 L5 H1 D1 L7 E2 D2 K5 H2 C4 K7 E3 B4 LQFP-120 99 7 23 114 81 80 17 35 110 62 63 64 65 66 67 68 69 73 74 75 76 77 78 79 80 32 24 100 45 14 101 33 25 5 46 15 6 34 26 116 47 16 115 Page 24 of 112 MB9B300B Series Module Base Timer 3 Pin name Function TIOA3_0 TIOA3_1 J5 35 22 G4 27 90 C6 105 TIOB3_0 43 H6 48 12 E4 17 91 A5 106 31 H5 36 23 H3 28 TIOA4_2 - - 51 TIOB4_0 44 J7 49 13 F1 18 TIOB4_2 - - 52 TIOA5_0 32 L6 37 24 J2 29 TIOA5_2 82 C8 97 TIOB5_0 45 K8 50 14 F2 19 83 D9 98 Base timer ch.3 TIOA pin. Base timer ch.3 TIOB pin. TIOB3_2 TIOA4_0 TIOA4_1 TIOB4_1 Base Timer 5 LQFP-120 30 TIOA3_2 TIOB3_1 Base Timer 4 Pin No. BGA-112 LQFP-100 TIOA5_1 TIOB5_1 Base timer ch.4 TIOA pin. Base timer ch.4 TIOB pin. Base timer ch.5 TIOA pin. Base timer ch.5 TIOB pin. TIOB5_2 Base Timer 6 TIOA6_1 Base timer ch.6 TIOA pin. 89 B6 104 TIOB6_1 Base timer ch.6 TIOB pin. 88 A6 103 Base Timer 7 TIOA7_0 - - 112 71 D10 86 TIOA7_2 - - 109 TIOB7_0 - - 111 72 E8 87 TIOA7_1 TIOB7_1 Base timer ch.7 TIOA pin. Base timer ch.7 TIOB pin. TIOB7_2 Debugger - - 108 SWCLK Serial wire debug interface clock input. 78 B9 93 SWDIO Serial wire debug interface data input / output. 80 A8 95 SWO Serial wire viewer output. 81 B8 96 TCK JTAG test clock input. 78 B9 93 TDI JTAG test data input. 79 B11 94 TDO JTAG debug data output. 81 B8 96 TMS JTAG test mode state input/output. 80 A8 95 TRACECLK Trace CLK output of ETM. 86 C7 101 TRACED0 82 C8 97 TRACED1 83 D9 98 84 A7 99 85 B7 100 77 A9 92 TRACED2 Trace data output of ETM. TRACED3 TRSTX Document Number: 002-05612 Rev. *D JTAG test reset Input. October 23, 2017 Page 25 of 112 MB9B300B Series Module External Bus Pin name MAD00 MAD01 MAD02 MAD03 MAD04 MAD05 MAD06 MAD07 MAD08 MAD09 MAD10 MAD11 MAD12 MAD13 MAD14 MAD15 MAD16 MAD17 MAD18 MAD19 MAD20 MAD21 MAD22 MAD23 MAD24 MCSX0 MCSX1 MCSX2 MCSX3 MCSX4 MCSX5 MCSX6 MCSX7 MDATA0 MDATA1 MDATA2 MDATA3 MDATA4 MDATA5 MDATA6 MDATA7 MDATA8 MDATA9 MDATA10 MDATA11 MDATA12 MDATA13 MDATA14 MDATA15 MDQM0 MDQM1 Document Number: 002-05612 Rev. *D Function External bus interface address bus. External bus interface chip select output pin. External bus interface data bus. External bus interface byte mask signal output. October 23, 2017 LQFP-100 94 93 92 91 90 89 88 87 55 54 45 44 43 42 41 40 39 32 31 30 29 28 27 14 13 57 56 16 15 8 2 3 4 5 6 7 9 10 63 64 65 66 67 68 69 70 11 12 Pin No. BGA-112 C5 D6 B5 A5 C6 B6 A6 D7 H10 J8 K8 J7 H6 K7 L7 J6 K6 L6 H5 J5 K5 L5 J4 F2 F1 H7 H9 G1 F3 D5 C1 C2 B3 D1 D2 D3 E1 E2 G8 F10 F9 E11 E10 F8 E9 D11 E3 E4 LQFP-120 114 113 107 106 105 104 103 102 65 64 50 49 48 47 46 45 44 37 36 35 34 33 32 19 18 67 66 21 20 83 82 81 8 2 3 4 5 6 7 14 15 73 74 75 76 77 78 79 80 16 17 Page 26 of 112 MB9B300B Series Module External Bus Pin name MNALE MNCLE MNREX MNWEX MOEX MWEX Document Number: 002-05612 Rev. *D Function External bus interface ALE signal to control NAND Flash output pin. External bus interface CLE signal to control NAND Flash output pin. External bus interface read enable signal to control NAND Flash. External bus interface write enable signal to control NAND Flash. External bus interface read enable signal for SRAM. External bus interface write enable signal for SRAM. October 23, 2017 Pin No. BGA-112 LQFP-100 LQFP-120 - - 9 - - 10 - - 12 - - 11 58 59 G10 G9 68 69 Page 27 of 112 MB9B300B Series Module External Interrupt Pin name INT00_0 INT00_1 INT00_2 INT01_0 INT01_1 INT01_2 INT02_0 INT02_1 INT02_2 INT03_0 INT03_1 INT03_2 INT04_0 INT04_1 INT04_2 INT05_0 INT05_1 INT05_2 INT06_1 INT06_2 INT07_2 INT08_1 INT08_2 INT09_1 INT09_2 INT10_1 INT10_2 INT11_1 INT11_2 INT12_1 INT12_2 INT13_1 INT13_2 INT14_1 INT14_2 INT15_1 INT15_2 NMIX Document Number: 002-05612 Rev. *D Function External interrupt request 00 input pin. External interrupt request 01 input pin. External interrupt request 02 input pin. External interrupt request 03 input pin. External interrupt request 04 input pin. External interrupt request 05 input pin. External interrupt request 06 input pin. External interrupt request 07 input pin. External interrupt request 08 input pin. External interrupt request 09 input pin. External interrupt request 10 input pin. External interrupt request 11 input pin. External interrupt request 12 input pin. External interrupt request 13 input pin. External interrupt request 14 input pin. External interrupt request 15 input pin. Non-Maskable Interrupt input. October 23, 2017 LQFP-100 2 82 87 3 83 4 53 93 56 9 12 59 10 74 65 11 73 45 5 14 8 15 16 17 27 28 39 96 92 Pin No. BGA-112 C1 C8 D7 C2 D9 B3 J10 D6 H9 E1 E4 G9 E2 C10 F9 E3 C11 K8 D1 F2 D5 F3 G1 G2 J4 L5 K6 C4 B5 LQFP-120 2 97 102 3 98 85 4 63 82 113 66 14 17 69 15 89 75 16 88 50 5 19 8 20 11 21 112 22 110 32 108 33 52 44 53 116 54 107 Page 28 of 112 MB9B300B Series Module GPIO Pin name P00 P01 P02 P03 P04 P05 P06 P07 P08 P09 P0A P0B P0C P0D P0E P0F P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P1A P1B P1C P1D P1E P1F P20 P21 P22 P23 P24 P25 P26 P27 P28 Document Number: 002-05612 Rev. *D Function LQFP-100 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 52 53 54 55 56 57 58 59 63 64 65 66 67 68 69 70 74 73 72 71 - General-purpose I/O port 0. General-purpose I/O port 1. General-purpose I/O port 2. October 23, 2017 Pin No. BGA-112 A9 B9 B11 A8 B8 C8 D9 A7 B7 C7 D7 A6 B6 C6 A5 B5 J11 J10 J8 H10 H9 H7 G10 G9 G8 F10 F9 E11 E10 F8 E9 D11 C10 C11 E8 D10 - LQFP-120 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 62 63 64 65 66 67 68 69 73 74 75 76 77 78 79 80 89 88 87 86 85 84 83 82 81 Page 29 of 112 MB9B300B Series Module GPIO Pin name P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P3A P3B P3C P3D P3E P3F P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P4A P4B P4C P4D P4E P50 P51 P52 P53 P54 P55 P56 P57 P58 P59 P5A P5B Document Number: 002-05612 Rev. *D Function LQFP-100 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 27 28 29 30 31 32 36 37 39 40 41 42 43 44 45 2 3 4 5 6 7 8 - General-purpose I/O port 3. General-purpose I/O port 4. General-purpose I/O port 5. October 23, 2017 Pin No. BGA-112 E1 E2 E3 E4 F1 F2 F3 G1 G2 F4 G3 H1 H2 G4 H3 J2 J4 L5 K5 J5 H5 L6 L3 K3 K6 J6 L7 K7 H6 J7 K8 C1 C2 B3 D1 D2 D3 D5 - LQFP-120 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 32 33 34 35 36 37 41 42 44 45 46 47 48 49 50 2 3 4 5 6 7 8 9 10 11 12 13 Page 30 of 112 MB9B300B Series Module GPIO Multi Function Serial 0 Pin name P60 P61 P62 P63 P64 P65 P66 P67 P68 P70 P71 P72 P73 P74 P80 P81 SIN0_0 SIN0_1 SOT0_0 (SDA0_0) SOT0_1 (SDA0_1) SCK0_0 (SCL0_0) Multi Function Serial 1 SCK0_1 (SCL0_1) SIN1_0 SIN1_1 SOT1_0 (SDA1_0) SOT1_1 (SDA1_1) SCK1_0 (SCL1_0) Multi Function Serial 2 SCK1_1 (SCL1_1) SIN2_0 SIN2_1 SIN2_2 SOT2_0 (SDA2_0) SOT2_1 (SDA2_1) SOT2_2 (SDA2_2) SCK2_0 (SCL2_0) SCK2_1 (SCL2_1) SCK2_2 (SCL2_2) Document Number: 002-05612 Rev. *D Function Pin No. BGA-112 LQFP-100 LQFP-120 96 95 94 93 98 99 73 56 C4 B4 C5 D6 A3 A2 C11 H9 116 115 114 113 112 111 110 109 108 51 52 53 54 55 118 119 88 66 Multifunction serial interface ch.0 output pin. This pin operates as SOT0 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA0 when it is used in an I2C (operation mode 4). 72 E8 87 57 H7 67 Multifunction serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL0 when it is used in an I2C (operation mode 4). 71 D10 86 58 G10 68 53 J10 8 63 Multifunction serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA1 when it is used in an I2C (operation mode 4). - - 9 54 J8 64 Multifunction serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL1 when it is used in an I2C (operation mode 4). - - 10 55 H10 65 59 G9 53 85 69 - - 54 - - 84 63 G8 73 - - 55 - - 83 64 F10 74 General-purpose I/O port 6. General-purpose I/O port 7. General-purpose I/O port 8. Multifunction serial interface ch.0 input pin. Multifunction serial interface ch.1 input pin. Multifunction serial interface ch.2 input pin. Multifunction serial interface ch.2 output pin. This pin operates as SOT2 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA2 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.2 clock I/O pin. This pin operates as SCK2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL2 when it is used in an I2C (operation mode 4). October 23, 2017 Page 31 of 112 MB9B300B Series Module Multi Function Serial 3 Multi Function Serial 4 Multi Function Serial 5 Pin name Function SIN3_0 SIN3_1 SIN3_2 SOT3_0 (SDA3_0) SOT3_1 (SDA3_1) SOT3_2 (SDA3_2) SCK3_0 (SCL3_0) SCK3_1 (SCL3_1) SCK3_2 (SCL3_2) SIN4_0 SIN4_1 SIN4_2 SOT4_0 (SDA4_0) SOT4_1 (SDA4_1) SOT4_2 (SDA4_2) SCK4_0 (SCL4_0) SCK4_1 (SCL4_1) SCK4_2 (SCL4_2) RTS4_0 RTS4_1 RTS4_2 CTS4_0 CTS4_1 CTS4_2 SIN5_0 SIN5_1 SIN5_2 SOT5_0 (SDA5_0) SOT5_1 (SDA5_1) SOT5_2 (SDA5_2) SCK5_0 (SCL5_0) SCK5_1 (SCL5_1) SCK5_2 (SCL5_2) Document Number: 002-05612 Rev. *D Multifunction serial interface ch.3 input pin. Multifunction serial interface ch.3 output pin. This pin operates as SOT3 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL3 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.4 input pin. Multifunction serial interface ch.4 output pin. This pin operates as SOT4 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA4 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.4 clock I/O pin. This pin operates as SCK4 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL4 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.4 RTS output pin. Multifunction serial interface ch.4 CTS input pin. Multifunction serial interface ch.5 input pin. Multifunction serial interface ch.5 output pin. This pin operates as SOT5 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.5 clock I/O pin. This pin operates as SCK5 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL5 when it is used in an I2C (operation mode 4). October 23, 2017 Pin No. BGA-112 LQFP-100 LQFP-120 - - 110 2 C1 2 39 K6 44 - - 109 3 C2 3 40 J6 45 - - 108 4 B3 4 41 L7 46 87 65 82 D7 F9 C8 102 75 97 88 A6 103 66 E11 76 83 D9 98 89 B6 104 67 E10 77 84 A7 99 90 69 86 91 68 85 96 15 C6 E9 C7 A5 F8 B7 C4 F3 105 79 101 106 78 100 116 113 20 95 B4 115 - - 112 16 G1 21 94 C5 114 - - 111 17 G2 22 Page 32 of 112 MB9B300B Series Module Multi Function Serial 6 Multi Function Serial 7 Pin name SIN6_0 SIN6_1 SOT6_0 (SDA6_0) SOT6_1 (SDA6_1) SCK6_0 (SCL6_0) SCK6_1 (SCL6_1) SIN7_0 SIN7_1 SOT7_0 (SDA7_0) SOT7_1 (SDA7_1) SCK7_0 (SCL7_0) SCK7_1 (SCL7_1) Document Number: 002-05612 Rev. *D Function Pin No. BGA-112 LQFP-100 LQFP-120 5 12 D1 E4 5 17 6 D2 6 11 E3 16 7 D3 7 10 E2 15 45 K8 11 50 Multifunction serial interface ch.7 output pin. This pin operates as SOT7 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an I2C (operation mode 4). - - 12 44 J7 49 Multifunction serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL7 when it is used in an I2C (operation mode 4). - - 13 43 H6 48 Multifunction serial interface ch.6 input pin. Multifunction serial interface ch.6 output pin. This pin operates as SOT6 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL6 when it is used in an I2C (operation mode 4). Multifunction serial interface ch.7 input pin. October 23, 2017 Page 33 of 112 MB9B300B Series Module Multi Function Timer 0 Pin name DTTI0X_0 DTTI0X_1 FRCK0_0 FRCK0_1 IC00_0 IC00_1 IC01_0 IC01_1 IC02_0 IC02_1 IC03_0 IC03_1 RTO00_0 (PPG00_0) RTO00_1 (PPG00_1) RTO01_0 (PPG00_0) RTO01_1 (PPG00_1) RTO02_0 (PPG02_0) RTO02_1 (PPG02_1) RTO03_0 (PPG02_0) RTO03_1 (PPG02_1) RTO04_0 (PPG04_0) RTO04_1 (PPG04_1) RTO05_0 (PPG04_0) RTO05_1 (PPG04_1) Document Number: 002-05612 Rev. *D LQFP-100 Pin No. BGA-112 LQFP-120 18 69 13 70 17 65 16 66 15 67 14 68 F4 E9 F1 D11 G2 F9 G1 E11 F3 E10 F2 F8 23 79 18 80 22 75 21 76 20 77 19 78 Wave form generator output of multi-function timer 0. This pin operates as PPG00 when it is used in PPG 0 output modes. 19 G3 24 71 D10 86 Wave form generator output of multi-function timer 0. This pin operates as PPG00 when it is used in PPG 0 output modes. 20 H1 25 - - 85 Wave form generator output of multi-function timer 0. This pin operates as PPG02 when it is used in PPG 0 output modes. 21 H2 26 - - 84 Wave form generator output of multi-function timer 0. This pin operates as PPG02 when it is used in PPG 0 output modes. 22 G4 27 - - 83 Wave form generator output of multi-function timer 0. This pin operates as PPG04 when it is used in PPG 0 output modes. 23 H3 28 - - 82 Wave form generator output of multi-function timer 0. This pin operates as PPG04 when it is used in PPG 0 output modes. 24 J2 29 - - 81 Function Input signal controlling wave form generator outputs RTO00 to RTO05 of multi-function timer 0. 16-bit free-run timer ch.0 external clock input pin. 16-bit input capture ch.0 input pin of multi-function timer 0. ICxx describes channel number. October 23, 2017 Page 34 of 112 MB9B300B Series Module Multi Function Timer 1 Pin name DTTI1X_0 DTTI1X_1 FRCK1_0 FRCK1_1 IC10_0 IC10_1 IC11_0 IC11_1 IC12_0 IC12_1 IC13_0 IC13_1 RTO10_0 (PPG10_0) RTO10_1 (PPG10_1) RTO11_0 (PPG10_0) RTO11_1 (PPG10_1) RTO12_0 (PPG12_0) RTO12_1 (PPG12_1) RTO13_0 (PPG12_0) RTO13_1 (PPG12_1) RTO14_0 (PPG14_0) RTO14_1 (PPG14_1) RTO15_0 (PPG14_0) RTO15_1 (PPG14_1) Document Number: 002-05612 Rev. *D LQFP-100 Pin No. BGA-112 LQFP-120 8 39 87 44 88 40 89 41 90 42 91 43 D5 K6 D7 J7 A6 J6 B6 L7 C6 K7 A5 H6 8 44 102 49 103 45 104 46 105 47 106 48 Wave form generator output of multi-function timer 1. This pin operates as PPG10 when it is used in PPG 1 output modes. 2 C1 2 27 J4 32 Wave form generator output of multi-function timer 1. This pin operates as PPG10 when it is used in PPG 1 output modes. 3 C2 3 28 L5 33 Wave form generator output of multi-function timer 1. This pin operates as PPG12 when it is used in PPG 1 output modes. 4 B3 4 29 K5 34 Wave form generator output of multi-function timer 1. This pin operates as PPG12 when it is used in PPG 1 output modes. 5 D1 5 30 J5 35 6 D2 6 31 H5 36 7 D3 7 32 L6 37 Function Input signal controlling wave form generator outputs RTO10 to RTO15 of multi-function timer 1. 16-bit free-run timer ch.1 external clock input pin. 16-bit input capture ch.0 input pin of multi-function timer 1. ICxx describes channel number. Wave form generator output of multi-function timer 1. This pin operates as PPG14 when it is used in PPG 1 output modes. Wave form generator output of multi-function timer 1. This pin operates as PPG14 when it is used in PPG 1 output modes. October 23, 2017 Page 35 of 112 MB9B300B Series Module Quadrature Position/ Revolution Counter 0 Pin name Function AIN0_0 AIN0_1 LQFP-120 9 E1 14 40 J6 45 2 C1 2 BIN0_0 10 E2 15 41 L7 46 BIN0_2 3 C2 3 ZIN0_0 11 E3 16 42 K7 47 4 B3 4 74 C10 89 43 H6 48 73 C11 88 44 J7 49 72 E8 87 45 K8 50 98 99 95 A3 A2 B4 118 119 115 ZIN0_1 QPRC ch.0 AIN input pin. QPRC ch.0 BIN input pin. QPRC ch.0 ZIN input pin. ZIN0_2 AIN1_1 AIN1_2 BIN1_1 BIN1_2 ZIN1_1 ZIN1_2 USB Pin No. BGA-112 AIN0_2 BIN0_1 Quadrature Position/ Revolution Counter 1 LQFP-100 UDM0 UDP0 UHCONX Document Number: 002-05612 Rev. *D QPRC ch.1 AIN input pin. QPRC ch.1 BIN input pin. QPRC ch.1 ZIN input pin. USB Device / HOST D – pin. USB Device / HOST D + pin. USB external pull-up control pin. October 23, 2017 Page 36 of 112 MB9B300B Series LQFP-100 Pin No. BGA-112 LQFP-120 38 K4 43 47 L8 57 Main clock (oscillation) input pin. Sub clock (oscillation) input pin. Main clock (oscillation) I/O pin. Sub clock (oscillation) I/O pin. Built-in High-speed CR-osc clock output port. A/D converter analog power pin. A/D converter analog reference voltage input pin. 46 1 26 35 51 76 97 25 34 50 75 100 48 36 49 37 74 60 61 K9 B1 J1 K1 K11 A10 A4 B2 L1 K2 J3 H4 L4 L11 K10 J9 H8 B10 C9 A11 D8 D4 C3 A1 L9 L3 L10 K3 C10 H11 F11 56 1 31 40 61 91 117 30 39 60 90 120 58 41 59 42 89 70 71 AVSS A/D converter GND pin. 62 G11 72 C Power stabilization capacity pin. 33 L2 38 Module Reset Mode Pin name INITX MD0 Power GND Clock Analog Power Analog GND C-pin MD1 VCC VCC VCC VCC VCC USBVCC VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS X0 X0A X1 X1A CROUT AVCC AVRH Function External Reset Input. A reset is valid when INITX=L. Mode 0 pin. During normal operation, MD0=L must be input. During serial programming to flash memory, MD0=H must be input. Mode 1 pin. Input must always be at the "L" level. Power Pin. 3.3V Power supply port for USB I/O. GND Pin. Note: − While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP controller. Document Number: 002-05612 Rev. *D October 23, 2017 Page 37 of 112 MB9B300B Series 5. I/O Circuit Type Type A Circuit Remarks • Oscillation feedback resistor : Approximately 1 MΩ • With Standby mode control X1 Clock input X0 Standby mode control B • CMOS level hysteresis input • pull-up resistor : Approximately 50 kΩ Pull-up resistor Digital input C • CMOS level hysteresis input Mode input Document Number: 002-05612 Rev. *D October 23, 2017 Page 38 of 112 MB9B300B Series Type D Circuit Remarks It is possible to select the sub oscillation / GPIO function Pull-up When the sub oscillation is selected. resistor P-ch P-ch Digital output X1A • Oscillation feedback resistor : Approximately 20 MΩ • With Standby mode control When the GPIO is selected. N-ch Digital output R Pull-up resistor control • CMOS level output. • CMOS level hysteresis input • With pull-up resistor control • With standby mode control • pull-up resistor : Approximately 50 kΩ • IOH = -4 mA, IOL = 4 mA Digital input Standby mode control Feedback Clock input resistor Standby mode control Digital input Standby mode control Pull-up resistor R P-ch P-ch Digital output N-ch Digital output X0A Pull-up resistor control Document Number: 002-05612 Rev. *D October 23, 2017 Page 39 of 112 MB9B300B Series Type E Circuit P-ch P-ch N-ch Remarks Digital output Digital output • CMOS level output • CMOS level hysteresis input • With pull-up resistor control • With standby mode control • pull-up resistor : Approximately 50 kΩ • IOH = -4 mA, IOL = 4 mA • When this pin is used as an I2C pin, the digital output P-ch transistor is always off • +B input is available R Pull-up resistor control Digital input Standby mode control F P-ch P-ch N-ch R Digital output Digital output • CMOS level output • CMOS level hysteresis input • With input control • Analog input • With pull-up resistor control • With standby mode control • pull-up resistor : Approximately 50 kΩ • IOH = -4 mA, IOL = 4 mA • When this pin is used as an I2C pin, the digital output P-ch transistor is always off • +B input is available Pull-up resistor control Digital input Standby mode control Analog input Input control Document Number: 002-05612 Rev. *D October 23, 2017 Page 40 of 112 MB9B300B Series Type G Circuit P-ch Remarks Digital output P-ch N-ch • CMOS level output • CMOS level hysteresis input • With pull-up resistor control • With standby mode control • pull-up resistor : Approximately 50 kΩ • IOH = -12 mA, IOL = 12 mA • +B input is available Digital output R Pull-up resistor control Digital input Standby mode control H GPIO Digital output GPIO Digital input/output direction GPIO Digital input When the USB IO is selected. GPIO Digital input circuit control • Full-speed, Low-speed control UDP output When the GPIO is selected. UDP0/P81 UDP input Differential UDM0/P80 It is possible to select the USB IO / GPIO function. Differential input • CMOS level output • CMOS level hysteresis input • With standby mode control • IOH = -25.3 mA, IOL = 19.7 mA USB/GPIO select UDM input UDM output USB Digital input/output direction GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control Document Number: 002-05612 Rev. *D October 23, 2017 Page 41 of 112 MB9B300B Series 6. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices. 6.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the datasheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. 1. Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. 2. Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. 3. Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. 2. Be sure that abnormal current flows do not occur during the power-on sequence. Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Document Number: 002-05612 Rev. *D October 23, 2017 Page 42 of 112 MB9B300B Series Precautions Related to Usage of Devices Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 6.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions. Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. 2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking. Condition: 125°C/24 h Document Number: 002-05612 Rev. *D October 23, 2017 Page 43 of 112 MB9B300B Series Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. 4. Ground all fixtures and instruments, or protect with anti-static measures. 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. 6.3 Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: 1. Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. 2. Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. 3. Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. 4. Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. 5. Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives. Document Number: 002-05612 Rev. *D October 23, 2017 Page 44 of 112 MB9B300B Series 7. Handling Devices Power supply pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device. Stabilizing power supply voltage A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary fluctuation on switching the power supply. Crystal oscillator circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation. Evaluate oscillation of your using crystal oscillator by your mount board. Using an external clock When using an external clock, the clock signal should be input to the X0,X0A pin only and the X1,X1A pin should be kept open. • Example of Using an External Clock Device X0(X0A) X1(X1A) Open Handling when using Multi function serial pin as I2C pin If it is using multi function serial pin as I2C pins, P-ch transistor of digital output is always disable. However, I 2C pins need to keep the electrical characteristic like other pins and not to connect to external I2C bus system with power OFF. Document Number: 002-05612 Rev. *D October 23, 2017 Page 45 of 112 MB9B300B Series C Pin This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7 μF would be recommended for this series. C Device CS VSS GND Mode pins (MD0, MD1) Connect the MD pin (MD0, MD1) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise. Notes on power-on Turn power on/off in the following order or at the same time. If not using the A/D converter, connect AVCC =VCC and AVSS = VSS. Turning on : VCC →USBVCC VCC → AVCC → AVRH Turning off : AVRH → AVCC → VCC USBVCC → VCC Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Differences in features among the products with different memory sizes and between FLASH products and MASK products The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between FLASH products and MASK products are different because chip layout and memory structures are different. If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics. Document Number: 002-05612 Rev. *D October 23, 2017 Page 46 of 112 MB9B300B Series 8. Block Diagram MB9BF304B/305B/306B TRSTX,TC KTDI,TMS TDO TRACED[3:0], TRACECLK SWJ-DP ETM TPIU ROM Table SRAM0 16/24/32 Kbyte Cortex-M3 Core I @80MHz(Max.) D NVIC Multi-layer AHB (Max.80MHz) MPU Sys AHB-APB Bridge: APB0(Max.40MHz) Dual-Timer WatchDog Timer (Software) Clock Reset Generator INITX WatchDog Timer (Hardware) On-Chip Flash 256/384/512K byte Flash I/F Security SRAM1 16/24/32 Kbyte USB 2.0 (Host /Device) /Func) USBVCC PHY UDP0,UDM0 UHCONX DMAC 8ch. CSV X0 X1 X0A X1A CROUT AVCC, AVSS,AVRH Main Osc Sub Osc PLL CR 4MHz AHB-AHB Bridge CLK Source Clock CR 100kHz MAD[24:0] External Bus IF 12-bit A/D Converter MDATA[15:0] MCSX[7:0], MOEX,MWEX, MNALE, MNCLE MNWEX, MNREX, MDQM[1:0] Unit 0 AN[15:0] Unit 1 ADTG[8:0] Unit 2 USB Clock ctrl AIN[1:0] BIN[1:0] QPRC 2ch. ZIN[1:0] A/D Activation Compare 3ch. IC0[3:0] IC1[3:0] FRCK[1:0] 16-bit Input Capture 4ch. 16-bit FreeRun Timer 3ch. 16-bit Output Compare 6ch. DTTI[1:0]X RTO0[5:0] RTO1[5:0] LVD Ctrl AHB-APB Bridge : APB2 ( Max.40MHz) TIOB[7:0] Base Timer 16-bit 8ch. /32-bit 4ch. AHB-APB Bridge : APB1 (Max.40MHz) TIOA[7:0] Multi Function Timer x2 Document Number: 002-05612 Rev. *D Power On Reset LVD Regulator C IRQ-Monitor CRC Accelerator Watch Counter External Interrupt Controller 16-pin + NMI INT[15:0] NMIX MD[1:0] MODE-Ctrl P0[F:0], P1[F:0], GPIO Waveform Generator 3ch. 16-bit PPG 3ch. PLL PIN-Function-Ctrl ・ ・ Px[x:0], Multi-Function Serial I/F 8ch. (with FIFO ch.4~7) *HW flow control(ch.4) October 23, 2017 SCK[7:0] SIN[7:0] SOT[7:0] CTS4 RTS4 Page 47 of 112 MB9B300B Series 9. Memory Size See “Memory size” in “1. Product Lineup” to confirm the memory size. 10. Memory Map Memory Map (1) Peripherals Area 0x41FF_FFFF Reserved 0xFFFF_FFFF Reserved 0x4006_4000 Cortex-M3 Private Peripherals 0x4006_3000 0x4006_2000 0x4006_1000 0x4006_0000 0xE010_0000 0xE000_0000 Reserved Reserved Reserved DMAC Reserved 0x4005_0000 USB ch.0 Reserved 0x4004_0000 0x4003_F000 Reserved 0x7000_0000 External Device Area 0x6000_0000 Reserved 0x4400_0000 32Mbyte Bit band alias 0x4200_0000 Peripherals 0x4000_0000 Reserved 0x2400_0000 32Mbyte Bit band alias 0x2200_0000 0x2000_0000 0x4003_B000 0x4003_A000 0x4003_9000 0x4003_8000 0x4003_7000 0x4003_6000 0x4003_5000 0x4003_4000 0x4003_3000 0x4003_2000 0x4003_1000 0x4003_0000 0x4002_F000 0x4002_E000 0x4002_7000 0x4002_6000 0x4002_5000 0x4002_4000 SRAM1 SRAM0 0x0010_2000 0x0010_0000 A/DC QPRC Base Timer PPG Reserved 0x1FF8_0000 Please refer to the next page for the memory size details. Watch Counter CRC MFS Reserved USB Clock Ctrl LVD Reserved GPIO Reserved Int-Req. Read EXTI Reserved CR Trim Reserved 0x4002_8000 Reserved 0x2008_0000 EXT-bus I/F Reserved 0x4002_2000 0x4002_1000 Security/CR Trim 0x4002_0000 Flash 0x4001_6000 0x4001_5000 MFT unit1 MFT unit0 Reserved Dual Timer Reserved 0x4001_3000 0x0000_0000 0x4001_2000 0x4001_1000 0x4001_0000 SW WDT HW WDT Clock/Reset Reserved 0x4000_1000 0x4000_0000 Document Number: 002-05612 Rev. *D October 23, 2017 Flash I/F Page 48 of 112 MB9B300B Series Memory Map (2) MB9BF306NB/RB 0x2008_0000 MB9BF305NB/RB 0x2008_0000 Reserved MB9BF304NB/RB 0x2008_0000 Reserved Reserved 0x2000_8000 0x2000_6000 SRAM1 32kbyte 0x2000_4000 SRAM1 24kbyte 0x2000_0000 0x2000_0000 0x2000_0000 SRAM0 24kbyte SRAM0 32Kbyte 0x1FFF_C000 SRAM1 16kbyte SRAM0 16kbyte 0x1FFF_A000 0x1FFF_8000 0x0010_2000 0x0010_1000 0x0010_0000 Reserved Reserved Reserved 0x0010_2000 0x0010_1000 0x0010_0000 CR trimming Security 0x0010_2000 0x0010_1000 0x0010_0000 CR trimming Security CR trimming Security Reserved Reserved Reserved 0x0008_0000 0x0006_0000 SA10-13(64KBx4) 0x0000_0000 SA4-7(8KBx4) SA8-9(48KBx2) 0x0000_0000 SA4-7(8KBx4) 0x0004_0000 SA10-11(64KBx2) SA8-9(48KBx2) 0x0000_0000 SA4-7(8KBx4) Flash 256Kbyte SA8-9(48KBx2) Flash 384Kbyte Flash 512Kbyte SA10-15(64KBx6) *: See "MB9B500/400/300/100/MB9A100 Series Flash Programming Manual" for sector structure of Flash. Document Number: 002-05612 Rev. *D October 23, 2017 Page 49 of 112 MB9B300B Series Peripheral Address Map Start address End address Bus Peripherals 0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_FFFF 0x4001_0000 0x4001_0FFF Clock/Reset Control 0x4001_1000 0x4001_1FFF Hardware Watchdog timer 0x4001_2000 0x4001_2FFF 0x4001_3000 0x4001_4FFF 0x4001_5000 0x4001_5FFF Dual-Timer 0x4001_6000 0x4001_FFFF Reserved 0x4002_0000 0x4002_0FFF Multi-function timer unit0 0x4002_1000 0x4002_1FFF Multi-function timer unit1 0x4002_2000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF PPG 0x4002_5000 0x4002_5FFF 0x4002_6000 0x4002_6FFF 0x4002_7000 0x4002_7FFF A/D Converter 0x4002_8000 0x4002_DFFF Reserved 0x4002_E000 0x4002_EFFF Internal CR trimming 0x4002_F000 0x4002_FFFF Reserved 0x4003_0000 0x4003_0FFF External Interrupt Controller 0x4003_1000 0x4003_1FFF Interrupt Request Batch-Read Function 0x4003_2000 0x4003_2FFF Reserved 0x4003_3000 0x4003_3FFF GPIO 0x4003_4000 0x4003_4FFF Reserved 0x4003_5000 0x4003_5FFF Low Voltage Detector 0x4003_6000 0x4003_6FFF 0x4003_7000 0x4003_7FFF Reserved 0x4003_8000 0x4003_8FFF Multi-function serial Interface 0x4003_9000 0x4003_9FFF CRC 0x4003_A000 0x4003_AFFF Watch Counter 0x4003_B000 0x4003_EFFF Reserved 0x4003_F000 0x4003_FFFF External Memory interface 0x4004_0000 0x4004_FFFF USB ch.0 0x4005_0000 0x4005_FFFF Reserved 0x4006_0000 0x4006_0FFF 0x4006_1000 0x4006_1FFF 0x4006_2000 0x4006_2FFF Reserved 0x4006_3000 0x4006_3FFF Reserved 0x4006_4000 0x41FF_FFFF Reserved Document Number: 002-05612 Rev. *D AHB APB0 APB1 APB2 Flash Memory I/F register Reserved Software Watchdog timer Reserved Base Timer Quadrature Position/Revolution Counter USB clock generator DMAC register AHB Reserved October 23, 2017 Page 50 of 112 MB9B300B Series 11. Pin Status in Each CPU State The terms used for pin status have the following meanings. INITX=0 This is the period when the INITX pin is the "L" level. INITX=1 This is the period when the INITX pin is the "H" level. SPL=0 This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "0". SPL=1 This is the status that standby pin level setting bit (SPL) in standby mode control register (STB_CTL) is set to "1". Input enabled Indicates that the input function can be used. Internal input fixed at "0" This is the status that the input function cannot be used. Internal input is fixed at "L". Hi-Z Indicates that the output drive transistor is disabled and the pin is put in the Hi-Z state. Setting disabled Indicates that the setting is disabled. Maintain previous state Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained. Analog input is enabled Indicates that the analog input is enabled. Trace output Indicates that the trace function can be used. Document Number: 002-05612 Rev. *D October 23, 2017 Page 51 of 112 MB9B300B Series List of Pin Status Pin status type A Function group Main crystal oscillator input pin Power-on reset or low voltage detection state Power supply unstable Input enabled INITX input state Device internal reset state Run mode or sleep mode state Timer mode or sleep mode state INITX=0 - INITX=1 - Power supply stable INITX=1 - Input enabled Input enabled Input enabled Input enabled Input enabled Maintain previous state/ H output at oscillation stop*1/ Internal input fixed at "0" Maintain previous state/ H output at oscillation stop*1/ Internal input fixed at "0" Power supply stable Power supply stable INITX=1 SPL=0 SPL=1 B Main crystal oscillator output pin H output/ Internal input fixed at "0"/ or Input enabled H output/ Internal input fixed at "0" H output/ Internal input fixed at "0" Maintain previous state/ H output at oscillation stop*1 / Internal input fixed at "0" C INITX input pin Pull-up/ Input enabled Pull-up/ Input enabled Pull-up/ Input enabled Pull-up/ Input enabled Pull-up/ Input enabled Pull-up/ Input enabled D Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled JTAG selected Hi-Z Pull-up/ Input enabled Pull-up/ Input enabled Setting disabled Setting disabled Setting disabled External interrupt enabled selected GPIO selected, or other than above resource selected Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled Trace selected Setting disabled Setting disabled Setting disabled E GPIO selected Trace selected F G H GPIO selected, or other than above resource selected Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled External interrupt enabled selected Setting disabled Setting disabled Setting disabled GPIO selected, or other than above resource selected Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled Document Number: 002-05612 Rev. *D October 23, 2017 Maintain previous state Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Trace output Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Trace output Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Maintain previous state Hi-Z/ Internal input fixed at "0" Page 52 of 112 MB9B300B Series Pin status type I J Function group Power-on reset or low voltage detection state Power supply unstable - Device internal reset state Power supply stable INITX=0 - INITX=1 - GPIO selected, resource selected Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled NMIX selected Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled Analog input selected Hi-Z Hi-Z/ Internal input fixed at "0"/ Analog input enabled GPIO selected, or other than above resource selected Setting disabled External interrupt enabled selected Run mode or sleep mode state Power supply stable INITX=1 Maintain previous state Timer mode or sleep mode state Power supply stable INITX=1 SPL=0 Maintain previous state SPL=1 Hi-Z/ Internal input fixed at "0" Maintain previous state Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0"/ Analog input enabled Hi-Z/ Internal input fixed at "0"/ Analog input enabled Hi-Z/ Internal input fixed at "0"/ Analog input enabled Hi-Z/ Internal input fixed at "0"/ Analog input enabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Maintain previous state Analog input selected Hi-Z Hi-Z/ Internal input fixed at "0"/ Analog input enabled Hi-Z/ Internal input fixed at "0"/ Analog input enabled Hi-Z/ Internal input fixed at "0"/ Analog input enabled Hi-Z/ Internal input fixed at "0"/ Analog input enabled Hi-Z/ Internal input fixed at "0"/ Analog input enabled GPIO selected, or other than above resource selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Sub crystal oscillator input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected, or other than above resource selected K L INITX input state M Document Number: 002-05612 Rev. *D October 23, 2017 Hi-Z/ Internal input fixed at "0" Page 53 of 112 MB9B300B Series Pin status type Power-on reset or low voltage detection state Power supply unstable - Function group GPIO selected Setting disabled INITX input state Device internal reset state Power supply stable INITX=0 Setting disabled INITX=1 Setting disabled Run mode or sleep mode state Power supply stable INITX=1 - Timer mode or sleep mode state Power supply stable INITX=1 SPL=0 SPL=1 Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Maintain previous state/ Hi-Z at oscillation stop*2/ Internal input fixed at "0" Sub crystal oscillator output pin Hi-Z/ Internal input fixed at "0" Hi-Z/ Internal input fixed at "0" Hi-Z/ Internal input fixed at "0" Maintain previous state Maintain previous state/ Hi-Z at oscillation stop*2/ Internal input fixed at "0" GPIO selected Hi-Z Hi-Z/ Input enabled Hi-Z/ Input enabled Maintain previous state Maintain previous state Hi-Z/ Internal input fixed at "0" Maintain previous state Hi-Z at transmission/ Input enabled/ Internal input fixed at "0" at reception Hi-Z at transmission/ Input enabled/ Internal input fixed at "0" at reception N O USB I/O pin Setting disabled Setting disabled Setting disabled *1: Oscillation is stopped at sub timer mode, Low speed CR timer mode, and stop mode. *2: Oscillation is stopped at stop mode. Document Number: 002-05612 Rev. *D October 23, 2017 Page 54 of 112 MB9B300B Series 12. Electrical Characteristics 12.1 Absolute Maximum Ratings Parameter Power supply voltage*1, *2 Power supply voltage (for USB)*1, *3 Analog power supply voltage*1, *4 Analog reference voltage*1, *4 Rating Symbol Min Vcc USBVcc AVcc AVRH Vss - 0.5 Vss - 0.5 Vss - 0.5 Vss - 0.5 Vss - 0.5 Input voltage*1 VI Vss - 0.5 Analog pin input voltage*1 VIA Vss - 0.5 Output voltage*1 VO Vss - 0.5 Clamp maximum current ICLAMP -2 Clamp total maximum current Σ[ICLAMP] "L" level maximum output current*5 IOL - "L" level average output current*6 IOLAV - "L" level total maximum output current "L" level total average output current*7 ∑IOL ∑IOLAV - "H" level maximum output current*5 IOH - "H" level average output current*6 IOHAV - "H" level total maximum output current "H" level total average output current*7 Power consumption Storage temperature ∑IOH ∑IOHAV PD TSTG - 55 Unit Max Remarks Vss + 6.5 Vss + 6.5 Vss + 6.5 Vss + 6.5 Vcc + 0.5 (≤ 6.5V) USBVcc + 0.5 (≤ 6.5V) AVcc + 0.5 (≤ 6.5V) Vcc + 0.5 (≤ 6.5V) +2 V V V V mA *8 +20 mA *8 10 20 39 4 12 19.7 100 50 - 10 - 20 - 39 -4 - 12 - 25.3 - 100 - 50 800 + 150 mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA mW C 4 mA type 12 mA type P80, P81 4 mA type 12 mA type P80, P81 V Except for USB pin V USB pin V V 4 mA type 12 mA type P80, P81 4 mA type 12 mA type P80, P81 *1: These parameters are based on the condition that Vss = AVss = 0.0 V. *2: Vcc must not drop below Vss - 0.5 V. *3: USBVcc must not drop below Vss - 0.5 V. *4: Be careful not to exceed Vcc + 0.5 V, for example, when the power is turned on. *5: The maximum output current is the peak value for a single pin. *6: The average output is the average current for a single pin over a period of 100 ms. *7: The total average output current is the average current for all pins over a period of 100 ms. Document Number: 002-05612 Rev. *D October 23, 2017 Page 55 of 112 MB9B300B Series *8: • See “4. List of Pin Functions” and “5. I/O Circuit Type” about +B input available pin. • Use within recommended operating conditions. • Use at DC voltage (current) the +B input. • The +B signal should always be applied a limiting resistance placed between the +B signal and the device. • The value of the limiting resistance should be set so that when the +B signal is applied the input current to the device pin does not exceed rated values, either instantaneously or for prolonged periods. • Note that when the device drive current is low, such as in the low-power consumption modes, the +B input potential may pass through the protective diode and increase the potential at the VCC and AVCC pin, and this may affect other devices. • Note that if a +B signal is input when the device power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result. • The following is a recommended circuit example (I/O equivalent circuit). Protection Diode VCC VCC Limiting resistor P-ch Digital output +B input (0V to 16V) N-ch Digital input R AVCC Analog input WARNING: − Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. Document Number: 002-05612 Rev. *D October 23, 2017 Page 56 of 112 MB9B300B Series 12.2 Recommended Operating Conditions (Vss = AVss = 0.0 V) Parameter Power supply voltage Power supply voltage for USB Symbol Vcc USBVcc Value Conditions - Min Max 2.7 *4 5.5 3.0 3.6 (≤ Vcc) - Unit Remarks V *1 V Analog power supply voltage Analog reference voltage AVcc AVRH - 2.7 2.7 5.5 (≤ Vcc) 5.5 AVcc Smoothing capacitor CS - 1 10 μF - 40 + 85 C TA When mounted on four-layer PCB When mounted on double-sided single-layer PCB - 40 + 85 C Icc ≤ 100 mA - 40 + 70 C Icc > 100 mA 2.7 Operating Temperature LQM120 LQI100 LBC112 *2 V V AVcc = Vcc For built-in regulator *3 *1: When P81/UDP0 and P80/UDM0 pin are used as USB (UDP0, UDM0). *2: When P81/UDP0 and P80/UDM0 pin are used as GPIO (P81, P80). *3: See "C Pin" in "7. Handling Devices" for the connection of the smoothing capacitor. *4: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only. WARNING: − The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the datasheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand. Document Number: 002-05612 Rev. *D October 23, 2017 Page 57 of 112 MB9B300B Series 12.3 DC Characteristics 12.3.1 Current Rating (Vcc = AVcc = USBVcc = 2.7 V to 5.5 V, Vss = AVss = 0 V, TA = - 40C to + 85C) Parameter Symbol Pin name Conditions PLL RUN mode RUN mode current Icc VCC High-speed CR RUN mode Sub RUN mode Low-speed CR RUN mode SLEEP mode current Iccs PLL SLEEP mode High-speed CR SLEEP mode Sub SLEEP mode Low-speed CR SLEEP mode CPU: 80 MHz, Peripheral: 40 MHz, FLASH 2 Wait FRWTR.RWT = 10 FSYNDN.SD = 000 CPU: 60 MHz, Peripheral: 30 MHz, FLASH 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000 CPU: 80 MHz, Peripheral: 40 MHz, FLASH 5 Wait FRWTR.RWT = 10 FSYNDN.SD = 011 CPU: 60 MHz, Peripheral: 30 MHz, FLASH 3Wait FRWTR.RWT = 00 FSYNDN.SD = 011 Value Typ *3 Max *4 Unit Remarks 96 118 mA *1, *5 76 94 mA *1, *3 66 82 mA *1, *5 52 65 mA *3, *5 6.0 9.2 mA *1 0.2 2.24 mA *1, *6 0.3 2.36 mA *1 Peripheral: 40 MHz 43 54 mA *1, *5 Peripheral: 4 MHz*2 3.5 6.2 mA *1 Peripheral: 32 kHz 0.15 2.18 mA *1, *6 Peripheral: 100 kHz 0.22 2.27 mA *1 CPU/Peripheral: 4 MHz*2 FLASH 0Wait FRWTR.RWT = 00 FSYNDN.SD = 000 CPU/Peripheral: 32 kHz FLASH 0Wait FRWTR.RWT = 00 FSYNDN.SD = 000 CPU/Peripheral: 100 kHz FLASH 0Wait FRWTR.RWT = 00 FSYNDN.SD = 000 *1: When all ports are fixed. *2: When setting it to 4 MHz by trimming. *3: TA=+25°C, VCC=3.3 V *4: TA=+85°C, VCC=5.5 V *5: When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit) *6: When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit) Document Number: 002-05612 Rev. *D October 23, 2017 Page 58 of 112 MB9B300B Series (Vcc = AVcc = USBVcc = 2.7 V to 5.5 V, Vss = AVss = 0 V, TA = - 40C to + 85C) Parameter TIMER mode current Pin name Symbol Main TIMER mode ICCT VCC STOP mode current ICCH Value Typ *2 Max *3 Conditions Sub TIMER mode STOP mode Ta = + 25C, When LVD is off Ta = + 85C, When LVD is off Ta = + 25C, When LVD is off Ta = + 85C, When LVD is off Ta = + 25C, When LVD is off Ta = + 85C, When LVD is off Unit Remarks 2.4 2.5 mA *1, *4 - 5.4 mA *1, *4 110 300 μA *1, *5 - 2.2 mA *1, *5 50 200 μA *1 - 2 mA *1 *1: When all ports are fixed. *2: VCC=3.3 V *3: VCC=5.5 V *4: When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit) *5: When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit) Low-Voltage Detection Current (VCC = 2.7 V to 5.5 V, VSS = 0 V, TA = - 40°C to + 85°C) Parameter Low-Voltage detection circuit (LVD) power supply current Symbol ICCLVD Pin name VCC Value Conditions At operation for interrupt Typ 2 Max 10 Unit μA Remarks At not detect Flash Memory Current (VCC = 2.7 V to 5.5 V, VSS = 0 V, TA = - 40°C to + 85°C) Parameter Flash memory write/erase current Symbol ICCFLASH Pin name VCC Value Conditions At Write/Erase Typ 13 Max 24 Unit Remarks mA A/D Converter Current (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = AVRL = 0 V, TA = - 40°C to + 85°C) Parameter Power supply current Reference power supply current Symbol ICCAD ICCAVRH Document Number: 002-05612 Rev. *D Pin name Value Conditions Typ Max Unit At 1unit operation 2.3 3.6 mA At stop 0.1 2 μA At 1unit operation AVRH=5.5V 2.2 3.0 mA At stop 0.03 0.6 μA Remarks AVCC AVRH October 23, 2017 Page 59 of 112 MB9B300B Series 12.3.2 Pin Characteristics (Vcc = AVcc = 2.7 V to 5.5 V, Vss = AVss = 0 V, TA = - 40C to + 85C) Parameter "H" level input voltage (hysteresis input) "L" level input voltage (hysteresis input) Symbol VIHS VILS Pin name CMOS hysteresis input pin, MD0,1 CMOS hysteresis input pin, MD0,1 4mA type "H" level output voltage VOH 12 mA type P80, P81 4mA type "L" level output voltage VOL 12mA type P80, P81 Input leak current Pull-up resistance value Input capacitance IIL - RPU Pull-up pin CIN Other than Vcc, Vss, AVcc, AVss, AVRH Document Number: 002-05612 Rev. *D Value Conditions Min Typ Max Unit - Vcc× 0.8 - Vcc+ 0.3 V - Vss- 0.3 - Vcc× 0.2 V Vcc- 0.5 - Vcc V Vcc- 0.5 - Vcc V Vcc- 0.4 - Vcc V Vss - 0.4 V Vss - 0.4 V Vss - 0.4 V μA Vcc 4.5 V IOH = - 4 mA Vcc < 4.5 V IOH = - 2 mA Vcc 4.5 V IOH = - 12 mA Vcc 4.5 V IOH = - 8 mA Vcc 4.5 V IOH = - 25.3 mA Vcc < 4.5 V IOH = - 13.4 mA Vcc 4.5 V IOL = 4 mA Vcc < 4.5 V IOL = 2 mA Vcc 4.5 V IOL = 12 mA Vcc 4.5 V IOL = 8 mA Vcc 4.5 V IOL = 19.7 mA Vcc < 4.5 V IOL = 11.9 mA - -5 - 5 Vcc 4.5 V 25 50 100 Vcc 4.5 V 30 80 200 - - 5 15 October 23, 2017 Remarks kΩ pF Page 60 of 112 MB9B300B Series 12.4 AC Characteristics 12.4.1 Main Clock Input Characteristics (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Input frequency FCH Input clock cycle tCYLH Input clock pulse width - Input clock rise time and fall time tCF tCR Internal operating clock*1 frequency Internal operating clock *1 cycle time Pin name Symbol X0 X1 Value Conditions Min Max Unit Vcc 4.5 V Vcc 4.5 V Vcc 4.5 V Vcc 4.5 V Vcc 4.5 V Vcc 4.5 V PWH/tCYLH PWL/tCYLH 4 4 4 4 20.83 50 48 20 48 20 250 250 45 55 % - - 5 ns Remarks MHz When crystal oscillator is connected MHz When using external clock ns When using external clock When using external clock When using external clock FCM - - - 80 MHz Master clock FCC - - - 80 MHz FCP0 FCP1 - - - 40 40 MHz MHz Base clock (HCLK/FCLK) APB0 bus clock *2 APB1 bus clock *2 FCP2 - - - 40 MHz APB2 bus clock *2 tCYCC - - 12.5 - ns tCYCP0 tCYCP1 tCYCP2 - - 25 - ns Base clock (HCLK/FCLK) APB0 bus clock *2 - - 25 - ns APB1 bus clock *2 - - 25 - ns APB2 bus clock *2 *1: For more information about each internal operating clock, see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual". *2: For about each APB bus which each peripheral is connected to, see "8. Block Diagram" in this datasheet. Document Number: 002-05612 Rev. *D October 23, 2017 Page 61 of 112 MB9B300B Series 12.4.2 Sub Clock Input Characteristics (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Input frequency Input clock cycle Input clock pulse width Symbol Pin name FCL tCYLL - Document Number: 002-05612 Rev. *D X0A X1A Value Conditions Min Typ Max Unit Remarks - - 32.768 - kHz - 32 - 100 kHz When crystal oscillator is connected When using external clock - 10 - 31.25 μs When using external clock PWH/tCYLL PWL/tCYLL 45 - 55 % When using external clock October 23, 2017 Page 62 of 112 MB9B300B Series 12.4.3 Built-in CR Oscillation Characteristics Built-in high-speed CR (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Clock frequency Frequency stability time Symbol FCRH tCRWT Value Conditions Min Typ Max TA = + 25C 3.92 4 4.08 TA = 0C to + 70C 3.84 4 4.16 TA = - 40C to + 85C 3.8 4 4.2 TA = - 40C to + 85C 3 4 6 - - - 50 Unit MHz Remarks When trimming *1 When not trimming μs *2 *1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming. *2: Frequency stable time is time to stable of the frequency of the High-speed CR clock after the trim value is set. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock. Built-in low-speed CR (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Clock frequency Symbol FCRL Document Number: 002-05612 Rev. *D Conditions - Value Min 50 Typ 100 October 23, 2017 Max 150 Unit Remarks kHz Page 63 of 112 MB9B300B Series 12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL) (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter PLL oscillation stabilization wait time (LOCK UP time) Value Symbol Min Typ Unit Max *1 tLOCK 100 - - μs PLL input clock frequency PLL multiple rate PLL macro oscillation clock frequency Main PLL clock frequency *2 fPLLI fPLLO FCLKPLL 4 4 60 - - 30 30 120 80 MHz multiple MHz MHz USB clock frequency *3 FCLKSPLL - - 48 MHz Remarks After the M frequency division *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual". *3: For more information about USB clock, see "Chapter 2-2: USB Clock Generation" in "FM3 Family Peripheral Manual Communication Macro Part". 12.4.5 Operating Conditions of Main PLL (In the case of using built-in high speed CR) (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter PLL oscillation stabilization wait time (LOCK UP time) Symbol Value Min Typ Unit Max *1 tLOCK 100 - - μs PLL input clock frequency PLL multiple rate PLL macro oscillation clock frequency Main PLL clock frequency *2 fPLLI fPLLO FCLKPLL 3.8 15 57 - 4 - 4.2 28 120 80 MHz multiple MHz MHz Remarks *1: Time from when the PLL starts operating until the oscillation stabilizes. *2: For more information about Main PLL clock (CLKPLL), see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual". Note: − Make sure to input to the main PLL source clock, the high-speed CR clock (CLKHC) that the frequency has been trimmed. Document Number: 002-05612 Rev. *D October 23, 2017 Page 64 of 112 MB9B300B Series Main PLL connection Main clock (CLKMO) High-speed CR clock (CLKHC) K divider PLL input clock Main PLL PLL macro oscillation clock M divider Main PLL clock (CLKPLL) N divider USB PLL connection Main clock (CLKMO) K divider PLL macro oscillation clock PLL input clock USB PLL M divider USB clock N divider Document Number: 002-05612 Rev. *D October 23, 2017 Page 65 of 112 MB9B300B Series 12.4.6 Reset Input Characteristics (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Symbol Reset input time tINITX Pin name INITX Value Conditions - Min 500 Max - Unit Remarks ns 12.4.7 Power-on Reset Timing (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Power supply rising time Tr Power supply shut down time Toff Time until releasing Power-on reset Tprt Value Pin name Symbol Min VCC Max Unit 0 - ms 1 - ms 0.422 0.704 ms Remarks VCC_minimum VCC VDH_minimum 0.2V 0.2V 0.2V Tr Tprt Internal RST RST Active Toff Release CPU Operation start Glossary VCC_minimum: Minimum VCC of recommended operating conditions VDH_minimum: Minimum release voltage of Low-Voltage detection reset. See "12.7. Low-Voltage Detection Characteristics" Document Number: 002-05612 Rev. *D October 23, 2017 Page 66 of 112 MB9B300B Series 12.4.8 External Bus Timing Asynchronous SRAM Mode (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter MOEX Min pulse width MOEX Address delay time MOEX Address delay time MOEX MCSX delay time MOEX MCSX delay time Data set up MOEX time MOEX Data hold time MCSX MWEX delay time MWEX MCSX delay time Address MWEX delay time MWEX Address delay time MWEX MDQM delay time MWEX MDQM delay time MWEX Min pulse width MWEX Data delay time MWEX Data delay time Symbol tOEW tOEL - AV tOEH - AX tOEL - CSL tOEH - CSH tDS - OE tDH - OE tCSL - WEL tWEH - CSH tAV - WEL tWEH - AX tWEL - DQML tWEH - DQMH tWEW tWEL - DV tWEH - DX Pin name MOEX MOEX MAD24 to 00 MOEX MAD24 to 00 MOEX MCSX MOEX MCSX MOEX MDATA15 to 0 MOEX MDATA15 to 0 MCSX MWEX MCSX MWEX MWEX MAD24 to 00 MWEX MAD24 to 00 MWEX MDQM0 to 1 MWEX MDQM0 to 1 MWEX MWEX MDATA15 to 0 MWEX MDATA15 to 0 Value Conditions Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Min Max Unit THCLK×1 - 3 - 0 0 0 0 10 20 10 20 0 10 ns 0 10 ns 20 38 - ns 0 - ns THCLK×1 - 5 THCLK×1 - 10 THCLK×1 - 5 THCLK×1 - 10 THCLK×1 - 5 THCLK×1 - 15 THCLK×1 - 5 THCLK×1 - 15 0 0 0 0 5 10 5 10 THCLK×1 - 3 - -5 -15 THCLK×1 - 5 THCLK×1 - 15 5 15 - Remarks ns ns ns ns ns ns ns ns ns ns ns ns Note: − When the external load capacitance = 50 pF. Document Number: 002-05612 Rev. *D October 23, 2017 Page 67 of 112 MB9B300B Series SRAM read tCYC HCLK VOH VOH tOEH-CSH tOEL-CSL MCSX0 to 7 VOH VOL tOEL-AV tOEH-AX VOH VOL MAD24 to 00 VOH VOL tOEW MOEX VOH VOL tDS-OE VIH MDATA15 to 0 tDH-OE VIH Read VIL VIL SRAM write tCYC HCLK tW EH-CSH tCSL-W EL MCSX0 to 7 VOH VOL tAV-W EL MAD24 to 00 tW EH-AX VOH VOL VOH VOL tW EH-DQMH tW EL-DQML MDQM0 to 1 VOH VOL tW EW MWEX VOL VOH tW EH-DX tW EL-DV MDATA15 to 0 VOH VOL Document Number: 002-05612 Rev. *D October 23, 2017 Write VOH VOL Page 68 of 112 MB9B300B Series NAND FLASH mode (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter MNREX Min pulse width Data set up MNREX tiime MNREX Data hold time MNALE MNWEX delay time MNWEX MNALE delay time MNCLE MNWEX delay time MNWEX MNCLE delay time MNWEX Min pulse width MNWEX Data delay time MNWEX Data delay time Symbol tNREW tDS - NRE tDH - NRE tALEH - NWEL tNWEH - ALEL tCLEH - NWEL tNWEH - CLEL tNWEW tNWEL - DV tNWEH - DX Pin name MNREX MNREX MDATA15 to 0 MNREX MDATA15 to 0 MNALE MNWEX MNALE MNWEX MNCLE MNWEX MNCLE MNWEX MNWEX MNWEX MDATA15 to 0 MNWEX MDATA15 to 0 Conditions Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Vcc ≥ 4.5 V Vcc 4.5 V Value Min Max THCLK×1 - 3 - 20 38 0 0 THCLK×1 - 5 THCLK×1 - 15 THCLK×1 - 5 THCLK×1 - 15 THCLK×1 - 5 THCLK×1 - 15 THCLK×1 - 5 THCLK×1 - 15 - THCLK×1 - 3 - -5 -15 THCLK×1 - 5 THCLK×1 - 15 +5 +15 - Unit Remarks ns ns ns ns ns ns ns ns ns ns Note: − When the external load capacitance = 50 pF. Document Number: 002-05612 Rev. *D October 23, 2017 Page 69 of 112 MB9B300B Series NAND FLASH read tCYC HCLK VOH VOH tNREW MNREX VOH VOL tDS-NRE VIH MDATA15 to 0 tDH-NRE VIH Read VIL VIL NAND FLASH write tCYC HCLK tNW EH-ALEL tALEH-NW EL VOH VOL MNALE tNW EH-CLEL tCLEH-NW EL VOH VOL MNCLE tNW EW MNWEX VOL VOH tNW EH-DX tNW EL-DV MDATA15 to 0 VOH VOL Document Number: 002-05612 Rev. *D October 23, 2017 Write VOH VOL Page 70 of 112 MB9B300B Series 12.4.9 Base Timer Input Timing Timer input timing (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Input pulse width Symbol Pin name Conditions TIOAn/TIOBn (when using as ECK,TIN) tTIWH tTIWL - tTIWH VIHS Value Min 2tCYCP Max - Unit Remarks ns tTIWL VIHS VILS VILS Trigger input timing (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Input pulse width Symbol Pin name Conditions TIOAn/TIOBn (when using as TGIN) tTRGH tTRGL - TGIN 2tCYCP Max - Unit Remarks ns tTRGL tTRGH VIHS Value Min VIHS VILS VILS Note: − tCYCP indicates the APB bus clock cycle time. About the APB bus number which the Base Timer is connected to, see “8. Block Diagram” in this datasheet. Document Number: 002-05612 Rev. *D October 23, 2017 Page 71 of 112 MB9B300B Series 12.4.10 CSIO/UART Timing CSIO (SPI = 0, SCINV = 0) (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Pin name Symbol Baud Rate - - Serial clock cycle time tSCYC SCK SOT delay time tSLOVI SCKx SCKx SOTx SCKx SINx SCKx SINx SCKx SCKx SCKx SOTx SCKx SINx SCKx SINx SCKx SCKx SIN SCK setup time tIVSHI SCK SIN hold time tSHIXI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK SOT delay time tSLOVE SIN SCK setup time tIVSHE SCK SIN hold time tSHIXE SCK fall time SCK rise time tF tR Vcc 4.5 V Min Max Conditions - Master mode Slave mode Vcc ≥ 4.5 V Min Max Unit - 8 - 8 Mbps 4tCYCP - 4tCYCP - ns -30 +30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − − − tCYCP indicates the APB bus clock cycle time. − When the external load capacitance = 50 pF. About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. Document Number: 002-05612 Rev. *D October 23, 2017 Page 72 of 112 MB9B300B Series tSCYC VOH SCK VOL VOL tSLOVI VOH VOL SOT tIVSHI VIH VIL SIN tSHIXI VIH VIL Master mode tSLSH SCK VIH tF SOT SIN VIL tSHSL VIL VIH VIH tR tSLOVE VOH VOL tIVSHE VIH VIL tSHIXE VIH VIL Slave mode Document Number: 002-05612 Rev. *D October 23, 2017 Page 73 of 112 MB9B300B Series CSIO (SPI = 0, SCINV = 1) (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Symbol Pin name Baud Rate Serial clock cycle time tSCYC SCKx SCK SOT delay time tSHOVI SCKx SOTx SIN SCK setup time tIVSLI SCK SIN hold time tSLIXI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK SOT delay time tSHOVE SIN SCK setup time tIVSLE SCK SIN hold time tSLIXE SCK fall time SCK rise time tF tR SCKx SINx SCKx SINx SCKx SCKx SCKx SOTx SCKx SINx SCKx SINx SCKx SCKx Vcc 4.5 V Min Max Conditions - Master mode Slave mode Vcc ≥ 4.5 V Min Max Unit 4tCYCP 8 - 4tCYCP 8 - Mbps ns -30 +30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function serial is connected to, see “8. Block Diagram” in this datasheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance = 50 pF. Document Number: 002-05612 Rev. *D October 23, 2017 Page 74 of 112 MB9B300B Series tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH VIL SIN tSLIXI VIH VIL Master mode tSHSL SCK tSLSH VIH VIH VIL tR VIL tF tSHOVE SOT SIN VIL VOH VOL tIVSLE VIH VIL tSLIXE VIH VIL Slave mode Document Number: 002-05612 Rev. *D October 23, 2017 Page 75 of 112 MB9B300B Series CSIO (SPI = 1, SCINV = 0) (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Symbol Pin name Baud Rate Serial clock cycle time tSCYC SCKx SCK SOT delay time tSHOVI SCKx SOTx SIN SCK setup time tIVSLI SCK SIN hold time tSLIXI SOT SCK delay time tSOVLI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK SOT delay time tSHOVE SIN SCK setup time tIVSLE SCK SIN hold time tSLIXE SCK fall time SCK rise time tF tR SCKx SINx SCKx SINx SCKx SOTx SCKx SCKx SCKx SOTx SCKx SINx SCKx SINx SCKx SCKx Vcc 4.5 V Min Max Conditions - Master mode Slave mode Vcc ≥ 4.5 V Min Max Unit 4tCYCP 8 - 4tCYCP 8 - Mbps ns -30 +30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 30 - 2tCYCP - 30 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet. − These characteristics only guarantees the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance = 50 pF. Document Number: 002-05612 Rev. *D October 23, 2017 Page 76 of 112 MB9B300B Series tSCYC VOH VOL SCK SOT VOH VOL VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL Master mode tSLSH VIH SCK tR VIH tSHOVE VOH VOL VOH VOL tIVSLE SIN VIH VIL VIL tF * SOT tSHSL tSLIXE VIH VIL VIH VIL Slave mode *: Changes when writing to TDR register Document Number: 002-05612 Rev. *D October 23, 2017 Page 77 of 112 MB9B300B Series CSIO (SPI = 1, SCINV = 1) (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Symbol Pin name Baud Rate Serial clock cycle time tSCYC SCKx SCK SOT delay time tSLOVI SCKx SOTx SIN SCK setup time tIVSHI SCK SIN hold time tSHIXI SOT SCK delay time tSOVHI Serial clock "L" pulse width Serial clock "H" pulse width tSLSH tSHSL SCK SOT delay time tSLOVE SIN SCK setup time tIVSHE SCK SIN hold time tSHIXE SCK fall time SCK rise time tF tR SCKx SINx SCKx SINx SCKx SOTx SCKx SCKx SCKx SOTx SCKx SINx SCKx SINx SCKx SCKx Vcc 4.5 V Min Max Conditions - Master mode Slave mode Vcc ≥ 4.5 V Min Max Unit 4tCYCPp 8 - 4tCYCP 8 - Mbps ns -30 +30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns 2tCYCP - 30 - 2tCYCP - 30 - ns 2tCYCP - 10 tCYCP + 10 - 2tCYCP - 10 tCYCP + 10 - ns ns - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above characteristics apply to CLK synchronous mode. − tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet. − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SOTx_1 is not guaranteed. − When the external load capacitance = 50 pF. Document Number: 002-05612 Rev. *D October 23, 2017 Page 78 of 112 MB9B300B Series tSCYC VOH SCK tSOVHI tSLOVI VOH VOL SOT VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL Master mode SCK tSLSH tSHSL tR VIH VIL VIH tF t SLOVE VOH VOL VOH VOL SOT tSHIXE t IVSHE VIH VIL VIH VIL SIN VIH VIL VIL Slave mode UART external clock input (EXT = 1) (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Serial clock "L" pulse width Serial clock "H" pulse width SCK fall time SCK rise time Symbol tSLSH tSHSL tF tR Conditions Document Number: 002-05612 Rev. *D 5 5 Unit Remarks ns ns ns ns tF tR V IL Max tCYCP + 10 tCYCP + 10 - CL = 50 pF SCK Min tSHSL V IH t SLSH V IH V IL October 23, 2017 VIL V IH Page 79 of 112 MB9B300B Series 12.4.11 External Input Timing (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Symbol Pin name Value Conditions Min Max Unit ADTG Input pulse width tINH tINL Remarks A/D converter trigger input FRCKx ICxx DTTIxX INTxx, NMIX - 2tCYCP *1 - ns Except Timer mode, Stop mode Timer mode, Stop mode 2tCYCP *1 - ns 2tCYCP + 100 *1 - ns 500 - ns Free-run timer input clock Input capture Wave form generator External interrupt NMI *1: tCYCP indicates the APB bus clock cycle time. About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to, see "8. Block Diagram" in this datasheet. tINH VILS Document Number: 002-05612 Rev. *D tINL VILS VIHS October 23, 2017 VIHS Page 80 of 112 MB9B300B Series 12.4.12 Quadrature Position/Revolution Counter timing (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Symbol AIN pin "H" width AIN pin "L" width BIN pin "H" width BIN pin "L" width BIN rise time from AIN pin "H" level AIN fall time from BIN pin "H" level BIN fall time from AIN pin "L" level AIN rise time from BIN pin "L" level AIN rise time from BIN pin "H" level BIN fall time from AIN pin "H" level AIN fall time from BIN pin "L" level BIN rise time from AIN pin "L" level ZIN pin "H" width ZIN pin "L" width AIN/BIN rise and fall time from determined ZIN level Determined ZIN level from AIN/BIN rise and fall time Value Conditions tAHL tALL tBHL tBLL - tAUBU PC_Mode2 or PC_Mode3 tBUAD PC_Mode2 or PC_Mode3 tADBD PC_Mode2 or PC_Mode3 tBDAU PC_Mode2 or PC_Mode3 tBUAU PC_Mode2 or PC_Mode3 tAUBD PC_Mode2 or PC_Mode3 tBDAD PC_Mode2 or PC_Mode3 tADBU PC_Mode2 or PC_Mode3 tZHL tZLL QCR:CGSC="0" QCR:CGSC="0" tZABE QCR:CGSC="1" tABEZ QCR:CGSC="1" Min Max 2tCYCP *1 - Unit ns *1: tCYCP indicates the APB bus clock cycle time. About the APB bus number which the Quadrature Position/Revolution Counter is connected to, see "8. Block Diagram" in this datasheet. tALL tAHL AIN tAUBU tADBD tBUAD tBDAU BIN tBHL Document Number: 002-05612 Rev. *D tBLL October 23, 2017 Page 81 of 112 MB9B300B Series tBLL tBHL BIN tBUAU tBDAD tAUBD tADBU AIN tAHL tALL ZIN ZIN AIN/BIN Document Number: 002-05612 Rev. *D October 23, 2017 Page 82 of 112 MB9B300B Series 12.4.13 I2C Timing (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter SCL clock frequency (Repeated) START condition hold time SDA SCL SCLclock "L" width SCLclock "H" width (Repeated) START setup time SCL SDA Data hold time SCL SDA Data setup time SDA SCL STOP condition setup time SCL SDA Bus free time between "STOP condition" and "START condition" Noise filter Symbol Standard-mode Min Max Conditions Fast-mode Min Max Unit FSCL 0 100 0 400 kHz tHDSTA 4.0 - 0.6 - μs tLOW tHIGH 4.7 4.0 - 1.3 0.6 - μs μs 4.7 - 0.6 - μs 0 3.45 *2 0 0.9 *3 μs tSUDAT 250 - 100 - ns tSUSTO 4.0 - 0.6 - μs tBUF 4.7 - 1.3 - μs 2 tCYCP *4 - 2 tCYCP *4 - ns tSUSTA tHDDAT tSP CL = 50 pF, R = (Vp/IOL) *1 - Remarks *1: R and C represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and IOL indicates VOL guaranteed current. *2: The maximum tHDDAT must satisfy that it doesn't extend at least "L" period (t LOW) of device's SCL signal. *3: Fast-mode I2C bus device can be used on Standard-mode I2C bus system as long as the device satisfies the requirement of "tSUDAT ≥ 250 ns". *4: tCYCP is the APB bus clock cycle time. About the APB bus number that I2C is connected to, see "8. Block Diagram" in this datasheet. To use Standard-mode, set the APB bus clock at 2 MHz or more. To use Fast-mode, set the APB bus clock at 8 MHz or more. SDA SCL Document Number: 002-05612 Rev. *D October 23, 2017 Page 83 of 112 MB9B300B Series 12.4.14 ETM Timing (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Symbol Data hold tETMH TRACECLK Frequency 1/tTRACE Pin name TRACECLK TRACED3 - 0 TRACECLK TRACECLK clock cycle time tTRACE Value Min Max Conditions Unit Vcc ≥ 4.5 V 2 9 Vcc 4.5 V 2 15 Vcc ≥ 4.5 V - 50 MHz Vcc < 4.5 V - 32 MHz Vcc ≥ 4.5 V 20 - ns Vcc < 4.5 V 31.25 - ns Remarks ns Note: − When the external load capacitance = 50 pF. HCLK TRACECLK TRACED[3:0] Document Number: 002-05612 Rev. *D October 23, 2017 Page 84 of 112 MB9B300B Series 12.4.15 JTAG Timing (Vcc = 2.7 V to 5.5 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Symbol Pin name Conditions TMS,TDI setup time tJTAGS TCK TMS,TDI Vcc ≥ 4.5 V TMS,TDI hold time tJTAGH TCK TMS,TDI Vcc ≥ 4.5 V TDO delay time tJTAGD TCK TDO Min Value Max Unit 15 - ns 15 - ns Vcc ≥ 4.5 V - 25 Vcc 4.5 V - 45 Vcc 4.5 V Vcc 4.5 V Remarks ns Note: − When the external load capacitance = 50 pF. TCK TMS/TDI TDO Document Number: 002-05612 Rev. *D October 23, 2017 Page 85 of 112 MB9B300B Series 12.5 12-bit A/D Converter Electrical characteristics for the A/D converter (Vcc = AVcc = 2.7 V to 5.5 V, Vss = AVss = 0 V, TA = - 40C to + 85C) Parameter Pin name Symbol Resolution Integral Nonlinearity Differential Nonlinearity Zero transition voltage Full-scale transition voltage VZT VFST ANxx ANxx Conversion time - - Sampling time Ts - Compare clock cycle *3 Tcck - State transition time to operation permission Tstt - Analog input capacity CAIN Analog input resistance Value Typ Min Max Unit 1.0 *1 2.666 *1 ±2 ±2 ±5 AVRH ± 10 - 12 ± 4.5 ± 2.5 ± 20 AVRH ± 20 - *2 - - *2 55.5 - - - 10000 ns - - 2.5 μs - - - 14.5 pF RAIN - - - Interchannel disparity Analog port input leak current - ANxx - - 2.04 4 5 Analog input voltage - ANxx AVSS - AVRH V Reference voltage - AVRH 2.7 - AVCC V 166.6 *4 0.93 bit LSB LSB mV mV μs ns kΩ Remarks AVRH = 2.7 V to 5.5 V AVcc ≥ 4.5 V AVcc < 4.5 V AVcc ≥ 4.5 V AVcc < 4.5 V AVcc ≥ 4.5 V AVcc < 4.5 V AVcc ≥ 4.5 V AVcc < 4.5 V LSB μA *1: The Conversion time is the value of sampling time(Ts) + compare time(Tc). The condition of the minimum conversion time is the following. AVcc ≥ 4.5 V, HCLK=72 MHz AVcc < 4.5 V, HCLK=54 MHz sampling time: 0.222 μs sampling time: 0.333 μs compare time: 0.778 μs compare time: 2.333 μs Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck). For setting of the sampling time and compare clock cycle, see "Chapter 1-1: A/D Converter" in "FM3 Family Peripheral Manual Analog Macro Part". The registers setting of the A/D Converter are reflected in the operation according to the APB bus clock timing. The sampling clock and compare clock is generated from the Base clock (HCLK). About the APB bus number which the A/D Converter is connected to, see "8. Block Diagram" in this datasheet. *2: A necessary sampling time changes by external impedance. Ensure that it set the sampling time to satisfy (Equation 1) *3: The Compare time (Tc) is the value of (Equation 2) *4: When 12-bit A/D converter is used at AVcc<4.5 V, there is a limitation as follows. Please set the HCLK frequency under 54 MHz. Document Number: 002-05612 Rev. *D October 23, 2017 Page 86 of 112 MB9B300B Series Rext Analog signal source ANxx Analog input pin Comparator RAIN CAIN (Equation 1) Ts ≥ ( RAIN + Rext ) × CAIN × 9 Ts: Sampling time RAIN: Input resistance of A/D = 0.93 kΩ 4.5 V ≤ AVCC ≤ 5.5 V Input resistance of A/D = 2.04 kΩ 2.7 V ≤ AVCC < 4.5 V CAIN: Input capacity of A/D = 14.5 pF 2.7 V ≤ AVCC ≤ 5.5 V Rext: Output impedance of external circuit (Equation 2) Tc = Tcck × 14 Tc: Compare time Tcck: Compare clock cycle Document Number: 002-05612 Rev. *D October 23, 2017 Page 87 of 112 MB9B300B Series Definition of 12-bit A/D Converter Terms Resolution: Analog variation that is recognized by an A/D converter. Integral Nonlinearity: Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001) and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics. Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB Integral Nonlinearity 0xFFF Actual conversion characteristics 0xFFE 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actuallymeasured value) (Actually-measured value) 0x003 Digital output Digital output 0xFFD Differential Nonlinearity Actual conversion characteristics Ideal characteristics 0x002 0x001 0xN Actual conversion characteristics Ideal characteristics VNT Actual conversion characteristics AVRH AVSS Analog input Integral Nonlinearity of digital output N = Differential Nonlinearity of digital output N = 1LSB = N: VZT: VFST: VNT: (Actually-measured value) (Actually-measured value) 0x(N-2) VZT (Actually-measured value) AVSS V(N+1)T 0x(N-1) AVRH Analog input VNT - {1LSB × (N - 1) + VZT} 1LSB V(N + 1) T - VNT 1LSB [LSB] - 1 [LSB] VFST – VZT 4094 A/D converter digital output value. Voltage at which the digital output changes from 0x000 to 0x001. Voltage at which the digital output changes from 0xFFE to 0xFFF. Voltage at which the digital output changes from 0x(N − 1) to 0xN. Document Number: 002-05612 Rev. *D October 23, 2017 Page 88 of 112 MB9B300B Series 12.6 USB Characteristics (Vcc = 2.7 V to 5.5 V, USBVcc = 3.0V to 3.6 V, Vss = 0 V, TA = - 40C to + 85C) Parameter Input characteristics Output characterstics Symbol Pin name Value Conditions Min Max Unit Remarks Input High level voltage VIH - 2.0 USBVcc + 0.3 V *1 Input Low level voltage VIL - Vss - 0.3 0.8 V *1 Differential input sensitivity VDI - 0.2 - V *2 Different common mode input voltage VCM - 0.8 2.5 V *2 Output High level voltage VOH 2.8 3.6 V *3 0.0 0.3 V *3 1.3 4 4 90 28 75 75 80 2.0 20 20 111.11 44 300 300 125 V ns ns % Ω ns ns % *4 *5 *5 *5 *6 *7 *7 *7 Output Low level voltage VOL Crossover voltage Rise time Fall time Rise/ fall time matching Output impedance Rise time Fall time Rise/ fall time matching VCRS tFR tFF tFRFM ZDRV tLR tLF tLRFM UDP0, UDM0 External pulldown resistance = 15 kΩ External pull-up resistance = 1.5 kΩ Full Speed Full Speed Full Speed Full Speed Low Speed Low Speed Low Speed *1: The switching threshold voltage of Single-End-Receiver of USB I/O buffer is set as within VIL (Max) = 0.8 V, VIH (Min) = 2.0 V (TTL input standard). There are some hystereses to lower noise sensitivity. Minimum differential input sensitivity [V] *2: Use differential-Receiver to receive USB differential data signal. Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level. Above voltage range is the common mode input voltage range. 1.0 0.2 0.8 2.5 Common mode input voltage [V] Document Number: 002-05612 Rev. *D October 23, 2017 Page 89 of 112 MB9B300B Series *3: The output drive capability of the driver is below 0.3 V at Low-State (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to the VSS and 1.5 kΩ load) at High-State (VOH). *4: The cross voltage of the external differential output signal (D + /D −) of USB I/O buffer is within 1.3 V to 2.0 V. D+ Max 2.0V VCRS specified range Min 1.3V D*5: They indicate rise time (Trise) and fall time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within 10% to minimize RFI emission. D+ 90% 90% 10% 10% DTrise Tfall Rising time Falling time Full-speed Buffer Rs = 27Ω TxD+ CL = 50pF Rs = 27Ω TxDCL = 50pF. 3-State Enable Document Number: 002-05612 Rev. *D October 23, 2017 Page 90 of 112 MB9B300B Series *6: USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode). USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω. So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance. When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω) series resistor Rs. Full-speed Buffer Rs TxD+ 28Ω to 44Ω Equiv. Imped. Rs TxD- 28Ω to 44Ω Equiv. Imped. 3-State Enable Mount it as external resistance. Rs series resistor 25Ω to 30Ω Series resistor of 27Ω(recommendation value) must be added. And, use "resistance with an uncertainty of 5% by E24 sequence". *7: They indicate rise time (Trise) and fall time (Tfall) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. D+ 90% 90% 10% 10% D- Trise Rising time Tfall Falling time See “Low-Speed Load (Compliance Load)” for conditions of the external load. Document Number: 002-05612 Rev. *D October 23, 2017 Page 91 of 112 MB9B300B Series Low-Speed Load (Upstream Port Load) - Reference 1 Low-speed Buffer Rs = 27Ω TxD+ Rpd CL = 50 to 150pF Rs = 27Ω TxDRpd CL =50 to 150pF 3-State Enable Rpd=15kΩ Low-Speed Load (Downstream Port Load) - Reference 2 Low-speed Buffer Rs=27Ω TxD+ VTERM CL=200 to 600pF Rpu Rs=27Ω TxDCL=200 to 600pF 3-State Enable Rpu=1.5kΩ VTERM=3.6V Low-Speed Load (Compliance Load) Low-speed Buffer Rs = 27Ω TxD+ CL = 200 to 450pF Rs = 27Ω TxDCL =200 to 450pF 3-State Enable Document Number: 002-05612 Rev. *D October 23, 2017 Page 92 of 112 MB9B300B Series 12.7 Low-Voltage Detection Characteristics 12.7.1 Low-Voltage Detection Reset (TA = - 40C to + 85C) Parameter Detected voltage Released voltage Symbol Conditions VDL VDH - Value Typ Min 2.20 2.30 2.40 2.50 Max 2.60 2.70 Unit Remarks V V When voltage drops When voltage rises 12.7.2 Interrupt of Low-Voltage Detection (TA = - 40C to + 85C) Parameter Symbol Detected voltage Released voltage Detected voltage VDL VDH VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH Detected voltage VDL Released voltage VDH LVD stabilization wait time TLVDW Conditions SVHI = 0000 SVHI = 0001 SVHI = 0010 SVHI = 0011 SVHI = 0100 SVHI = 0111 SVHI = 1000 SVHI = 1001 - Value Typ Min Max Unit Remarks 2.58 2.67 2.76 2.8 2.9 3.0 3.02 3.13 3.24 V V V When voltage drops When voltage rises When voltage drops 2.85 3.1 3.34 V When voltage rises 2.94 3.2 3.45 V When voltage drops 3.04 3.3 3.56 V When voltage rises 3.31 3.6 3.88 V When voltage drops 3.40 3.7 3.99 V When voltage rises 3.40 3.7 3.99 V When voltage drops 3.50 3.8 4.10 V When voltage rises 3.68 4.0 4.32 V When voltage drops 3.77 4.1 4.42 V When voltage rises 3.77 4.1 4.42 V When voltage drops 3.86 4.2 4.53 V When voltage rises 3.86 4.2 4.53 V When voltage drops 3.96 4.3 4.64 V When voltage rises - - 2040 × tcycp *1 μs *1: tCYCP indicates the APB2 bus clock cycle time. Document Number: 002-05612 Rev. *D October 23, 2017 Page 93 of 112 MB9B300B Series 12.8 Flash Memory Write/Erase Characteristics 12.8.1 Write / Erase time (Vcc = 2.7 V to 5.5 V, TA = - 40C to + 85C) Value Parameter Typ *1 Unit Max *1 Large Sector 1.6 7.5 Small Sector 0.4 2.1 Half word (16 bit) write time 25 Chip erase time 16 Sector erase time Remarks s Includes write time prior to internal erase 400 μs Not including system-level overhead time. 76.8 s Includes write time prior to internal erase *1: The typical value is immediately after shipment, the maximum value is guarantee value under 100,000 cycle of erase/write. 12.8.2 Erase/write cycles and data hold time Erase/write cycles (cycle) 1,000 10,000 100,000 Data hold time (year) Remarks 20 *1 10 *1 5 *1 *1: At average + 85°C Document Number: 002-05612 Rev. *D October 23, 2017 Page 94 of 112 MB9B300B Series 12.9 Return Time from Low-Power Consumption Mode 12.9.1 Return Factor: Interrupt The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation. Return Count Time (VCC = 2.7 V to 5.5 V, TA = - 40°C to + 85°C) Parameter Value Symbol Unit Max *1 Typ SLEEP mode tCYCC High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode 33 100 μs 445 1061 μs Sub TIMER mode 445 1061 μs STOP mode 445 1061 μs Low-speed CR TIMER mode Ticnt Remarks ns *1: The maximum value depends on the accuracy of built-in CR. Operation example of return from Low-Power consumption mode (by external interrupt *1) Ext.INT Interrupt factor accept Active Ticnt CPU Operation Interrupt factor clear by CPU Start *1: External interrupt is set to detecting fall edge. Document Number: 002-05612 Rev. *D October 23, 2017 Page 95 of 112 MB9B300B Series Operation example of return from Low-Power consumption mode (by internal resource interrupt *1) Internal Resource INT Interrupt factor accept Active Ticnt CPU Operation Interrupt factor clear by CPU Start *1: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family Peripheral Manual about the return factor from Low-Power consumption mode. − When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in "FM3 Family Peripheral Manual" Document Number: 002-05612 Rev. *D October 23, 2017 Page 96 of 112 MB9B300B Series 12.9.2 Return Factor: Reset The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation. Return Count Time (VCC = 2.7 V to 5.5 V, TA = - 40°C to + 85°C) Parameter Value Symbol Typ Unit Max *1 SLEEP mode 82 181 μs High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode 82 181 μs 431 1003 μs Sub TIMER mode 431 1003 μs STOP mode 431 1003 μs Low-speed CR TIMER mode Trcnt Remarks *1: The maximum value depends on the accuracy of built-in CR. Operation example of return from Low-Power consumption mode (by INITX) INITX Internal RST RST Active Release Trcnt CPU Operation Document Number: 002-05612 Rev. *D Start October 23, 2017 Page 97 of 112 MB9B300B Series Operation example of return from low power consumption mode (by internal resource reset *1) Internal Resource RST Internal RST RST Active Release Trcnt CPU Operation Start *1: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family Peripheral Manual. − When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in "FM3 Family Peripheral Manual" − The time during the power-on reset/low-voltage detection reset is excluded. See "12.4.7. Power-on Reset Timing 12.4. AC Characteristics in 12. Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage detection reset − When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time. − The internal resource reset means the watchdog reset and the CSV reset. Document Number: 002-05612 Rev. *D October 23, 2017 Page 98 of 112 MB9B300B Series 13. Example of Characteristic Power supply current (PLL run mode, PLL sleep mode) Icc normal operation(PLL) temperature characteristics Vcc:5.5V, CPU:80MHz, Peripheral:40MHz,FLASH 2Wait Iccs sleep operation(PLL) temperature characteristics Vcc:5.5V, Peripheral:40MHz 120 60 100 90 50 Power supply current [mA] Power supply current [mA] 110 80 70 60 50 40 30 20 40 30 20 10 10 0 0 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 -40 -30 -20 -10 0 Temperature Ta[℃] 10 20 30 40 50 60 70 80 Temperature Ta[℃] Power supply current (Sub run mode) Icc normal operation(sub oscillation) temperature characteristics Vcc:5.5V, CPU/Peripheral:32KHz Icc normal operation(sub oscillation) temperature characteristics(semi-log) Vcc:5.5V, CPU/Peripheral:32KHz 500 1000 Power supply current [μA] (log) Power supply current [μA] 450 400 350 300 250 200 150 100 100 10 50 1 0 -40 -30 -20 -10 0 10 20 30 40 50 60 70 -40 -30 -20 -10 80 0 10 20 30 40 50 60 70 80 70 80 Temperature Ta[℃] Temperature Ta[℃] Power supply current (Sub sleep mode) Iccs sleep operation(sub oscillation) temperature Iccs sleep operation(sub oscillation) temperature characteristics Vcc:5.5V, Peripheral:32KHz characteristics(semi-log) Vcc:5.5V, Peripheral:32KHz 1000 500 Power supply current [μA] (log) Power supply current [μA] 450 400 350 300 250 200 150 100 50 10 1 0 -40 -30 -20 -10 100 0 10 20 30 40 50 60 70 80 -40 -30 -20 -10 Temperature Ta[℃] Document Number: 002-05612 Rev. *D 0 10 20 30 40 50 60 Temperature Ta[℃] October 23, 2017 Page 99 of 112 MB9B300B Series Power supply current (Sub timer mode) ICCT timer mode(sub oscillation) temperature characteristics(semi-log) Vcc:5.5V, LVD is Off ICCT timer mode(sub oscillation) temperature characteristics Vcc:5.5V, LVD is Off 1000 500 Power supply current [μA] (log) Power supply current [μA] 450 400 350 300 250 200 150 100 50 0 100 10 1 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 -40 -30 -20 -10 Temperature Ta[℃] 0 10 20 30 40 50 60 70 80 Temperature Ta[℃] Power supply current (Stop mode) ICCH stop mode (sub oscillation) temperature ICCH stop mode (sub oscillation) temperature characteristics Vcc:5.5V, LVD is Off characteristics(semi-log) Vcc:5.5V, LVD is Off 500 1000 Power supply current [μA] (log) Power supply current [μA] 450 400 350 300 250 200 150 100 50 10 1 0 -40 -30 -20 -10 100 0 10 20 30 40 50 60 70 80 -40 -30 -20 -10 Temperature Ta[℃] Document Number: 002-05612 Rev. *D 0 10 20 30 40 50 60 70 80 Temperature Ta[℃] October 23, 2017 Page 100 of 112 MB9B300B Series 14. Ordering Information Part Number MB9BF304NBPMC-G-JNE2 On-chip Flash Memory On-chip SRAM 256 Kbyte 32 KB 384 Kbyte 48 KB 512 Kbyte 64 KB 256 Kbyte 32 KB MB9BF305RBPMC-G-JNE2 384 Kbyte 48 KB MB9BF306RBPMC-G-JNE2 512 Kbyte 64 KB MB9BF304NBBGL-GK6E1 256 Kbyte 32 KB MB9BF305NBBGL-GK6E1 384 Kbyte 48 KB MB9BF306NBBGL-GK6E1 512 Kbyte 64 KB MB9BF304NBPMC-G-UNE1 MB9BF305NBPMC-G-JNE2 MB9BF306NBPMC-G-UNE1 MB9BF306NBPMC-G-UNE2 MB9BF304RBPMC-G-JNE2 MB9BF304RBPMC-G-UNE1 Document Number: 002-05612 Rev. *D October 23, 2017 Package Packing Plastic・LQFP(0.5 mm pitch),100-pin (LQI100) Plastic・LQFP(0.5 mm pitch),120-pin (LQM120) Tray Plastic・FBGA(0.8 mm pitch),112-pin (LBC112) Page 101 of 112 MB9B300B Series 15. Package Dimensions Package Type LQFP 100 Package Code LQI100 D D1 75 4 D 5 7 51 D1 51 50 76 4 5 7 75 50 76 E1 E 5 4 7 E1 E 5 4 7 3 6 26 100 1 26 25 1 25 2 5 7 e 100 BOTTOM VIEW 0.1 0 C A-B D 3 0.2 0 C A-B D b TOP VIEW 8 0.0 8 C A-B D 2 A 9 A SEAT ING PLA NE A' 0.25 L1 0.0 8 C c A1 b 10 SECTION A-A' L SIDE VIEW SYMBOL DETAIL A DIMENSIONS MIN. NOM. MAX. 1.70 A A1 0.05 b 0.15 0.15 0.27 c 0.09 0.20 D 16.00 BSC D1 14.00 BSC e 0.50 BSC E 16.00 BSC E1 14.00 BSC L 0.45 0.60 0.75 L1 0.30 0.50 0.70 NOTES : 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY. 3. DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H. 4. TO BE DETERMINED AT SEATING PLANE C. 5. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H. 6. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. 7. REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY. 8. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT. 9. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP. 10. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. 002-11500 *A PACKAGE OUTLINE, 100 LEAD LQFP 14.0X14.0X1.7 MM LQI100 REV*A Document Number: 002-05612 Rev. *D October 23, 2017 Page 102 of 112 MB9B300B Series Package Type LQFP 120 Package Code LQM120 4 D 5 7 D1 90 61 91 61 60 90 91 60 E1 E 4 5 7 3 6 31 120 1 30 e 31 30 2 5 7 1 0.10 C A-B D 3 b 0.20 C A-B D 0.08 C A-B D BOTTOM VIEW 8 TOP VIEW 2 A 9 c A A' 0.08 C SEATI NG PLA NE 0.25 A1 10 b SEC TION A -A' L SIDE VIEW SYMBOL DIMENSIONS MIN. NOM. MAX. A A1 1 . 70 0.05 0.15 b 0.17 c 0.115 0.22 D 18.00 BSC D1 16.00 BSC e 0.50 BSC E 18.00 BSC E1 L 0.27 0.195 16.00 BSC 0.45 0 0.60 0.75 8 002-16172 ** PACKAGE OUTLINE, 120 LEAD LQFP 18.0X18.0X1.7 MM LQM120 REV** Document Number: 002-05612 Rev. *D October 23, 2017 Page 103 of 112 MB9B300B Series Package Type FBGA 112 Package Code LBC112 A 0.20 C 11 2X 10 9 6 8 7 6 5 4 3 2 1 L PIN A1 CORNER INDEX MARK K J H G F E D 7 C B A 6 B 0.20 C TOP VIEW 2X BOTTOM VIEW DETAIL A 5 112x φb C 0.10 C DETAIL A 0.08 C A B SIDE VIEW NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS. DIMENSIONS SYMBOL MIN. NOM. MAX. 2. SOLDER BALL POSITION DESIGNATIO N PER JEP95, SECTION 3, SPP-020. A - - 1.45 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH. A1 0.25 0.35 0.45 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. D 10.00 BSC SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. E 10.00 BSC N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX D1 8.00 BSC E1 8.00 BSC MD 11 ME 11 N 112 b 0.35 0.45 eD 0.80 BSC eE 0.80 BSC SD 0.00 SE SIZE MD X ME. 5. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A 0.00 PLANE PARALLEL TO DATUM C. 6. "SD" AND "SE" ARE MEASUREDWITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. 0.55 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2. 7. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS. 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS. 002-13225 ** PACKAGE OUTLINE, 112 BALL FBGA 10.00X10.00X1.45 MM LBC112 REV** Document Number: 002-05612 Rev. *D October 23, 2017 Page 104 of 112 MB9B300B Series 16. Errata This chapter describes the errata for MB9B300R and MB9B300RA series. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions. 16.1 Part Numbers Affected Part Number Initial Revision MB9BF304RPMC-G-JNE2, MB9BF305RPMC-G-JNE2, MB9BF306RPMC-G-JNE2, MB9BF304NPMC-G-JNE2, MB9BF305NPMC-G-JNE2, MB9BF306NPMC-G-JNE2, MB9BF304NBGL-GE1, MB9BF305NBGL-GE1, MB9BF306NBGL-GE1, MB9BF306NBGL-GK6E1 Rev. A MB9BF304RAPMC-G-JNE2, MB9BF305RAPMC-G-JNE2, MB9BF306RAPMC-G-JNE2, MB9BF304NAPMC-G-JNE2, MB9BF305NAPMC-G-JNE2, MB9BF306NAPMC-G-JNE2, MB9BF304NABGL-GE1, MB9BF305NABGL-GE1, MB9BF306NABGL-GE1 16.2 Qualification Status Product Status: In Production − Qual. 16.3 Errata Summary This table defines the errata applicability to available devices. Items Part Number Silicon Revision Fix Status [1] Timer/Stop Mode Issue Refer to 16.1 Rev. initial rev. Fixed in Rev. A [2] USB HOST Issue Refer to 16.1 Rev. initial rev. Rev. A Fixed in Rev. B [3] Gap Between Watch Counter Value and Real Time at Return in Timer Mode Refer to 16.1 Rev. initial rev. Fixed in Rev. A 16.4 Errata Detail 16.4.1 Timer and Stop Mode Issue PROBLEM DEFINITION MCU does not return form timer or stop mode. PARAMETERS AFFECTED N/A TRIGGER CONDITION(S) The condition is that the timing of entering timer or stop mode and an interruption occurrence meet. SCOPE OF IMPACT MCU does not return from time or stop mode. WORKAROUND This error cannot be avoided by any software, except not using timer and stop mode. Document Number: 002-05612 Rev. *D October 23, 2017 Page 105 of 112 MB9B300B Series FIX STATUS This issue was fixed in Rev. A. 16.4.2 USB HOST Issue PROBLEM DEFINITION Unexpected USB transfer is generated or USB HOST stops its operation. PARAMETERS AFFECTED N/A TRIGGER CONDITION(S) The condition is that all (1) and (2) and (3) and (4) meet. (1) The timing of rising edge of USB clock and the timing of rising edge of CPU clock meet (2) Endpoint processing is on-going (3) USB bus is differential 1 (4) One of these cases happens Case 1: TKNEN bits are set to 001 from 110. Case 2: TKNEN is set to 111. SCOPE OF IMPACT USB HOST does not work properly. WORKAROUND This error cannot be avoided by any software, except not using USB HOST. FIX STATUS This issue was fixed in Rev. B. 16.4.3 Gap Between Watch Counter Value and Real Time at Return in Timer Mode PROBLEM DEFINITION There is a gap between the value of the counter and the real time at the return by the interrupt in the sub-timer mode or the low speed CR timer mode. When the watch counter using the sub-crystal oscillator is used in the sub timer mode or the low speed CR timer mode, the value of the watch counter has a “Low speed CR x 35clock” delay (about 350us at waiting for the stability of the regulator) at the return by the interrupt. As a result, a gap occurs between the value of the counter and the real time. The following figure shows the timing waveform. ROOT CAUSE The internal regulator operates with low drive and low power consumption in the sub timer mode or the low speed CR timer mode. When the interrupt is requested, the mode of the internal regulator is switched to the normal drive mode. At this time, a switching time for the stability of the regulator is required. This MCU is designed for keeping down the voltage variation of the regulator by reducing the current. To achieve it, the clock to the watch counter is stopped in the period. Document Number: 002-05612 Rev. *D October 23, 2017 Page 106 of 112 MB9B300B Series At a result, the value of the watch counter delay until the time for the stability of the regulator is shown in the Figure. Therefore, a gap occurs between the value of the counter and the real time. TRIGGER CONDITION(S) When both of (1) and (2) described in below is applicable, the gap occurs. (1) CPU Operation Mode The gap occurs in the sub timer mode or the low speed CR mode. It does not occur in the following modes: (2) • Run modes (PLL, main, high speed CR, sub, and low speed CR) • Sleep modes (PLL, main, high speed CR, sub, low speed CR) • PLL timer mode • Main timer mode • High speed CR timer mode • Stop mode Return Factor The gap occurs when any of the following interrupt is requested for the return in the sub timer mode or the low speed CR timer mode. • NMI interrupt • External interrupt • Hardware Watchdog Timer interrupt • USB Wakeup interrupt • Watch Counter interrupt • Low-voltage detection interrupt • The gap does not occur in the standby return by the reset because the value of the counter is cleared WORKAROUND When the extremely accuracy is required for the count time of the watch counter, use the sub sleep mode or the low speed CR sleep mode. FIX STATUS This issue was fixed in Rev. A. Document Number: 002-05612 Rev. *D October 23, 2017 Page 107 of 112 MB9B300B Series 17. Major Changes Spansion Publication Number: DS706-00024 Page Section Revision 1.0 Revision 2.0 - - Revision 2.1 Revision 3.0 FEATURES 2 USB Interface FEATURES 3 External Bus Interface 8 PACKAGES LIST OF PIN FUNCTIONS 17 List of pin numbers LIST OF PIN FUNCTIONS 32-35 List of pin functions 42 I/O CIRCUIT TYPE 42, 43 I/O CIRCUIT TYPE 48 HANDLING DEVICES HANDLING DEVICES 48 Crystal oscillator circuit HANDLING DEVICES 49 C Pin 50 BLOCK DIAGRAM 50 51 52 MEMORY SIZE MEMORY MAP Memory map(1) MEMORY MAP Memory map(2) 59, 60 ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings 61 ELECTRICAL CHARACTERISTICS 2. Recommended Operation Conditions 62, 63 ELECTRICAL CHARACTERISTICS 3. DC Characteristics (1) Current rating 65 66 ELECTRICAL CHARACTERISTICS 4. AC Characteristics (1) Main Clock Input Characteristics ELECTRICAL CHARACTERISTICS 4. AC Characteristics (3) Built-in CR Oscillation Characteristics Document Number: 002-05612 Rev. *D Change Results Initial release Corrected series name and part number: MB9B300A Series → MB9B300B Series, MB9BF304NA → MB9BF304NB, MB9BF304RA → MB9BF304RB, MB9BF305NA → MB9BF305NB, MB9BF305RA → MB9BF305RB, MB9BF306NA → MB9BF306NB, MB9BF306RA → MB9BF306RB Company name and layout design change Added the description of PLL for USB Added the description of Maximum area size Deleted the description of ES Modified the Pin state type of P4E from I to H Added LIN to the description of SOTxx Added the description of I2C to the type of E and F Added about +B input Added "Stabilizing power supply voltage" Added the following description "Evaluate oscillation of your using crystal oscillator by your mount board." Changed the description Modified the block diagram Changed to the following description See "Memory size" in "PRODUCT LINEUP" to confirm the memory size. Modified the area of "External Device Area" Added the summary of Flash memory sector and the note Added the Clamp maximum current Added the output current of P80 and P81 Added about +B input Modified the minimum value of Analog reference voltage Added Smoothing capacitor Added the note about less than the minimum power supply voltage Changed the table format Added Main TIMER mode current Added Flash Memory Current Moved A/D Converter Current Added Master clock at Internal operating clock frequency Added Frequency stability time at Built-in high-speed CR October 23, 2017 Page 108 of 112 MB9B300B Series Page 67 68 74-81 88 91 96 97-100 103 104 Section ELECTRICAL CHARACTERISTICS 4. AC Characteristics (4-1) Operating Conditions of Main and USB PLL (4-2) Operating Conditions of Main PLL ELECTRICAL CHARACTERISTICS 4. AC Characteristics (6) Power-on Reset Timing ELECTRICAL CHARACTERISTICS 4. AC Characteristics (7) CSIO/UART Timing ELECTRICAL CHARACTERISTICS 5. 12bit A/D Converter ELECTRICAL CHARACTERISTICS 6. USB Characteristics ELECTRICAL CHARACTERISTICS 8. Flash Memory Write/Erase Characteristics ELECTRICAL CHARACTERISTICS 9. Return Time from Low-Power Consumption Mode ORDERING INFORMATION PACKAGE DIMENSIONS Change Results Added Main PLL clock frequency Added USB clock frequency Added the figure of Main PLL connection and USB PLL connection Added Time until releasing Power-on reset Changed the figure of timing Modified from UART Timing to CSIO/UART Timing Changed from Internal shift clock operation to Master mode Changed from External shift clock operation to Slave mode Added the typical value of Integral Nonlinearity, Differential Nonlinearity, Zero transition voltage and Full-scale transition voltage Added Conversion time at AVcc < 4.5 V Modified Stage transition time to operation permission Modified the minimum value of Reference voltage Modified condition of Output Low level voltage Change to the erase time of include write time prior to internal erase Added Return Time from Low-Power Consumption Mode Change to full part number Deleted FPT-100P-M20 and FPT-120P-M21 Note: Please see “Document History” about later revised information. Document Number: 002-05612 Rev. *D October 23, 2017 Page 109 of 112 MB9B300B Series Document History Document Title: MB9B300B Series 32-bit Arm® Cortex®-M3 FM3 Microcontroller Document Number: 002-05612 Revision ECN Orig. of Change Submission Date ** – AKIH 12/15/2014 Migrated to Cypress and assigned document number 002-05612. No change to document contents or format. *A 5206321 AKIH 04/11/2016 Updated to Cypress format. Description of Change Updated Cypress Logo. Corrected the following statement USB Function → USB Device in chapter: Features (Page 1) 1. Product Lineup (Page 6) 4. List of Pin Functions (Page 36) 8. Block Diagram (Page 47). Corrected the following statement J-TAG → JTAG in chapter 4. List of Pin Functions (Page 25) Added “Note” about TAP pins in chapter 4. List of Pin Functions (Page 37). Added the Baud rate spec in 12.4.10 CSIO Timing (Page 72-78) Corrected the following statement Analog port input current → Analog port input leak current in chapter 12.5 12-bit A/D Converter (Page 86). *B 5486354 HTER 03/02/2017 Corrected the following statement Comrare clock cycle → Compare clock cycle in chapter 12.5 12-bit A/D Converter (Page 87). Changed the package codes as the following table in chapter: 2. Packages (Page 7) 3. Pin Assignment (Page 8-10) 12.2 Recommended Operating Conditions (Page 57) 14. Ordering Information (Page 101) 15. Package Dimensions (Page 102-104). Before FPT-100P-M23 FPT-120P-M37 BGA-112P-M04 After LQI100 LQM120 LBC112 Added the Part numbers - MB9BF304RBPMC-G-UNE1 in chapter 14. Ordering Information (Page 101). Corrected the Part numbers - MB9BF304NBBGL-G-YE1 → MB9BF304NBBGL-GK6E1 - MB9BF305NBBGL-G-YE1 → MB9BF305NBBGL-GK6E1 - MB9BF306NBBGL-G-YE1 → MB9BF306NBBGL-GK6E1 in chapter 14. Ordering Information (Page 101). Added 16. Errata (Page 105-106) *C 5811601 YSAT Document Number: 002-05612 Rev. *D 07/13/2017 Adapted new Cypress logo October 23, 2017 Page 110 of 112 MB9B300B Series Revision ECN Orig. of Change Submission Date Description of Change Corrected the following Clock frequency MAX value (When not trimming) 5MHz 6MHz in chapter 12.4.3 Built-in CR Oscillation Characteristics. Added the Part numbers in chapter 14. Ordering Information. *D 5942095 HUAL 10/24/2017 - MB9BF304NBPMC-G-UNE1 - MB9BF306NBPMC-G-UNE1 Corrected the Part numbers in chapter 14. Ordering Information. - MB9BF306NBPMC-G-JNE2 → MB9BF306NBPMC-G-UNE2 Added the errata 002-06782 contents in chapter 16. Errata. Document Number: 002-05612 Rev. *D October 23, 2017 Page 111 of 112 MB9B300B Series Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products ARM® Cortex® Microcontrollers Automotive Clocks & Buffers Interface Internet of Things Memory cypress.com/arm cypress.com/automotive cypress.com/clocks cypress.com/interface cypress.com/iot cypress.com/memory Microcontrollers cypress.com/mcu PSoC cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing USB Controllers Wireless Connectivity PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 Cypress Developer Community Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components Technical Support cypress.com/support cypress.com/touch cypress.com/usb cypress.com/wireless Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All other trademarks or registered trademarks referenced herein are the property of their respective owners. © Cypress Semiconductor Corporation, 2011-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-05612 Rev. *D October 24, 2017 Page 112 of 112