Datasheet Power Supply IC Series for TFT-LCD Panels Multi-Channel System Power Supply IC BM81028AMWV ●General Description BM81028AMWV is a system power supply IC for TFT-LCD panels which are used in monitors, notebook type displays, and tablets. This IC incorporates HAVDD, VCOM amplifier in addition to the power supply for panel driver (SOURCE, GATE, and LOGIC power supplies). Moreover, this IC has a built-in EEPROM for sequence and output voltage setting retention. ●Features Input voltage range: 2.7V to 5.5V Standby current: 1.4μA (Typ) Operating temperature range: -40℃ to +85℃ Step-down DC/DC converter 2-channels (Synchronous rectification) Step-up DC/DC converter (Integrated load switch and Synchronous rectification) HAVDD amplifier (8bit Resolution) VCOM amplifier (8bit Resolution) Positive charge pump (Integrated diode) Negative charge pump 2 I C Interface Output Voltage Setting Control Function (Integrated EEPROM) Switching frequency switching function (600kHz,1200kHz) Protection circuits Under-Voltage Lockout Thermal Shut Down Over-Current Protection Over-Voltage Protection Short Circuit Protection (Timer Latch type) Input tolerant (SCL, SDA,EN) ●Applications TFT-LCD Panels which are used in Monitors, Note PCs and Tablets. ●Package UQFN28V4040A W(Typ) D(Typ) H(Max) 4.0mm x 4.00mm x 1.00m ●Typical Application Circuit Fig.1. Typical Application Circuit ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・14・001 ○This product has no designed protection against radioactive rays 1/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV AVDD_S AVDD SW PGND2 SWB2 PVCC1 SWB1 AVDDP HAVDD VCOM GND FAULT VCC 8 9 10 11 12 13 14 22 23 24 25 26 27 28 DRN ●Pin Configuration Fig.2 Pin Configuration ●Pin Descriptions Pin No. Pin Name Pin No. Pin Name 1 DRN Negative charge pump driver pin 15 SWB1 Step-down DC/DC switching pin 1 2 AVDDP AVDD input 16 PVCC1 Step-down DC/DC power supply input 3 HAVDD HAVDD amplifier output 17 SWB2 Step-down DC/DC switching pin 2 4 VCOM VCOM amplifier output 18 PGND2 Step-down/-up DC/DC ground 5 GND Ground 19 SW Step-up DC/DC switching pin 6 FAULT FAULT signal output 20 AVDD 7 VCC Power supply input 21 AVDD_S Step-up DC/DC output feedback 8 SCL Serial clock input (I2C) 22 PVCC2 Step-up DC/DC load switch input 9 SDA Serial clock data input (I2C) 23 VLSO 10 EN Enable input 24 VGL 11 VREG Inner power supply output 25 CPGND 12 VDD2 Step-down DC/DC output feedback input 2 26 VGH Positive charge pump feedback 13 VDD1 Step-down DC/DC output feedback input 1 27 CPP Built-in Positive charge pump switching Di output 14 PGND1 Step-down DC/DC ground 28 DRP Positive charge pump driver pin Function www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 2/44 Function Step-up DC/DC output Step-up DC/DC load switch output Negative charge pump feedback Charge pump ground TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Block Diagram VCC 7 erramp pwmcomp soft start driver 15 14 SWB1 VDD1 PGND1 vref 13 16 VDD1 PVCC1 erramp pwmcomp soft start SWB2 driver 17 PGND2 18 VREG vreg 11 12 VDD2 PVCC2 22 load SW 23 Internal Regulator register 19 erramp DAC 20 pwmcomp driver VLSO SW AVDD 21 AVDD_S EEPROM soft start AVDD 8 SCL SDA 9 EN 10 PGND2 register logic DAC HAVDD 3 AVDD control register DAC 4 osc AVDD VDD1 VDD2 CP_CLK Internal Regulator OSCGND register 2 erramp DAC AVDDP 28 DRP driver soft start 25 CPGND 26 VGH 27 CPP level shift level shift Internal Regilator 6 FAULT GND register erramp DAC DRN fault driver 1 CPGND soft start 5 24 VGL Fig.3 Block Diagram www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 3/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Function Description of Each Block Enumerated below are the different blocks and the output voltages they generate. Also, discussed are the protection circuits that can shut down each block to prevent IC destruction. All output voltages generated by each block, startup order, and delay time (DELAY1 and DELAY2) can be set through the EEPROM. Upon start-up, these settings are read from the EEPROM and copied to the registers. ① Buck Converter Block (VDD1, VDD2) Generates the VDD1 and VDD2 voltages after VCC UVLO release at EN=High. This block shuts down when SCP or OCP is detected. ② Boost Converter Block (AVDD) Generates the AVDD voltage after the configured DELAY2 time. This block shuts down when OVP, SCP, or OCP is detected. ③ HAVDD Amp Block (HAVDD) Generates the HAVDD voltage based on the AVDD voltage. Thus, the HAVDD voltage is produced after the AVDD voltage. ④ VCOM Amp Block (VCOM) Generates the VCOM voltage based on the AVDD voltage. Thus, the VCOM voltage is produced after the AVDD voltage. ⑤ Positive Charge Pump Block (VGH) Generates the VGH voltage based on the AVDD voltage. Thus, the VGH voltage is produced after the AVDD voltage. This block shuts down when SCP is detected. ⑥ Negative Charge Pump Block (VGL) Generates the VGL voltage based on the AVDD voltage. It starts up after the configured DELAY2 time. This block shuts down when SCP is detected. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 4/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Absolute Maximum Ratings PARAMETER Power Supply Voltage Output Pin Functional Pin Voltage Maximum Junction temperature Power Dissipation LIMITS SYMBOL Unit MIN TYP MAX VCC, PVCC1, PVCC2 -0.3 - 6.5 V SWB1, SWB2 -0.3 - PVCC1+0.3 V VDD1, VDD2 -0.3 - 6.5 V AVDD, AVDDP, SW -0.3 - 19 V VLSO -0.3 - 6.5 V HAVDD, VCOM -0.3 - AVDDP+0.3 V DRP, DRN -0.3 - AVDDP+0.3 V CPP -0.3 - 30 V VGH, -0.3 - 36 V VGL -15 - 0.3 V VREG -0.3 - VCC+0.3 V FAULT -0.3 - 6.5 V SCL, SDA, EN -0.3 - 6.5 V - - 150 ℃ Tjmax Pd (1) (2) 2.01 W Operating Temperature Range Topr -40 - 85 ℃ Storage Temperature Range Tstg -55 - 150 ℃ MIN TYP MAX Unit 2.7 - 5.5 V 2.9 - 5.5 V 3.1 - 5.5 V 3.3 - 5.5 V (1) Junction temperature at storage time. (2) JEDEC standard (4 layers) ●Recommended Operating Ratings(TA=-40℃ to +85℃) PARAMETER Power Supply Voltage 1 ( DC/DC Block Protection Detection Voltage 1 setting) Power Supply Voltage 2 ( DC/DC Block Protection Detection Voltage 2 setting) Power Supply Voltage 3 ( DC/DC Block Protection Detection Voltage 3 setting) Power Supply Voltage 4 ( DC/DC Block Protection Detection Voltage 4 setting) SYMBOL VCC,PVCC1,PVCC2 SWB1,SWB2 Current ISW1 - - 1.0 A SW Current ISW2 - - 1.5 A EN -0.1 - 5.5 V 2 Line Serial Pin Voltage SDA, SCL -0.1 - 5.5 V 2 Line Serial Frequency FCLK - - 400 kHz Functional Pin Voltage www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 5/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V) 1. Buck DC/DC converter block 1 (VDD1) LIMITS PARAMETER SYMBOL Unit Condition MIN TYP MAX 1.7 - 1.9 Output Voltage Range VDD1 V 50mV step 2.4 - 2.6 1.782 1.8 1.818 V VDD1=1.8V setting Output Voltage Accuracy VDD1_R 2.475 2.5 2.525 V VDD1=2.5V setting The time where 90% of set Soft Start time VDD1_SS 0.5 1 2 msec voltage is reached. Timer Latch Starting Time VDD1_SCP - VDD1×0.8 - V SWB1 H Side ON Resistance RON_H1 - 300 480 mΩ SWB1 L Side ON Resistance RON_L1 - 300 480 mΩ SWB1 H Side Leak Current IL_H1 - 0 10 µA SWB1 L Side Leak Current IL_L1 - 0 10 µA Current Limit ILMT_SWB1 1.0 1.5 - A Discharge Resistance DISR_VDD1 - 25 50 Ω 2. Buck DC/DC converter block 2 (VDD2) PARAMETER SYMBOL LIMITS Unit Condition MIN TYP MAX VDD2 1.1 - 1.3 V 50mV step VDD2_R 1.188 1.2 1.212 V VDD2_SS 0.5 1 2 msec VDD2=1.2V setting The time where 90% of set voltage is reached. VDD2_SCP - VDD2×0.8 - V SWB2 H Side On Resistance RON_H2 - 300 480 mΩ SWB2 L Side On Resistance RON_L2 - 300 480 mΩ SWB2 H Side Leak Current IL_H2 - 0 10 µA Output Voltage Range Output Voltage Accuracy Soft Start Time Timer Latch Starting Time SWB2 L Side Leak Current IL_L2 - 0 10 µA Current Limit ILMT_SWB2 1.0 1.5 - A Discharge Resistance DISR_VDD2 - 25 50 Ω 3. Boost DC/DC converter block (AVDD) PARAMETER SYMBOL Output Voltage Range LIMITS MIN TYP MAX Unit Condition AVDD 8.0 - 14.5 V 0.1V step Output Voltage Accuracy1 AVDD_R1 10.395 10.5 10.605 V AVDD=10.5V setting Output Voltage Accuracy2 AVDD_R2 -1.0 0 +1.0 % Output Voltage Accuracy3 AVDD_R3 -1.7 0 +1.7 % Output Voltage Accuracy4 AVDD_R4 -2.0 0 +2.0 % AVDD=9.7 to 11.2V setting AVDD=8.0 to 9.6V, 11.3 to 12.8V setting AVDD=12.9 to 14.5V setting Load Switch Soft Start time LS_SS 1 2 4 msec Soft Start Time AVDD_SS 3.5 5 6.5 msec Timer Latch Starting Time AVDD_SCP - AVDD×0.8 - V Over-Voltage Protection voltage AVDD_OVP - 16 - V SW H Side On Resistance RON_H3 - 350 560 mΩ SW L Side On Resistance RON_L3 - 350 560 mΩ SW H Side Leak Current IL_H3 - 0 10 µA SW L Side Leak Current IL_L3 - 0 10 µA Current Limit ILMT_SW 1.5 2.0 - A Load Switch ON Resistor RON_LS - 250 400 mΩ DMAX 80 90 - % DISR_AVDD - 25 50 Ω Maximum Duty Discharge Resistance www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 6/44 AVDD=10.5V setting TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V) 4. HAVDD amplifier block (HAVDD) LIMITS PARAMETER SYMBOL Unit Condition MIN TYP MAX 0.6× 0.6× Output Voltage Range HAVDD AVDD- V 12.5mV step AVDD 3.1875 Resolution Integral Non-Linearity Error (INL) Differential Non-Linearity Error (DNL) Output Current Ability (Source) RES1 - 8 - Bit INL1 -1 - +1 LSB Input code: 02h to FDh DNL1 -1 - +1 LSB Input code: 02h to FDh ISOURCE1 - 200 - mA Output Current Ability (Sink) ISINK1 - 200 - mA Load Stability ∆VO1 - 10 70 mV SR1 - 20 - V/µsec Slew Rate Io=-15mA to +15mA 5. VCOM amplifier block (VCOM) PARAMETER SYMBOL LIMITS Unit Output Voltage Range VCOM Resolution Integral Non-Linearity Error (INL) Differential Non-Linearity Error (DNL) Output Current Ability (Source) Output Current Ability (Sink) RES2 INL2 -1 - +1 LSB Input code: 02h to FDh DNL2 -1 - +1 LSB Input code: 02h to FDh VOL2 - 200 - mA ISOURCE2 - 200 - mA ISINK2 - 10 70 mV SR2 - 20 - V/µsec DISR_VCOM - 50 100 Ω Load Stability Slew Rate Discharge Resistor TYP MAX - 0.45× AVDD V 8 - Bit Condition MIN 0.45× AVDD3.1875 - 12.5mV step Io=-15mA to +15mA 6. Positive charge pump block (VGH) PARAMETER SYMBOL Output Voltage Range Output Voltage Accuracy Soft Start time LIMITS MIN TYP MAX Unit VGH 13 - 26 V 0.2V step VGH_R 17.1 18 18.9 V VGH=18V setting VGH=18V setting VGH_SS 3.5 5 6.5 msec VGH_SCP - VGH×0.8 - V RON_H4 - 5 - Ω DRP L Side On Resistance RON_L4 - 10 - Ω CPP H Side On Resistance RON_H4 - 10 - Ω RON_L4 - 10 - Ω DISR_VGH - 150 300 Ω Timer Latch Starting Time DRP H Side On Resistance CPP L Side On Resistance Discharge Resistance Condition 7. Negative charge pump block (VGL) PARAMETER Output Voltage Range Output Voltage Accuracy SYMBOL LIMITS MIN TYP MAX VGL -9.5 - -4 Unit V 0.1V step VGH=-6.0V setting VGL_R -6.3 -6 -5.7 V VGL_SS 3.5 5 6.5 msec Timer Latch Starting Time VGL_SCP - VGL×0.8 - V DRN H Side On Resistance RON_H5 - 5 - Ω DRN L Side On Resistance RON_L5 - 10 - Ω DISR_VGL - 250 500 Ω Soft Start time Discharge Resistance www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 7/44 Condition TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Electrical Characteristics 8. Overall (Entire device) (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V) PARAMETER SYMBOL LIMITS Unit MIN TYP MAX VREG 2.15 2.3 2.45 V ⊿V - 20 100 mV FOSC1 480 600 720 KHz FOSC2 960 1200 1440 KHz FOSC1_CP 240 300 360 KHz FOSC2_CP 480 600 720 KHz VUVLO 2.2 2.4 2.6 V UVLO detection voltage VDET 1.9 2.1 2.3 V Hysteresis VHYS - 0.3 - V DC_DET1 2.35 2.5 2.65 V DC_DET2 2.55 2.7 2.85 V DC_DET3 2.75 2.9 3.05 V DC_DET4 2.95 3.1 3.25 V DC_REL1 2.55 2.7 2.85 V DC_REL2 2.75 2.9 3.05 V DC_REL3 2.95 3.1 3.25 V DC_REL4 3.15 3.3 3.45 V IFL - 0 10 uA RON_F - 1 2 kΩ VSDA - - 0.4 V Condition 【Inside Regulator Voltage】 VREG Output Voltage Load Stability IVREG=20mA 【Oscillator Block】 DC/DC Block Oscillating Frequency 1 DC/DC Block Oscillating Frequency 2 Charge Pump block Oscillating Frequency 1 Charge Pump block Oscillating Frequency 2 【Under Voltage Lock Out (UVLO) Circuit】 UVLO return voltage 【DC/DC Block Under-Voltage Lockout Circuit Block】 DC/DC Block Protection Detection Voltage 1 DC/DC Block Protection Detection Voltage 2 DC/DC Block Protection Detection Voltage 3 DC/DC Block Protection Detection Voltage 4 DC/DC Block Protection Return Voltage 1 DC/DC Block Protection Return Voltage 2 DC/DC Block Protection Return Voltage 3 DC/DC Block Protection Return Voltage 4 UVLO is released VCC exceeds 2.8V. UVLO is released VCC exceeds 3.0V. UVLO is released VCC exceeds 3.2V. UVLO is released VCC exceeds 3.4V. when when when when 【FAULT Signal Output Block】 Output Off Leak Current Output On Resistance 【Control Signal Block1 SDA, SCL】 Minimum Output Voltage ISDA=3mA VCC=2.5~5.5V Ta=-40~+85℃ VCC=2.5~5.5V Ta=-40~+85℃ H Level Input Voltage VIH1 1.7 - - V L Level Input Voltage VIL1 - - 0.6 V RCTL2 280 400 520 kΩ H Level Input Voltage VIH2 1.7 - - V L Level Input Voltage VIL2 - - 0.6 V Standby Consumption Current ICC1 0.8 1.4 2.0 µA EN=L Consumption Current ICC2 1.7 3.2 4.7 mA EN=H, No switching 【Control Signal Block2 EN】 Pull-Down Resistance Value VCC=2.5~5.5V Ta=-40~+85℃ VCC=2.5~5.5V Ta=-40~+85℃ 【Overall】 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 8/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV 5 5 4 4 Circuit Current [mA] Stand by Current [uA] ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) 3 2 1 3 2 1 0 0 0 1 2 3 4 5 6 0 1 VCC supply voltage [V] 3 4 5 6 VCC supply voltage [V] Fig.4 Standby Current Fig.5 Circuit Current(No switching) 800 1400 750 1350 700 1300 Frequency [kHz] Frequency [kHz] 2 650 600 550 1250 1200 1150 500 1100 450 1050 400 1000 0 1 2 3 4 5 6 VCC supply voltage [V] 1 2 3 4 5 6 VCC supply voltage [V] Fig.6 Switching Frequency (600kHz) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 0 Fig.7 Switching Frequency (1200kHz) 9/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) EN EN 5[V/div.] 5[V/div.] VDD1 VDD1 1[V/div.] 1[V/div.] I_Vcc I_Vcc 100[mA/div.] 100[mA/div.] 1[ms/div.] 1[ms/div.] Fig.8 VDD1Start-up Sequence Fig.9 VDD1 Off Sequence VDD1 VDD1 20[mV/div.] 20[mV/div.] I_LOAD I_LOAD 50[mA/div.] 50[mA/div.] 100[us/div.] Fig.10 VDD1Load Transient Fig.11 VDD1Load Transeint (25mA→75mA,tr=4us) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 100[us/div.] (75mA→25mA,tf=4us) 10/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Reference (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) 100 3 2 Output Voltage [%] Efficiency [%] 80 60 40 20 1 0 -1 -2 0 -3 0 100 200 300 400 500 load [mA] 100 200 300 400 500 load [mA] Fig.12 VDD1 Efficiency www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 0 Fig.13 VDD1Load Regulation 11/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) EN EN 5[V/div.] 5[V/div.] VDD2 VDD2 1[V/div.] 1[V/div.] I_Vcc I_Vcc 100[mA/div.] 100[mA/div.] 1[ms/div.] 1[ms/div.] Fig.14 VDD2 Start-up Sequence Fig.15 VDD2 Off Sequence VDD2 VDD2 20[mV/div.] 20[mV/div.] I_LOAD I_LOAD 50[mA/div.] 50[mA/div.] 100[us/div.] Fig.16 VDD2 Load Transient Fig.17 VDD2 Load Transient (50mA→250mA,tr=4us) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 100[us/div.] (250mA→50mA,tf=4us) 12/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) 100 3 2 Output Voltage [%] Efficiency [%] 80 60 40 20 1 0 -1 -2 0 -3 0 100 200 300 400 500 load [mA] 100 200 300 400 500 load [mA] Fig.18 VDD2 Efficiency www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 0 Fig.19 VDD2 Load Regulation 13/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) VDD2 EN 1[V/div.] 5[V/div.] AVDD AVDD 3[V/div.] 3[V/div.] I_Vcc I_Vcc 500[mA/div.] 500[mA/div.] 2[ms/div.] 2[ms/div.] Fig.20 AVDD Start-up Sequence AVDD Fig.21 AVDD Off Sequence ⊿V=94mV ⊿t=150uS AVDD 100[mV/div.] ⊿V=82mV ⊿t=150uS 100[mV/div.] I_LOAD I_LOAD 50[mA/div.] 50[mA/div.] 100[us/div.] Fig.22 AVDD Load Transient Fig.23 AVDD Load Transient (10mA→70mA,tr=4us) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 100[us/div.] (70mA→10mA,tf=4us) 14/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) 100 3 2 Output Voltage [%] Efficiency [%] 80 60 40 20 1 0 -1 -2 0 -3 0 50 100 150 200 250 300 load [mA] 0 50 100 150 200 250 300 load [mA] Fig.24 AVDD Efficiency Fig.25 AVDD Load Regulation 16 Output Voltage [V] 14 12 10 8 6 110 120 130 140 150 160 170 Digital Codes Fig.26 AVDD Linearity www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 15/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) VDD2 VDD2 1[V/div.] 1[V/div.] AVDD AVDD 5[V/div.] 5[V/div.] VGH VGH 5[V/div.] 5[V/div.] I_Vcc I_Vcc 500[mA/div.] 500[mA/div.] 2[ms/div.] 2[ms/div.] Fig.27 VGH Start-up Sequence Fig.28 VGH Off Sequence 3 27 24 1 Output Voltage [V] Output Voltage [%] 2 0 -1 -2 -3 21 18 15 12 0 2 4 6 8 10 load [mA] 135 145 155 165 175 185 Digital Codes Fig.29 VGH Load Regulation www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 125 Fig.30 VGH Linearity 16/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) VDD2 VDD2 1[V/div.] 1[V/div.] AVDD AVDD 5[V/div.] 5[V/div.] VGL VGL 5[V/div.] 5[V/div.] I_Vcc I_Vcc 500[mA/div.] 500[mA/div.] 2[ms/div.] 2[ms/div.] Fig.31 VGL Start-up Sequence Fig.32 VGL Off Sequence -2 3 2 1 Output Voltage [V] Output Voltage [%] -4 0 -1 -6 -8 -2 -3 -10 0 2 4 6 8 10 load [mA] 65 75 85 95 105 Digital Codes Fig.33 VGL Load Regulation www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 55 Fig.34 VGL Linearity 17/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV 3 3 2 2 Output Voltage [%] Output Voltage [%] ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) 1 0 -1 -2 1 0 -1 -2 -3 -3 0 50 100 150 200 250 300 0 Sink Current [mA] 100 150 200 250 300 Source Current [mA] Fig.35 HAVDD Sink Current Fig.36 HAVDD Source Current HAVDD HAVDD 2[V/div.] 2[V/div.] 21.6 [V/us] 18.0 [V/us] 200[ns/div.] Fig.37 HAVDD Slew Rate (Rise) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 50 200[ns/div.] Fig.38 HAVDD Slew Rate (Fall) 18/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 DNL [LSB]] INL [LSB] ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) 0 -0.2 0 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0 50 100 150 200 250 300 Digital Codes 50 100 150 200 250 300 Digital Codes Fig.39 HAVDD INL www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 0 Fig.40 HAVDD DNL 19/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV 3 3 2 2 Output Voltage [%] Output Voltage [%] ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) 1 0 -1 -2 1 0 -1 -2 -3 -3 0 50 100 150 200 250 300 0 Sink Current [mA] 50 100 150 200 300 Source Current [mA] Fig.41 VCOM Sink Current Fig.42 VCOM Source Current VCOM VCOM 2[V/div.] 2[V/div.] 21.0 [V/us] 17.0 [V/us] 200[ns/div.] Fig.43 VCOM Slew Rate(Rise) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 250 200[ns/div.] Fig.44 VCOM Slew Rate(Fall) 20/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 DNL [LSB]] INL [LSB] ●Reference Data (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V, AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load) 0 -0.2 0 -0.2 -0.4 -0.4 -0.6 -0.6 -0.8 -0.8 -1 -1 0 50 100 150 200 250 300 Digital Codes 50 100 150 200 250 300 Digital Codes Fig.45 VCOM INL www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 0 Fig.46 VCOM DNL 21/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Timing Chart1 ●Start-up Sequence (when operated by EN control) Fig.47 Start-Up Sequence Diagram (when operated by EN control) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 22/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Timing Chart1 ●OFF Sequence (when operated by EN control) Fig.48 OFF Sequence Block (when operated by EN control) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 23/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Timing Chart2 ●Start-up Sequence (when operated with EN= VCC condition) Fig.49 Start-Up Sequence Diagram (when operated with EN= VCC condition) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 24/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Timing Chart2 ●OFF Sequence (when operated with EN= VCC condition) Fig.50 OFF Sequence Diagram (when operated with EN= VCC condition) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 25/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Application Example C4 C3 VCOM HAVDD R4 R6 C7 DRN R3 2 3 4 5 6 7 C15 1 C11 SCL SDA EN VREG C1 DRP D1 C27 CPP VGH C26 VGL VDD1 C24 L15 C22 15 16 17 18 19 20 21 L19 AVDD L17 VDD2 C16 C20 C17 Fig.51 Application Example Parts name Value Company Parts Number Parts name Value Company Parts Number C1 0.1 [µF] MURATA GRM155R61H104KE14D C24 1[µF] MURATA GRM188B31C105KA92D C3 22[µF] TAIYO YUDEN EMK316ABJ226KD-T C26 1[µF] MURATA GRM219B31H105KA73 C4 22[µF] TAIYO YUDEN EMK316ABJ226KD-T C27 0.1[µF] MURATA GRM155R61H104KE14D C7 4.7[µF] TAIYO YUDEN LMK107BJ475KA-T R3 10[Ω] ROHM MCR03EZPD C11 1[µF] MURATA GRM188B31C105KA92D R4 10[Ω] ROHM MCR03EZPD C15 10[µF] TAIYO YUDEN JMK107BJ106MA-T R6 100[kΩ] ROHM MCR03EZPD C16 4.7[µF] TAIYO YUDEN LMK107BJ475KA-T D1 - ROHM RB558W C17 10[µF] TAIYO YUDEN JMK107BJ106MA-T L15 4.7[µH] TOKO 1269AS-H-4R7M C20 10[µF]×2 TAIYO YUDEN TMK316ABJ106KD-T L17 4.7[µH] TOKO 1269AS-H-4R7M C22 4.7[µF] TAIYO YUDEN LMK107BJ475KA-T L19 4.7[µH] TOKO 1276AS-H-4R7M www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 26/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Selecting Application Components ・Selecting the Output LC Constant (Buck Converter : VDD1, VDD2) IL IOMAX+ ⊿IL 2 should not reach the rated value level. ILR IOMAXMean current t Fig.52 Inductor Current Waveform (Buck Converter : VDD) The output inductance (L) is decided by the rated current (ILR) and maximum input current (IOMAX) of the inductance. Adjust so that IOMAX + ∆IL / 2 does not reach the rated current value. ∆IL can be obtained by the following equation. 1 VO 1 ∆IL = × (VIN - VO) × × [A] L VIN f where f is the switching frequency Set with sufficient margin because the inductance value may have a dispersion of ±30%. If the coil current exceeds the rated current (ILR), the IC may be damaged. The output capacitor (CO) smoothens the ripple voltage at the output. Select a capacitor that will regulate the output ripple voltage within the specifications. Output ripple voltage can be obtained by the following equation. ∆IL VO 1 ∆VPP = ∆IL × RESR + 2 Co × VIN × f However, since the aforementioned conditions are based on a lot of factors, verify the results using the actual product. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 27/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ・Selecting the Output LC Constant (Boost Converter : AVDD) IL IOMAX+ ⊿IL 2 should not reach the rated value level. ILR IOMAX mean current t Fig.53 Inductor Current Waveform ( Boost Converter : AVDD ) The output inductance (L) is decided by the rated current (ILR) and maximum input current (IINMAX) of the inductance. Adjust so that IINMAX + ∆IL / 2 does not reach the rated current value. ∆IL can be obtained by the following equation. ΔIL 1 VO VIN 1 [A] VIN VO f L where f is the switching frequency Set with sufficient margin because the inductance value may have a dispersion of ±30%. If the coil current exceeds the rated current (ILR), the IC may be damaged. The output capacitor (CO) smoothens the ripple voltage at the output. Select a capacitor that will regulate the output ripple voltage within the specifications. Output ripple voltage can be obtained by the following equation. VIN 1 ∆VPP = ILMAX × RESR + f × CO × VO × ∆IL ILMAX - 2 However, since the aforementioned conditions are based on a lot of factors, verify the results using the actual product. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 28/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Serial Transmission BD81028AMWV uses the I2C bus in communicating with host addresses. The device/slave address is always followed by the 1 byte register/select address as shown in the I2C bus format below. MSB LSB Device address Start A6 A5 A4 A3 A2 A1 A0 Start Device Address : : ACK : Register Address Data STOP : : : MSB R/W ACK LSB MSB Register address R7 R6 R5 R4 R3 R2 R1 ACK R0 LSB Data D7 D6 D5 D4 D3 D2 D1 D0 ACK STOP Start bit Consists of 8 bits in total (A6 to A0 and the R/W bit) (MSB fast). If the R/W bit is H, this means read mode. If the R/W bit is L, this means write mode. Acknowledge bit. When sending and receiving data, there should be an acknowledge bit after each byte. If data is sent and received properly, ‘L’ is replied to the sender. If data is not received properly, ‘H’ is replied to the sender. 1 byte select address. Data byte. Sending and Receiving data (MSB Fast) Stop bit There are two writing modes from I2C bus to the registers, single mode and multi mode. In single mode, communication is sent to a single register. In multi mode, communication is sent to multiple registers by entering multiple data before the stop bit. ●Device address Slave address specific to the IC is 1000000 (A6 to A0). ●Register address R7 is for TEST MODE. Normally, this should be set to 0. R6 and R5 are don’t care bits. R4 to R0 are the register address bits. ●Command interface Transmission format for data sent and received to the EEPROM is shown below. Write operation ・PM I2C Write format (Register Address: 01h to 08h) Device address Start 1 0 0 0 0 R/W ACK 0 0 0 0 Register address ACK 01h~ 08h 0 ACK N-bytes Data 0 STOP Write data in multi mode by entering data continuously after the register address. Data entry should be 8 bits. ・VCOM I2C Write format (Register Address: 09h) Device address Start 1 0 0 0 R/W ACK 0 0 0 0 Register address ACK 09h 0 0 DATA D7 D6 D5 D4 ACK D3 D2 D1 D0 0 STOP Write data in single mode (VCOM), designate a register address of 09h. Read operation ・I2C Read format Start Device address 1 0 0 0 0 R/W ACK 0 0 0 0 Register address 01h~ 09h ACK Repeated Start 0 Device address 1 0 0 0 0 R/W ACK 0 0 1 0 N-bytes Data ACK 1 STOP Read data in the PMIC register through the read command. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 29/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●I2C Timing tR tHIGH tF 80% SCL 20% tLOW tHD:STA tSU;DAT tPD tHD;DAT 80% SDA (IN) 20% tBUF tDH 80% SDA (OUT) 20% 80% SCL tHD;STA tSU;STA tSU;STO 80% SDA 20% tl S S:S:START STARTビット bit P:STOP ビット P: STOP bit P Fig.54. I2C Timing ・Timing Specification PARAMETER SCL frequency SCL”H” time SCL”L” time Rising time Falling time Start bit holding time Start bit setup time SDA holding time SDA setup time Acknowledge delay time Acknowledge hold time Stop bit setup time BUS open time Noise spike width SYMBOL fSCL tHIGH tLOW tR tF tHD;STA tSU;STA tHD;DAT tSU;DAT tPD tDH tSU;STO tBUF tl www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 MIN 4.0 4.7 4.0 4.7 200 200 4.7 4.7 - NORMAL mode TYP MAX 100 1.0 0.3 0.9 0.1 0.1 - 30/44 MIN 0.6 1.2 0.6 0.6 100 100 0.6 1.2 - FAST mode TYP 0.1 0.1 MAX 400 0.3 0.3 0.9 - Unit kHz µs µs µs µs µs µs ns ns µs µs µs µs µs TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Writing Data to the Register/EEPROM After power up and when EN is high, data can be written to the registers or the EEPROM. The logic of the register address R4 will determine where the data will be written. Check-sum is installed before writing data to prevent malfunctions caused by data error. The flowchart of the writing process to the register and EEPROM is shown below. Device Address 1000 000x Read/ Write? Write Read Register DATA OUTPUT 01h~09h 0000 xxxx 01h~08h CHK_SUM REG ADDRESS 01h~08h/09h? NG 09h REG ADDRESS R4 is ? 0001 xxxx 11h~18h REG ADDRESS 11h~18h/19h? CHK_SUM SHUTDOWN NG 19h SHUTDOWN OK Write Register (01h~08h) Write Register (09h) Write EEPROM (01h~08h) Write EEPROM (09h) ・Writing Data to the Register Data is written to the registers when register address R4 is “0”. AVDD, VGH, VGL, HAVDD, and VCOM (register address: 01h to 04h) output voltage can be changed by writing data to the registers. ・Writing Data to the EEPROM Data is written to the EEPROM when register address R4 is “1”. Upon start-up and EN is high, data which is stored in the EEPROM is copied to the registers. Therefore, by writing to the EEPROM, the start-up settings will be changed. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 31/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Automatic EEPROM Read Function at Start-up Upon BD81028AMWV start-up, a reset signal is generated and each register is initialized. After that, when EN is changed from low to high, data which is stored in the EEPROM is copied to the registers. Furthermore, the check-sum function is installed to prevent malfunctions caused by data error. The automatic EEPROM read function at start-up is further explained by the flow chart below. ●Check-Sum Data If data is written to the Register and EEPROM, it is necessary to set check-sum data to prevent malfunctions caused by data error. Check-sum data is the complement of the sum of all data. When check-sum data is added to the sum of all data, the result should be zero. Register Address 01h 02h 03h 04h 05h 06h 07h 08h D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 1 (CHECK SUM) Cal TOTAL (All data total including CHECK SUM) Calculate the complement (bit reverse +1) SUM 桁上 D7 1 0 D6 D5 D4 D3 D2 D1 D0 0 1 0 1 1 1 1 D7 D6 D5 D4 D3 D2 D1 D0 1 1 0 1 0 0 0 1 To become "0000_0000" (bin) when Register 01h~08h is totaled, CHECK SUM DATA is determined. 0 0 0 0 0 0 0 0 ●Return to Normal Operation after Shutdown at Check-Sum Error A check-sum of zero indicates a data error and this causes the PMIC to latch in shutdown. There are two ways to reactivate the PMIC. First, write to the EEPROM the correct data while the power supply is turned on and EN=L; then toggle EN to H. Lastly, reset the power supply and enter the correct data while EN=H. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 32/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●EEPROM Parameter Setting Register Bits Address Function Default Resolution 01h 8 AVDD Output voltage setting 9.8V 0.1V [8V to 14.5V] 02h 8 VGH Output voltage setting 18V 0.2V [13V to 26V] 03h 8 VGL Output voltage setting -6.0V 0.1V [-9.5V to -4.0] 04h 8 HAVDD Output voltage setting 4.23V 12.5mV 05h 8 VDD1 Output voltage setting [3:0] VDD2 Output voltage setting [6:4] VDD startup order setting [7] 1.8V 1.2V 0 0.05V [1.7 to 1.9, 2.4 to 2.6V] 0.05V [1.1V to 1.3V] 0:VDD1→2, 1:VDD2→1 06h 7 Discharge time setting [2:0] DELAY1 time setting [5:3] DC/DC UVLO detect/release voltage [7:6] 0msec 0msec 2.5/2.7V 1msec [0 to 5msec] 1msec [0 to 5msec] 0.2V step 07h 7 DELAY2 time setting [2:0] DELAY3 time setting [6:3] Frequency setting [7] 30msec 0msec 1200kHz 5msec [0 to 40msec] 2msec [0 to 10msec] 0:600kHz , 1:1200kHz 08h 8 8 bit Check-sum 09h 8 VCOM Output voltage setting 42h - 2.1225V 12.5mV ●Register map Resister Address 01h 02h 03h 04h 05h 06h 07h 08h 09h D7 D6 D5 D4 D3 D2 D1 D0 AVDD [7:0] VGH [7:0] VGL [7:0] HAVDD [7:0] SEQ[0] UVLO[1:0] FREQ[0] www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 VDD2 [2:0] DELAY1[2:0] DELAY3 [2:0] VDD1 [3:0] DISCHG[2:0] DELAY2 [3:0] CHECK SUM[7:0] VCOM [7:0] 33/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Command Table 1 Register DATA DEC. HEX. 0 00 1 01 2 02 3 03 4 04 5 05 6 06 7 07 8 08 9 09 10 0A 11 0B 12 0C 13 0D 14 0E 15 0F 16 10 17 11 18 12 19 13 20 14 21 15 22 16 23 17 24 18 25 19 26 1A 27 1B 28 1C 29 1D 30 1E 31 1F 32 20 33 21 34 22 35 23 36 24 37 25 38 26 39 27 40 28 41 29 42 2A 43 2B 44 2C 45 2D 46 2E 47 2F 48 30 49 31 50 32 51 33 52 34 53 35 54 36 55 37 56 38 57 39 58 3A 59 3B 60 3C 61 3D 62 3E 63 3F 01h AVDD Voltage Setting [V] 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 02h VGH Voltage Setting [V] 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 03h VGL Voltage Setting [V] -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.1 -4.2 -4.3 -4.4 -4.5 04h HAVDD Voltage Setting [V] 0.6×AVDD 0.6×AVDD-0.0125 0.6×AVDD-0.0250 0.6×AVDD-0.0375 0.6×AVDD-0.0500 0.6×AVDD-0.0625 0.6×AVDD-0.0750 0.6×AVDD-0.0875 0.6×AVDD-0.1000 0.6×AVDD-0.1125 0.6×AVDD-0.1250 0.6×AVDD-0.1375 0.6×AVDD-0.1500 0.6×AVDD-0.1625 0.6×AVDD-0.1750 0.6×AVDD-0.1875 0.6×AVDD-0.2000 0.6×AVDD-0.2125 0.6×AVDD-0.2250 0.6×AVDD-0.2375 0.6×AVDD-0.2500 0.6×AVDD-0.2625 0.6×AVDD-0.2750 0.6×AVDD-0.2875 0.6×AVDD-0.3000 0.6×AVDD-0.3125 0.6×AVDD-0.3250 0.6×AVDD-0.3375 0.6×AVDD-0.3500 0.6×AVDD-0.3625 0.6×AVDD-0.3750 0.6×AVDD-0.3875 0.6×AVDD-0.4000 0.6×AVDD-0.4125 0.6×AVDD-0.4250 0.6×AVDD-0.4375 0.6×AVDD-0.4500 0.6×AVDD-0.4625 0.6×AVDD-0.4750 0.6×AVDD-0.4875 0.6×AVDD-0.5000 0.6×AVDD-0.5125 0.6×AVDD-0.5250 0.6×AVDD-0.5375 0.6×AVDD-0.5500 0.6×AVDD-0.5625 0.6×AVDD-0.5750 0.6×AVDD-0.5875 0.6×AVDD-0.6000 0.6×AVDD-0.6125 0.6×AVDD-0.6250 0.6×AVDD-0.6375 0.6×AVDD-0.6500 0.6×AVDD-0.6625 0.6×AVDD-0.6750 0.6×AVDD-0.6875 0.6×AVDD-0.7000 0.6×AVDD-0.7125 0.6×AVDD-0.7250 0.6×AVDD-0.7375 0.6×AVDD-0.7500 0.6×AVDD-0.7625 0.6×AVDD-0.7750 0.6×AVDD-0.7875 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 VDD ON Sequence VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 05h VDD2 Voltage Setting [V] 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 VDD1 Voltage Setting [V] 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 DC/DC UVLO Detect/Release Voltage [V] 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 2.5 / 2.7 34/44 06h DELAY1 Time Setting [msec] 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Discharge Time Setting [msec] 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 Frequency Setting [kHz] 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 07h DELAY3 Time Setting [msec] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 DELAY2 Time Setting [msec] 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 09h VCOM Voltage Setting [V] 0.45×AVDD 0.45×AVDD-0.0125 0.45×AVDD-0.0250 0.45×AVDD-0.0375 0.45×AVDD-0.0500 0.45×AVDD-0.0625 0.45×AVDD-0.0750 0.45×AVDD-0.0875 0.45×AVDD-0.1000 0.45×AVDD-0.1125 0.45×AVDD-0.1250 0.45×AVDD-0.1375 0.45×AVDD-0.1500 0.45×AVDD-0.1625 0.45×AVDD-0.1750 0.45×AVDD-0.1875 0.45×AVDD-0.2000 0.45×AVDD-0.2125 0.45×AVDD-0.2250 0.45×AVDD-0.2375 0.45×AVDD-0.2500 0.45×AVDD-0.2625 0.45×AVDD-0.2750 0.45×AVDD-0.2875 0.45×AVDD-0.3000 0.45×AVDD-0.3125 0.45×AVDD-0.3250 0.45×AVDD-0.3375 0.45×AVDD-0.3500 0.45×AVDD-0.3625 0.45×AVDD-0.3750 0.45×AVDD-0.3875 0.45×AVDD-0.4000 0.45×AVDD-0.4125 0.45×AVDD-0.4250 0.45×AVDD-0.4375 0.45×AVDD-0.4500 0.45×AVDD-0.4625 0.45×AVDD-0.4750 0.45×AVDD-0.4875 0.45×AVDD-0.5000 0.45×AVDD-0.5125 0.45×AVDD-0.5250 0.45×AVDD-0.5375 0.45×AVDD-0.5500 0.45×AVDD-0.5625 0.45×AVDD-0.5750 0.45×AVDD-0.5875 0.45×AVDD-0.6000 0.45×AVDD-0.6125 0.45×AVDD-0.6250 0.45×AVDD-0.6375 0.45×AVDD-0.6500 0.45×AVDD-0.6625 0.45×AVDD-0.6750 0.45×AVDD-0.6875 0.45×AVDD-0.7000 0.45×AVDD-0.7125 0.45×AVDD-0.7250 0.45×AVDD-0.7375 0.45×AVDD-0.7500 0.45×AVDD-0.7625 0.45×AVDD-0.7750 0.45×AVDD-0.7875 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Command Table 2 Register DATA DEC. HEX. 64 40 65 41 66 42 67 43 68 44 69 45 70 46 71 47 72 48 73 49 74 4A 75 4B 76 4C 77 4D 78 4E 79 4F 80 50 81 51 82 52 83 53 84 54 85 55 86 56 87 57 88 58 89 59 90 5A 91 5B 92 5C 93 5D 94 5E 95 5F 96 60 97 61 98 62 99 63 100 64 101 65 102 66 103 67 104 68 105 69 106 6A 107 6B 108 6C 109 6D 110 6E 111 6F 112 70 113 71 114 72 115 73 116 74 117 75 118 76 119 77 120 78 121 79 122 7A 123 7B 124 7C 125 7D 126 7E 127 7F 01h AVDD Voltage Setting [V] 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.4 14.3 14.2 14.1 14.0 13.9 13.8 13.7 13.6 13.5 13.4 13.3 13.2 13.1 13.0 12.9 02h VGH Voltage Setting [V] 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 25.8 03h VGL Voltage Setting [V] -4.6 -4.7 -4.8 -4.9 -5.0 -5.1 -5.2 -5.3 -5.4 -5.5 -5.6 -5.7 -5.8 -5.9 -6.0 -6.1 -6.2 -6.3 -6.4 -6.5 -6.6 -6.7 -6.8 -6.9 -7.0 -7.1 -7.2 -7.3 -7.4 -7.5 -7.6 -7.7 -7.8 -7.9 -8.0 -8.1 -8.2 -8.3 -8.4 -8.5 -8.6 -8.7 -8.8 -8.9 -9.0 -9.1 -9.2 -9.3 -9.4 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 04h HAVDD Voltage Setting [V] 0.6×AVDD-0.8000 0.6×AVDD-0.8125 0.6×AVDD-0.8250 0.6×AVDD-0.8375 0.6×AVDD-0.8500 0.6×AVDD-0.8625 0.6×AVDD-0.8750 0.6×AVDD-0.8875 0.6×AVDD-0.9000 0.6×AVDD-0.9125 0.6×AVDD-0.9250 0.6×AVDD-0.9375 0.6×AVDD-0.9500 0.6×AVDD-0.9625 0.6×AVDD-0.9750 0.6×AVDD-0.9875 0.6×AVDD-1.0000 0.6×AVDD-1.0125 0.6×AVDD-1.0250 0.6×AVDD-1.0375 0.6×AVDD-1.0500 0.6×AVDD-1.0625 0.6×AVDD-1.0750 0.6×AVDD-1.0875 0.6×AVDD-1.1000 0.6×AVDD-1.1125 0.6×AVDD-1.1250 0.6×AVDD-1.1375 0.6×AVDD-1.1500 0.6×AVDD-1.1625 0.6×AVDD-1.1750 0.6×AVDD-1.1875 0.6×AVDD-1.2000 0.6×AVDD-1.2125 0.6×AVDD-1.2250 0.6×AVDD-1.2375 0.6×AVDD-1.2500 0.6×AVDD-1.2625 0.6×AVDD-1.2750 0.6×AVDD-1.2875 0.6×AVDD-1.3000 0.6×AVDD-1.3125 0.6×AVDD-1.3250 0.6×AVDD-1.3375 0.6×AVDD-1.3500 0.6×AVDD-1.3625 0.6×AVDD-1.3750 0.6×AVDD-1.3875 0.6×AVDD-1.4000 0.6×AVDD-1.4125 0.6×AVDD-1.4250 0.6×AVDD-1.4375 0.6×AVDD-1.4500 0.6×AVDD-1.4625 0.6×AVDD-1.4750 0.6×AVDD-1.4875 0.6×AVDD-1.5000 0.6×AVDD-1.5125 0.6×AVDD-1.5250 0.6×AVDD-1.5375 0.6×AVDD-1.5500 0.6×AVDD-1.5625 0.6×AVDD-1.5750 0.6×AVDD-1.5875 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 VDD ON Sequence VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 VDD1→VDD2 05h VDD2 Voltage Setting [V] 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 VDD1 Voltage Setting [V] 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 DC/DC UVLO Detect/Release Voltage [V] 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 2.7 / 2.9 35/44 06h DELAY1 Time Setting [msec] 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Discharge Time Setting [msec] 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 Frequency Setting [kHz] 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 07h DELAY3 Time Setting [msec] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DELAY2 Time Setting [msec] 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 09h VCOM Voltage Setting [V] 0.45×AVDD-0.8000 0.45×AVDD-0.8125 0.45×AVDD-0.8250 0.45×AVDD-0.8375 0.45×AVDD-0.8500 0.45×AVDD-0.8625 0.45×AVDD-0.8750 0.45×AVDD-0.8875 0.45×AVDD-0.9000 0.45×AVDD-0.9125 0.45×AVDD-0.9250 0.45×AVDD-0.9375 0.45×AVDD-0.9500 0.45×AVDD-0.9625 0.45×AVDD-0.9750 0.45×AVDD-0.9875 0.45×AVDD-1.0000 0.45×AVDD-1.0125 0.45×AVDD-1.0250 0.45×AVDD-1.0375 0.45×AVDD-1.0500 0.45×AVDD-1.0625 0.45×AVDD-1.0750 0.45×AVDD-1.0875 0.45×AVDD-1.1000 0.45×AVDD-1.1125 0.45×AVDD-1.1250 0.45×AVDD-1.1375 0.45×AVDD-1.1500 0.45×AVDD-1.1625 0.45×AVDD-1.1750 0.45×AVDD-1.1875 0.45×AVDD-1.2000 0.45×AVDD-1.2125 0.45×AVDD-1.2250 0.45×AVDD-1.2375 0.45×AVDD-1.2500 0.45×AVDD-1.2625 0.45×AVDD-1.2750 0.45×AVDD-1.2875 0.45×AVDD-1.3000 0.45×AVDD-1.3125 0.45×AVDD-1.3250 0.45×AVDD-1.3375 0.45×AVDD-1.3500 0.45×AVDD-1.3625 0.45×AVDD-1.3750 0.45×AVDD-1.3875 0.45×AVDD-1.4000 0.45×AVDD-1.4125 0.45×AVDD-1.4250 0.45×AVDD-1.4375 0.45×AVDD-1.4500 0.45×AVDD-1.4625 0.45×AVDD-1.4750 0.45×AVDD-1.4875 0.45×AVDD-1.5000 0.45×AVDD-1.5125 0.45×AVDD-1.5250 0.45×AVDD-1.5375 0.45×AVDD-1.5500 0.45×AVDD-1.5625 0.45×AVDD-1.5750 0.45×AVDD-1.5875 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Command Table 3 Register DATA DEC. HEX. 128 80 129 81 130 82 131 83 132 84 133 85 134 86 135 87 136 88 137 89 138 8A 139 8B 140 8C 141 8D 142 8E 143 8F 144 90 145 91 146 92 147 93 148 94 149 95 150 96 151 97 152 98 153 99 154 9A 155 9B 156 9C 157 9D 158 9E 159 9F 160 A0 161 A1 162 A2 163 A3 164 A4 165 A5 166 A6 167 A7 168 A8 169 A9 170 AA 171 AB 172 AC 173 AD 174 AE 175 AF 176 B0 177 B1 178 B2 179 B3 180 B4 181 B5 182 B6 183 B7 184 B8 185 B9 186 BA 187 BB 188 BC 189 BD 190 BE 191 BF 01h AVDD Voltage Setting [V] 12.8 12.7 12.6 12.5 12.4 12.3 12.2 12.1 12.0 11.9 11.8 11.7 11.6 11.5 11.4 11.3 11.2 11.1 11.0 10.9 10.8 10.7 10.6 10.5 10.4 10.3 10.2 10.1 10.0 9.9 9.8 9.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 02h VGH Voltage Setting [V] 25.6 25.4 25.2 25.0 24.8 24.6 24.4 24.2 24.0 23.8 23.6 23.4 23.2 23.0 22.8 22.6 22.4 22.2 22.0 21.8 21.6 21.4 21.2 21.0 20.8 20.6 20.4 20.2 20.0 19.8 19.6 19.4 19.2 19.0 18.8 18.6 18.4 18.2 18.0 17.8 17.6 17.4 17.2 17.0 16.8 16.6 16.4 16.2 16.0 15.8 15.6 15.4 15.2 15.0 14.8 14.6 14.4 14.2 14.0 13.8 13.6 13.4 13.2 13.0 03h VGL Voltage Setting [V] -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 04h HAVDD Voltage Setting [V] 0.6×AVDD-1.6000 0.6×AVDD-1.6125 0.6×AVDD-1.6250 0.6×AVDD-1.6375 0.6×AVDD-1.6500 0.6×AVDD-1.6625 0.6×AVDD-1.6750 0.6×AVDD-1.6875 0.6×AVDD-1.7000 0.6×AVDD-1.7125 0.6×AVDD-1.7250 0.6×AVDD-1.7375 0.6×AVDD-1.7500 0.6×AVDD-1.7625 0.6×AVDD-1.7750 0.6×AVDD-1.7875 0.6×AVDD-1.8000 0.6×AVDD-1.8125 0.6×AVDD-1.8250 0.6×AVDD-1.8375 0.6×AVDD-1.8500 0.6×AVDD-1.8625 0.6×AVDD-1.8750 0.6×AVDD-1.8875 0.6×AVDD-1.9000 0.6×AVDD-1.9125 0.6×AVDD-1.9250 0.6×AVDD-1.9375 0.6×AVDD-1.9500 0.6×AVDD-1.9625 0.6×AVDD-1.9750 0.6×AVDD-1.9875 0.6×AVDD-2.0000 0.6×AVDD-2.0125 0.6×AVDD-2.0250 0.6×AVDD-2.0375 0.6×AVDD-2.0500 0.6×AVDD-2.0625 0.6×AVDD-2.0750 0.6×AVDD-2.0875 0.6×AVDD-2.1000 0.6×AVDD-2.1125 0.6×AVDD-2.1250 0.6×AVDD-2.1375 0.6×AVDD-2.1500 0.6×AVDD-2.1625 0.6×AVDD-2.1750 0.6×AVDD-2.1875 0.6×AVDD-2.2000 0.6×AVDD-2.2125 0.6×AVDD-2.2250 0.6×AVDD-2.2375 0.6×AVDD-2.2500 0.6×AVDD-2.2625 0.6×AVDD-2.2750 0.6×AVDD-2.2875 0.6×AVDD-2.3000 0.6×AVDD-2.3125 0.6×AVDD-2.3250 0.6×AVDD-2.3375 0.6×AVDD-2.3500 0.6×AVDD-2.3625 0.6×AVDD-2.3750 0.6×AVDD-2.3875 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 VDD ON Sequence VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 05h VDD2 Voltage Setting [V] 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 VDD1 Voltage Setting [V] 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 DC/DC UVLO Detect/Release Voltage [V] 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 2.9 / 3.1 36/44 06h DELAY1 Time Setting [msec] 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Discharge Time Setting [msec] 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 Frequency Setting [kHz] 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 07h DELAY3 Time Setting [msec] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 DELAY2 Time Setting [msec] 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 09h VCOM Voltage Setting [V] 0.45×AVDD-1.6000 0.45×AVDD-1.6125 0.45×AVDD-1.6250 0.45×AVDD-1.6375 0.45×AVDD-1.6500 0.45×AVDD-1.6625 0.45×AVDD-1.6750 0.45×AVDD-1.6875 0.45×AVDD-1.7000 0.45×AVDD-1.7125 0.45×AVDD-1.7250 0.45×AVDD-1.7375 0.45×AVDD-1.7500 0.45×AVDD-1.7625 0.45×AVDD-1.7750 0.45×AVDD-1.7875 0.45×AVDD-1.8000 0.45×AVDD-1.8125 0.45×AVDD-1.8250 0.45×AVDD-1.8375 0.45×AVDD-1.8500 0.45×AVDD-1.8625 0.45×AVDD-1.8750 0.45×AVDD-1.8875 0.45×AVDD-1.9000 0.45×AVDD-1.9125 0.45×AVDD-1.9250 0.45×AVDD-1.9375 0.45×AVDD-1.9500 0.45×AVDD-1.9625 0.45×AVDD-1.9750 0.45×AVDD-1.9875 0.45×AVDD-2.0000 0.45×AVDD-2.0125 0.45×AVDD-2.0250 0.45×AVDD-2.0375 0.45×AVDD-2.0500 0.45×AVDD-2.0625 0.45×AVDD-2.0750 0.45×AVDD-2.0875 0.45×AVDD-2.1000 0.45×AVDD-2.1125 0.45×AVDD-2.1250 0.45×AVDD-2.1375 0.45×AVDD-2.1500 0.45×AVDD-2.1625 0.45×AVDD-2.1750 0.45×AVDD-2.1875 0.45×AVDD-2.2000 0.45×AVDD-2.2125 0.45×AVDD-2.2250 0.45×AVDD-2.2375 0.45×AVDD-2.2500 0.45×AVDD-2.2625 0.45×AVDD-2.2750 0.45×AVDD-2.2875 0.45×AVDD-2.3000 0.45×AVDD-2.3125 0.45×AVDD-2.3250 0.45×AVDD-2.3375 0.45×AVDD-2.3500 0.45×AVDD-2.3625 0.45×AVDD-2.3750 0.45×AVDD-2.3875 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Command Table 4 Register DATA DEC. HEX. 192 C0 193 C1 194 C2 195 C3 196 C4 197 C5 198 C6 199 C7 200 C8 201 C9 202 CA 203 CB 204 CC 205 CD 206 CE 207 CF 208 D0 209 D1 210 D2 211 D3 212 D4 213 D5 214 D6 215 D7 216 D8 217 D9 218 DA 219 DB 220 DC 221 DD 222 DE 223 DF 224 E0 225 E1 226 E2 227 E3 228 E4 229 E5 230 E6 231 E7 232 E8 233 E9 234 EA 235 EB 236 EC 237 ED 238 EE 239 EF 240 F0 241 F1 242 F2 243 F3 244 F4 245 F5 246 F6 247 F7 248 F8 249 F9 250 FA 251 FB 252 FC 253 FD 254 FE 255 FF 01h AVDD Voltage Setting [V] 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 02h VGH Voltage Setting [V] 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 03h VGL Voltage Setting [V] -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 -9.5 04h HAVDD Voltage Setting [V] 0.6×AVDD-2.4000 0.6×AVDD-2.4125 0.6×AVDD-2.4250 0.6×AVDD-2.4375 0.6×AVDD-2.4500 0.6×AVDD-2.4625 0.6×AVDD-2.4750 0.6×AVDD-2.4875 0.6×AVDD-2.5000 0.6×AVDD-2.5125 0.6×AVDD-2.5250 0.6×AVDD-2.5375 0.6×AVDD-2.5500 0.6×AVDD-2.5625 0.6×AVDD-2.5750 0.6×AVDD-2.5875 0.6×AVDD-2.6000 0.6×AVDD-2.6125 0.6×AVDD-2.6250 0.6×AVDD-2.6375 0.6×AVDD-2.6500 0.6×AVDD-2.6625 0.6×AVDD-2.6750 0.6×AVDD-2.6875 0.6×AVDD-2.7000 0.6×AVDD-2.7125 0.6×AVDD-2.7250 0.6×AVDD-2.7375 0.6×AVDD-2.7500 0.6×AVDD-2.7625 0.6×AVDD-2.7750 0.6×AVDD-2.7875 0.6×AVDD-2.8000 0.6×AVDD-2.8125 0.6×AVDD-2.8250 0.6×AVDD-2.8375 0.6×AVDD-2.8500 0.6×AVDD-2.8625 0.6×AVDD-2.8750 0.6×AVDD-2.8875 0.6×AVDD-2.9000 0.6×AVDD-2.9125 0.6×AVDD-2.9250 0.6×AVDD-2.9375 0.6×AVDD-2.9500 0.6×AVDD-2.9625 0.6×AVDD-2.9750 0.6×AVDD-2.9875 0.6×AVDD-3.0000 0.6×AVDD-3.0125 0.6×AVDD-3.0250 0.6×AVDD-3.0375 0.6×AVDD-3.0500 0.6×AVDD-3.0625 0.6×AVDD-3.0750 0.6×AVDD-3.0875 0.6×AVDD-3.1000 0.6×AVDD-3.1125 0.6×AVDD-3.1250 0.6×AVDD-3.1375 0.6×AVDD-3.1500 0.6×AVDD-3.1625 0.6×AVDD-3.1750 0.6×AVDD-3.1875 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 VDD ON Sequence VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 VDD2→VDD1 05h VDD2 Voltage Setting [V] 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 VDD1 Voltage Setting [V] 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 1.70 1.75 1.80 1.85 1.90 2.40 2.45 2.50 2.55 2.60 2.60 2.60 2.60 2.60 2.60 2.60 DC/DC UVLO Detect/Release Voltage [V] 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 3.1 / 3.3 37/44 06h DELAY1 Time Setting [msec] 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Discharge Time Setting [msec] 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 0 1 2 3 4 5 0 0 Frequency Setting [kHz] 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 07h DELAY3 Time Setting [msec] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 DELAY2 Time Setting [msec] 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 0 5 10 15 20 25 30 35 40 0 0 0 0 0 0 0 09h VCOM Voltage Setting [V] 0.45×AVDD-2.4000 0.45×AVDD-2.4125 0.45×AVDD-2.4250 0.45×AVDD-2.4375 0.45×AVDD-2.4500 0.45×AVDD-2.4625 0.45×AVDD-2.4750 0.45×AVDD-2.4875 0.45×AVDD-2.5000 0.45×AVDD-2.5125 0.45×AVDD-2.5250 0.45×AVDD-2.5375 0.45×AVDD-2.5500 0.45×AVDD-2.5625 0.45×AVDD-2.5750 0.45×AVDD-2.5875 0.45×AVDD-2.6000 0.45×AVDD-2.6125 0.45×AVDD-2.6250 0.45×AVDD-2.6375 0.45×AVDD-2.6500 0.45×AVDD-2.6625 0.45×AVDD-2.6750 0.45×AVDD-2.6875 0.45×AVDD-2.7000 0.45×AVDD-2.7125 0.45×AVDD-2.7250 0.45×AVDD-2.7375 0.45×AVDD-2.7500 0.45×AVDD-2.7625 0.45×AVDD-2.7750 0.45×AVDD-2.7875 0.45×AVDD-2.8000 0.45×AVDD-2.8125 0.45×AVDD-2.8250 0.45×AVDD-2.8375 0.45×AVDD-2.8500 0.45×AVDD-2.8625 0.45×AVDD-2.8750 0.45×AVDD-2.8875 0.45×AVDD-2.9000 0.45×AVDD-2.9125 0.45×AVDD-2.9250 0.45×AVDD-2.9375 0.45×AVDD-2.9500 0.45×AVDD-2.9625 0.45×AVDD-2.9750 0.45×AVDD-2.9875 0.45×AVDD-3.0000 0.45×AVDD-3.0125 0.45×AVDD-3.0250 0.45×AVDD-3.0375 0.45×AVDD-3.0500 0.45×AVDD-3.0625 0.45×AVDD-3.0750 0.45×AVDD-3.0875 0.45×AVDD-3.1000 0.45×AVDD-3.1125 0.45×AVDD-3.1250 0.45×AVDD-3.1375 0.45×AVDD-3.1500 0.45×AVDD-3.1625 0.45×AVDD-3.1750 0.45×AVDD-3.1875 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Protection functions ・Over-Voltage Protection AVDD Threshold (Typ) Operation 16V When OVP is detected, switching turns OFF to control the rising output voltage. When the output voltage decreases to a lower value, the switching will turn back ON. ・Short Circuit Protection VDD1 Threshold (Typ) Operation VDD2 AVDD VGH VGL VDD1×0.8 VDD2×0.8 AVDD×0.8 VGH×0.8 When a channel detects SCP, a timer is activated. 10msec after that, all channels will be latched to shutdown state. To return to normal operation, reset the power supply. VGL×0.8 ・Over-Current Protect Threshold (Min) Operation VDD1 VDD2 AVDD 1.0A 1.0A 1.5A When OCP is detected, switching turns OFF to limit the FET from generating current. When the FET current decreases to a lower value, the switching will turn back ON. ・Thermal Shutdown VDD1 VDD2 AVDD HAVDD Threshold (Typ) Operation VCOM VGH VGL 175℃ When device temperature goes above 175℃ (Typ), all channels are shut down. ・VCC UVLO VDD1 Falling (Typ) Rising (Typ) Operation Operation AVDD HAVDD VCOM VGH VGL 2.4V 2.1V Circuit malfunction is prevented by making sure the IC is turned off when VCC is below the UVLO threshold. There is a hysteresis between the rising and falling threshold to avoid triggering UVLO by power supply noise. ・DC/DC converter UVLO VDD1 Falling (Typ) Rising (Typ) Watch start (Typ) VDD2 VDD2 AVDD HAVDD VCOM VGH VGL 2.5 / 2.7 / 2.9 / 3.1V 2.7 / 2.9 / 3.1 / 3.3 V 2.8 / 3.0 / 3.2 / 3.4 V DC/DC converter output error is prevented by making sure all channels are turned off when a DC/DC converter output is below the UVLO threshold. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 38/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●FAULT Output The FAULT output indicates the status of the protection circuits of this IC. Because FAULT is an open-drain output, place a pull-up resistor externally. When the FAULT output will not be used, connect to GND. 10kΩ to 220kΩ FAULT Fig. 55 FAULT Output FAULT=H During stable operation when none of the protection circuits are in effect. This is due to the external pull-up resistance. FAULT=L When any of the protection circuits (UVLO, OCP, OVP, TSD, and SCP) are triggered. This indicates a circuit error. The recommended external pull-up resistance for the FAULT output is 10kΩ to 220kΩ. An external resistance of under 10kΩ can generate an offset voltage during FAULT=L caused by the voltage drop across the internal on resistance. On the other hand, an external resistance of more than 220kΩ can interfere with the output during FAULT=H because of leak current. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 39/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●I/O Equivalent Circuits 1.DRN, 28. DRP 2.AVDDP 3.HAVDD, 4.VCOM AVDDP 6.FAULT 7.VCC 8.SCL VCC 9.SDA 10.EN 11.VREG 12.VDD2, 13.VDD1 15.SWB1, 17.SWB2 16.PVCC1, 22.PVCC2 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 40/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV 19.SW 20.AVDD AVDD 23.VLSO 21.AVDD_S AVDD 24.VGL 26.VGH, 27CPP PVCC2 VREG www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 41/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV Operational Notes 1) Absolute maximum ratings Operating the IC over the absolute maximum ratings may damage the IC. In addition, it is impossible to predict all destructive situations such as short-circuit modes, open circuit modes, etc. Therefore, it is important to consider circuit protection measures, like adding a fuse, in case the IC is operated in a special mode exceeding the absolute maximum ratings. 2) Ground potential The voltage of the ground pin must be the lowest voltage of all pins of the IC at all operating conditions. Ensure that no pins are at a voltage below the ground pin at any time, even during transient condition. 3) Thermal consideration Use a thermal design that allows for a sufficient margin by taking into account the permissible power dissipation (Pd) in actual operating conditions. 4) Short between pins and mounting errors Be careful when mounting the IC on printed circuit boards. The IC may be damaged if it is mounted in a wrong orientation or if pins are shorted together. Short circuit may be caused by conductive particles caught between the pins. 5) Operation under strong electromagnetic field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. 6) Testing on application boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 7) Regarding input pins of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Resistor Transistor (NPN) Pin A Pin B C Pin B B Pin A N P+ N P+ P N E Parasitic element N P+ N P P substrate Parasitic element GND P B + N E P substrate Parasitic element GND C GND Parasitic GND element Other adjacent elements Example of a Simple Monolithic IC Structure 8) Over-current protection circuit (OCP) The IC incorporates an over-current protection circuit that operates in accordance with the rated output capacity. This circuit protects the IC from damage when the load becomes shorted. It is also designed to limit the output current (without latching) in the event of a large transient current flow, such as from a large capacitor or other component connected to the output pin. This protection circuit is effective in preventing damage to the IC in cases of sudden and unexpected current surges. The IC should not be used in applications where the over current protection circuit will be activated continuously. 9) Thermal shutdown circuit (TSD) The IC incorporates a built-in thermal shutdown circuit, which is designed to turn off the IC when the internal temperature of the IC reaches a specified value. It is not designed to protect the IC from damage or guarantee its operation. Do not continue to operate the IC after this function is activated. Do not use the IC in conditions where this function will always be activated. 10) DC/DC switching line wiring pattern DC/DC converter switching line (wiring from the switching pin to inductor, Nch MOS) must be as short and thick as possible to reduce line impedance. If the wiring is long, ringing caused by switching would increase and this may exceed the absolute maximum voltage ratings. If the parts are located far apart, consider inserting a snubber circuit. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 42/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●Ordering Information B M 8 1 0 2 8 Part Number A M W V ZE2 Package MWV: UQFN28V4040A Packaging and forming specification ZE2: Embossed tape and reel ●Physical Dimension Tape and Reel Information <Tape and Reel information> Tape Embossed carrier tape Quantity 2000pcs Direction of feed E2 ZE2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand 1pin Reel ) Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. ●Marking Diagram (TOP VIEW) UQFN28V4040A (TOP VIEW) Part Number Marking 8 1 0 2 8 A LOT Number 1PIN MARK www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 43/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet BM81028AMWV ●MODIFICATION RECORD Rev.001 Rev.002 Rev.003 - Original P.1 P.1, P.43 Change input voltage range, Add Input tolerant Change Recommended Operating Ratings (Power Supply Voltage, SWB1,SWB2 Current, SW Current ) Change package name P.26 Clerical error correction (D1) P.5 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 44/44 TSZ02201-0313AAF00430-1-2 12.May.2015 Rev.003 Datasheet Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) , transport intend to use our Products in devices requiring extremely high reliability (such as medical equipment equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet BM81028AMWV - Web Page Buy Distribution Inventory Part Number Package Unit Quantity Minimum Package Quantity Packing Type Constitution Materials List RoHS BM81028AMWV UQFN28V4040P 2500 2500 Taping inquiry Yes