Rohm BM81028AMWV-ZE2 Multi-channel system power supply ic Datasheet

Datasheet
Power Supply IC Series for TFT-LCD Panels
Multi-Channel
System Power Supply IC
BM81028AMWV
●General Description
BM81028AMWV is a system power supply IC for
TFT-LCD panels which are used in monitors, notebook
type displays, and tablets.
This IC incorporates HAVDD, VCOM amplifier in addition
to the power supply for panel driver (SOURCE, GATE,
and LOGIC power supplies).
Moreover, this IC has a built-in EEPROM for sequence
and output voltage setting retention.
●Features
 Input voltage range:
2.7V to 5.5V
 Standby current:
1.4μA (Typ)
 Operating temperature range:
-40℃ to +85℃
 Step-down DC/DC converter 2-channels
(Synchronous rectification)
 Step-up DC/DC converter
(Integrated load switch and Synchronous rectification)
 HAVDD amplifier (8bit Resolution)
 VCOM amplifier (8bit Resolution)
 Positive charge pump (Integrated diode)
 Negative charge pump
2
 I C Interface Output Voltage Setting Control Function
(Integrated EEPROM)
 Switching frequency switching function
(600kHz,1200kHz)
 Protection circuits
 Under-Voltage Lockout
 Thermal Shut Down
 Over-Current Protection
 Over-Voltage Protection
 Short Circuit Protection (Timer Latch type)
 Input tolerant (SCL, SDA,EN)
●Applications
TFT-LCD Panels which are used in
Monitors, Note PCs and Tablets.
●Package
UQFN28V4040A
W(Typ) D(Typ) H(Max)
4.0mm x 4.00mm x 1.00m
●Typical Application Circuit
Fig.1. Typical Application Circuit
○Product structure:Silicon monolithic integrated circuit
.www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・14・001
○This product has no designed protection against radioactive rays
1/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
AVDD_S
AVDD
SW
PGND2
SWB2
PVCC1
SWB1
AVDDP
HAVDD
VCOM
GND
FAULT
VCC
8
9
10 11 12 13 14
22 23 24 25 26 27 28
DRN
●Pin Configuration
Fig.2 Pin Configuration
●Pin Descriptions
Pin
No.
Pin
Name
Pin
No.
Pin
Name
1
DRN
Negative charge pump driver pin
15
SWB1
Step-down DC/DC switching pin 1
2
AVDDP
AVDD input
16
PVCC1
Step-down DC/DC power supply input
3
HAVDD
HAVDD amplifier output
17
SWB2
Step-down DC/DC switching pin 2
4
VCOM
VCOM amplifier output
18
PGND2
Step-down/-up DC/DC ground
5
GND
Ground
19
SW
Step-up DC/DC switching pin
6
FAULT
FAULT signal output
20
AVDD
7
VCC
Power supply input
21
AVDD_S
Step-up DC/DC output feedback
8
SCL
Serial clock input (I2C)
22
PVCC2
Step-up DC/DC load switch input
9
SDA
Serial clock data input (I2C)
23
VLSO
10
EN
Enable input
24
VGL
11
VREG
Inner power supply output
25
CPGND
12
VDD2
Step-down DC/DC output feedback input 2
26
VGH
Positive charge pump feedback
13
VDD1
Step-down DC/DC output feedback input 1
27
CPP
Built-in Positive charge pump switching Di output
14
PGND1
Step-down DC/DC ground
28
DRP
Positive charge pump driver pin
Function
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
2/44
Function
Step-up DC/DC output
Step-up DC/DC load switch output
Negative charge pump feedback
Charge pump ground
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Block Diagram
VCC
7
erramp
pwmcomp
soft start
driver
15
14
SWB1
VDD1
PGND1
vref
13
16
VDD1
PVCC1
erramp
pwmcomp
soft start
SWB2
driver
17
PGND2
18
VREG
vreg
11
12
VDD2
PVCC2
22
load SW
23
Internal Regulator
register
19
erramp
DAC
20
pwmcomp
driver
VLSO
SW
AVDD
21
AVDD_S
EEPROM
soft start
AVDD
8
SCL
SDA
9
EN
10
PGND2
register
logic
DAC
HAVDD
3
AVDD
control
register
DAC
4
osc
AVDD
VDD1
VDD2
CP_CLK
Internal Regulator
OSCGND
register
2
erramp
DAC
AVDDP
28 DRP
driver
soft start
25
CPGND
26
VGH
27
CPP
level shift
level shift
Internal Regilator
6
FAULT
GND
register
erramp
DAC
DRN
fault
driver
1
CPGND
soft start
5
24 VGL
Fig.3 Block Diagram
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
3/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Function Description of Each Block
Enumerated below are the different blocks and the output voltages they generate. Also, discussed are the protection circuits
that can shut down each block to prevent IC destruction.
All output voltages generated by each block, startup order, and delay time (DELAY1 and DELAY2) can be set through the
EEPROM. Upon start-up, these settings are read from the EEPROM and copied to the registers.
①
Buck Converter Block (VDD1, VDD2)
Generates the VDD1 and VDD2 voltages after VCC UVLO release at EN=High.
This block shuts down when SCP or OCP is detected.
②
Boost Converter Block (AVDD)
Generates the AVDD voltage after the configured DELAY2 time.
This block shuts down when OVP, SCP, or OCP is detected.
③
HAVDD Amp Block (HAVDD)
Generates the HAVDD voltage based on the AVDD voltage.
Thus, the HAVDD voltage is produced after the AVDD voltage.
④
VCOM Amp Block (VCOM)
Generates the VCOM voltage based on the AVDD voltage.
Thus, the VCOM voltage is produced after the AVDD voltage.
⑤
Positive Charge Pump Block (VGH)
Generates the VGH voltage based on the AVDD voltage.
Thus, the VGH voltage is produced after the AVDD voltage.
This block shuts down when SCP is detected.
⑥
Negative Charge Pump Block (VGL)
Generates the VGL voltage based on the AVDD voltage.
It starts up after the configured DELAY2 time.
This block shuts down when SCP is detected.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
4/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Absolute Maximum Ratings
PARAMETER
Power Supply Voltage
Output Pin
Functional Pin Voltage
Maximum Junction temperature
Power Dissipation
LIMITS
SYMBOL
Unit
MIN
TYP
MAX
VCC, PVCC1, PVCC2
-0.3
-
6.5
V
SWB1, SWB2
-0.3
-
PVCC1+0.3
V
VDD1, VDD2
-0.3
-
6.5
V
AVDD, AVDDP, SW
-0.3
-
19
V
VLSO
-0.3
-
6.5
V
HAVDD, VCOM
-0.3
-
AVDDP+0.3
V
DRP, DRN
-0.3
-
AVDDP+0.3
V
CPP
-0.3
-
30
V
VGH,
-0.3
-
36
V
VGL
-15
-
0.3
V
VREG
-0.3
-
VCC+0.3
V
FAULT
-0.3
-
6.5
V
SCL, SDA, EN
-0.3
-
6.5
V
-
-
150
℃
Tjmax
Pd
(1)
(2)
2.01
W
Operating Temperature Range
Topr
-40
-
85
℃
Storage Temperature Range
Tstg
-55
-
150
℃
MIN
TYP
MAX
Unit
2.7
-
5.5
V
2.9
-
5.5
V
3.1
-
5.5
V
3.3
-
5.5
V
(1) Junction temperature at storage time.
(2) JEDEC standard (4 layers)
●Recommended Operating Ratings(TA=-40℃ to +85℃)
PARAMETER
Power Supply Voltage 1
( DC/DC Block Protection
Detection Voltage 1 setting)
Power Supply Voltage 2
( DC/DC Block Protection
Detection Voltage 2 setting)
Power Supply Voltage 3
( DC/DC Block Protection
Detection Voltage 3 setting)
Power Supply Voltage 4
( DC/DC Block Protection
Detection Voltage 4 setting)
SYMBOL
VCC,PVCC1,PVCC2
SWB1,SWB2 Current
ISW1
-
-
1.0
A
SW Current
ISW2
-
-
1.5
A
EN
-0.1
-
5.5
V
2 Line Serial Pin Voltage
SDA, SCL
-0.1
-
5.5
V
2 Line Serial Frequency
FCLK
-
-
400
kHz
Functional Pin Voltage
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
5/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V)
1. Buck DC/DC converter block 1 (VDD1)
LIMITS
PARAMETER
SYMBOL
Unit
Condition
MIN
TYP
MAX
1.7
-
1.9
Output Voltage Range
VDD1
V
50mV step
2.4
-
2.6
1.782
1.8
1.818
V
VDD1=1.8V setting
Output Voltage Accuracy
VDD1_R
2.475
2.5
2.525
V
VDD1=2.5V setting
The time where 90% of set
Soft Start time
VDD1_SS
0.5
1
2
msec
voltage is reached.
Timer Latch Starting Time
VDD1_SCP
-
VDD1×0.8
-
V
SWB1 H Side ON Resistance
RON_H1
-
300
480
mΩ
SWB1 L Side ON Resistance
RON_L1
-
300
480
mΩ
SWB1 H Side Leak Current
IL_H1
-
0
10
µA
SWB1 L Side Leak Current
IL_L1
-
0
10
µA
Current Limit
ILMT_SWB1
1.0
1.5
-
A
Discharge Resistance
DISR_VDD1
-
25
50
Ω
2. Buck DC/DC converter block 2 (VDD2)
PARAMETER
SYMBOL
LIMITS
Unit
Condition
MIN
TYP
MAX
VDD2
1.1
-
1.3
V
50mV step
VDD2_R
1.188
1.2
1.212
V
VDD2_SS
0.5
1
2
msec
VDD2=1.2V setting
The time where 90% of set
voltage is reached.
VDD2_SCP
-
VDD2×0.8
-
V
SWB2 H Side On Resistance
RON_H2
-
300
480
mΩ
SWB2 L Side On Resistance
RON_L2
-
300
480
mΩ
SWB2 H Side Leak Current
IL_H2
-
0
10
µA
Output Voltage Range
Output Voltage Accuracy
Soft Start Time
Timer Latch Starting Time
SWB2 L Side Leak Current
IL_L2
-
0
10
µA
Current Limit
ILMT_SWB2
1.0
1.5
-
A
Discharge Resistance
DISR_VDD2
-
25
50
Ω
3. Boost DC/DC converter block (AVDD)
PARAMETER
SYMBOL
Output Voltage Range
LIMITS
MIN
TYP
MAX
Unit
Condition
AVDD
8.0
-
14.5
V
0.1V step
Output Voltage Accuracy1
AVDD_R1
10.395
10.5
10.605
V
AVDD=10.5V setting
Output Voltage Accuracy2
AVDD_R2
-1.0
0
+1.0
%
Output Voltage Accuracy3
AVDD_R3
-1.7
0
+1.7
%
Output Voltage Accuracy4
AVDD_R4
-2.0
0
+2.0
%
AVDD=9.7 to 11.2V setting
AVDD=8.0 to 9.6V,
11.3 to 12.8V setting
AVDD=12.9 to 14.5V
setting
Load Switch Soft Start time
LS_SS
1
2
4
msec
Soft Start Time
AVDD_SS
3.5
5
6.5
msec
Timer Latch Starting Time
AVDD_SCP
-
AVDD×0.8
-
V
Over-Voltage Protection voltage
AVDD_OVP
-
16
-
V
SW H Side On Resistance
RON_H3
-
350
560
mΩ
SW L Side On Resistance
RON_L3
-
350
560
mΩ
SW H Side Leak Current
IL_H3
-
0
10
µA
SW L Side Leak Current
IL_L3
-
0
10
µA
Current Limit
ILMT_SW
1.5
2.0
-
A
Load Switch ON Resistor
RON_LS
-
250
400
mΩ
DMAX
80
90
-
%
DISR_AVDD
-
25
50
Ω
Maximum Duty
Discharge Resistance
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
6/44
AVDD=10.5V setting
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Electrical Characteristics (Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V)
4. HAVDD amplifier block (HAVDD)
LIMITS
PARAMETER
SYMBOL
Unit
Condition
MIN
TYP
MAX
0.6×
0.6×
Output Voltage Range
HAVDD
AVDD-
V
12.5mV step
AVDD
3.1875
Resolution
Integral Non-Linearity Error
(INL)
Differential Non-Linearity Error
(DNL)
Output Current Ability (Source)
RES1
-
8
-
Bit
INL1
-1
-
+1
LSB
Input code: 02h to FDh
DNL1
-1
-
+1
LSB
Input code: 02h to FDh
ISOURCE1
-
200
-
mA
Output Current Ability (Sink)
ISINK1
-
200
-
mA
Load Stability
∆VO1
-
10
70
mV
SR1
-
20
-
V/µsec
Slew Rate
Io=-15mA to +15mA
5. VCOM amplifier block (VCOM)
PARAMETER
SYMBOL
LIMITS
Unit
Output Voltage Range
VCOM
Resolution
Integral Non-Linearity Error
(INL)
Differential Non-Linearity Error
(DNL)
Output Current Ability
(Source)
Output Current Ability (Sink)
RES2
INL2
-1
-
+1
LSB
Input code: 02h to FDh
DNL2
-1
-
+1
LSB
Input code: 02h to FDh
VOL2
-
200
-
mA
ISOURCE2
-
200
-
mA
ISINK2
-
10
70
mV
SR2
-
20
-
V/µsec
DISR_VCOM
-
50
100
Ω
Load Stability
Slew Rate
Discharge Resistor
TYP
MAX
-
0.45×
AVDD
V
8
-
Bit
Condition
MIN
0.45×
AVDD3.1875
-
12.5mV step
Io=-15mA to +15mA
6. Positive charge pump block (VGH)
PARAMETER
SYMBOL
Output Voltage Range
Output Voltage Accuracy
Soft Start time
LIMITS
MIN
TYP
MAX
Unit
VGH
13
-
26
V
0.2V step
VGH_R
17.1
18
18.9
V
VGH=18V setting
VGH=18V setting
VGH_SS
3.5
5
6.5
msec
VGH_SCP
-
VGH×0.8
-
V
RON_H4
-
5
-
Ω
DRP L Side On Resistance
RON_L4
-
10
-
Ω
CPP H Side On Resistance
RON_H4
-
10
-
Ω
RON_L4
-
10
-
Ω
DISR_VGH
-
150
300
Ω
Timer Latch Starting Time
DRP H Side On Resistance
CPP L Side On Resistance
Discharge Resistance
Condition
7. Negative charge pump block (VGL)
PARAMETER
Output Voltage Range
Output Voltage Accuracy
SYMBOL
LIMITS
MIN
TYP
MAX
VGL
-9.5
-
-4
Unit
V
0.1V step
VGH=-6.0V setting
VGL_R
-6.3
-6
-5.7
V
VGL_SS
3.5
5
6.5
msec
Timer Latch Starting Time
VGL_SCP
-
VGL×0.8
-
V
DRN H Side On Resistance
RON_H5
-
5
-
Ω
DRN L Side On Resistance
RON_L5
-
10
-
Ω
DISR_VGL
-
250
500
Ω
Soft Start time
Discharge Resistance
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
7/44
Condition
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Electrical Characteristics
8. Overall (Entire device)
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V)
PARAMETER
SYMBOL
LIMITS
Unit
MIN
TYP
MAX
VREG
2.15
2.3
2.45
V
⊿V
-
20
100
mV
FOSC1
480
600
720
KHz
FOSC2
960
1200
1440
KHz
FOSC1_CP
240
300
360
KHz
FOSC2_CP
480
600
720
KHz
VUVLO
2.2
2.4
2.6
V
UVLO detection voltage
VDET
1.9
2.1
2.3
V
Hysteresis
VHYS
-
0.3
-
V
DC_DET1
2.35
2.5
2.65
V
DC_DET2
2.55
2.7
2.85
V
DC_DET3
2.75
2.9
3.05
V
DC_DET4
2.95
3.1
3.25
V
DC_REL1
2.55
2.7
2.85
V
DC_REL2
2.75
2.9
3.05
V
DC_REL3
2.95
3.1
3.25
V
DC_REL4
3.15
3.3
3.45
V
IFL
-
0
10
uA
RON_F
-
1
2
kΩ
VSDA
-
-
0.4
V
Condition
【Inside Regulator Voltage】
VREG Output Voltage
Load Stability
IVREG=20mA
【Oscillator Block】
DC/DC Block
Oscillating Frequency 1
DC/DC Block
Oscillating Frequency 2
Charge Pump block
Oscillating Frequency 1
Charge Pump block
Oscillating Frequency 2
【Under Voltage Lock Out (UVLO) Circuit】
UVLO return voltage
【DC/DC Block Under-Voltage Lockout Circuit Block】
DC/DC Block
Protection Detection Voltage 1
DC/DC Block
Protection Detection Voltage 2
DC/DC Block
Protection Detection Voltage 3
DC/DC Block
Protection Detection Voltage 4
DC/DC Block
Protection Return Voltage 1
DC/DC Block
Protection Return Voltage 2
DC/DC Block
Protection Return Voltage 3
DC/DC Block
Protection Return Voltage 4
UVLO is released
VCC exceeds 2.8V.
UVLO is released
VCC exceeds 3.0V.
UVLO is released
VCC exceeds 3.2V.
UVLO is released
VCC exceeds 3.4V.
when
when
when
when
【FAULT Signal Output Block】
Output Off Leak Current
Output On Resistance
【Control Signal Block1 SDA, SCL】
Minimum Output Voltage
ISDA=3mA
VCC=2.5~5.5V
Ta=-40~+85℃
VCC=2.5~5.5V
Ta=-40~+85℃
H Level Input Voltage
VIH1
1.7
-
-
V
L Level Input Voltage
VIL1
-
-
0.6
V
RCTL2
280
400
520
kΩ
H Level Input Voltage
VIH2
1.7
-
-
V
L Level Input Voltage
VIL2
-
-
0.6
V
Standby Consumption Current
ICC1
0.8
1.4
2.0
µA
EN=L
Consumption Current
ICC2
1.7
3.2
4.7
mA
EN=H, No switching
【Control Signal Block2 EN】
Pull-Down Resistance Value
VCC=2.5~5.5V
Ta=-40~+85℃
VCC=2.5~5.5V
Ta=-40~+85℃
【Overall】
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
8/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
5
5
4
4
Circuit Current [mA]
Stand by Current [uA]
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
3
2
1
3
2
1
0
0
0
1
2
3
4
5
6
0
1
VCC supply voltage [V]
3
4
5
6
VCC supply voltage [V]
Fig.4 Standby Current
Fig.5 Circuit Current(No switching)
800
1400
750
1350
700
1300
Frequency [kHz]
Frequency [kHz]
2
650
600
550
1250
1200
1150
500
1100
450
1050
400
1000
0
1
2
3
4
5
6
VCC supply voltage [V]
1
2
3
4
5
6
VCC supply voltage [V]
Fig.6 Switching Frequency (600kHz)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
0
Fig.7 Switching Frequency (1200kHz)
9/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
EN
EN
5[V/div.]
5[V/div.]
VDD1
VDD1
1[V/div.]
1[V/div.]
I_Vcc
I_Vcc
100[mA/div.]
100[mA/div.]
1[ms/div.]
1[ms/div.]
Fig.8 VDD1Start-up Sequence
Fig.9 VDD1 Off Sequence
VDD1
VDD1
20[mV/div.]
20[mV/div.]
I_LOAD
I_LOAD
50[mA/div.]
50[mA/div.]
100[us/div.]
Fig.10 VDD1Load Transient
Fig.11 VDD1Load Transeint
(25mA→75mA,tr=4us)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
100[us/div.]
(75mA→25mA,tf=4us)
10/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Reference
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
100
3
2
Output Voltage [%]
Efficiency [%]
80
60
40
20
1
0
-1
-2
0
-3
0
100
200
300
400
500
load [mA]
100
200
300
400
500
load [mA]
Fig.12 VDD1 Efficiency
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
0
Fig.13 VDD1Load Regulation
11/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
EN
EN
5[V/div.]
5[V/div.]
VDD2
VDD2
1[V/div.]
1[V/div.]
I_Vcc
I_Vcc
100[mA/div.]
100[mA/div.]
1[ms/div.]
1[ms/div.]
Fig.14 VDD2 Start-up Sequence
Fig.15 VDD2 Off Sequence
VDD2
VDD2
20[mV/div.]
20[mV/div.]
I_LOAD
I_LOAD
50[mA/div.]
50[mA/div.]
100[us/div.]
Fig.16 VDD2 Load Transient
Fig.17 VDD2 Load Transient
(50mA→250mA,tr=4us)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
100[us/div.]
(250mA→50mA,tf=4us)
12/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
100
3
2
Output Voltage [%]
Efficiency [%]
80
60
40
20
1
0
-1
-2
0
-3
0
100
200
300
400
500
load [mA]
100
200
300
400
500
load [mA]
Fig.18 VDD2 Efficiency
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
0
Fig.19 VDD2 Load Regulation
13/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
VDD2
EN
1[V/div.]
5[V/div.]
AVDD
AVDD
3[V/div.]
3[V/div.]
I_Vcc
I_Vcc
500[mA/div.]
500[mA/div.]
2[ms/div.]
2[ms/div.]
Fig.20 AVDD Start-up Sequence
AVDD
Fig.21 AVDD Off Sequence
⊿V=94mV
⊿t=150uS
AVDD
100[mV/div.]
⊿V=82mV
⊿t=150uS
100[mV/div.]
I_LOAD
I_LOAD
50[mA/div.]
50[mA/div.]
100[us/div.]
Fig.22 AVDD Load Transient
Fig.23 AVDD Load Transient
(10mA→70mA,tr=4us)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
100[us/div.]
(70mA→10mA,tf=4us)
14/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
100
3
2
Output Voltage [%]
Efficiency [%]
80
60
40
20
1
0
-1
-2
0
-3
0
50
100
150
200
250
300
load [mA]
0
50
100
150
200
250
300
load [mA]
Fig.24 AVDD Efficiency
Fig.25 AVDD Load Regulation
16
Output Voltage [V]
14
12
10
8
6
110
120
130
140
150
160
170
Digital Codes
Fig.26 AVDD Linearity
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
15/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
VDD2
VDD2
1[V/div.]
1[V/div.]
AVDD
AVDD
5[V/div.]
5[V/div.]
VGH
VGH
5[V/div.]
5[V/div.]
I_Vcc
I_Vcc
500[mA/div.]
500[mA/div.]
2[ms/div.]
2[ms/div.]
Fig.27 VGH Start-up Sequence
Fig.28 VGH Off Sequence
3
27
24
1
Output Voltage [V]
Output Voltage [%]
2
0
-1
-2
-3
21
18
15
12
0
2
4
6
8
10
load [mA]
135
145
155
165
175
185
Digital Codes
Fig.29 VGH Load Regulation
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
125
Fig.30 VGH Linearity
16/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
VDD2
VDD2
1[V/div.]
1[V/div.]
AVDD
AVDD
5[V/div.]
5[V/div.]
VGL
VGL
5[V/div.]
5[V/div.]
I_Vcc
I_Vcc
500[mA/div.]
500[mA/div.]
2[ms/div.]
2[ms/div.]
Fig.31 VGL Start-up Sequence
Fig.32 VGL Off Sequence
-2
3
2
1
Output Voltage [V]
Output Voltage [%]
-4
0
-1
-6
-8
-2
-3
-10
0
2
4
6
8
10
load [mA]
65
75
85
95
105
Digital Codes
Fig.33 VGL Load Regulation
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
55
Fig.34 VGL Linearity
17/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
3
3
2
2
Output Voltage [%]
Output Voltage [%]
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
1
0
-1
-2
1
0
-1
-2
-3
-3
0
50
100
150
200
250
300
0
Sink Current [mA]
100
150
200
250
300
Source Current [mA]
Fig.35 HAVDD Sink Current
Fig.36 HAVDD Source Current
HAVDD
HAVDD
2[V/div.]
2[V/div.]
21.6 [V/us]
18.0 [V/us]
200[ns/div.]
Fig.37 HAVDD Slew Rate (Rise)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
50
200[ns/div.]
Fig.38 HAVDD Slew Rate (Fall)
18/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
DNL [LSB]]
INL [LSB]
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
0
-0.2
0
-0.2
-0.4
-0.4
-0.6
-0.6
-0.8
-0.8
-1
-1
0
50
100
150
200
250
300
Digital Codes
50
100
150
200
250
300
Digital Codes
Fig.39 HAVDD INL
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
0
Fig.40 HAVDD DNL
19/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
3
3
2
2
Output Voltage [%]
Output Voltage [%]
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
1
0
-1
-2
1
0
-1
-2
-3
-3
0
50
100
150
200
250
300
0
Sink Current [mA]
50
100
150
200
300
Source Current [mA]
Fig.41 VCOM Sink Current
Fig.42 VCOM Source Current
VCOM
VCOM
2[V/div.]
2[V/div.]
21.0 [V/us]
17.0 [V/us]
200[ns/div.]
Fig.43 VCOM Slew Rate(Rise)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
250
200[ns/div.]
Fig.44 VCOM Slew Rate(Fall)
20/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
DNL [LSB]]
INL [LSB]
●Reference Data
(Unless otherwise specified, Ta=25℃, VCC, PVCC1, PVCC2=3.3V, VDD1=2.5V, VDD2=1.2V,
AVDD=10.5V, VGH=18V, VGL=-6V, HAVDD=5.25V, VCOM=3.25V, no load)
0
-0.2
0
-0.2
-0.4
-0.4
-0.6
-0.6
-0.8
-0.8
-1
-1
0
50
100
150
200
250
300
Digital Codes
50
100
150
200
250
300
Digital Codes
Fig.45 VCOM INL
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
0
Fig.46 VCOM DNL
21/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Timing Chart1
●Start-up Sequence (when operated by EN control)
Fig.47 Start-Up Sequence Diagram (when operated by EN control)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
22/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Timing Chart1
●OFF Sequence (when operated by EN control)
Fig.48 OFF Sequence Block (when operated by EN control)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
23/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Timing Chart2
●Start-up Sequence (when operated with EN= VCC condition)
Fig.49 Start-Up Sequence Diagram (when operated with EN= VCC condition)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
24/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Timing Chart2
●OFF Sequence (when operated with EN= VCC condition)
Fig.50 OFF Sequence Diagram (when operated with EN= VCC condition)
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
25/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Application Example
C4
C3
VCOM
HAVDD
R4
R6
C7
DRN
R3
2
3
4
5
6
7
C15
1
C11
SCL
SDA
EN
VREG
C1
DRP
D1
C27
CPP
VGH
C26
VGL
VDD1
C24
L15
C22
15 16 17 18 19 20 21
L19
AVDD
L17
VDD2
C16
C20
C17
Fig.51 Application Example
Parts
name
Value
Company
Parts Number
Parts
name
Value
Company
Parts Number
C1
0.1 [µF]
MURATA
GRM155R61H104KE14D
C24
1[µF]
MURATA
GRM188B31C105KA92D
C3
22[µF]
TAIYO YUDEN
EMK316ABJ226KD-T
C26
1[µF]
MURATA
GRM219B31H105KA73
C4
22[µF]
TAIYO YUDEN
EMK316ABJ226KD-T
C27
0.1[µF]
MURATA
GRM155R61H104KE14D
C7
4.7[µF]
TAIYO YUDEN
LMK107BJ475KA-T
R3
10[Ω]
ROHM
MCR03EZPD
C11
1[µF]
MURATA
GRM188B31C105KA92D
R4
10[Ω]
ROHM
MCR03EZPD
C15
10[µF]
TAIYO YUDEN
JMK107BJ106MA-T
R6
100[kΩ]
ROHM
MCR03EZPD
C16
4.7[µF]
TAIYO YUDEN
LMK107BJ475KA-T
D1
-
ROHM
RB558W
C17
10[µF]
TAIYO YUDEN
JMK107BJ106MA-T
L15
4.7[µH]
TOKO
1269AS-H-4R7M
C20
10[µF]×2
TAIYO YUDEN
TMK316ABJ106KD-T
L17
4.7[µH]
TOKO
1269AS-H-4R7M
C22
4.7[µF]
TAIYO YUDEN
LMK107BJ475KA-T
L19
4.7[µH]
TOKO
1276AS-H-4R7M
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
26/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Selecting Application Components
・Selecting the Output LC Constant (Buck Converter : VDD1, VDD2)
IL
IOMAX+
⊿IL
2 should not reach the rated value level.
ILR
IOMAXMean current
t
Fig.52 Inductor Current Waveform (Buck Converter : VDD)
The output inductance (L) is decided by the rated current (ILR) and maximum input current (IOMAX) of the inductance.
Adjust so that IOMAX + ∆IL / 2 does not reach the rated current value.
∆IL can be obtained by the following equation.
1
VO
1
∆IL =
× (VIN - VO) ×
×
[A]
L
VIN
f
where f is the switching frequency
Set with sufficient margin because the inductance value may have a dispersion of ±30%.
If the coil current exceeds the rated current (ILR), the IC may be damaged.
The output capacitor (CO) smoothens the ripple voltage at the output. Select a capacitor that will regulate the output ripple voltage
within the specifications.
Output ripple voltage can be obtained by the following equation.
∆IL
VO
1
∆VPP = ∆IL × RESR + 2 Co × VIN × f
However, since the aforementioned conditions are based on a lot of factors, verify the results using the actual product.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
27/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
・Selecting the Output LC Constant (Boost Converter : AVDD)
IL
IOMAX+
⊿IL
2 should not reach the rated value level.
ILR
IOMAX mean current
t
Fig.53 Inductor Current Waveform ( Boost Converter : AVDD )
The output inductance (L) is decided by the rated current (ILR) and maximum input current (IINMAX) of the inductance.
Adjust so that IINMAX + ∆IL / 2 does not reach the rated current value.
∆IL can be obtained by the following equation.
ΔIL 
1
VO  VIN 1
 [A]
VIN 
VO
f
L
where f is the switching frequency
Set with sufficient margin because the inductance value may have a dispersion of ±30%.
If the coil current exceeds the rated current (ILR), the IC may be damaged.
The output capacitor (CO) smoothens the ripple voltage at the output. Select a capacitor that will regulate the output ripple voltage
within the specifications.
Output ripple voltage can be obtained by the following equation.
VIN
1
∆VPP = ILMAX × RESR + f × CO × VO ×


∆IL
ILMAX - 2


However, since the aforementioned conditions are based on a lot of factors, verify the results using the actual product.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
28/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Serial Transmission
BD81028AMWV uses the I2C bus in communicating with host addresses.
The device/slave address is always followed by the 1 byte register/select address as shown in the I2C bus format below.
MSB
LSB
Device address
Start
A6
A5
A4
A3
A2
A1
A0
Start
Device Address
:
:
ACK
:
Register Address
Data
STOP
:
:
:
MSB
R/W ACK
LSB
MSB
Register address
R7
R6
R5
R4
R3
R2
R1
ACK
R0
LSB
Data
D7
D6
D5
D4
D3
D2
D1
D0
ACK STOP
Start bit
Consists of 8 bits in total (A6 to A0 and the R/W bit) (MSB fast).
If the R/W bit is H, this means read mode.
If the R/W bit is L, this means write mode.
Acknowledge bit.
When sending and receiving data, there should be an acknowledge bit after each byte.
If data is sent and received properly, ‘L’ is replied to the sender.
If data is not received properly, ‘H’ is replied to the sender.
1 byte select address.
Data byte. Sending and Receiving data (MSB Fast)
Stop bit
There are two writing modes from I2C bus to the registers, single mode and multi mode.
In single mode, communication is sent to a single register.
In multi mode, communication is sent to multiple registers by entering multiple data before the stop bit.
●Device address
Slave address specific to the IC is 1000000 (A6 to A0).
●Register address
R7 is for TEST MODE. Normally, this should be set to 0.
R6 and R5 are don’t care bits.
R4 to R0 are the register address bits.
●Command interface
Transmission format for data sent and received to the EEPROM is shown below.
Write operation
・PM I2C Write format (Register Address: 01h to 08h)
Device address
Start
1
0
0
0
0
R/W ACK
0
0
0
0
Register address
ACK
01h~ 08h
0
ACK
N-bytes Data
0
STOP
Write data in multi mode by entering data continuously after the register address.
Data entry should be 8 bits.
・VCOM I2C Write format (Register Address: 09h)
Device address
Start
1
0
0
0
R/W ACK
0
0
0
0
Register address
ACK
09h
0
0
DATA
D7
D6
D5
D4
ACK
D3
D2
D1
D0
0
STOP
Write data in single mode (VCOM), designate a register address of 09h.
Read operation
・I2C Read format
Start
Device address
1
0
0
0
0
R/W ACK
0
0
0
0
Register address
01h~ 09h
ACK Repeated
Start
0
Device address
1
0
0
0
0
R/W ACK
0
0
1
0
N-bytes
Data
ACK
1
STOP
Read data in the PMIC register through the read command.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
29/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●I2C Timing
tR
tHIGH
tF
80%
SCL
20%
tLOW
tHD:STA
tSU;DAT
tPD
tHD;DAT
80%
SDA
(IN)
20%
tBUF
tDH
80%
SDA
(OUT)
20%
80%
SCL
tHD;STA
tSU;STA
tSU;STO
80%
SDA
20%
tl
S
S:S:START
STARTビット
bit
P:STOP ビット
P: STOP bit
P
Fig.54. I2C Timing
・Timing Specification
PARAMETER
SCL frequency
SCL”H” time
SCL”L” time
Rising time
Falling time
Start bit holding time
Start bit setup time
SDA holding time
SDA setup time
Acknowledge delay time
Acknowledge hold time
Stop bit setup time
BUS open time
Noise spike width
SYMBOL
fSCL
tHIGH
tLOW
tR
tF
tHD;STA
tSU;STA
tHD;DAT
tSU;DAT
tPD
tDH
tSU;STO
tBUF
tl
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
MIN
4.0
4.7
4.0
4.7
200
200
4.7
4.7
-
NORMAL mode
TYP
MAX
100
1.0
0.3
0.9
0.1
0.1
-
30/44
MIN
0.6
1.2
0.6
0.6
100
100
0.6
1.2
-
FAST mode
TYP
0.1
0.1
MAX
400
0.3
0.3
0.9
-
Unit
kHz
µs
µs
µs
µs
µs
µs
ns
ns
µs
µs
µs
µs
µs
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Writing Data to the Register/EEPROM
After power up and when EN is high, data can be written to the registers or the EEPROM.
The logic of the register address R4 will determine where the data will be written.
Check-sum is installed before writing data to prevent malfunctions caused by data error.
The flowchart of the writing process to the register and EEPROM is shown below.
Device Address
1000 000x
Read/
Write?
Write
Read
Register DATA
OUTPUT
01h~09h
0000 xxxx
01h~08h
CHK_SUM
REG ADDRESS
01h~08h/09h?
NG
09h
REG ADDRESS
R4 is ?
0001 xxxx
11h~18h
REG ADDRESS
11h~18h/19h?
CHK_SUM
SHUTDOWN
NG
19h
SHUTDOWN
OK
Write Register
(01h~08h)
Write Register
(09h)
Write EEPROM
(01h~08h)
Write EEPROM
(09h)
・Writing Data to the Register
Data is written to the registers when register address R4 is “0”.
AVDD, VGH, VGL, HAVDD, and VCOM (register address: 01h to 04h) output voltage can be changed by writing data to the
registers.
・Writing Data to the EEPROM
Data is written to the EEPROM when register address R4 is “1”.
Upon start-up and EN is high, data which is stored in the EEPROM is copied to the registers.
Therefore, by writing to the EEPROM, the start-up settings will be changed.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
31/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Automatic EEPROM Read Function at Start-up
Upon BD81028AMWV start-up, a reset signal is generated and each register is initialized.
After that, when EN is changed from low to high, data which is stored in the EEPROM is copied to the registers.
Furthermore, the check-sum function is installed to prevent malfunctions caused by data error.
The automatic EEPROM read function at start-up is further explained by the flow chart below.
●Check-Sum Data
If data is written to the Register and EEPROM, it is necessary to set check-sum data to prevent malfunctions caused by
data error. Check-sum data is the complement of the sum of all data. When check-sum data is added to the sum of all data,
the result should be zero.
Register
Address
01h
02h
03h
04h
05h
06h
07h
08h
D7 D6 D5 D4 D3 D2 D1 D0
0
0
0
1
0
0
0
1
1
1
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
1
0
1
0
0
0
1
(CHECK SUM)
Cal TOTAL
(All data total
including
CHECK SUM)
Calculate the complement
(bit reverse +1)
SUM
桁上 D7
1
0
D6 D5 D4 D3 D2 D1 D0
0 1 0 1 1 1 1
D7 D6 D5 D4 D3 D2 D1 D0
1 1 0 1 0 0 0 1
To become "0000_0000" (bin) when Register 01h~08h is totaled,
CHECK SUM DATA is determined.
0
0
0
0
0
0
0
0
●Return to Normal Operation after Shutdown at Check-Sum Error
A check-sum of zero indicates a data error and this causes the PMIC to latch in shutdown. There are two ways to reactivate the
PMIC. First, write to the EEPROM the correct data while the power supply is turned on and EN=L; then toggle EN to H. Lastly,
reset the power supply and enter the correct data while EN=H.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
32/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●EEPROM Parameter Setting
Register
Bits
Address
Function
Default
Resolution
01h
8
AVDD Output voltage setting
9.8V
0.1V
[8V to 14.5V]
02h
8
VGH Output voltage setting
18V
0.2V
[13V to 26V]
03h
8
VGL Output voltage setting
-6.0V
0.1V
[-9.5V to -4.0]
04h
8
HAVDD Output voltage setting
4.23V
12.5mV
05h
8
VDD1 Output voltage setting [3:0]
VDD2 Output voltage setting [6:4]
VDD startup order setting [7]
1.8V
1.2V
0
0.05V [1.7 to 1.9, 2.4 to 2.6V]
0.05V [1.1V to 1.3V]
0:VDD1→2, 1:VDD2→1
06h
7
Discharge time setting [2:0]
DELAY1 time setting [5:3]
DC/DC UVLO detect/release voltage [7:6]
0msec
0msec
2.5/2.7V
1msec [0 to 5msec]
1msec [0 to 5msec]
0.2V step
07h
7
DELAY2 time setting [2:0]
DELAY3 time setting [6:3]
Frequency setting [7]
30msec
0msec
1200kHz
5msec [0 to 40msec]
2msec [0 to 10msec]
0:600kHz , 1:1200kHz
08h
8
8 bit Check-sum
09h
8
VCOM Output voltage setting
42h
-
2.1225V
12.5mV
●Register map
Resister
Address
01h
02h
03h
04h
05h
06h
07h
08h
09h
D7
D6
D5
D4
D3
D2
D1
D0
AVDD [7:0]
VGH [7:0]
VGL [7:0]
HAVDD [7:0]
SEQ[0]
UVLO[1:0]
FREQ[0]
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
VDD2 [2:0]
DELAY1[2:0]
DELAY3 [2:0]
VDD1 [3:0]
DISCHG[2:0]
DELAY2 [3:0]
CHECK SUM[7:0]
VCOM [7:0]
33/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Command Table 1
Register
DATA
DEC. HEX.
0
00
1
01
2
02
3
03
4
04
5
05
6
06
7
07
8
08
9
09
10
0A
11
0B
12
0C
13
0D
14
0E
15
0F
16
10
17
11
18
12
19
13
20
14
21
15
22
16
23
17
24
18
25
19
26
1A
27
1B
28
1C
29
1D
30
1E
31
1F
32
20
33
21
34
22
35
23
36
24
37
25
38
26
39
27
40
28
41
29
42
2A
43
2B
44
2C
45
2D
46
2E
47
2F
48
30
49
31
50
32
51
33
52
34
53
35
54
36
55
37
56
38
57
39
58
3A
59
3B
60
3C
61
3D
62
3E
63
3F
01h
AVDD
Voltage
Setting
[V]
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
02h
VGH
Voltage
Setting
[V]
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
03h
VGL
Voltage
Setting
[V]
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.0
-4.1
-4.2
-4.3
-4.4
-4.5
04h
HAVDD
Voltage
Setting
[V]
0.6×AVDD
0.6×AVDD-0.0125
0.6×AVDD-0.0250
0.6×AVDD-0.0375
0.6×AVDD-0.0500
0.6×AVDD-0.0625
0.6×AVDD-0.0750
0.6×AVDD-0.0875
0.6×AVDD-0.1000
0.6×AVDD-0.1125
0.6×AVDD-0.1250
0.6×AVDD-0.1375
0.6×AVDD-0.1500
0.6×AVDD-0.1625
0.6×AVDD-0.1750
0.6×AVDD-0.1875
0.6×AVDD-0.2000
0.6×AVDD-0.2125
0.6×AVDD-0.2250
0.6×AVDD-0.2375
0.6×AVDD-0.2500
0.6×AVDD-0.2625
0.6×AVDD-0.2750
0.6×AVDD-0.2875
0.6×AVDD-0.3000
0.6×AVDD-0.3125
0.6×AVDD-0.3250
0.6×AVDD-0.3375
0.6×AVDD-0.3500
0.6×AVDD-0.3625
0.6×AVDD-0.3750
0.6×AVDD-0.3875
0.6×AVDD-0.4000
0.6×AVDD-0.4125
0.6×AVDD-0.4250
0.6×AVDD-0.4375
0.6×AVDD-0.4500
0.6×AVDD-0.4625
0.6×AVDD-0.4750
0.6×AVDD-0.4875
0.6×AVDD-0.5000
0.6×AVDD-0.5125
0.6×AVDD-0.5250
0.6×AVDD-0.5375
0.6×AVDD-0.5500
0.6×AVDD-0.5625
0.6×AVDD-0.5750
0.6×AVDD-0.5875
0.6×AVDD-0.6000
0.6×AVDD-0.6125
0.6×AVDD-0.6250
0.6×AVDD-0.6375
0.6×AVDD-0.6500
0.6×AVDD-0.6625
0.6×AVDD-0.6750
0.6×AVDD-0.6875
0.6×AVDD-0.7000
0.6×AVDD-0.7125
0.6×AVDD-0.7250
0.6×AVDD-0.7375
0.6×AVDD-0.7500
0.6×AVDD-0.7625
0.6×AVDD-0.7750
0.6×AVDD-0.7875
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
VDD
ON
Sequence
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
05h
VDD2
Voltage
Setting
[V]
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
VDD1
Voltage
Setting
[V]
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
DC/DC UVLO
Detect/Release
Voltage
[V]
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
2.5 / 2.7
34/44
06h
DELAY1
Time
Setting
[msec]
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Discharge
Time
Setting
[msec]
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
Frequency
Setting
[kHz]
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
07h
DELAY3
Time
Setting
[msec]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
DELAY2
Time
Setting
[msec]
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
09h
VCOM
Voltage
Setting
[V]
0.45×AVDD
0.45×AVDD-0.0125
0.45×AVDD-0.0250
0.45×AVDD-0.0375
0.45×AVDD-0.0500
0.45×AVDD-0.0625
0.45×AVDD-0.0750
0.45×AVDD-0.0875
0.45×AVDD-0.1000
0.45×AVDD-0.1125
0.45×AVDD-0.1250
0.45×AVDD-0.1375
0.45×AVDD-0.1500
0.45×AVDD-0.1625
0.45×AVDD-0.1750
0.45×AVDD-0.1875
0.45×AVDD-0.2000
0.45×AVDD-0.2125
0.45×AVDD-0.2250
0.45×AVDD-0.2375
0.45×AVDD-0.2500
0.45×AVDD-0.2625
0.45×AVDD-0.2750
0.45×AVDD-0.2875
0.45×AVDD-0.3000
0.45×AVDD-0.3125
0.45×AVDD-0.3250
0.45×AVDD-0.3375
0.45×AVDD-0.3500
0.45×AVDD-0.3625
0.45×AVDD-0.3750
0.45×AVDD-0.3875
0.45×AVDD-0.4000
0.45×AVDD-0.4125
0.45×AVDD-0.4250
0.45×AVDD-0.4375
0.45×AVDD-0.4500
0.45×AVDD-0.4625
0.45×AVDD-0.4750
0.45×AVDD-0.4875
0.45×AVDD-0.5000
0.45×AVDD-0.5125
0.45×AVDD-0.5250
0.45×AVDD-0.5375
0.45×AVDD-0.5500
0.45×AVDD-0.5625
0.45×AVDD-0.5750
0.45×AVDD-0.5875
0.45×AVDD-0.6000
0.45×AVDD-0.6125
0.45×AVDD-0.6250
0.45×AVDD-0.6375
0.45×AVDD-0.6500
0.45×AVDD-0.6625
0.45×AVDD-0.6750
0.45×AVDD-0.6875
0.45×AVDD-0.7000
0.45×AVDD-0.7125
0.45×AVDD-0.7250
0.45×AVDD-0.7375
0.45×AVDD-0.7500
0.45×AVDD-0.7625
0.45×AVDD-0.7750
0.45×AVDD-0.7875
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Command Table 2
Register
DATA
DEC. HEX.
64
40
65
41
66
42
67
43
68
44
69
45
70
46
71
47
72
48
73
49
74
4A
75
4B
76
4C
77
4D
78
4E
79
4F
80
50
81
51
82
52
83
53
84
54
85
55
86
56
87
57
88
58
89
59
90
5A
91
5B
92
5C
93
5D
94
5E
95
5F
96
60
97
61
98
62
99
63
100
64
101
65
102
66
103
67
104
68
105
69
106 6A
107 6B
108 6C
109 6D
110
6E
111
6F
112
70
113
71
114
72
115
73
116
74
117
75
118
76
119
77
120
78
121
79
122 7A
123 7B
124 7C
125 7D
126
7E
127
7F
01h
AVDD
Voltage
Setting
[V]
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.5
14.4
14.3
14.2
14.1
14.0
13.9
13.8
13.7
13.6
13.5
13.4
13.3
13.2
13.1
13.0
12.9
02h
VGH
Voltage
Setting
[V]
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
25.8
03h
VGL
Voltage
Setting
[V]
-4.6
-4.7
-4.8
-4.9
-5.0
-5.1
-5.2
-5.3
-5.4
-5.5
-5.6
-5.7
-5.8
-5.9
-6.0
-6.1
-6.2
-6.3
-6.4
-6.5
-6.6
-6.7
-6.8
-6.9
-7.0
-7.1
-7.2
-7.3
-7.4
-7.5
-7.6
-7.7
-7.8
-7.9
-8.0
-8.1
-8.2
-8.3
-8.4
-8.5
-8.6
-8.7
-8.8
-8.9
-9.0
-9.1
-9.2
-9.3
-9.4
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
04h
HAVDD
Voltage
Setting
[V]
0.6×AVDD-0.8000
0.6×AVDD-0.8125
0.6×AVDD-0.8250
0.6×AVDD-0.8375
0.6×AVDD-0.8500
0.6×AVDD-0.8625
0.6×AVDD-0.8750
0.6×AVDD-0.8875
0.6×AVDD-0.9000
0.6×AVDD-0.9125
0.6×AVDD-0.9250
0.6×AVDD-0.9375
0.6×AVDD-0.9500
0.6×AVDD-0.9625
0.6×AVDD-0.9750
0.6×AVDD-0.9875
0.6×AVDD-1.0000
0.6×AVDD-1.0125
0.6×AVDD-1.0250
0.6×AVDD-1.0375
0.6×AVDD-1.0500
0.6×AVDD-1.0625
0.6×AVDD-1.0750
0.6×AVDD-1.0875
0.6×AVDD-1.1000
0.6×AVDD-1.1125
0.6×AVDD-1.1250
0.6×AVDD-1.1375
0.6×AVDD-1.1500
0.6×AVDD-1.1625
0.6×AVDD-1.1750
0.6×AVDD-1.1875
0.6×AVDD-1.2000
0.6×AVDD-1.2125
0.6×AVDD-1.2250
0.6×AVDD-1.2375
0.6×AVDD-1.2500
0.6×AVDD-1.2625
0.6×AVDD-1.2750
0.6×AVDD-1.2875
0.6×AVDD-1.3000
0.6×AVDD-1.3125
0.6×AVDD-1.3250
0.6×AVDD-1.3375
0.6×AVDD-1.3500
0.6×AVDD-1.3625
0.6×AVDD-1.3750
0.6×AVDD-1.3875
0.6×AVDD-1.4000
0.6×AVDD-1.4125
0.6×AVDD-1.4250
0.6×AVDD-1.4375
0.6×AVDD-1.4500
0.6×AVDD-1.4625
0.6×AVDD-1.4750
0.6×AVDD-1.4875
0.6×AVDD-1.5000
0.6×AVDD-1.5125
0.6×AVDD-1.5250
0.6×AVDD-1.5375
0.6×AVDD-1.5500
0.6×AVDD-1.5625
0.6×AVDD-1.5750
0.6×AVDD-1.5875
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
VDD
ON
Sequence
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
VDD1→VDD2
05h
VDD2
Voltage
Setting
[V]
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
VDD1
Voltage
Setting
[V]
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
DC/DC UVLO
Detect/Release
Voltage
[V]
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
2.7 / 2.9
35/44
06h
DELAY1
Time
Setting
[msec]
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Discharge
Time
Setting
[msec]
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
Frequency
Setting
[kHz]
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
600
07h
DELAY3
Time
Setting
[msec]
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DELAY2
Time
Setting
[msec]
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
09h
VCOM
Voltage
Setting
[V]
0.45×AVDD-0.8000
0.45×AVDD-0.8125
0.45×AVDD-0.8250
0.45×AVDD-0.8375
0.45×AVDD-0.8500
0.45×AVDD-0.8625
0.45×AVDD-0.8750
0.45×AVDD-0.8875
0.45×AVDD-0.9000
0.45×AVDD-0.9125
0.45×AVDD-0.9250
0.45×AVDD-0.9375
0.45×AVDD-0.9500
0.45×AVDD-0.9625
0.45×AVDD-0.9750
0.45×AVDD-0.9875
0.45×AVDD-1.0000
0.45×AVDD-1.0125
0.45×AVDD-1.0250
0.45×AVDD-1.0375
0.45×AVDD-1.0500
0.45×AVDD-1.0625
0.45×AVDD-1.0750
0.45×AVDD-1.0875
0.45×AVDD-1.1000
0.45×AVDD-1.1125
0.45×AVDD-1.1250
0.45×AVDD-1.1375
0.45×AVDD-1.1500
0.45×AVDD-1.1625
0.45×AVDD-1.1750
0.45×AVDD-1.1875
0.45×AVDD-1.2000
0.45×AVDD-1.2125
0.45×AVDD-1.2250
0.45×AVDD-1.2375
0.45×AVDD-1.2500
0.45×AVDD-1.2625
0.45×AVDD-1.2750
0.45×AVDD-1.2875
0.45×AVDD-1.3000
0.45×AVDD-1.3125
0.45×AVDD-1.3250
0.45×AVDD-1.3375
0.45×AVDD-1.3500
0.45×AVDD-1.3625
0.45×AVDD-1.3750
0.45×AVDD-1.3875
0.45×AVDD-1.4000
0.45×AVDD-1.4125
0.45×AVDD-1.4250
0.45×AVDD-1.4375
0.45×AVDD-1.4500
0.45×AVDD-1.4625
0.45×AVDD-1.4750
0.45×AVDD-1.4875
0.45×AVDD-1.5000
0.45×AVDD-1.5125
0.45×AVDD-1.5250
0.45×AVDD-1.5375
0.45×AVDD-1.5500
0.45×AVDD-1.5625
0.45×AVDD-1.5750
0.45×AVDD-1.5875
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Command Table 3
Register
DATA
DEC. HEX.
128
80
129
81
130
82
131
83
132
84
133
85
134
86
135
87
136
88
137
89
138 8A
139 8B
140 8C
141 8D
142
8E
143
8F
144
90
145
91
146
92
147
93
148
94
149
95
150
96
151
97
152
98
153
99
154 9A
155 9B
156 9C
157 9D
158
9E
159
9F
160 A0
161 A1
162 A2
163 A3
164 A4
165 A5
166 A6
167 A7
168 A8
169 A9
170 AA
171 AB
172 AC
173 AD
174 AE
175 AF
176 B0
177 B1
178 B2
179 B3
180 B4
181 B5
182 B6
183 B7
184 B8
185 B9
186 BA
187 BB
188 BC
189 BD
190 BE
191 BF
01h
AVDD
Voltage
Setting
[V]
12.8
12.7
12.6
12.5
12.4
12.3
12.2
12.1
12.0
11.9
11.8
11.7
11.6
11.5
11.4
11.3
11.2
11.1
11.0
10.9
10.8
10.7
10.6
10.5
10.4
10.3
10.2
10.1
10.0
9.9
9.8
9.7
9.6
9.5
9.4
9.3
9.2
9.1
9.0
8.9
8.8
8.7
8.6
8.5
8.4
8.3
8.2
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
02h
VGH
Voltage
Setting
[V]
25.6
25.4
25.2
25.0
24.8
24.6
24.4
24.2
24.0
23.8
23.6
23.4
23.2
23.0
22.8
22.6
22.4
22.2
22.0
21.8
21.6
21.4
21.2
21.0
20.8
20.6
20.4
20.2
20.0
19.8
19.6
19.4
19.2
19.0
18.8
18.6
18.4
18.2
18.0
17.8
17.6
17.4
17.2
17.0
16.8
16.6
16.4
16.2
16.0
15.8
15.6
15.4
15.2
15.0
14.8
14.6
14.4
14.2
14.0
13.8
13.6
13.4
13.2
13.0
03h
VGL
Voltage
Setting
[V]
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
04h
HAVDD
Voltage
Setting
[V]
0.6×AVDD-1.6000
0.6×AVDD-1.6125
0.6×AVDD-1.6250
0.6×AVDD-1.6375
0.6×AVDD-1.6500
0.6×AVDD-1.6625
0.6×AVDD-1.6750
0.6×AVDD-1.6875
0.6×AVDD-1.7000
0.6×AVDD-1.7125
0.6×AVDD-1.7250
0.6×AVDD-1.7375
0.6×AVDD-1.7500
0.6×AVDD-1.7625
0.6×AVDD-1.7750
0.6×AVDD-1.7875
0.6×AVDD-1.8000
0.6×AVDD-1.8125
0.6×AVDD-1.8250
0.6×AVDD-1.8375
0.6×AVDD-1.8500
0.6×AVDD-1.8625
0.6×AVDD-1.8750
0.6×AVDD-1.8875
0.6×AVDD-1.9000
0.6×AVDD-1.9125
0.6×AVDD-1.9250
0.6×AVDD-1.9375
0.6×AVDD-1.9500
0.6×AVDD-1.9625
0.6×AVDD-1.9750
0.6×AVDD-1.9875
0.6×AVDD-2.0000
0.6×AVDD-2.0125
0.6×AVDD-2.0250
0.6×AVDD-2.0375
0.6×AVDD-2.0500
0.6×AVDD-2.0625
0.6×AVDD-2.0750
0.6×AVDD-2.0875
0.6×AVDD-2.1000
0.6×AVDD-2.1125
0.6×AVDD-2.1250
0.6×AVDD-2.1375
0.6×AVDD-2.1500
0.6×AVDD-2.1625
0.6×AVDD-2.1750
0.6×AVDD-2.1875
0.6×AVDD-2.2000
0.6×AVDD-2.2125
0.6×AVDD-2.2250
0.6×AVDD-2.2375
0.6×AVDD-2.2500
0.6×AVDD-2.2625
0.6×AVDD-2.2750
0.6×AVDD-2.2875
0.6×AVDD-2.3000
0.6×AVDD-2.3125
0.6×AVDD-2.3250
0.6×AVDD-2.3375
0.6×AVDD-2.3500
0.6×AVDD-2.3625
0.6×AVDD-2.3750
0.6×AVDD-2.3875
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
VDD
ON
Sequence
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
05h
VDD2
Voltage
Setting
[V]
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.10
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.15
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.20
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
VDD1
Voltage
Setting
[V]
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
DC/DC UVLO
Detect/Release
Voltage
[V]
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
2.9 / 3.1
36/44
06h
DELAY1
Time
Setting
[msec]
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Discharge
Time
Setting
[msec]
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
Frequency
Setting
[kHz]
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
07h
DELAY3
Time
Setting
[msec]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
DELAY2
Time
Setting
[msec]
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
09h
VCOM
Voltage
Setting
[V]
0.45×AVDD-1.6000
0.45×AVDD-1.6125
0.45×AVDD-1.6250
0.45×AVDD-1.6375
0.45×AVDD-1.6500
0.45×AVDD-1.6625
0.45×AVDD-1.6750
0.45×AVDD-1.6875
0.45×AVDD-1.7000
0.45×AVDD-1.7125
0.45×AVDD-1.7250
0.45×AVDD-1.7375
0.45×AVDD-1.7500
0.45×AVDD-1.7625
0.45×AVDD-1.7750
0.45×AVDD-1.7875
0.45×AVDD-1.8000
0.45×AVDD-1.8125
0.45×AVDD-1.8250
0.45×AVDD-1.8375
0.45×AVDD-1.8500
0.45×AVDD-1.8625
0.45×AVDD-1.8750
0.45×AVDD-1.8875
0.45×AVDD-1.9000
0.45×AVDD-1.9125
0.45×AVDD-1.9250
0.45×AVDD-1.9375
0.45×AVDD-1.9500
0.45×AVDD-1.9625
0.45×AVDD-1.9750
0.45×AVDD-1.9875
0.45×AVDD-2.0000
0.45×AVDD-2.0125
0.45×AVDD-2.0250
0.45×AVDD-2.0375
0.45×AVDD-2.0500
0.45×AVDD-2.0625
0.45×AVDD-2.0750
0.45×AVDD-2.0875
0.45×AVDD-2.1000
0.45×AVDD-2.1125
0.45×AVDD-2.1250
0.45×AVDD-2.1375
0.45×AVDD-2.1500
0.45×AVDD-2.1625
0.45×AVDD-2.1750
0.45×AVDD-2.1875
0.45×AVDD-2.2000
0.45×AVDD-2.2125
0.45×AVDD-2.2250
0.45×AVDD-2.2375
0.45×AVDD-2.2500
0.45×AVDD-2.2625
0.45×AVDD-2.2750
0.45×AVDD-2.2875
0.45×AVDD-2.3000
0.45×AVDD-2.3125
0.45×AVDD-2.3250
0.45×AVDD-2.3375
0.45×AVDD-2.3500
0.45×AVDD-2.3625
0.45×AVDD-2.3750
0.45×AVDD-2.3875
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Command Table 4
Register
DATA
DEC. HEX.
192 C0
193 C1
194 C2
195 C3
196 C4
197 C5
198 C6
199 C7
200 C8
201 C9
202 CA
203 CB
204 CC
205 CD
206 CE
207 CF
208 D0
209 D1
210 D2
211 D3
212 D4
213 D5
214 D6
215 D7
216 D8
217 D9
218 DA
219 DB
220 DC
221 DD
222 DE
223 DF
224
E0
225
E1
226
E2
227
E3
228
E4
229
E5
230
E6
231
E7
232
E8
233
E9
234 EA
235 EB
236 EC
237 ED
238
EE
239
EF
240
F0
241
F1
242
F2
243
F3
244
F4
245
F5
246
F6
247
F7
248
F8
249
F9
250 FA
251 FB
252 FC
253 FD
254
FE
255
FF
01h
AVDD
Voltage
Setting
[V]
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
02h
VGH
Voltage
Setting
[V]
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0
03h
VGL
Voltage
Setting
[V]
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
-9.5
04h
HAVDD
Voltage
Setting
[V]
0.6×AVDD-2.4000
0.6×AVDD-2.4125
0.6×AVDD-2.4250
0.6×AVDD-2.4375
0.6×AVDD-2.4500
0.6×AVDD-2.4625
0.6×AVDD-2.4750
0.6×AVDD-2.4875
0.6×AVDD-2.5000
0.6×AVDD-2.5125
0.6×AVDD-2.5250
0.6×AVDD-2.5375
0.6×AVDD-2.5500
0.6×AVDD-2.5625
0.6×AVDD-2.5750
0.6×AVDD-2.5875
0.6×AVDD-2.6000
0.6×AVDD-2.6125
0.6×AVDD-2.6250
0.6×AVDD-2.6375
0.6×AVDD-2.6500
0.6×AVDD-2.6625
0.6×AVDD-2.6750
0.6×AVDD-2.6875
0.6×AVDD-2.7000
0.6×AVDD-2.7125
0.6×AVDD-2.7250
0.6×AVDD-2.7375
0.6×AVDD-2.7500
0.6×AVDD-2.7625
0.6×AVDD-2.7750
0.6×AVDD-2.7875
0.6×AVDD-2.8000
0.6×AVDD-2.8125
0.6×AVDD-2.8250
0.6×AVDD-2.8375
0.6×AVDD-2.8500
0.6×AVDD-2.8625
0.6×AVDD-2.8750
0.6×AVDD-2.8875
0.6×AVDD-2.9000
0.6×AVDD-2.9125
0.6×AVDD-2.9250
0.6×AVDD-2.9375
0.6×AVDD-2.9500
0.6×AVDD-2.9625
0.6×AVDD-2.9750
0.6×AVDD-2.9875
0.6×AVDD-3.0000
0.6×AVDD-3.0125
0.6×AVDD-3.0250
0.6×AVDD-3.0375
0.6×AVDD-3.0500
0.6×AVDD-3.0625
0.6×AVDD-3.0750
0.6×AVDD-3.0875
0.6×AVDD-3.1000
0.6×AVDD-3.1125
0.6×AVDD-3.1250
0.6×AVDD-3.1375
0.6×AVDD-3.1500
0.6×AVDD-3.1625
0.6×AVDD-3.1750
0.6×AVDD-3.1875
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
VDD
ON
Sequence
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
VDD2→VDD1
05h
VDD2
Voltage
Setting
[V]
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
1.30
VDD1
Voltage
Setting
[V]
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
1.70
1.75
1.80
1.85
1.90
2.40
2.45
2.50
2.55
2.60
2.60
2.60
2.60
2.60
2.60
2.60
DC/DC UVLO
Detect/Release
Voltage
[V]
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
3.1 / 3.3
37/44
06h
DELAY1
Time
Setting
[msec]
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Discharge
Time
Setting
[msec]
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
0
1
2
3
4
5
0
0
Frequency
Setting
[kHz]
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
1200
07h
DELAY3
Time
Setting
[msec]
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DELAY2
Time
Setting
[msec]
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
0
5
10
15
20
25
30
35
40
0
0
0
0
0
0
0
09h
VCOM
Voltage
Setting
[V]
0.45×AVDD-2.4000
0.45×AVDD-2.4125
0.45×AVDD-2.4250
0.45×AVDD-2.4375
0.45×AVDD-2.4500
0.45×AVDD-2.4625
0.45×AVDD-2.4750
0.45×AVDD-2.4875
0.45×AVDD-2.5000
0.45×AVDD-2.5125
0.45×AVDD-2.5250
0.45×AVDD-2.5375
0.45×AVDD-2.5500
0.45×AVDD-2.5625
0.45×AVDD-2.5750
0.45×AVDD-2.5875
0.45×AVDD-2.6000
0.45×AVDD-2.6125
0.45×AVDD-2.6250
0.45×AVDD-2.6375
0.45×AVDD-2.6500
0.45×AVDD-2.6625
0.45×AVDD-2.6750
0.45×AVDD-2.6875
0.45×AVDD-2.7000
0.45×AVDD-2.7125
0.45×AVDD-2.7250
0.45×AVDD-2.7375
0.45×AVDD-2.7500
0.45×AVDD-2.7625
0.45×AVDD-2.7750
0.45×AVDD-2.7875
0.45×AVDD-2.8000
0.45×AVDD-2.8125
0.45×AVDD-2.8250
0.45×AVDD-2.8375
0.45×AVDD-2.8500
0.45×AVDD-2.8625
0.45×AVDD-2.8750
0.45×AVDD-2.8875
0.45×AVDD-2.9000
0.45×AVDD-2.9125
0.45×AVDD-2.9250
0.45×AVDD-2.9375
0.45×AVDD-2.9500
0.45×AVDD-2.9625
0.45×AVDD-2.9750
0.45×AVDD-2.9875
0.45×AVDD-3.0000
0.45×AVDD-3.0125
0.45×AVDD-3.0250
0.45×AVDD-3.0375
0.45×AVDD-3.0500
0.45×AVDD-3.0625
0.45×AVDD-3.0750
0.45×AVDD-3.0875
0.45×AVDD-3.1000
0.45×AVDD-3.1125
0.45×AVDD-3.1250
0.45×AVDD-3.1375
0.45×AVDD-3.1500
0.45×AVDD-3.1625
0.45×AVDD-3.1750
0.45×AVDD-3.1875
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Protection functions
・Over-Voltage Protection
AVDD
Threshold (Typ)
Operation
16V
When OVP is detected, switching turns OFF to control the rising output voltage.
When the output voltage decreases to a lower value, the switching will turn back ON.
・Short Circuit Protection
VDD1
Threshold (Typ)
Operation
VDD2
AVDD
VGH
VGL
VDD1×0.8
VDD2×0.8
AVDD×0.8
VGH×0.8
When a channel detects SCP, a timer is activated.
10msec after that, all channels will be latched to shutdown state.
To return to normal operation, reset the power supply.
VGL×0.8
・Over-Current Protect
Threshold (Min)
Operation
VDD1
VDD2
AVDD
1.0A
1.0A
1.5A
When OCP is detected, switching turns OFF to limit the FET from generating current.
When the FET current decreases to a lower value, the switching will turn back ON.
・Thermal Shutdown
VDD1
VDD2
AVDD
HAVDD
Threshold (Typ)
Operation
VCOM
VGH
VGL
175℃
When device temperature goes above 175℃ (Typ), all channels are shut down.
・VCC UVLO
VDD1
Falling (Typ)
Rising (Typ)
Operation
Operation
AVDD
HAVDD
VCOM
VGH
VGL
2.4V
2.1V
Circuit malfunction is prevented by making sure the IC is turned off when VCC is below the
UVLO threshold. There is a hysteresis between the rising and falling threshold to avoid triggering
UVLO by power supply noise.
・DC/DC converter UVLO
VDD1
Falling (Typ)
Rising (Typ)
Watch start (Typ)
VDD2
VDD2
AVDD
HAVDD
VCOM
VGH
VGL
2.5 / 2.7 / 2.9 / 3.1V
2.7 / 2.9 / 3.1 / 3.3 V
2.8 / 3.0 / 3.2 / 3.4 V
DC/DC converter output error is prevented by making sure all channels are turned off when a
DC/DC converter output is below the UVLO threshold.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
38/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●FAULT Output
The FAULT output indicates the status of the protection circuits of this IC.
Because FAULT is an open-drain output, place a pull-up resistor externally.
When the FAULT output will not be used, connect to GND.
10kΩ to 220kΩ
FAULT
Fig. 55 FAULT Output
FAULT=H
During stable operation when none of the protection circuits are in effect.
This is due to the external pull-up resistance.
FAULT=L
When any of the protection circuits (UVLO, OCP, OVP, TSD, and SCP) are triggered.
This indicates a circuit error.
The recommended external pull-up resistance for the FAULT output is 10kΩ to 220kΩ. An external resistance of under
10kΩ can generate an offset voltage during FAULT=L caused by the voltage drop across the internal on resistance. On the
other hand, an external resistance of more than 220kΩ can interfere with the output during FAULT=H because of leak
current.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
39/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●I/O Equivalent Circuits
1.DRN, 28. DRP
2.AVDDP
3.HAVDD, 4.VCOM
AVDDP
6.FAULT
7.VCC
8.SCL
VCC
9.SDA
10.EN
11.VREG
12.VDD2, 13.VDD1
15.SWB1, 17.SWB2
16.PVCC1, 22.PVCC2
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
40/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
19.SW
20.AVDD
AVDD
23.VLSO
21.AVDD_S
AVDD
24.VGL
26.VGH, 27CPP
PVCC2
VREG
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
41/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
 Operational Notes
1) Absolute maximum ratings
Operating the IC over the absolute maximum ratings may damage the IC. In addition, it is impossible to predict all
destructive situations such as short-circuit modes, open circuit modes, etc. Therefore, it is important to consider circuit
protection measures, like adding a fuse, in case the IC is operated in a special mode exceeding the absolute maximum
ratings.
2)
Ground potential
The voltage of the ground pin must be the lowest voltage of all pins of the IC at all operating conditions. Ensure that no pins
are at a voltage below the ground pin at any time, even during transient condition.
3)
Thermal consideration
Use a thermal design that allows for a sufficient margin by taking into account the permissible power dissipation (Pd) in
actual operating conditions.
4)
Short between pins and mounting errors
Be careful when mounting the IC on printed circuit boards. The IC may be damaged if it is mounted in a wrong orientation
or if pins are shorted together. Short circuit may be caused by conductive particles caught between the pins.
5)
Operation under strong electromagnetic field
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
6)
Testing on application boards
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the
IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be
turned off completely before connecting or removing it from the test setup during the inspection process. To prevent
damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.
7)
Regarding input pins of the IC
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated.
P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or
transistor. For example (refer to figure below):
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.
When GND > Pin B, the P-N junction operates as a parasitic transistor.
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be
avoided.
Resistor
Transistor (NPN)
Pin A
Pin B
C
Pin B
B
Pin A
N
P+
N
P+
P
N
E
Parasitic
element
N
P+
N
P
P substrate
Parasitic element
GND
P
B
+
N
E
P substrate
Parasitic element
GND
C
GND
Parasitic
GND element
Other adjacent elements
Example of a Simple Monolithic IC Structure
8)
Over-current protection circuit (OCP)
The IC incorporates an over-current protection circuit that operates in accordance with the rated output capacity. This circuit
protects the IC from damage when the load becomes shorted. It is also designed to limit the output current (without
latching) in the event of a large transient current flow, such as from a large capacitor or other component connected to the
output pin. This protection circuit is effective in preventing damage to the IC in cases of sudden and unexpected current
surges. The IC should not be used in applications where the over current protection circuit will be activated continuously.
9)
Thermal shutdown circuit (TSD)
The IC incorporates a built-in thermal shutdown circuit, which is designed to turn off the IC when the internal temperature of
the IC reaches a specified value. It is not designed to protect the IC from damage or guarantee its operation. Do not
continue to operate the IC after this function is activated. Do not use the IC in conditions where this function will always be
activated.
10) DC/DC switching line wiring pattern
DC/DC converter switching line (wiring from the switching pin to inductor, Nch MOS) must be as short and thick as possible
to reduce line impedance. If the wiring is long, ringing caused by switching would increase and this may exceed the
absolute maximum voltage ratings. If the parts are located far apart, consider inserting a snubber circuit.
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
42/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●Ordering Information
B
M
8
1
0
2
8
Part Number
A
M
W
V
ZE2
Package
MWV: UQFN28V4040A
Packaging and forming specification
ZE2: Embossed tape and reel
●Physical Dimension Tape and Reel Information
<Tape and Reel information>
Tape
Embossed carrier tape
Quantity
2000pcs
Direction
of feed
E2
ZE2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
1pin
Reel
)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
●Marking Diagram (TOP VIEW)
UQFN28V4040A (TOP VIEW)
Part Number Marking
8 1 0 2 8
A
LOT Number
1PIN MARK
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
43/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
BM81028AMWV
●MODIFICATION RECORD
Rev.001
Rev.002
Rev.003
-
Original
P.1
P.1, P.43
Change input voltage range, Add Input tolerant
Change Recommended Operating Ratings
(Power Supply Voltage, SWB1,SWB2 Current, SW Current )
Change package name
P.26
Clerical error correction (D1)
P.5
www.rohm.com
© 2013 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・001
44/44
TSZ02201-0313AAF00430-1-2
12.May.2015 Rev.003
Datasheet
Notice
Precaution on using ROHM Products
1.
Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you
(Note 1)
, transport
intend to use our Products in devices requiring extremely high reliability (such as medical equipment
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific
Applications.
(Note1) Medical Equipment Classification of the Specific Applications
JAPAN
USA
EU
CHINA
CLASSⅢ
CLASSⅡb
CLASSⅢ
CLASSⅢ
CLASSⅣ
CLASSⅢ
2.
ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which
a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3.
Our Products are designed and manufactured for use under standard conditions and not under any special or
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any
special or extraordinary environments or conditions. If you intend to use our Products under any special or
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of
product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,
H2S, NH3, SO2, and NO2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning
residue after soldering
[h] Use of the Products in places subject to dew condensation
4.
The Products are not subject to radiation-proof design.
5.
Please verify and confirm characteristics of the final or mounted products in using the Products.
6.
In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect
product performance and reliability.
7.
De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual
ambient temperature.
8.
Confirm that operation temperature is within the specified range described in the product specification.
9.
ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in
this document.
Precaution for Mounting / Circuit board design
1.
When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product
performance and reliability.
2.
In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,
please consult with the ROHM representative in advance.
For details, please refer to ROHM Mounting specification
Notice-PGA-E
© 2015 ROHM Co., Ltd. All rights reserved.
Rev.001
Datasheet
Precautions Regarding Application Examples and External Circuits
1.
If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the
characteristics of the Products and external components, including transient characteristics, as well as static
characteristics.
2.
You agree that application notes, reference designs, and associated data and information contained in this document
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely
responsible for it and you must exercise your own independent verification and judgment in the use of such information
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses
incurred by you or third parties arising from the use of such information.
Precaution for Electrostatic
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).
Precaution for Storage / Transportation
1.
Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2.
Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
exceeding the recommended storage time period.
3.
Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads
may occur due to excessive stress applied when dropping of a carton.
4.
Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of
which storage time is exceeding the recommended storage time period.
Precaution for Product Label
QR code printed on ROHM Products label is for ROHM’s internal use only.
Precaution for Disposition
When disposing Products please dispose them properly using an authorized industry waste company.
Precaution for Foreign Exchange and Foreign Trade act
Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign
trade act, please consult with ROHM in case of export.
Precaution Regarding Intellectual Property Rights
1.
All information and data including but not limited to application example contained in this document is for reference
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any
other rights of any third party regarding such information or data.
2.
ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the
Products with other articles such as components, circuits, systems or external equipment (including software).
3.
No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any
third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM
will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to
manufacture or sell products containing the Products, subject to the terms and conditions herein.
Other Precaution
1.
This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2.
The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written
consent of ROHM.
3.
In no event shall you use in any way whatsoever the Products and the related technical information contained in the
Products or this document for any military purposes, including but not limited to, the development of mass-destruction
weapons.
4.
The proper names of companies or products described in this document are trademarks or registered trademarks of
ROHM, its affiliated companies or third parties.
Notice-PGA-E
© 2015 ROHM Co., Ltd. All rights reserved.
Rev.001
Datasheet
General Precaution
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.
ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny
ROHM’s Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s
representative.
3.
The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or
liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or
concerning such information.
Notice – WE
© 2015 ROHM Co., Ltd. All rights reserved.
Rev.001
Datasheet
BM81028AMWV - Web Page
Buy
Distribution Inventory
Part Number
Package
Unit Quantity
Minimum Package Quantity
Packing Type
Constitution Materials List
RoHS
BM81028AMWV
UQFN28V4040P
2500
2500
Taping
inquiry
Yes
Similar pages