STMicroelectronics LSM6DS33 Inemo inertial module: always-on 3d accelerometer and 3d gyroscope Datasheet

LSM6DS33
iNEMO inertial module:
always-on 3D accelerometer and 3D gyroscope
Datasheet - production data
Description
The LSM6DS33 is a system-in-package featuring a 3D
digital accelerometer and a 3D digital gyroscope
performing at 1.25 mA (up to 1.6 kHz ODR) in highperformance mode and enabling always-on low-power
features for an optimal motion experience for the
consumer.
LGA-16L (3 x 3 x 0.86 mm) typ.
The LSM6DS33 supports main OS requirements,
offering real, virtual and batch sensors with 8 kbyte for
dynamic data batching.
Features

Power consumption: 0.9 mA in combo normal mode
and 1.25 mA in combo high-performance mode up to
1.6 kHz.

“Always-on” experience with low power
consumption for both accelerometer and gyroscope

Smart FIFO up to 8 kbyte based on features set

Compliant with Android K and L

±2/±4/±8/±16 g full scale

±125/±245/±500/±1000/±2000 dps full scale

Analog supply voltage: 1.71 V to 3.6 V

Independent IOs supply (1.62 V)

Compact footprint, 3 mm x 3 mm x 0.86 mm

SPI/I2C serial interface with main processor data
synchronization feature

Embedded temperature sensor

ECOPACK®, RoHS and “Green” compliant
ST’s family of MEMS sensor modules leverages the
robust and mature manufacturing processes already
used for the production of micromachined
accelerometers and gyroscopes.
The various sensing elements are manufactured using
specialized micromachining processes, while the IC
interfaces are developed using CMOS technology that
allows the design of a dedicated circuit which is
trimmed to better match the characteristics of the
sensing element.
The LSM6DS33 has a full-scale acceleration range of
±2/±4/±8/±16 g and an angular rate range of
±125/±245/±500/±1000/±2000 dps.
High robustness to mechanical shock makes the
LSM6DS33 the preferred choice of system designers
for the creation and manufacturing of reliable products.
The LSM6DS33 is available in a plastic land grid array
(LGA) package.
Applications
Table 1. Device summary

Pedometer, step detector and step counter

Significant motion and tilt functions

Indoor navigation

Tap and double-tap detection

IoT and connected devices

Intelligent power saving for handheld devices

Vibration monitoring and compensation

Free-fall detection

6D orientation detection
October 2015
This is information on a product in full production.
Part number
Temp.
range [°C]
LSM6DS33
-40 to +85
LSM6DS33TR
-40 to +85
DocID027423 Rev 4
Package
LGA-16L
(3 x 3 x 0.86 mm)
Packing
Tray
Tape &
Reel
1/77
www.st.com
Contents
LSM6DS33
Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2
Embedded low-power features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1
Tilt detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4
Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
6
2/77
4.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.1
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.2
I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6.2
Zero-g and zero-rate level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1
Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2
Gyroscope power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3
Accelerometer power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4.1
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.2
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.3
Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.4
Continuous-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.5
Bypass-to-Continuous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.6
FIFO reading procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.7
Filter block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
DocID027423 Rev 4
LSM6DS33
Contents
6.1
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.1
6.2
7
I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.1
LSM6DS33 electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2
Pin compatibility with LSM6DS0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
8
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1
FUNC_CFG_ACCESS (01h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2
FIFO_CTRL1 (06h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.3
FIFO_CTRL2 (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.4
FIFO_CTRL3 (08h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.5
FIFO_CTRL4 (09h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.6
FIFO_CTRL5 (0Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.7
ORIENT_CFG_G (0Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.8
INT1_CTRL (0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.9
INT2_CTRL (0Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.10
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.11
CTRL1_XL (10h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.12
CTRL2_G (11h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.13
CTRL3_C (12h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.14
CTRL4_C (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.15
CTRL5_C (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.16
CTRL6_C (15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
9.17
CTRL7_G (16h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.18
CTRL8_XL (17h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.19
CTRL9_XL (18h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.20
CTRL10_C (19h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
DocID027423 Rev 4
3/77
77
Contents
4/77
LSM6DS33
9.21
WAKE_UP_SRC (1Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.22
TAP_SRC (1Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.23
D6D_SRC (1Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.24
STATUS_REG (1Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.25
OUT_TEMP_L (20h), OUT_TEMP(21h) . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.26
OUTX_L_G (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.27
OUTX_H_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.28
OUTY_L_G (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.29
OUTY_H_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.30
OUTZ_L_G (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.31
OUTZ_H_G (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.32
OUTX_L_XL (28h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.33
OUTX_H_XL (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.34
OUTY_L_XL (2Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.35
OUTY_H_XL (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.36
OUTZ_L_XL (2Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.37
OUTZ_H_XL (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.38
FIFO_STATUS1 (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.39
FIFO_STATUS2 (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.40
FIFO_STATUS3 (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.41
FIFO_STATUS4 (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.42
FIFO_DATA_OUT_L (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.43
FIFO_DATA_OUT_H (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.44
TIMESTAMP0_REG (40h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.45
TIMESTAMP1_REG (41h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.46
TIMESTAMP2_REG (42h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.47
STEP_TIMESTAMP_L (49h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.48
STEP_TIMESTAMP_H (4Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.49
STEP_COUNTER_L (4Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.50
STEP_COUNTER_H (4Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.51
FUNC_SRC (53h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.52
TAP_CFG (58h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9.53
TAP_THS_6D (59h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
DocID027423 Rev 4
LSM6DS33
Contents
9.54
INT_DUR2 (5Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.55
WAKE_UP_THS (5Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.56
WAKE_UP_DUR (5Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.57
FREE_FALL (5Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.58
MD1_CFG (5Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.59
MD2_CFG (5Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10
Embedded functions register mapping . . . . . . . . . . . . . . . . . . . . . . . . . 69
11
Embedded functions registers description . . . . . . . . . . . . . . . . . . . . . 70
11.1
PEDO_THS_REG (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.2
SM_THS (13h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.3
PEDO_DEB_REG (14h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11.4
STEP_COUNT_DELTA (15h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
13
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
14
13.1
LGA-16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
13.2
LGA-16 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
DocID027423 Rev 4
5/77
77
List of tables
LSM6DS33
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
6/77
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 30
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 30
Registers address map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
FUNC_CFG_ACCESS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
FUNC_CFG_ACCESS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
FIFO_CTRL1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
FIFO_CTRL1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
FIFO_CTRL2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
FIFO_CTRL2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
FIFO_CTRL3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
FIFO_CTRL3 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Gyro FIFO decimation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Accelerometer FIFO decimation setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
FIFO_CTRL4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
FIFO_CTRL4 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Third FIFO data set decimation setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
FIFO_CTRL5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
FIFO_CTRL5 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
FIFO ODR selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
FIFO mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
ORIENT_CFG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
ORIENT_CFG_G register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Settings for orientation of axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
INT1_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
INT1_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
INT2_CTRL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
INT2_CTRL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CTRL1_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CTRL1_XL register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Accelerometer ODR register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
BW and ODR (high-performance mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CTRL2_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
CTRL2_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Gyroscope ODR configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
DocID027423 Rev 4
LSM6DS33
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
List of tables
CTRL3_C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
CTRL3_C register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
CTRL4_C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
CTRL4_C register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
CTRL5_C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
CTRL5_C register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Output registers rounding pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Angular rate sensor self-test mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Linear acceleration sensor self-test mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CTRL6_C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CTRL6_C register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CTRL7_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
CTRL7_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Gyroscope high-pass filter mode configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
CTRL8_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
CTRL8_XL register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Accelerometer slope and high-pass filter selection and cutoff frequency . . . . . . . . . . . . . . 53
CTRL9_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
CTRL9_XL register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
CTRL10_C register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
CTRL10_C register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
WAKE_UP_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
WAKE_UP_SRC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
TAP_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
TAP_SRC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
D6D_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
D6D_SRC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
STATUS_REG register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
OUT_TEMP_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
OUT_TEMP_H register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
OUT_TEMP register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
OUTX_L_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
OUTX_L_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
OUTX_H_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
OUTX_H_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
OUTY_L_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
OUTY_L_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
OUTY_H_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
OUTY_H_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
OUTZ_L_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
OUTZ_L_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
OUTZ_H_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
OUTZ_H_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
OUTX_L_XL register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
OUTX_L_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
OUTX_H_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
OUTX_H_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
OUTY_L_XL register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
OUTY_L_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
OUTY_H_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
OUTY_H_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
DocID027423 Rev 4
7/77
77
List of tables
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112.
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 133.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
Table 139.
Table 140.
Table 141.
Table 142.
Table 143.
Table 144.
Table 145.
Table 146.
Table 147.
Table 148.
Table 149.
Table 150.
Table 151.
Table 152.
8/77
LSM6DS33
OUTZ_L_XL register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
OUTZ_L_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
OUTZ_H_XL register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
OUTZ_H_XL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
FIFO_STATUS1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
FIFO_STATUS1 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
FIFO_STATUS2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
FIFO_STATUS2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
FIFO_STATUS3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
FIFO_STATUS3 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
FIFO_STATUS4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
FIFO_STATUS4 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
FIFO_DATA_OUT_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
FIFO_DATA_OUT_L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
FIFO_DATA_OUT_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
FIFO_DATA_OUT_H register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
TIMESTAMP0_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
TIMESTAMP0_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
TIMESTAMP1_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
TIMESTAMP1_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
TIMESTAMP2_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
TIMESTAMP2_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
STEP_TIMESTAMP_L register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
STEP_TIMESTAMP_L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
STEP_TIMESTAMP_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
STEP_TIMESTAMP_H register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
STEP_COUNTER_L register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
STEP_COUNTER_L register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
STEP_COUNTER_H register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
STEP_COUNTER_H register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
FUNC_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
FUNC_SRC register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
TAP_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
TAP_CFG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
TAP_THS_6D register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
TAP_THS_6D register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Threshold for D4D/D6D function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
INT_DUR2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
INT_DUR2 register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
WAKE_UP_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
WAKE_UP_THS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
WAKE_UP_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
WAKE_UP_DUR register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
FREE_FALL register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
FREE_FALL register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Threshold for free-fall function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
MD1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
MD1_CFG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
MD2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
MD2_CFG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Registers address map - embedded functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
PEDO_THS_REG register default values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
DocID027423 Rev 4
LSM6DS33
Table 153.
Table 154.
Table 155.
Table 156.
Table 157.
Table 158.
Table 159.
Table 160.
Table 161.
List of tables
PEDO_THS_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
SM_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
SM_THS register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
PEDO_DEB_REG register default values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
PEDO_DEB_REG register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
STEP_COUNT_DELTA register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
STEP_COUNT_DELTA register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Reel dimensions for carrier tape of LGA-16 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
DocID027423 Rev 4
9/77
77
List of figures
LSM6DS33
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
10/77
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Accelerometer chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Accelerometer composite filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Gyroscope chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
LSM6DS33 electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Schematic 1 (pin 15 connected to GND) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Schematic 2 (pin 15 connected to VDD, Vdd_IO = VDD). . . . . . . . . . . . . . . . . . . . . . . . . . 36
LGA 3x3x0.86 16L package outline and dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Carrier tape information for LGA-16 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
LGA-16 package orientation in carrier tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Reel information for carrier tape of LGA-16 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
DocID027423 Rev 4
LSM6DS33
1
Overview
Overview
The LSM6DS33 is a system-in-package featuring a high-performance 3-axis digital
accelerometer and 3-axis digital gyroscope.
The integrated power-efficient modes are able to reduce the power consumption down to
1.25 mA in high-performance mode, combining always-on low-power features with superior
sensing precision for an optimal motion experience for the consumer thanks to ultra-low
noise performance for both the gyroscope and accelerometer.
The LSM6DS33 delivers best-in-class motion sensing that can detect orientation and
gestures in order to empower application developers and consumers with features and
capabilities that are more sophisticated than simply orienting their devices to portrait and
landscape mode.
The event-detection interrupts enable efficient and reliable motion tracking and contextual
awareness, implementing hardware recognition of free-fall events, 6D orientation, tap and
double-tap sensing, activity or inactivity, and wakeup events.
The LSM6DS33 supports main OS requirements, offering real, virtual and batch mode
sensors. In addition, the LSM6DS33 can efficiently run the sensor-related features specified
in Android, saving power and enabling faster reaction time. In particular, the LSM6DS33 has
been designed to implement hardware features such as significant motion, tilt, pedometer
functions, and time stamping.
Up to 8 kbyte of FIFO with dynamic allocation of significant data (i.e. sensors, temperature,
step counter and time stamp) allows overall power saving of the system.
Like the entire portfolio of MEMS sensor modules, the LSM6DS33 leverages the robust and
mature in-house manufacturing processes already used for the production of
micromachined accelerometers and gyroscopes. The various sensing elements are
manufactured using specialized micromachining processes, while the IC interfaces are
developed using CMOS technology that allows the design of a dedicated circuit which is
trimmed to better match the characteristics of the sensing element.
The LSM6DS33 is available in a small plastic land grid array (LGA) package of
3 x 3 x 0.86 mm to address ultra-compact solutions.
DocID027423 Rev 4
11/77
77
Embedded low-power features
2
LSM6DS33
Embedded low-power features
The LSM6DS33 has been designed to be fully compliant with Android, featuring the
following on-chip functions:
 8 kbyte data buffering
–
100% efficiency with flexible configurations and partitioning
–
possibility to store time stamp
 Event-detection interrupts (fully configurable):
–
free-fall
–
wakeup
–
6D orientation
–
tap and double-tap sensing
–
activity / inactivity recognition
 Specific IP blocks with negligible power consumption and high-performance:
–
pedometer functions: step detector and step counters
–
tilt (Android compliant, refer to Section 2.1: Tilt detection for additional info
–
significant motion (Android compliant)
2.1
Tilt detection
The tilt function helps to detect activity change and has been implemented in hardware
using only the accelerometer to achieve both the targets of ultra-low power consumption
and robustness during the short duration of dynamic accelerations.
It is based on a trigger of an event each time the device's tilt changes by an angle greater
than 35 degrees from the start position.
The tilt function can be used with different scenarios, for example:
a) Trigger when phone is in a front pants pocket and the user goes from sitting to
standing or standing to sitting;
b) Doesn’t trigger when phone is in a front pants pocket and the user is walking,
running or going upstairs.
12/77
DocID027423 Rev 4
LSM6DS33
Pin description
Figure 1. Pin connections
*1'
6'$
6'2
½
<
&6
,17
½
7239,(:
',5(&7,212)7+(
'(7(&7$%/(
$1*8/$55$7(6
,17
5(6
9'',2
6&/
5(6
=
;
%27720
9,(:
5(6
½
*1'
;
9''
',5(&7,212)7+(
'(7(&7$%/(
$&&(/(5$7,216
1&
7239,(:
<
5(6
=
5(6
3
Pin description
;
In the LSM6DS33 an I2C slave interface or SPI (3- and 4-wire) serial interface is available.
DocID027423 Rev 4
13/77
77
Pin description
LSM6DS33
Table 2. Pin description
Pin#
Name
Function
1
VDDIO(1)
2
SCL
I2C serial clock (SCL)
SPI serial port clock (SPC)
3
SDA
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
4
SDO/SA0
Power supply for I/O pins
SPI 4-wire interface serial data output (SDO)
I2C least significant bit of the device address (SA0)
I2C/SPI mode selection
(1: SPI idle mode / I2C communication enabled; 0: SPI communication
mode / I2C disabled)
5
CS
6
INT2
Programmable interrupt
7
INT1
Programmable interrupt
8
RES
Reserved, connect to GND
9
RES
Reserved, connect to GND
10
RES
Reserved, connect to GND
11
RES
Reserved, connect to GND
12
GND
0 V supply
13
GND
0 V supply
14
NC
15
RES
16
VDD(2)
Leave unconnected
Reserved, connect to GND
Power supply
1. Recommended 100 nF filter capacitor.
2. Recommended 100 nF capacitor.
14/77
DocID027423 Rev 4
LSM6DS33
Module specifications
4
Module specifications
4.1
Mechanical characteristics
@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.
Table 3. Mechanical characteristics
Symbol
Parameter
Test conditions
Min.
Typ.(1)
Max.
Unit
±2
LA_FS
±4
Linear acceleration measurement
range
±8
g
±16
±125
G_FS
±245
Angular rate
measurement range
±500
dps
±1000
±2000
LA_So
G_So
Linear acceleration sensitivity
Angular rate sensitivity
FS = ±2
0.061
FS = ±4
0.122
FS = ±8
0.244
FS = ±16
0.488
FS = ±125
4.375
FS = ±245
8.75
FS = ±500
17.50
FS = ±1000
35
FS = ±2000
70
mg/LSB
mdps/LSB
LA_SoDr
Linear acceleration sensitivity
change vs. temperature(2)
from -40° to +85°
delta from T=25°
±1
%
G_SoDr
Angular rate sensitivity change
vs. temperature(2)
from -40° to +85°
delta from T=25°
±1.5
%
LA_TyOff
Linear acceleration typical zero-g
level offset accuracy(3)
±40
mg
G_TyOff
Angular rate typical zero-rate
level(3)
±10
dps
LA_OffDr
Linear acceleration zero-g level
change vs. temperature(2)
±0.5
mg/ °C
G_OffDr
Angular rate typical zero-rate
level change vs. temperature(2)
±0.05
dps/°C
7
mdps/Hz
90
μg/Hz
Rn
Rate noise density
An
Acceleration noise density
FS= ±2 g
ODR = 104 Hz
DocID027423 Rev 4
15/77
77
Module specifications
LSM6DS33
Table 3. Mechanical characteristics (continued)
Symbol
LA_ODR
Parameter
Test conditions
Angular rate output data rate
Top
Operating temperature range
Typ.(1)
Max.
13
26
52
104
208
416
833
1666
3332
6664
Linear acceleration output data
rate
G_ODR
Unit
Hz
13
26
52
104
208
416
833
1666
-40
1. Typical specifications are not guaranteed.
2. Measurements are performed in a uniform temperature setup.
3. Values after soldering.
16/77
Min.
DocID027423 Rev 4
+85
°C
LSM6DS33
4.2
Module specifications
Electrical characteristics
@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.
Table 4. Electrical characteristics
Symbol
Vdd
Vdd_IO
Min.
Typ.(1)
Max.
Unit
Supply voltage
1.71
1.8
3.6
V
Power supply for I/O
1.62
Vdd+0.1
V
Parameter
Test conditions
IddHP
Gyroscope and accelerometer in
high-performance mode
up to ODR = 1.6 kHz
1.25
mA
IddNM
Gyroscope and accelerometer in
normal mode
ODR = 208 Hz
0.9
mA
IddLP
Gyroscope and accelerometer in
low-power mode
ODR = 13 Hz
0.42
mA
LA_IddHP
Accelerometer current consumption
in high-performance mode
up to ODR = 1.6 kHz
240
μA
LA_IddNM
Accelerometer current consumption
in normal mode
ODR = 104 Hz
70
μA
LA_IddLM
Accelerometer current consumption
in low-power mode
ODR = 13 Hz
24
μA
6
μA
IddPD
Top
Gyroscope and accelerometer in
power down
Operating temperature range
-40
+85
°C
1. Typical specifications are not guaranteed.
For details related to the LSM6DS33 operating modes, refer to 5.2: Gyroscope power
modes and 5.3: Accelerometer power modes.
DocID027423 Rev 4
17/77
77
Module specifications
4.3
LSM6DS33
Temperature sensor characteristics
@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.
Table 5. Temperature sensor characteristics
Symbol
TODR
Toff
Parameter
Test condition
Min.
Temperature refresh rate
Temperature offset
(2)
TSen
Temperature sensitivity
TST
Temperature stabilization
time(3)
Operating temperature range
1. Typical specifications are not guaranteed.
2. The output of the temperature sensor is 0 LSB (typ.) at 25 °C.
3. Time from power ON bit to valid data based on characterization data.
18/77
DocID027423 Rev 4
Max.
52
-15
+15
°C
LSB/°C
500
12
-40
Unit
Hz
16
T_ADC_res Temperature ADC resolution
Top
Typ.(1)
μs
bit
+85
°C
LSM6DS33
Module specifications
4.4
Communication interface characteristics
4.4.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 6. SPI slave timing values
Value(1)
Symbol
Parameter
Unit
Min
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
5
th(CS)
CS hold time
20
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
SDO output disable time
Max
100
ns
10
MHz
ns
50
5
50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production
Figure 2. SPI slave timing diagram
Note:
Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output
ports.
DocID027423 Rev 4
19/77
77
Module specifications
4.4.2
LSM6DS33
I2C - inter-IC control interface
Subject to general operating conditions for Vdd and Top.
Table 7. I2C slave timing values
Symbol
f(SCL)
I2C Standard mode(1)
Parameter
SCL clock frequency
I2C Fast mode (1)
Min
Max
Min
Max
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0
th(ST)
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
tw(SP:SR)
Bus free time between STOP
and START condition
3.45
Unit
kHz
μs
ns
0
0.9
μs
μs
1. Data based on standard I2C protocol requirement, not tested in production.
Figure 3. I2C slave timing diagram
5(3($7('
67$57
67$57
WVX 65
WZ 6365
6'$
WVX 6'$
WK 6'$
WVX 63
6&/
WK 67
Note:
20/77
WZ 6&//
67$57
WZ 6&/+
Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
DocID027423 Rev 4
6723
LSM6DS33
4.5
Module specifications
Absolute maximum ratings
Stresses above those listed as “Absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 8. Absolute maximum ratings
Symbol
Maximum value
Unit
Vdd
Supply voltage
-0.3 to 4.8
V
TSTG
Storage temperature range
-40 to +125
°C
10,000
g
2
kV
0.3 to Vdd_IO +0.3
V
Sg
ESD
Vin
Note:
Ratings
Acceleration g for 0.1 ms
Electrostatic discharge protection (HBM)
Input voltage on any control pin
(including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)
Supply Voltage on any pin should never exceed 4.8 V.
This device is sensitive to mechanical shock, improper handling can cause
permanent damage to the part.
This device is sensitive to electrostatic discharge (ESD), improper handling can
cause permanent damage to the part.
DocID027423 Rev 4
21/77
77
Module specifications
4.6
Terminology
4.6.1
Sensitivity
LSM6DS33
Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration
to the device. Because the sensor can measure DC accelerations, this can be done easily
by pointing the selected axis towards the ground, noting the output value, rotating the
sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and over time. The sensitivity tolerance describes
the range of sensitivities of a large number of sensors.
An angular rate gyroscope is device that produces a positive-going digital output for
counterclockwise rotation around the axis considered. Sensitivity describes the gain of the
sensor and can be determined by applying a defined angular velocity to it. This value
changes very little over temperature and time.
4.6.2
Zero-g and zero-rate level
Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output
signal from the ideal output signal if no acceleration is present. A sensor in a steady state on
a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will
measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content
of OUT registers 00h, data expressed as 2’s complement number). A deviation from the
ideal value in this case is called zero-g offset.
Offset is to some extent a result of stress to MEMS sensor and therefore the offset can
slightly change after mounting the sensor onto a printed circuit board or exposing it to
extensive mechanical stress. Offset changes little over temperature, see “Linear
acceleration zero-g level change vs. temperature” in Table 3. The zero-g level tolerance
(TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.
Zero-rate level describes the actual output signal if there is no angular rate present. The
zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor
and therefore the zero-rate level can slightly change after mounting the sensor onto a
printed circuit board or after exposing it to extensive mechanical stress. This value changes
very little over temperature and time.
22/77
DocID027423 Rev 4
LSM6DS33
Functionality
5
Functionality
5.1
Operating modes
The LSM6DS33 has three operating modes available:
 only accelerometer active and gyroscope in power-down
 only gyroscope active and accelerometer in power-down
 both accelerometer and gyroscope sensors active with independent ODR
The accelerometer is activated from power down by writing ODR_XL[3:0] in CTRL1_XL
(10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in
CTRL2_G (11h). For combo mode the ODRs are totally independent.
5.2
Gyroscope power modes
In the LSM6DS33, the gyroscope can be configured in four different operating modes:
power-down, low-power, normal mode and high-performance mode. The operating mode
selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE
is set to ‘0’, high-performance mode is valid for all ODRs (from 13 Hz up to 1.6 kHz).
To enable the low-power and normal mode, the G_HM_MODE bit has to be set to ‘1’. Lowpower mode is available for lower ODR (13, 26, 52 Hz) while normal mode is available for
ODRs equal to 104 and 208 Hz.
5.3
Accelerometer power modes
In the LSM6DS33, the accelerometer can be configured in four different operating modes:
power-down, low-power, normal mode and high-performance mode. The operating mode
selected depends on the value of the XL_HM_MODE bit in CTRL6_C (15h). If
XL_HM_MODE is set to ‘0’, high-performance mode is valid for all ODRs (from 13 Hz up to
6.66 kHz).
To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to ‘1’. Lowpower mode is available for lower ODRs (13, 26, 52 Hz) while normal mode is available for
ODRs equal to 104 and 208 Hz.
5.4
FIFO
The presence of a FIFO allows consistent power saving for the system since the host
processor does not need continuously poll data from the sensor, but it can wake up only
when needed and burst the significant data out from the FIFO.
LSM6DS33 embeds 8 kbytes data FIFO to store the following data:

gyroscope

accelerometer

step counter and time stamp

temperature
DocID027423 Rev 4
23/77
77
Functionality
LSM6DS33
Writing data in the FIFO can be configured to be triggered by the:
- accelerometer/gyroscope data-ready signal; in which case the ODR must be lower than or
equal to both the accelerometer and gyroscope ODRs;
- step detection signal.
In addition, each data can be stored at a decimated data rate compared to FIFO ODR and it
is configurable by the user, setting the registers FIFO_CTRL3 (08h) and FIFO_CTRL4
(09h). The available decimation factors are 2, 3, 4, 8, 16, 32.
Programmable FIFO threshold can be set in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)
using the FTH [11:0] bits.
To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2
(3Bh), FIFO_STATUS3 (3Ch), FIFO_STATUS4 (3Dh)) can be read to detect FIFO overrun
events, FIFO full status, FIFO empty status, FIFO threshold status and the number of
unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2
pads of these status events, the configuration can be set in INT1_CTRL (0Dh) and
INT2_CTRL (0Eh).
FIFO buffer can be configured according to five different modes:
– Bypass mode
– FIFO mode
– Continuous mode
– Continuous-to-FIFO mode
– Bypass-to-continuous mode
Each mode is selected by the FIFO_MODE_[2:0] in FIFO_CTRL5 (0Ah) register. To
guarantee the correct acquisition of data during the switching into and out of FIFO mode,
the first sample acquired must be discarded.
5.4.1
Bypass mode
In Bypass mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 000), the FIFO is not
operational and it remains empty.
Bypass mode is also used to reset the FIFO when in FIFO mode.
5.4.2
FIFO mode
In FIFO mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 001) data from the output
channels are stored in the FIFO until it is full.
To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL5 (0Ah)
(FIFO_MODE_[2:0]) to '000' After this reset command, it is possible to restart FIFO mode by
writing FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0]) to '001'.
FIFO buffer memorizes up to 4096 samples of 16 bits each but the depth of the FIFO can be
resized by setting the FTH [11:0] bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h). If the
STOP_ON_FTH bit in CTRL4_C (13h) is set to '1', FIFO depth is limited up to FTH [11:0]
bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h).
5.4.3
Continuous mode
Continuous mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 110) provides a continuous
FIFO update: as new data arrives, the older data is discarded.
24/77
DocID027423 Rev 4
LSM6DS33
Functionality
A FIFO threshold flag FIFO_STATUS2 (3Bh)(FTH) is asserted when the number of unread
samples in FIFO is greater than or equal to FIFO_CTRL1 (06h) and FIFO_CTRL2
(07h)(FTH [11:0]).
It is possible to route FIFO_STATUS2 (3Bh) (FTH) to the INT1 pin by writing in register
INT1_CTRL (0Dh) (INT1_FTH) = ‘1’ or to the INT2 pin by writing in register INT2_CTRL
(0Eh) (INT2_FTH) = ‘1’.
A full-flag interrupt can be enabled, INT1_CTRL (0Dh) (INT_ FULL_FLAG) = '1', in order to
indicate FIFO saturation and eventually read its content all at once.
If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and
the OVER_RUN flag in FIFO_STATUS2 (3Bh) is asserted.
In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of
unread samples available in FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh)
(DIFF_FIFO[11:0]).
5.4.4
Continuous-to-FIFO mode
In Continuous-to-FIFO mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 011), FIFO
behavior changes according to the trigger event detected in one of the following interrupt
registers FUNC_SRC (53h), TAP_SRC (1Ch), WAKE_UP_SRC (1Bh) and D6D_SRC
(1Dh).
When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.
When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.
5.4.5
Bypass-to-Continuous mode
In Bypass-to-Continuous mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = '100'), data
measurement storage inside FIFO operates in Continuous mode when selected triggers in
one of the following interrupt registers FUNC_SRC (53h), TAP_SRC (1Ch),
WAKE_UP_SRC (1Bh) and D6D_SRC (1Dh) are equal to '1', otherwise FIFO content is
reset (Bypass mode).
5.4.6
FIFO reading procedure
The data stored in FIFO are accessible from dedicated registers (FIFO_DATA_OUT_L
(3Eh) and FIFO_DATA_OUT_H (3Fh)) and each FIFO sample is composed of 16 bits.
All FIFO status registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh), FIFO_STATUS3
(3Ch), FIFO_STATUS4 (3Dh)) can be read at the start of a reading operation, minimizing
the intervention of the application processor.
Saving data in the FIFO buffer is organized in four FIFO data sets consisting of 6 bytes
each:
The 1st FIFO data set is reserved for gyroscope data;
The 2nd FIFO data set is reserved for accelerometer data;
DocID027423 Rev 4
25/77
77
Functionality
5.4.7
LSM6DS33
Filter block diagrams
Figure 4. Accelerometer chain
$QDORJ
$QWLDOLDVLQJ
/3)LOWHU
'LJLWDO
/3)LOWHU
/3)
&RPSRVLWH
)LOWHU
$'&
%:B;/>@
2'5B;/>@
Figure 5. Accelerometer composite filter
'LJLWDO
+3)LOWHU
6/23(B)'6
/3)B;/B(1 +3B6/23(B;/B(1 6/23(B)'625 )81&B(1
6/23(
),/7(5
'LJLWDO
/3)LOWHU
/3)
:DNHXS
;/
2XWSXW
5HJ
$FWLYLW\
,QDFWLYLW\
+3&)B;/>@
6'7DS
/3)B;/B(1 +3B6/23(B;/B(1 ),)2
6/23(B)'625 )81&B(1
/3)B;/B(1 +3B6/23(B;/B(1 26/77
)UHHIDOO
$QGURLG
IXQFWLRQV
/2:B3$66B21B'
DocID027423 Rev 4
''
LSM6DS33
Functionality
Figure 6. Gyroscope chain
'LJLWDO
+3)LOWHU
$QDORJ
$QWLDOLDVLQJ
/3)LOWHU
/3)LOWHU
$'&
+3B*B(1
2'5B*>@
DocID027423 Rev 4
27/77
77
Digital interfaces
6
LSM6DS33
Digital interfaces
The registers embedded inside the LSM6DS33 may be accessed through both the I2C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pins. To select/exploit the I2C interface, the
CS line must be tied high (i.e connected to Vdd_IO).
Table 9. Serial interface pin description
Pin name
CS
SCL/SPC
SDA/SDI/SDO
SDO/SA0
6.1
Pin description
SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication enabled;
0: SPI communication mode / I2C disabled)
I2C Serial Clock (SCL)
SPI Serial Port Clock (SPC)
I2C Serial Data (SDA)
SPI Serial Data Input (SDI)
3-wire Interface Serial Data Output (SDO)
SPI Serial Data Output (SDO)
I2C less significant bit of the device address
I2C serial interface
The LSM6DS33 I2C is a bus slave. The I2C is employed to write the data to the registers,
whose content can also be read back.
The relevant I2C terminology is provided in the table below.
Table 10. I2C terminology
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial
DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up
resistors. When the bus is free, both the lines are high.
The I2C interface is implemeted with fast mode (400 kHz) I2C standards as well as with the
standard mode.
In order to disable the I2C block, (I2C_disable) = 1 must be written in CTRL4_C (13h).
28/77
DocID027423 Rev 4
LSM6DS33
6.1.1
Digital interfaces
I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
The Slave ADdress (SAD) associated to the LSM6DS33 is 110101xb. The SDO/SA0 pin
can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is
connected to the supply voltage, LSb is ‘1’ (address 1101011b); else if the SDO/SA0 pin is
connected to ground, the LSb value is ‘0’ (address 1101010b). This solution permits to
connect and address two different inertial modules to the same I2C bus.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver
which has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LSM6DS33 behaves like a slave device and the following
protocol must be adhered to. After the start condition (ST) a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted.
The increment of the address is configured by the CTRL3_C (12h) (IF_INC).
The slave address is completed with a Read/Write bit. If the bit is ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write)
the master will transmit to the slave with direction unchanged. Table 11 explains how the
SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 11. SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SA0
R/W
SAD+R/W
Read
110101
0
1
11010101 (D5h)
Write
110101
0
0
11010100 (D4h)
Read
110101
1
1
11010111 (D7h)
Write
110101
1
0
11010110 (D6h)
Table 12. Transfer when master is writing one byte to slave
Master
ST
SAD + W
Slave
SUB
SAK
DATA
SAK
SP
SAK
Table 13. Transfer when master is writing multiple bytes to slave
Master
Slave
ST
SAD + W
SUB
SAK
DATA
SAK
DocID027423 Rev 4
DATA
SAK
SP
SAK
29/77
77
Digital interfaces
LSM6DS33
Table 14. Transfer when master is receiving (reading) one byte of data from slave
Master
ST
SAD + W
Slave
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave
Master
Slave
ST
SAD+W
SUB
SAK
SR SAD+R
SAK
MAK
SAK
DATA
MAK
DAT
A
NMAK
SP
DATA
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left HIGH by
the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In the presented communication format MAK is Master acknowledge and NMAK is No
Master Acknowledge.
6.2
SPI bus interface
The LSM6DS33 SPI is a bus slave. The SPI allows writing and reading the registers of the
device.
The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO.
Figure 7. Read and write protocol
&6
63&
6',
', ', ', ', ', ', ', ',
5:
$' $' $' $' $' $' $'
6'2
'2 '2 '2 '2 '2 '2 '2 '2
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are, respectively, the serial port data input and output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
30/77
DocID027423 Rev 4
LSM6DS33
Digital interfaces
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the
rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When the
CTRL3_C (12h) (IF_INC) bit is ‘0’, the address used to read/write data remains the same for
every block. When the CTRL3_C (12h) (IF_INC) bit is ‘1’, the address used to read/write
data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
6.2.1
SPI read
Figure 8. SPI read protocol
&6
63&
6',
5:
$' $' $' $' $' $' $'
6'2
'2 '2 '2 '2 '2 '2 '2 '2
The SPI Read command is performed with 16 clock pulses. A multiple byte read command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-...: data DO(...-8). Further data in multiple byte reads.
DocID027423 Rev 4
31/77
77
Digital interfaces
LSM6DS33
Figure 9. Multiple byte SPI read protocol (2-byte example)
&6
63&
6',
5:
$' $' $' $' $' $' $'
6'2
'2 '2 '2 '2 '2 '2 '2 '2 '2
'2
'2
'2
'2
'2
'2 '2
6.2.2
SPI write
Figure 10. SPI write protocol
&6
63&
6',
', ', ', ', ', ', ', ',
5:
$' $' $' $' $' $' $'
The SPI Write command is performed with 16 clock pulses. A multiple byte write command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1 -7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writes.
Figure 11. Multiple byte SPI write protocol (2-byte example)
&6
63&
6',
', ', ', ', ', ', ', ', ',',',',',',', ',
5:
$' $' $' $' $' $' $'
32/77
DocID027423 Rev 4
LSM6DS33
6.2.3
Digital interfaces
SPI read in 3-wire mode
A 3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to ‘1’ (SPI serial
interface mode selection).
Figure 12. SPI read protocol in 3-wire mode
&6
63&
6',2
'2 '2 '2 '2 '2 '2 '2 '2
5:
$' $' $' $' $' $' $'
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1-7: address AD(6:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
A multiple read command is also available in 3-wire mode.
DocID027423 Rev 4
33/77
77
Application hints
LSM6DS33
7
Application hints
7.1
LSM6DS33 electrical connections
Figure 13. LSM6DS33 electrical connections
&
9'',2
6'$
6&/
6'2
&6
9GGB,2
Q)
*1'
,17
9''
723
9,(:
,17
5(6
9''
5(6
1&
&
Q)
*1'
*1'
9GGB,2
*1'
*1'
5(6
5(6
5(6
, &FRQILJXUDWLRQ
5SX
*1'
5SX N2KP
6&/
6'$
3XOOXSWREHDGGHG
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1,
C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device
(common design practice).
The functionality of the device and the measured acceleration/angular rate data is
selectable and accessible through the SPI/I2C interface.
The functions, the threshold and the timing of the two interrupt pins for each sensor can be
completely programmed by the user through the SPI/I2C interface.
34/77
DocID027423 Rev 4
LSM6DS33
7.2
Application hints
Pin compatibility with LSM6DS0
Figure 14. Schematic 1 (pin 15 connected to GND)
9GGB,2
&
9GGB,2
6&/63&
6'26$2
&6
6'$6',6'2
Q)
*1'
9''
&
&
—)
Q)
5
5(6
9''
*1'
,17
*1'
5(6
7239,(:
5(6
&DS
&
Q) 9
*1'
*1'
*1'
5(6
5(6
5(6
&PXVWJXDUDQWHHQ)YDOXHXQGHU
9ELDVFRQGLWLRQ
9GGB,2
*1'
, &FRQILJXUDWLRQ
5SX
&
&
5
/60'6
Q) 9
—)
'RQRWPRXQW
/60'6
1RW
QHFHVVDU\
1RW
QHFHVVDU\
2KP
DocID027423 Rev 4
5SX N2KP
6&/
6'$
3XOOXSWREHDGGHG
35/77
77
Application hints
LSM6DS33
Figure 15. Schematic 2 (pin 15 connected to VDD, Vdd_IO = VDD)
9''
&
9GGB,2
6&/63&
6'26$
&6
6'$6',6'2
Q)
*1'
9''
&
,17
&
—)
Q)
5
5(6
9''
*1'
,17
*1'
5(6
7239,(:
5(6
&DS
&
Q) 9
*1'
*1'
*1'
5(6
5(6
5(6
&PXVWJXDUDQWHHQ)YDOXHXQGHU
9ELDVFRQGLWLRQ
9''
*1'
, &FRQILJXUDWLRQ
5SX
36/77
&
&
5
/60'6
Q) 9
—)
'RQRWPRXQW
/60'6
1RW
QHFHVVDU\
1RW
QHFHVVDU\
2KP
DocID027423 Rev 4
5SX N2KP
6&/
6'$
3XOOXSWREHDGGHG
LSM6DS33
8
Register mapping
Register mapping
The table given below provides a list of the 8/16 bit registers embedded in the device and
the corresponding addresses.
Table 16. Registers address map
Register address
Name
RESERVED
Type
r/w
Default
Hex
Binary
00
00000000
00000000
Reserved
00000000
Embedded
functions
configuration
register
FUNC_CFG_ACCESS
r/w
01
RESERVED
r/w
02-05
FIFO_CTRL1
r/w
06
00000110
00000000
FIFO_CTRL2
r/w
07
00000111
00000000
FIFO_CTRL3
r/w
08
00001000
00000000
FIFO_CTRL4
r/w
09
00001001
00000000
FIFO_CTRL5
r/w
0A
00001010
00000000
ORIENT_CFG_G
r/w
0B
00001011
00000000
RESERVED
r/w
0C
00001100
-
INT1_CTRL
r/w
0D
00001101
00000000
INT1 pin control
INT2_CTRL
r/w
0E
00001110
00000000
INT2 pin control
WHO_AM_I
r
0F
00001111
01101001
Who I am ID
CTRL1_XL
r/w
10
00010000
00000000
CTRL2_G
r/w
11
00010001
00000000
CTRL3_C
r/w
12
00010010
00000100
CTRL4_C
r/w
13
00010011
00000000
CTRL5_C
r/w
14
00010100
00000000
CTRL6_C
r/w
15
00010101
00000000
CTRL7_G
r/w
16
00010110
00000000
CTRL8_XL
r/w
17
0001 0111
00000000
CTRL9_XL
r/w
18
00011000
00111000
CTRL10_C
r/w
19
00011001
00111000
1A
00011010
-
RESERVED
00000001
Comment
-
WAKE_UP_SRC
r
1B
00011011
output
TAP_SRC
r
1C
00011100
output
D6D_SRC
r
1D
00011101
output
DocID027423 Rev 4
Reserved
FIFO
configuration
registers
Reserved
Accelerometer
and gyroscope
control
registers
Reserved
Interrupts
registers
37/77
77
Register mapping
LSM6DS33
Table 16. Registers address map (continued)
Register address
Name
Type
Binary
STATUS_REG
r
1E
00011110
output
RESERVED
r
1F
00011111
-
OUT_TEMP_L
r
20
00100000
output
OUT_TEMP_H
r
21
00100001
output
OUTX_L_G
r
22
00100010
output
OUTX_H_G
r
23
00100011
output
OUTY_L_G
r
24
00100100
output
OUTY_H_G
r
25
00100101
output
OUTZ_L_G
r
26
00100110
output
OUTZ_H_G
r
27
00100111
output
OUTX_L_XL
r
28
00101000
output
OUTX_H_XL
r
29
00101001
output
OUTY_L_XL
r
2A
00101010
output
OUTY_H_XL
r
2B
00101011
output
OUTZ_L_XL
r
2C
00101100
output
OUTZ_H_XL
r
2D
00101101
output
RESERVED
2E-39
-
FIFO_STATUS1
r
3A
00111010
output
FIFO_STATUS2
r
3B
00111011
output
FIFO_STATUS3
r
3C
00111100
output
FIFO_STATUS4
r
3D
00111101
output
FIFO_DATA_OUT_L
r
3E
00111110
output
FIFO_DATA_OUT_H
r
3F
00111111
output
TIMESTAMP0_REG
r
40
01000000
output
TIMESTAMP1_REG
r
41
01000001
output
TIMESTAMP2_REG
r/w
42
01000010
output
RESERVED
43-48
-
STEP_TIMESTAMP_L
r
49
0100 1001
output
STEP_TIMESTAMP_H
r
4A
0100 1010
output
STEP_COUNTER_L
r
4B
01001011
output
STEP_COUNTER_H
r
4C
01001100
output
RESERVED
38/77
Default
Hex
4D-52
DocID027423 Rev 4
-
Comment
Status data
register
Reserved
Temperature
output data
register
Gyroscope
output register
Accelerometer
output register
Reserved
FIFO status
registers
FIFO data
output registers
Timestamp
output registers
Reserved
Step counter
timestamp
registers
Step counter
output registers
Reserved
LSM6DS33
Register mapping
Table 16. Registers address map (continued)
Register address
Name
FUNC_SRC
Type
r
RESERVED
Default
Hex
Binary
53
01010011
54-57
output
Interrupt
register
-
Reserved
TAP_CFG
r/w
58
01011000
00000000
TAP_THS_6D
r/w
59
01011001
00000000
INT_DUR2
r/w
5A
01011010
00000000
WAKE_UP_THS
r/w
5B
01011011
00000000
WAKE_UP_DUR
r/w
5C
01011100
00000000
FREE_FALL
r/w
5D
01011101
00000000
MD1_CFG
r/w
5E
01011110
00000000
MD2_CFG
r/w
5F
01011111
00000000
RESERVED
60-6B
Comment
-
Interrupt
registers
Reserved
Registers marked as Reserved must not be changed. Writing to those registers may cause
permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
DocID027423 Rev 4
39/77
77
Register description
9
LSM6DS33
Register description
The device contains a set of registers which are used to control its behavior and to retrieve
linear acceleration, angular rate and temperature data. The register addresses, made up of
7 bits, are used to identify them and to write the data through the serial interface.
9.1
FUNC_CFG_ACCESS (01h)
Enable embedded functions register (r/w).
Table 17. FUNC_CFG_ACCESS register
FUNC_CFG_EN
0
(1)
0(1)
0(1)
0(1)
0(1)
0(1)
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 18. FUNC_CFG_ACCESS register description
Enable access to the embedded functions configuration registers (1) from address
02h to 32h. Default value: 0.
FUNC_CFG_EN
(0: disable access to embedded functions configuration registers;
1: enable access to embedded functions configuration registers)
1. The embedded functions configuration registers details are available in 10: Embedded functions register
mapping and 11: Embedded functions registers description.
9.2
FIFO_CTRL1 (06h)
FIFO control register (r/w).
Table 19. FIFO_CTRL1 register
FTH_7
FTH_6
FTH_5
FTH_4
FTH_3
FTH_2
FTH_1
FTH_0
Table 20. FIFO_CTRL1 register description
FIFO threshold level setting(1). Default value: 0000 0000.
FTH_[7:0]
Watermark flag rises when the number of bytes written to FIFO after the next write is
greater than or equal to the threshold level.
Minimum resolution for the FIFO is 1 LSB = 2 bytes (1 word) in FIFO
1. For a complete watermark threshold configuration, consider FTH_[11:8] in FIFO_CTRL2 (07h).
9.3
FIFO_CTRL2 (07h)
FIFO control register (r/w).
Table 21. FIFO_CTRL2 register
TIMER_PEDO TIMER_PEDO
_FIFO_EN
_FIFO_DRDY
0(1)
0(1)
FTH_11
1. This bit must be set to ‘0’ for the correct operation of the device.
40/77
DocID027423 Rev 4
FTH10
FTH_9
FTH_8
LSM6DS33
Register description
Table 22. FIFO_CTRL2 register description
TIMER_PEDO
_FIFO_EN
Enable pedometer step counter and time stamp. Default: 0
(0: disable step counter and time stamp data;
1: enable step counter and time stamp data.)
TIMER_PEDO
_FIFO_DRDY
FIFO write mode. Default: 0
(0: enable write in FIFO based on XL/Gyro data-ready;
1: enable write in FIFO at every step detected by step counter.)
FTH_[11:8]
FIFO threshold level setting(1). Default value: 0000
Watermark flag rises when the number of bytes written to FIFO after the next
write is greater than or equal to the threshold level.
Minimum resolution for the FIFO is 1LSB = 2 bytes (1 word) in FIFO
1. For a complete watermark threshold configuration, consider FTH_[11:8] in FIFO_CTRL1 (06h)
9.4
FIFO_CTRL3 (08h)
FIFO control register (r/w).
Table 23. FIFO_CTRL3 register
0(1)
0(1)
DEC_FIFO DEC_FIFO DEC_FIFO DEC_FIFO DEC_FIFO DEC_FIFO
_GYRO2
_GYRO1
_GYRO0
_XL2
_XL1
_XL0
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 24. FIFO_CTRL3 register description
DEC_FIFO_GYRO [2:0]
DEC_FIFO_XL [2:0]
Gyro FIFO (first data set) decimation setting. Default: 000
For the configuration setting, refer to Table 25.
Accelerometer FIFO (second data set) decimation setting. Default: 000
For the configuration setting, refer to Table 26.
Table 25. Gyro FIFO decimation setting
DEC_FIFO_GYRO [2:0]
Configuration
000
Gyro sensor not in FIFO
001
No decimation
010
Decimation with factor 2
011
Decimation with factor 3
100
Decimation with factor 4
101
Decimation with factor 8
110
Decimation with factor 16
111
Decimation with factor 32
DocID027423 Rev 4
41/77
77
Register description
LSM6DS33
Table 26. Accelerometer FIFO decimation setting
DEC_FIFO_XL [2:0]
9.5
Configuration
000
Accelerometer sensor not in FIFO
001
No decimation
010
Decimation with factor 2
011
Decimation with factor 3
100
Decimation with factor 4
101
Decimation with factor 8
110
Decimation with factor 16
111
Decimation with factor 32
FIFO_CTRL4 (09h)
FIFO control register (r/w).
Table 27. FIFO_CTRL4 register
0(1)
ONLY_HIGH TIMER_PEDO TIMER_PEDO TIMER_PEDO
_DATA
_DEC_FIFO2 _DEC_FIFO1 _DEC_FIFO1
0(1)
0(1)
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 28. FIFO_CTRL4 register description
8-bit data storage in FIFO. Default: 0
ONLY_HIGH_DATA
(0: disable MSByte only memorization in FIFO for XL and Gyro;
1: enable MSByte only memorization in FIFO for XL and Gyro in FIFO)
Third FIFO data set decimation setting. Default: 000
TIMER_PEDO_DEC_
FIFO[2:0]
For the configuration setting, refer to Table 29.
These bits are used when the bit TIMER_PEDO_FIFO_EN is set to ‘1’ in
FIFO_CTRL2 (07h)
Table 29. Third FIFO data set decimation setting
TIMER_PEDO_DEC_FIFO[2:0]
42/77
Configuration
000
Third FIFO data set not in FIFO
001
No decimation
010
Decimation with factor 2
011
Decimation with factor 3
100
Decimation with factor 4
101
Decimation with factor 8
110
Decimation with factor 16
111
Decimation with factor 32
DocID027423 Rev 4
LSM6DS33
9.6
Register description
FIFO_CTRL5 (0Ah)
FIFO control register (r/w).
Table 30. FIFO_CTRL5 register
0(1)
ODR_
FIFO_3
ODR_
FIFO_2
ODR_
FIFO_1
ODR_
FIFO_0
FIFO_
MODE_2
FIFO_
MODE_1
FIFO_
MODE_0
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 31. FIFO_CTRL5 register description
ODR_FIFO_[3:0]
FIFO_MODE_[2:0]
FIFO ODR selection, setting FIFO_MODE also. Default: 0000
For the configuration setting, refer to Table 32
FIFO mode selection bits, setting ODR_FIFO also. Default value: 000
For the configuration setting refer to Table 33
Table 32. FIFO ODR selection
Configuration(1)
ODR_FIFO_[3:0]
0000
FIFO disabled
0001
FIFO ODR is set to 13 Hz
0010
FIFO ODR is set to 26 Hz
0011
FIFO ODR is set to 52 Hz
0100
FIFO ODR is set to 104 Hz
0101
FIFO ODR is set to 208 Hz
0110
FIFO ODR is set to 416 Hz
0111
FIFO ODR is set to 833 Hz
1000
FIFO ODR is set to 1.66 kHz
1001
FIFO ODR is set to 3.33 kHz
1010
FIFO ODR is set to 6.66 kHz
1. If the device is working at an ODR slower than the one selected, FIFO ODR is limited to that ODR value.
Moreover, these bits are effective if the TIMER_PEDO_FIFO_DRDY bit of FIFO_CTRL2 (07h) is set to 0.
Table 33. FIFO mode selection
FIFO_MODE_[2:0]
Configuration mode
000
Bypass mode. FIFO disabled.
001
FIFO mode. Stops collecting data when FIFO is full.
010
Reserved
011
Continuous mode until trigger is deasserted, then FIFO mode.
100
Bypass mode until trigger is deasserted, then Continuous mode.
101
Reserved
110
Continuous mode. If the FIFO is full, the new sample overwrites the older one.
111
Reserved
DocID027423 Rev 4
43/77
77
Register description
9.7
LSM6DS33
ORIENT_CFG_G (0Bh)
Angular rate sensor sign and orientation register (r/w).
Table 34. ORIENT_CFG_G register
0
(1)
0
(1)
SignX_G
SignY_G
SignZ_G
Orient_2
Orient_1
Orient_0
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 35. ORIENT_CFG_G register description
SignX_G
Pitch axis (X) angular rate sign. Default value: 0
(0: positive sign; 1: negative sign)
SignY_G
Roll axis (Y) angular rate sign. Default value: 0
(0: positive sign; 1: negative sign)
SignZ_G
Yaw axis (Z) angular rate sign. Default value: 0
(0: positive sign; 1: negative sign)
Orient [2:0]
Directional user-orientation selection. Default value: 000
For the configuration setting, refer to Table 36.
Table 36. Settings for orientation of axes
Orient [2:0]
9.8
000
001
010
011
100
101
Pitch
X
X
Y
Y
Z
Z
Roll
Y
Z
X
Z
X
Y
Yaw
Z
Y
Z
X
Y
X
INT1_CTRL (0Dh)
INT1 pad control register (r/w).
Each bit in this register enables a signal to be carried through INT1. The pad’s output will
supply the OR combination of the selected signals.
Table 37. INT1_CTRL register
INT1_
INT1_SIGN INT1_FULL
INT1_
STEP_
_MOT
_FLAG
FIFO_OVR
DETECTOR
44/77
DocID027423 Rev 4
INT1_
FTH
INT1_
BOOT
INT1_
INT1_
DRDY_G DRDY_XL
LSM6DS33
Register description
Table 38. INT1_CTRL register description
Pedometer step recognition interrupt enable on INT1 pad. Default value: 0
INT1_ STEP_
DETECTOR
(0: disabled; 1: enabled)
Significant motion interrupt enable on INT1 pad. Default value: 0
INT1_SIGN_MOT
(0: disabled; 1: enabled)
FIFO full flag interrupt enable on INT1 pad. Default value: 0
INT1_FULL_FLAG
(0: disabled; 1: enabled)
FIFO overrun interrupt on INT1 pad. Default value: 0
INT1_FIFO_OVR
(0: disabled; 1: enabled)
FIFO threshold interrupt on INT1 pad. Default value: 0
INT1_FTH
(0: disabled; 1: enabled)
Boot status available on INT1 pad. Default value: 0
INT1_ BOOT
(0: disabled; 1: enabled)
Gyroscope Data Ready on INT1 pad. Default value: 0
INT1_DRDY_G
(0: disabled; 1: enabled)
Accelerometer Data Ready on INT1 pad. Default value: 0
INT1_DRDY_XL
(0: disabled; 1: enabled)
9.9
INT2_CTRL (0Eh)
INT2 pad control register (r/w).
Each bit in this register enables a signal to be carried through INT2. The pad’s output will
supply the OR combination of the selected signals.
Table 39. INT2_CTRL register
INT2_STEP INT2_STEP_
INT2_
INT2_
_DELTA
COUNT_OV FULL_FLAG FIFO_OVR
INT2_
FTH
INT2_
DRDY
_TEMP
INT2_
DRDY_G
INT2_
DRDY_XL
Table 40. INT2_CTRL register description
INT2_STEP_DELTA
INT2_STEP_COUNT
_OV
INT2_ FULL_FLAG
INT2_FIFO_OVR
INT2_FTH
INT2_DRDY_TEMP
INT2_DRDY_G
INT2_DRDY_XL
Pedometer step recognition interrupt on delta time(1) enable on INT2 pad.
Default value: 0
(0: disabled; 1: enabled)
Step counter overflow interrupt enable on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
FIFO full flag interrupt enable on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
FIFO overrun interrupt on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
FIFO threshold interrupt on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
Temperature Data Ready in INT2 pad. Default value: 0
(0: disabled; 1: enabled)
Gyroscope Data Ready on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
Accelerometer Data Ready on INT2 pad. Default value: 0
(0: disabled; 1: enabled)
1. Delta time value is defined in register STEP_COUNT_DELTA (15h).
DocID027423 Rev 4
45/77
77
Register description
9.10
LSM6DS33
WHO_AM_I (0Fh)
Who_AM_I register (r). This register is a read-only register. Its value is fixed at 69h.
Table 41. WHO_AM_I register
0
9.11
1
1
0
1
0
0
1
FS_XL0
BW_XL1
BW_XL0
CTRL1_XL (10h)
Linear acceleration sensor control register 1 (r/w).
Table 42. CTRL1_XL register
ODR_XL3
ODR_XL2
ODR_XL1
ODR_XL0
FS_XL1
Table 43. CTRL1_XL register description
ODR_XL [3:0]
Output data rate and power mode selection. Default value: 0000 (see Table 44).
FS_XL [1:0]
Accelerometer full-scale selection. Default value: 00.
(00: ±2 g; 01: ±16 g; 10: ±4 g; 11: ±8 g)
BW_XL [1:0]
Anti-aliasing filter bandwidth selection. Default value: 00
(00: 400 Hz; 01: 200 Hz; 10: 100 Hz; 11: 50 Hz)
Table 44. Accelerometer ODR register setting
ODR_ ODR_ ODR_ ODR_
XL3
XL2
XL1
XL0
46/77
ODR selection [Hz] when
XL_HM_MODE = 1
ODR selection [Hz] when
XL_HM_MODE = 0
0
0
0
0
Power-down
Power-down
0
0
0
1
13 Hz (low power)
13 Hz (high performance)
0
0
1
0
26 Hz (low power)
26 Hz (high performance)
0
0
1
1
52 Hz (low power)
52 Hz (high performance)
0
1
0
0
104 Hz (normal mode)
104 Hz (high performance)
0
1
0
1
208 Hz (normal mode)
208 Hz (high performance)
0
1
1
0
416 Hz (high performance)
416 Hz (high performance)
0
1
1
1
833 Hz (high performance)
833 Hz (high performance)
1
0
0
0
1.66 kHz (high performance)
1.66 kHz (high performance)
1
0
0
1
3.33 kHz (high performance)
3.33 kHz (high performance)
1
0
1
0
6.66 kHz (high performance)
6.66 kHz (high performance)
DocID027423 Rev 4
LSM6DS33
Register description
Table 45. BW and ODR (high-performance mode)
Analog filter BW (XL_HM_MODE = 0)
ODR(1)
XL_BW_SCAL_ODR = 0
6.66 - 3.33 kHz
Filter not used
1.66 kHz
400 Hz
833 Hz
400 Hz
416 Hz
200 Hz
208 Hz
100 Hz
104 - 13 Hz
50 Hz
XL_BW_SCAL_ODR = 1
Bandwidth is determined by
setting BW_XL[1:0] in
CTRL1_XL (10h)
1. Filter not used when accelerometer is in normal and low-power modes.
DocID027423 Rev 4
47/77
77
Register description
9.12
LSM6DS33
CTRL2_G (11h)
Angular rate sensor control register 2 (r/w).
Table 46. CTRL2_G register
ODR_G3
ODR_G2
ODR_G1
ODR_G0
FS_G1
FS_G0
FS_125
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 47. CTRL2_G register description
ODR_G [3:0]
Gyroscope output data rate selection. Default value: 0000
(Refer toTable 46)
FS_G [1:0]
Gyroscope full-scale selection. Default value: 00
(00: 245 dps; 01: 500 dps; 10: 1000 dps; 11: 2000 dps)
FS_125
Gyroscope full-scale at 125 dps. Default value: 0
(0: disabled; 1: enabled)
Table 48. Gyroscope ODR configuration setting
ODR [Hz] when
G_HM_MODE = 1
ODR [Hz] when
G_HM_MODE = 0
ODR_G3
ODR_G2
ODR_G1
ODR_G0
0
0
0
0
Power down
Power down
0
0
0
1
13 Hz (low power)
13 Hz (high performance)
0
0
1
0
26 Hz (low power)
26 Hz (high performance)
0
0
1
1
52 Hz (low power)
52 Hz (high performance)
0
1
0
0
104 Hz (normal mode)
104 Hz (high performance)
0
1
0
1
208 Hz (normal mode)
208 Hz (high performance)
0
1
1
0
416 Hz (high performance)
416 Hz (high performance)
0
1
1
1
833 Hz (high performance)
833 Hz (high performance)
1
0
0
0
1.66 kHz (high performance)
1.66 kHz (high performance)
48/77
DocID027423 Rev 4
LSM6DS33
9.13
Register description
CTRL3_C (12h)
Control register 3 (r/w).
Table 49. CTRL3_C register
BOOT
BDU
H_LACTIVE
PP_OD
SIM
IF_INC
BLE
SW_RESET
Table 50. CTRL3_C register description
BOOT
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content(1))
BDU
Block Data Update. Default value: 0
(0: continuous update; 1: output registers not updated until MSB and LSB have
been read)
H_LACTIVE
Interrupt activation level. Default value: 0
(0: interrupt output pads active high; 1: interrupt output pads active low)
PP_OD
Push-pull/open-drain selection on INT1 and INT2 pads. Default value: 0
(0: push-pull mode; 1: open-drain mode)
SIM
SPI Serial Interface Mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
IF_INC
Register address automatically incremented during a multiple byte access with a
serial interface (I2C or SPI). Default value: 1
(0: disabled; 1: enabled)
BLE
Big/Little Endian Data selection. Default value 0
(0: data LSB @ lower address; 1: data MSB @ lower address)
SW_RESET
Software reset. Default value: 0
(0: normal mode; 1: reset device)
This bit is cleared by hardware after next flash boot.
1. Boot request is executed as soon as internal oscillator is turned on. It is possible to set bit while in powerdown mode, in this case it will be served at the next normal mode or sleep mode.
DocID027423 Rev 4
49/77
77
Register description
9.14
LSM6DS33
CTRL4_C (13h)
Control register 4 (r/w).
Table 51. CTRL4_C register
XL_BW_
INT2_on_
FIFO_
SLEEP_G
SCAL_ODR
INT1
TEMP_EN
DRDY_
MASK
I2C_disable
0
STOP_ON
_FTH
Table 52. CTRL4_C register description
XL_BW_
SCAL_ODR
Accelerometer bandwidth selection. Default value: 0
(0(1): bandwidth determined by ODR selection, refer to Table 45;
1(2): bandwidth determined by setting BW_XL[1:0] in CTRL1_XL (10h) register.)
SLEEP_G
Gyroscope sleep mode enable. Default value: 0
(0: disabled; 1: enabled)
INT2_on_INT1
All interrupt signals available on INT1 pad enable. Default value: 0
(0: interrupt signals divided between INT1 and INT2 pads;
1: all interrupt signals in logic or on INT1 pad)
FIFO_TEMP_EN Enable temperature data as 4th FIFO data set(3). Default: 0
(0: disable temperature data as 4th FIFO data set;
1: enable temperature data as 4th FIFO data set)
DRDY_MASK
Configuration 1(4) data available enable bit. Default value: 0
(0: DA timer disabled; 1: DA timer enabled)
I2C_disable
Disable I2C interface. Default value: 0
(0: both I2C and SPI enabled; 1: I2C disabled, SPI only)
STOP_ON_FTH
Enable FIFO threshold level use. Default value: 0.
(0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level)
1. Filter used in high-performance mode only with ODR less than 3.33 kHz.
2. Filter used in high-performance mode only.
3. This bit is effective if the TIMER_PEDO_FIFO_EN bit of FIFO_CTRL2 register is set to 0.
4. In configuration 1, switching to combo mode, data are collected in FIFO only when both accelerometer and
gyroscope are set. Switching to accelerometer only, data are collected in FIFO after filter setting.
9.15
CTRL5_C (14h)
Control register 5 (r/w).
Table 53. CTRL5_C register
ROUNDING2 ROUNDING1 ROUNDING0
0(1)
ST1_G
ST0_G
ST1_XL
1. This bit must be set to ‘0’ for the correct operation of the device
Table 54. CTRL5_C register description
ROUNDING[2:0] Circular burst-mode (rounding) read from output registers. Default: 000
(000: no rounding; Others: refer to Table 55)
50/77
ST_G [1:0]
Angular rate sensor self-test enable. Default value: 00
(00: Self-test disabled; Other: refer to Table 56)
ST_XL [1:0]
Linear acceleration sensor self-test enable. Default value: 00
(00: Self-test disabled; Other: refer to Table 57)
DocID027423 Rev 4
ST0_XL
LSM6DS33
Register description
Table 55. Output registers rounding pattern
ROUNDING[2:0]
Rounding pattern
000
No rounding
001
Accelerometer only
010
Gyroscope only
011
Gyroscope + accelerometer
Table 56. Angular rate sensor self-test mode selection
ST1_G
ST0_G
Self-test mode
0
0
Normal mode
0
1
Positive sign self-test
1
0
Not allowed
1
1
Negative sign self-test
Table 57. Linear acceleration sensor self-test mode selection
ST1_XL
9.16
ST0_XL
Self-test mode
0
0
Normal mode
0
1
Positive sign self-test
1
0
Negative sign self-test
1
1
Not allowed
CTRL6_C (15h)
Angular rate sensor control register 6 (r/w).
Table 58. CTRL6_C register
TRIG_EN
LVLen
LVL2_EN
XL_HM_MODE
0(1)
0(1)
0(1)
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 59. CTRL6_C register description
TRIG_EN
Gyroscope data edge-sensitive trigger enable. Default value: 0
(0: external trigger disabled; 1: external trigger enabled)
LVLen
Gyroscope data level-sensitive trigger enable. Default value: 0
(0: level-sensitive trigger disabled; 1: level sensitive trigger enabled)
LVL2_EN
Gyroscope level-sensitive latched enable. Default value: 0
(0: level-sensitive latched disabled; 1: level sensitive latched enabled)
XL_HM_MODE
High-performance operating mode disable for accelerometer(1). Default value: 0
(0: high-performance operating mode enabled;
1: high-performance operating mode disabled)
1. Normal and low-power mode depends on the ODR setting, for details refer to Table 44.
DocID027423 Rev 4
51/77
77
Register description
9.17
LSM6DS33
CTRL7_G (16h)
Angular rate sensor control register 7 (r/w).
Table 60. CTRL7_G register
G_HM_MODE
HP_G_
EN
HPCF_G1
HPCF_G0
HP_G_R ROUNDING_
ST
STATUS
0(1)
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 61. CTRL7_G register description
High-performance operating mode disable for gyroscope(1). Default: 0
G_HM_MODE (0: high-performance operating mode enabled;
1: high-performance operating mode disabled)
HP_G_EN
Gyroscope high-pass filter enable. Default value: 0
(0: HPF disabled; 1: HPF enabled)
HP_G_RST
Gyro digital HP filter reset. Default: 0
(0: gyro digital HP filter reset OFF; 1: gyro digital HP filter reset ON)
ROUNDING_
STATUS
Source register rounding function enable on STATUS_REG (1Eh), FUNC_SRC
(53h) and WAKE_UP_SRC (1Bh) registers. Default value: 0
(0: disabled; 1: enabled)
HPCF_G[1:0]
Gyroscope high-pass filter cutoff frequency selection. Default value: 00.
Refer to Table 62.
1. Normal and low-power mode depends on the ODR setting, for details refer to Table 48.
Table 62. Gyroscope high-pass filter mode configuration
HPCF_G1
9.18
HPCF_G0
High-pass filter cutoff frequency
0
0
0.0081 Hz
0
1
0.0324 Hz
1
0
2.07 Hz
1
1
16.32 Hz
CTRL8_XL (17h)
Linear acceleration sensor control register 8 (r/w).
Table 63. CTRL8_XL register
LPF2_XL_
EN
HPCF_
XL1
HPCF_
XL0
0(1)
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
52/77
DocID027423 Rev 4
HP_SLOPE_X
L_EN
0(1)
LOW_PASS
_ON_6D
LSM6DS33
Register description
Table 64. CTRL8_XL register description
LPF2_XL_EN
Accelerometer low-pass filter LPF2 selection. Refer to Figure 5.
HPCF_XL[1:0]
Accelerometer slope filter and high-pass filter configuration and cutoff
setting. Refer to Table 65.
HP_SLOPE_XL_EN
Accelerometer slope filter / high-pass filter selection. Refer to Figure 5.
LOW_PASS_ON_6D Low-pass filter on 6D function selection. Refer to Figure 5.
Table 65. Accelerometer slope and high-pass filter selection and cutoff frequency
9.19
HPCF_XL[1:0]
Applied filter
HP filter cutoff frequency [Hz]
00
Slope
ODR_XL/50
01
High-pass
ODR_XL/100
10
High-pass
ODR_XL/9
11
High-pass
ODR_XL/400
CTRL9_XL (18h)
Linear acceleration sensor control register 9 (r/w).
Table 66. CTRL9_XL register
0(1)
0(1)
Zen_XL
Yen_XL
Xen_XL
0(1)
0(1)
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 67. CTRL9_XL register description
Zen_XL
Accelerometer Z-axis output enable. Default value: 1
(0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_XL
Accelerometer Y-axis output enable. Default value: 1
(0: Y-axis output disabled; 1: Y-axis output enabled)
Xen_XL
Accelerometer X-axis output enable. Default value: 1
(0: X-axis output disabled; 1: X-axis output enabled)
DocID027423 Rev 4
53/77
77
Register description
9.20
LSM6DS33
CTRL10_C (19h)
Control register 10 (r/w).
Table 68. CTRL10_C register
0(1)
0(1)
Zen_G
Yen_G
Xen_G
FUNC_EN
PEDO_RST
SIGN_
_STEP
MOTION_EN
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 69. CTRL10_C register description
Zen_G
Gyroscope yaw axis (Z) output enable. Default value: 1
(0: Z-axis output disabled; 1: Z-axis output enabled)
Yen_G
Gyroscope roll axis (Y) output enable. Default value: 1
(0: Y-axis output disabled; 1: Y axis output enabled)
Xen_G
Gyroscope pitch axis (X) output enable. Default value: 1
(0: X-axis output disabled; 1: X-axis output enabled)
FUNC_EN
Enable embedded functionalities (pedometer, tilt, significant motion) and
accelerometer HP and LPF2 filters (refer to Figure 5). Default value: 0
(0: disable functionalities of embedded functions and accelerometer filters;
1: enable functionalities of embedded functions and accelerometer filters)
PEDO_RST_
STEP
Reset pedometer step counter. Default value: 0
(0: disabled; 1: enabled)
SIGN_MOTION Enable significant motion function. Default value: 0
_EN
(0: disabled; 1: enabled)
9.21
WAKE_UP_SRC (1Bh)
Wake up interrupt source register (r).
Table 70. WAKE_UP_SRC register
0(1)
0(1)
FF_IA
SLEEP_
STATE_IA
WU_IA
X_WU
Y_WU
Z_WU
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 71. WAKE_UP_SRC register description
54/77
FF_IA
Free-fall event detection status. Default: 0
(0: free-fall event not detected; 1: free-fall event detected)
SLEEP_
STATE_IA
Sleep event status. Default value: 0
(0: sleep event not detected; 1: sleep event detected)
WU_IA
Wakeup event detection status. Default value: 0
(0: wakeup event not detected; 1: wakeup event detected.)
X_WU
Wakeup event detection status on X-axis. Default value: 0
(0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y_WU
Wakeup event detection status on Y-axis. Default value: 0
(0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Z_WU
Wakeup event detection status on Z-axis. Default value: 0
(0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)
DocID027423 Rev 4
LSM6DS33
9.22
Register description
TAP_SRC (1Ch)
Tap source register (r).
Table 72. TAP_SRC register
0(1)
TAP_IA
SINGLE_
TAP
DOUBLE_
TAP_SIGN
TAP
X_TAP
Y_TAP
Z_TAP
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 73. TAP_SRC register description
Tap event detection status. Default: 0
(0: tap event not detected; 1: tap event detected)
Single-tap event status. Default value: 0
SINGLE_TAP
(0: single tap event not detected; 1: single tap event detected)
Double-tap event detection status. Default value: 0
DOUBLE_TAP
(0: double-tap event not detected; 1: double-tap event detected.)
Sign of acceleration detected by tap event. Default: 0
TAP_SIGN
(0: positive sign of acceleration detected by tap event;
1: negative sign of acceleration detected by tap event)
Tap event detection status on X-axis. Default value: 0
X_TAP
(0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Tap event detection status on Y-axis. Default value: 0
Y_TAP
(0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
Tap event detection status on Z-axis. Default value: 0
Z_TAP
(0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)
TAP_IA
9.23
D6D_SRC (1Dh)
Portrait, landscape, face-up and face-down source register (r)
Table 74. D6D_SRC register
0(1)
D6D_IA
ZH
ZL
YH
YL
XH
XL
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 75. D6D_SRC register description
D6D_
IA
Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0
(0: change position not detected; 1: change position detected)
ZH
Z-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over threshold) detected)
ZL
Z-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)
YH
Y-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over-threshold) detected)
YL
Y-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)
X_H
X-axis high event (over threshold). Default value: 0
(0: event not detected; 1: event (over threshold) detected)
X_L
X-axis low event (under threshold). Default value: 0
(0: event not detected; 1: event (under threshold) detected)
DocID027423 Rev 4
55/77
77
Register description
9.24
LSM6DS33
STATUS_REG (1Eh)
Table 76. STATUS_REG register
-
-
-
-
EV_BOOT
TDA
GDA
XLDA
Table 77. STATUS_REG register description
9.25
EV_BOOT
Boot running flag signal. Default value: 0
(0: no boot running; 1: boot running)
TDA
Temperature new data available. Default: 0
(0: no set of data is available at temperature sensor output;
1: a new set of data is available at temperature sensor output)
GDA
Gyroscope new data available. Default value: 0
(0: no set of data available at gyroscope output;
1: a new set of data is available at gyroscope output)
XLDA
Accelerometer new data available. Default value: 0
(0: no set of data available at accelerometer output;
1: a new set of data is available at accelerometer output)
OUT_TEMP_L (20h), OUT_TEMP(21h)
Temperature data output register (r). L and H registers together express a 16-bit word in two’s
complement (r).
Table 78. OUT_TEMP_L register
Temp7
Temp6
Temp5
Temp4
Temp3
Temp2
Temp1
Temp0
Temp9
Temp8
Table 79. OUT_TEMP_H register
Temp15
Temp14
Temp13
Temp12
Temp11
Temp10
Table 80. OUT_TEMP register description
Temp[15:0]
9.26
Temperature sensor output data
The value is expressed as two’s complement sign extended on the MSB.
OUTX_L_G (22h)
Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit
word in two’s complement. (r)
Table 81. OUTX_L_G register
D7
D6
D5
D4
D3
D2
Table 82. OUTX_L_G register description
D[7:0]
56/77
Pitch axis (X) angular rate value (LSbyte)
DocID027423 Rev 4
D1
D0
LSM6DS33
9.27
Register description
OUTX_H_G (23h)
Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit
word in two’s complement. (r)
Table 83. OUTX_H_G register
D15
D14
D13
D12
D11
D10
D9
D8
Table 84. OUTX_H_G register description
D[15:8]
9.28
Pitch axis (X) angular rate value (MSbyte)
OUTY_L_G (24h)
Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit
word in two’s complement. (r).
Table 85. OUTY_L_G register
D7
D6
D5
D4
D3
D2
D1
D0
Table 86. OUTY_L_G register description
D[7:0]
9.29
Roll axis (Y) angular rate value (LSbyte)
OUTY_H_G (25h)
Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit
word in two’s complement. (r).
Table 87. OUTY_H_G register
D15
D14
D13
D12
D11
D10
D9
D8
Table 88. OUTY_H_G register description
D[15:8]
9.30
Roll axis (Y) angular rate value (MSbyte)
OUTZ_L_G (26h)
Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit
word in two’s complement. (r).
Table 89. OUTZ_L_G register
D7
D6
D5
D4
D3
D2
D1
D0
Table 90. OUTZ_L_G register description
D[7:0]
Yaw axis (Z) angular rate value (LSbyte)
DocID027423 Rev 4
57/77
77
Register description
9.31
LSM6DS33
OUTZ_H_G (27h)
Angular rate sensor Yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit
word in two’s complement.
Table 91. OUTZ_H_G register
D15
D14
D13
D12
D11
D10
D9
D8
Table 92. OUTZ_H_G register description
D[15:8]
9.32
Yaw axis (Z) angular rate value (MSbyte)
OUTX_L_XL (28h)
Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 93. OUTX_L_XL register
D7
D6
D5
D4
D3
D2
D1
D0
Table 94. OUTX_L_XL register description
D[7:0]
9.33
X-axis linear acceleration value (LSbyte)
OUTX_H_XL (29h)
Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 95. OUTX_H_XL register
D15
D14
D13
D12
D11
D10
D9
D8
Table 96. OUTX_H_XL register description
D[15:8]
9.34
X-axis linear acceleration value (MSbyte)
OUTY_L_XL (2Ah)
Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 97. OUTY_L_XL register
D7
D6
D5
D4
D3
D2
Table 98. OUTY_L_XL register description
D[7:0]
58/77
Y-axis linear acceleration value (LSbyte)
DocID027423 Rev 4
D1
D0
LSM6DS33
9.35
Register description
OUTY_H_XL (2Bh)
Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 99. OUTY_H_G register
D15
D14
D13
D12
D11
D10
D9
D8
Table 100. OUTY_H_G register description
D[15:8]
9.36
Y-axis linear acceleration value (MSbyte)
OUTZ_L_XL (2Ch)
Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 101. OUTZ_L_XL register
D7
D6
D5
D4
D3
D2
D1
D0
Table 102. OUTZ_L_XL register description
D[7:0]
9.37
Z-axis linear acceleration value (LSbyte)
OUTZ_H_XL (2Dh)
Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two’s
complement.
Table 103. OUTZ_H_XL register
D15
D14
D13
D12
D11
D10
D9
D8
Table 104. OUTZ_H_XL register description
D[15:8]
9.38
Z-axis linear acceleration value (MSbyte)
FIFO_STATUS1 (3Ah)
FIFO status control register (r). For a proper reading of the register, it is recommended to set the
BDU bit in CTRL3_C (12h) to 1.
Table 105. FIFO_STATUS1 register
DIFF_
FIFO_7
DIFF_
FIFO_6
DIFF_
FIFO_5
DIFF_
FIFO_4
DIFF_
FIFO_3
DIFF_
FIFO_2
DIFF_
FIFO_1
DIFF_
FIFO_0
Table 106. FIFO_STATUS1 register description
DIFF_FIFO_[7:0]
Number of unread words (16-bit axes) stored in FIFO(1).
1. For a complete number of unread samples, consider DIFF_FIFO [11:8] in FIFO_STATUS2 (3Bh)
DocID027423 Rev 4
59/77
77
Register description
9.39
LSM6DS33
FIFO_STATUS2 (3Bh)
FIFO status control register (r). For a proper reading of the register, it is recommended to set the
BDU bit in CTRL3_C (12h) to 1.
Table 107. FIFO_STATUS2 register
FTH
FIFO_
OVER_RUN
FIFO_
FULL
FIFO_
EMPTY
DIFF_
FIFO_11
DIFF_
FIFO_10
DIFF_
FIFO_9
DIFF_
FIFO_8
Table 108. FIFO_STATUS2 register description
FTH
FIFO watermark status. Default value: 0
(0: FIFO filling is lower than watermark level(1);
1: FIFO filling is equal to or higher than the watermark level)
FIFO_OVER_RUN FIFO overrun status. Default value: 0
(0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO_FULL
FIFO full status. Default value: 0
(0: FIFO is not full; 1: FIFO will be full at the next ODR)
FIFO_EMPTY
FIFO empty bit. Default value: 0
(0: FIFO contains data; 1: FIFO is empty)
DIFF_FIFO_[7:0]
Number of unread words (16-bit axes) stored in FIFO(2).
1. FIFO watermark level is set in FTH_[11:0] in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)
2. For a complete number of unread samples, consider DIFF_FIFO [11:8] in FIFO_STATUS1 (3Ah)
9.40
FIFO_STATUS3 (3Ch)
FIFO status control register (r). For a proper reading of the register, it is recommended to set the
BDU bit in CTRL3_C (12h) to 1.
Table 109. FIFO_STATUS3 register
FIFO_
PATTERN
_7
FIFO_
PATTERN
_6
FIFO_
PATTERN
_5
FIFO_
PATTERN
_4
FIFO_
PATTERN
_3
FIFO_
PATTERN
_2
FIFO_
PATTERN
_1
Table 110. FIFO_STATUS3 register description
FIFO_
PATTERN_[7:0]
60/77
Word of recursive pattern read at the next reading.
DocID027423 Rev 4
FIFO_
PATTERN
_0
LSM6DS33
9.41
Register description
FIFO_STATUS4 (3Dh)
FIFO status control register (r). For a proper reading of the register, it is recommended to set the
BDU bit in CTRL3_C (12h) to 1.
Table 111. FIFO_STATUS4 register
0(1)
0(1)
0(1)
0(1)
0(1)
0(1)
FIFO_
PATTERN_9
FIFO_
PATTERN_8
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 112. FIFO_STATUS4 register description
FIFO_
PATTERN_[9:8]
9.42
Word of recursive pattern read at the next reading.
FIFO_DATA_OUT_L (3Eh)
FIFO data output register (r). For a proper reading of the register, it is recommended to set the BDU bit
in CTRL3_C (12h) to 1.
Table 113. FIFO_DATA_OUT_L register
DATA_
OUT_
FIFO_L_7
DATA_
OUT_
FIFO_L_6
DATA_
OUT_
FIFO_L_5
DATA_
OUT_
FIFO_L_4
DATA_
OUT_
FIFO_L_3
DATA_
OUT_
FIFO_L_2
DATA_
OUT_
FIFO_L_1
DATA_
OUT_
FIFO_L_0
Table 114. FIFO_DATA_OUT_L register description
DATA_OUT_FIFO_L_[7:0]
9.43
FIFO data output (first byte)
FIFO_DATA_OUT_H (3Fh)
FIFO data output register (r). For a proper reading of the register, it is recommended to set the BDU bit
in CTRL3_C (12h) to 1.
Table 115. FIFO_DATA_OUT_H register
DATA_
DATA_
DATA_
DATA_
DATA_
DATA_
DATA_
DATA_
OUT_
OUT_
OUT_
OUT_
OUT_
OUT_
OUT_
OUT_
FIFO_H_7 FIFO_H_6 FIFO_H_5 FIFO_H_4 FIFO_H_3 FIFO_H_2 FIFO_H_1 FIFO_H_0
Table 116. FIFO_DATA_OUT_H register description
DATA_OUT_FIFO_H_[7:0]
FIFO data output (second byte)
DocID027423 Rev 4
61/77
77
Register description
9.44
LSM6DS33
TIMESTAMP0_REG (40h)
Time stamp first byte data output register (r). The value is expressed as a 24-bit word and the bit
resolution is defined by setting the value in WAKE_UP_DUR (5Ch).
Table 117. TIMESTAMP0_REG register
TIMESTA
MP0_7
TIMESTA
MP0_6
TIMESTA
MP0_5
TIMESTA
MP0_4
TIMESTA
MP0_3
TIMESTA
MP0_2
TIMESTA
MP0_1
TIMESTA
MP0_0
Table 118. TIMESTAMP0_REG register description
TIMESTAMP0_[7:0]
9.45
TIMESTAMP first byte data output
TIMESTAMP1_REG (41h)
Time stamp second byte data output register (r). The value is expressed as a 24-bit word and the bit
resolution is defined by setting value in WAKE_UP_DUR (5Ch).
Table 119. TIMESTAMP1_REG register
TIMESTA
MP1_7
TIMESTA
MP1_6
TIMESTA
MP1_5
TIMESTA
MP1_4
TIMESTA
MP1_3
TIMESTA
MP1_2
TIMESTA
MP1_1
TIMESTA
MP1_0
Table 120. TIMESTAMP1_REG register description
TIMESTAMP1_[7:0]
9.46
TIMESTAMP second byte data output
TIMESTAMP2_REG (42h)
Time stamp third byte data output register (r/w). The value is expressed as a 24-bit word and the bit
resolution is defined by setting the value in WAKE_UP_DUR (5Ch). To reset the timer, the AAh value
has to be stored in this register.
Table 121. TIMESTAMP2_REG register
TIMESTA
MP2_7
TIMESTA
MP2_6
TIMESTA
MP2_5
TIMESTA
MP2_4
TIMESTA
MP2_3
TIMESTA
MP2_2
TIMESTA
MP2_1
TIMESTA
MP2_0
Table 122. TIMESTAMP2_REG register description
TIMESTAMP2_[7:0] TIMESTAMP third byte data output
9.47
STEP_TIMESTAMP_L (49h)
Step counter timestamp information register (r). When a step is detected, the value of
TIMESTAMP_REG1 register is copied in STEP_TIMESTAMP_L.
Table 123. STEP_TIMESTAMP_L register
STEP_
TIMESTA
MP_L_7
STEP_
TIMESTA
MP_L_6
STEP_
TIMESTA
MP_L_5
STEP_
TIMESTA
MP_L_4
STEP_
TIMESTA
MP_L_3
STEP_
TIMESTA
MP_L_2
STEP_
TIMESTA
MP_L_1
Table 124. STEP_TIMESTAMP_L register description
STEP_TIMESTAMP_L[7:0]
62/77
Timestamp of last step detected.
DocID027423 Rev 4
STEP_
TIMESTA
MP_L_0
LSM6DS33
9.48
Register description
STEP_TIMESTAMP_H (4Ah)
Step counter timestamp information register (r). When a step is detected, the value of
TIMESTAMP_REG2 register is copied in STEP_TIMESTAMP_H.
Table 125. STEP_TIMESTAMP_H register
STEP_
TIMESTA
MP_H_7
STEP_
TIMESTA
MP_H_6
STEP_
TIMESTA
MP_H_5
STEP_
TIMESTA
MP_H_4
STEP_
TIMESTA
MP_H_2
STEP_
TIMESTA
MP_H_3
STEP_
TIMESTA
MP_H_0
STEP_
TIMESTA
MP_H_1
Table 126. STEP_TIMESTAMP_H register description
STEP_TIMESTAMP_H[7:0]
9.49
Timestamp of last step detected.
STEP_COUNTER_L (4Bh)
Step counter output register (r).
Table 127. STEP_COUNTER_L register
STEP_CO STEP_CO STEP_CO STEP_CO STEP_CO STEP_CO STEP_CO STEP_CO
UNTER_L UNTER_L UNTER_L UNTER_L UNTER_L UNTER_L UNTER_L UNTER_L
_7
_6
_5
_4
_3
_2
_1
_0
Table 128. STEP_COUNTER_L register description
STEP_COUNTER_L_[7:0]
9.50
Step counter output (LSbyte)
STEP_COUNTER_H (4Ch)
Step counter output register (r).
Table 129. STEP_COUNTER_H register
STEP_CO STEP_CO STEP_CO STEP_CO STEP_CO STEP_CO STEP_CO STEP_CO
UNTER_H UNTER_H UNTER_H UNTER_H UNTER_H UNTER_H UNTER_H UNTER_H
_7
_6
_5
_4
_3
_2
_1
_0
Table 130. STEP_COUNTER_H register description
STEP_COUNTER_H_[7:0]
9.51
Step counter output (MSbyte)
FUNC_SRC (53h)
Significant motion, tilt, step detector interrupt source register (r).
Table 131. FUNC_SRC register
STEP_COUNT_
DELTA_IA
SIGN_
MOTION_IA
TILT_IA
STEP_
DETECTED
DocID027423 Rev 4
STEP_
OVERFLOW
0
0
0
63/77
77
Register description
LSM6DS33
Table 132. FUNC_SRC register description
Pedometer step recognition on delta time status. Default value: 0
STEP_COUNT
(0: no step recognized during delta time; 1: at least one step recognized during
_DELTA_IA
delta time)
Significant motion event detection status. Default value: 0
SIGN_
MOTION_IA
(0: significant motion event not detected; 1: significant motion event detected)
Tilt event detection status. Default value: 0
TILT_IA
(0: tilt event not detected; 1: tilt event detected)
Step detector event detection status. Default value: 0
STEP_
DETECTED
(0: step detector event not detected; 1: step detector event detected)
Step counter overflow status. Default value: 0
STEP_
OVERFLOW
(0: step counter value < 216; 1: step counter value reached 216)
9.52
TAP_CFG (58h)
Time stamp, pedometer, tilt, filtering, and tap recognition functions configuration register
(r/w).
Table 133. TAP_CFG register
TIMER_
EN
PEDO_EN
TILT_EN
SLOPE
TAP_X_EN TAP_Y_EN
_FDS
TAP_Z_EN
LIR
Table 134. TAP_CFG register description
64/77
TIMER_EN
Time stamp count enable, output data are collected in TIMESTAMP0_REG (40h),
TIMESTAMP1_REG (41h), TIMESTAMP2_REG (42h) register. Default: 0
(0: time stamp count disabled; 1: time stamp count enabled)
PEDO_EN
Pedometer algorithm enable. Default value: 0
(0: pedometer algorithm disabled; 1: pedometer algorithm enabled)
TILT_EN
Tilt calculation enable. Default value: 0
(0: tilt calculation disabled; 1: tilt calculation enabled.)
SLOPE_FDS
Enable accelerometer HP and LPF2 filters (refer to Figure 5). Default value: 0
(0: disable; 1: enable)
TAP_X_EN
Enable X direction in tap recognition. Default value: 0
(0: X direction disabled; 1:X direction enabled)
TAP_Y_EN
Enable Y direction in tap recognition. Default value: 0
(0: Y direction disabled; 1:Y direction enabled)
TAP_Z_EN
Enable Z direction in tap recognition. Default value: 0
(0: Z direction disabled; 1:Z direction enabled)
LIR
Latched Interrupt. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
DocID027423 Rev 4
LSM6DS33
9.53
Register description
TAP_THS_6D (59h)
Portrait/landscape position and tap function threshold register (r/w).
Table 135. TAP_THS_6D register
D4D_EN
SIXD_THS SIXD_THS TAP_THS
1
0
4
TAP_THS
3
TAP_THS
2
TAP_THS
1
TAP_THS
0
Table 136. TAP_THS_6D register description
4D orientation detection enable (Z-axis position detection is disabled).
D4D_EN
Default value: 0
(0: disabled; 1: enabled)
SIXD_THS[1:0]
TAP_THS[4:0]
Threshold for D6D function. Default value: 00
For details, refer to Table 137.
Threshold for tap recognition. Default value: 00000
Table 137. Threshold for D4D/D6D function
SIXD_THS[1:0]
9.54
Threshold value
00
80 degrees
01
70 degrees
10
60 degrees
11
50 degrees
INT_DUR2 (5Ah)
Tap recognition function setting register (r/w).
Table 138. INT_DUR2 register
DUR3
DUR2
DUR1
DUR0
QUIET1
QUIET0
SHOCK1
SHOCK0
Table 139. INT_DUR2 register description
DUR[3:0]
Duration of maximum time gap for double tap recognition. Default: 0000
When double tap recognition is enabled, this register expresses the maximum time
between two consecutive detected taps to determine a double tap event. The
default value of these bits is 0000b which corresponds to 16*ODR_XL time. If
DUR[3:0] bits are set to a different value, 1LSB corresponds to 32*ODR_XL time.
QUIET[1:0]
Expected quiet time after a tap detection. Default value: 00
Quiet time is the time after the first detected tap in which there must not be any
overthreshold event. The default value of these bits is 00b which corresponds to
2*ODR_ time. If QUIET[1:0] bits are set to a different value, 1LSB corresponds to
4*ODR_time.
SHOCK[1:0]
Maximum duration of overthreshold event. Default value: 00
Maximum duration is the maximum time of an overthreshold signal detection to be
recognized as a tap event. The default value of these bits is 00b which corresponds
to 4*ODR_ time. If SHOCK[1:0] bits are set to a different value, 1LSB corresponds
to 8*ODR_time.
DocID027423 Rev 4
65/77
77
Register description
9.55
LSM6DS33
WAKE_UP_THS (5Bh)
Single and double-tap function threshold register (r/w).
Table 140. WAKE_UP_THS register
SINGLE_
DOUBLE INACTIVITY WK_THS5 WK_THS4 WK_THS3 WK_THS2 WK_THS1 WK_THS0
_TAP
Table 141. WAKE_UP_THS register description
9.56
SINGLE_DOUBLE_TAP
Single/double-tap event enable. Default: 0
(0: only single-tap event enabled;
1: both single and double-tap events enabled)
INACTIVITY
Inactivity event enable. Default value: 0
(0: sleep disabled; 1: sleep enabled)
WK_THS[5:0]
Threshold for wakeup. Default value: 000000
WAKE_UP_DUR (5Ch)
Free-fall, wakeup, time stamp and sleep mode functions duration setting register (r/w).
Table 142. WAKE_UP_DUR register
FF_DUR5
WAKE_
DUR1
WAKE_
DUR0
TIMER_
HR
SLEEP_
DUR3
SLEEP_
DUR2
SLEEP_
DUR1
SLEEP_
DUR0
Table 143. WAKE_UP_DUR register description
FF_DUR5
WAKE_DUR[1:0]
TIMER_HR
SLEEP_DUR[3:0]
Free fall duration event. Default: 0
For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in
FREE_FALL (5Dh) configuration.
Wake up duration event. Default: 00
1LSB = 1 ODR_time
Time stamp register resolution setting(1). Default value: 0
(0: 1LSB = 6.4 ms; 1: 1LSB = 25 μs)
Duration to go in sleep mode. Default value: 0000
1 LSB = 512 ODR
1. Configuration of this bit affects TIMESTAMP0_REG (40h), TIMESTAMP1_REG (41h),
TIMESTAMP2_REG (42h), STEP_TIMESTAMP_L (49h), STEP_TIMESTAMP_H (4Ah), and
STEP_COUNT_DELTA (15h) registers.
66/77
DocID027423 Rev 4
LSM6DS33
9.57
Register description
FREE_FALL (5Dh)
Free-fall function duration setting register (r/w).
Table 144. FREE_FALL register
FF_DUR4
FF_DUR3
FF_DUR2
FF_DUR1
FF_DUR0
FF_THS2
FF_THS1
FF_THS0
Table 145. FREE_FALL register description
Free-fall duration event. Default: 0
For the complete configuration of the free fall duration, refer to FF_DUR5 in
WAKE_UP_DUR (5Ch) configuration
Free fall threshold setting. Default: 000
For details refer to Table 146.
FF_DUR[4:0]
FF_THS[2:0]
Table 146. Threshold for free-fall function
FF_THS[2:0]
9.58
Threshold value
000
156 mg
001
219 mg
010
250 mg
011
312 mg
100
344 mg
101
406 mg
110
469 mg
111
500 mg
MD1_CFG (5Eh)
Functions routing on INT1 register (r/w).
Table 147. MD1_CFG register
INT1_
INACT_
STATE
INT1_
SINGLE_
TAP
INT1_WU
INT1_FF
INT1_
DOUBLE_
TAP
INT1_6D
INT1_TILT
INT1_
TIMER
Table 148. MD1_CFG register description
INT1_INACT_
STATE
Routing on INT1 of inactivity mode. Default: 0
(0: routing on INT1 of inactivity disabled; 1: routing on INT1 of inactivity enabled)
Single-tap recognition routing on INT1. Default: 0
INT1_SINGLE_
(0: routing of single-tap event on INT1 disabled;
TAP
1: routing of single-tap event on INT1 enabled)
INT1_WU
Routing of wakeup event on INT1. Default value: 0
(0: routing of wakeup event on INT1 disabled;
1: routing of wakeup event on INT1 enabled)
DocID027423 Rev 4
67/77
77
Register description
LSM6DS33
Table 148. MD1_CFG register description (continued)
Routing of free-fall event on INT1. Default value: 0
(0: routing of free-fall event on INT1 disabled;
1: routing of free-fall event on INT1 enabled)
INT1_FF
Routing of tap event on INT1. Default value: 0
INT1_DOUBLE
(0: routing of double-tap event on INT1 disabled;
_TAP
1: routing of double-tap event on INT1 enabled)
9.59
INT1_6D
Routing of 6D event on INT1. Default value: 0
(0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)
INT1_TILT
Routing of tilt event on INT1. Default value: 0
(0: routing of tilt event on INT1 disabled; 1: routing of tilt event on INT1 enabled)
INT1_TIMER
Routing of end counter event of timer on INT1. Default value: 0
(0: routing of end counter event of timer on INT1 disabled;
1: routing of end counter event of timer event on INT1 enabled)
MD2_CFG (5Fh)
Functions routing on INT2 register (r/w).
Table 149. MD2_CFG register
INT2_
INACT_
STATE
INT2_
SINGLE_
TAP
INT2_WU
INT2_FF
INT2_
DOUBLE_
TAP
INT2_6D
INT2_TILT
0(1)
1. This bit must be set to ‘0’ for the correct operation of the device.
Table 150. MD2_CFG register description
INT2_INACT_
STATE
Routing on INT2 of inactivity mode. Default: 0
(0: routing on INT2 of inactivity disabled; 1: routing on INT2 of inactivity enabled)
Single-tap recognition routing on INT2. Default: 0
INT2_SINGLE_
(0: routing of single-tap event on INT2 disabled;
TAP
1: routing of single-tap event on INT2 enabled)
INT2_WU
Routing of wakeup event on INT2. Default value: 0
(0: routing of wakeup event on INT2 disabled;
1: routing of wake-up event on INT2 enabled)
INT2_FF
Routing of free-fall event on INT2. Default value: 0
(0: routing of free-fall event on INT2 disabled;
1: routing of free-fall event on INT2 enabled)
Routing of tap event on INT2. Default value: 0
INT2_DOUBLE
(0: routing of double-tap event on INT2 disabled;
_TAP
1: routing of double-tap event on INT2 enabled)
68/77
INT2_6D
Routing of 6D event on INT2. Default value: 0
(0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)
INT2_TILT
Routing of tilt event on INT2. Default value: 0
(0: routing of tilt event on INT2 disabled; 1: routing of tilt event on INT2 enabled)
DocID027423 Rev 4
LSM6DS33
10
Embedded functions register mapping
Embedded functions register mapping
The table given below provides a list of the registers for the embedded functions avaialble in
the device and the corresponding addresses. Embedded functions registers are accessible
when FUNC_CFG_EN is set to ‘1’ in FUNC_CFG_ACCESS (01h).
Table 151. Registers address map - embedded functions
Register address
Name
Type
Default
Hex
RESERVED
-
02-0E
r/w
0F
-
10-12
SM_THS
r/w
13
00010011
00000110
PEDO_DEB_REG
r/w
14
00010100
00000000
STEP_COUNT_DELTA
r/w
15
0001 0101
00000000
-
24-32
PEDO_THS_REG
RESERVED
RESERVED
Comment
Binary
Reserved
00001111
00000000
Reserved
Reserved
Registers marked as Reserved must not be changed. Writing to those registers may cause
permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
DocID027423 Rev 4
69/77
77
Embedded functions registers description
LSM6DS33
11
Embedded functions registers description
11.1
PEDO_THS_REG (0Fh)
Table 152. PEDO_THS_REG register default values
PEDO_4G
-
-
THS_
MIN4
THS_
MIN3
THS_
MIN2
THS_
MIN1
THS_
MIN0
Table 153. PEDO_THS_REG register description
PEDO_ 4G
This bit sets the internal full scale used in pedometer functions. Using this bit,
saturation is avoided (e.g. FAST walk).
0: internal full scale = 2 g.
1: internal full scale 4 g (device full_scale @CTRL1_XL must be ≥ 4 g, otherwise
internal full scale is 2 g)
THS_ MIN[4:0]
Configurable minimum threshold. 1LSB = 16 mg @PEDO_4G=0, 1LSB = 32 mg
@PEDO_4G=1
Procedure to modify the pedometer minimum threshold:

Write reg FUNC_CFG_ACCESS (01h) = 80h (Enables access to the embedded
functions registers)

Set min threshold in bits [4:0] of reg 0Fh (1LSB = 16 mg @ FS = 2 g)

Write reg FUNC_CFG_ACCESS (01h) = 00h (Disables access to the embedded
functions registers)
Note:
All modifications of the content of the embedded functions registers have to be performed
with the device in power-down mode.
11.2
SM_THS (13h)
Significant motion configuration register (r/w).
Table 154. SM_THS register
SM_THS_ SM_THS_ SM_THS_ SM_THS_ SM_THS_ SM_THS_ SM_THS_ SM_THS_
7
6
5
4
3
2
1
0
Table 155. SM_THS register description
SM_THS[7:0]
70/77
Significant motion threshold. Default value: 00000110
DocID027423 Rev 4
LSM6DS33
11.3
Embedded functions registers description
PEDO_DEB_REG (14h)
Table 156. PEDO_DEB_REG register default values
DEB_
TIME4
DEB_
TIME3
DEB_
TIME2
DEB_
TIME1
DEB_
TIME0
DEB_
STEP2
DEB_
STEP1
DEB_
STEP0
0
0
0
0
0
1
1
0
Table 157. PEDO_DEB_REG register description
DEB_ TIME[4:0]
If this time between steps is greater than DEB_TIME*80ms, the debouncer is
reactivated
DEB_ STEP[2:0] Minimum number of steps to increment step counter (debouncer)
The procedure to modify the pedometer debounce time is the following:

Write reg FUNC_CFG_ACCESS (01h) = 80h (Enables access to the embedded
functions)

Set debounce time in bits [3:7] of reg 14h (1LSB = 80 ms.This value must be > 0)

Write reg FUNC_CFG_ACCESS (01h) = 00h (Disables access to the embedded
functions registers)
Note:
All modifications of the content of the embedded functions registers have to be performed
with the device in power-down mode.
11.4
STEP_COUNT_DELTA (15h)
Time period register for step detection on delta time (r/w).
Table 158. STEP_COUNT_DELTA register
SC_
DELTA_7
SC_
DELTA_6
SC_
DELTA_5
SC_
DELTA_4
SC_
DELTA_3
SC_
DELTA_2
SC_
DELTA_1
SC_
DELTA_0
Table 159. STEP_COUNT_DELTA register description
SC_DELTA[7:0]
Time period value(1) (1LSB = 1.6384 s)
1. This value is effective if the TIMER_EN bit of the TAP_CFG register is set to 1 and the TIMER_HR bit of
the WAKE_UP_DUR register is set to 0.
DocID027423 Rev 4
71/77
77
Soldering information
12
LSM6DS33
Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and "Green" standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave "Pin 1 Indicator" unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/mems.
72/77
DocID027423 Rev 4
LSM6DS33
13
Package information
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
13.1
LGA-16 package information
Figure 16. LGA 3x3x0.86 16L package outline and dimensions
'LPHQVLRQVDUHLQPLOOLPHWHUXQOHVVRWKHUZLVHVSHFLILHG
*HQHUDO7ROHUDQFHLVPPXQOHVVRWKHUZLVHVSHFLILHG
287(5',0(16,216
,7(0
/HQJWK>/@
: LGWK>: @
+HLJKW>+@
',0(16,21>PP@
DocID027423 Rev 4
72/(5$1&(>PP@
“
“
0$;
73/77
77
Package information
13.2
LSM6DS33
LGA-16 packing information
Figure 17. Carrier tape information for LGA-16 package
Figure 18. LGA-16 package orientation in carrier tape
74/77
DocID027423 Rev 4
LSM6DS33
Package information
Figure 19. Reel information for carrier tape of LGA-16 package
Table 160. Reel dimensions for carrier tape of LGA-16 package
Reel dimensions (mm)
A (max)
330
B (min)
1.5
C
13 ±0.25
D (min)
20.2
N (min)
60
G
12.4 +2/-0
T (max)
18.4
DocID027423 Rev 4
75/77
77
Revision history
14
LSM6DS33
Revision history
Table 161. Document revision history
Date
Revision
18-Feb-2015
1
Initial release
17-Jul-2015
2
Updated registers in Section 9: Register description
27-Jul-2015
3
First public release
09-Oct-2015
4
Updated package representation on page 1
Added PEDO_THS_REG (0Fh) and PEDO_DEB_REG (14h)
Added Section 13.2: LGA-16 packing information
76/77
Changes
DocID027423 Rev 4
LSM6DS33
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID027423 Rev 4
77/77
77
Similar pages