Only Reflow Soldering CHIP MONOLITHIC CERAMIC CAPACITOR, CAPACITOR ARRAYS FOR GENERAL GNM1M2R71H102MA01_ (0504, X7R, 1000pF, 50Vdc) _: packaging code Reference Sheet 1.Scope This product specification is applied to Chip Monolithic Ceramic Capacitor, Capacitor Arrays used for General Electronic equipment. This product is applied for Only Reflow Soldering. 2.MURATA Part NO. System (Ex.) GNM 1M 2 R7 (2)Number of (1)L/W Dimensions Elements 1H (3)Temperature Characteristics 102 (4)DC Rated Voltage M (5)Nominal (6)Capacitance Tolerance Capacitance A01 3. Type & Dimensions L T W P (1)-1 L (1)-2 W (2) T 1.37±0.15 1.0±0.15 0.6±0.1 (Unit:mm) p 0.64±0.05 4.Rated value (3) Temperature Characteristics (Public STD Code):X7R(EIA) Temp. coeff Temp. Range or Cap. Change (Ref.Temp.) -15 to 15 % -55 to 125 °C (25 °C) (4) DC Rated Voltage 50 Vdc (6) (5) Nominal Capacitance Capacitance Tolerance 1000 pF ±20 % Specifications and Test Methods (Operationg Temp. Range) -55 to 125 °C 5.Package mark (8) Packaging Packaging Unit D f180mm Reel PAPER W8P4 4000 pcs./Reel Product specifications in this catalog are as of Jan.30,2013,and are subject to change or obsolescence without notice. Please consult the approval sheet before ordering. Please read rating and !Cautions first. GNM1M2R71H102MA01-01 1 D (7)Murata’s (8)Packaging Code Control Code ■SPECIFICATIONS AND TEST METHODS Specification No Item 1 Operating Temperature Range 2 Rated Voltage Temperature Compensating Type Δ C : -55℃ to 125℃ Test Method High Dielectric Type B1,F1 :-25℃ to 85℃ R1,R7 :-55℃ to 125℃ R6 :-55℃ to 85℃ F5:-30℃ to 85℃ See the previous pages. Standard Temperature : 20℃ (5C,R6,R7,F5 : 25℃) The rated voltage is defined as the maximum voltage which may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, VP-P or VO-P, whichever is larger, should be maintained within the rated voltage range. 3 Appearance No defects or abnormalities. Visual inspection. 4 Dimension Within the specified dimensions. Using calipers. 5 Dielectric Strength No defects or abnormalities. No failure should be observed when 300% of the rated voltage (temperature compensating type) or 250% of the rated voltage (high dielectric constant type) is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA. 6 Insulation Resistance More than 10,000MΩ or 500Ω ∙F (whichever is smaller) The insulation resistance should be measured with a DC voltage not exceeding the rated voltage at 20/25℃ and 75%RH max. and within 2 minutes of charging, provided the charge/discharge current is less than 50mA. 7 Capacitance Within the specified tolerance. The capacitance/D.F. should be measured at 20/25℃ at the frequency and voltage shown in the table. 8 Q/Dissipation Factor (D.F.) Char. Item Frequency Voltage 30pF and over:Q≧1000 [B1,R1,R6,R7] 30pF and below:Q≧400+20C W.V.: 25Vmin. :0.025max. C:Nominal Capacitance(pF) W.V.:16V W.V.:6.3V :0.035max. :0.05max. 2C,5C B1,R1,R6,R7,F1,F5 1±0.1MHz 0.5 to 5Vrms 1±0.1kHz 1.0±0.2Vrms [F1,F5] W.V.:25Vmin : 0.05max. W.V.:16V : 0.07max. 9 Capacitance No bias Temperature Characteristics Within the specified tolerance.(Table A-1,A-2) 50% of the rated voltage Capacitance Drift B1 : Within ±10% (-25℃ to +85℃) R1,R7 : Within ±15% (-55℃ to +125℃) R6 : Within ±15% (-55℃ to +85℃) F1 : Within +30/-80% (-25℃ to +85℃) F5 : Within +22/-82% (-30℃ to +85℃) B1 : Within +10/-30% R1 : Within +15/-40% F1 : Within +30/-95% Within±0.2% or±0.05pF (Whichever is larger.) The capacitance change should be measured after 5min. at each specified temp.stage. (1)Temperature Compensating Type The temperature coefficient is determind using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5, the capacitance should be within the specified tolerance for the temperature coefficient and capacitance change as Table A-1,A-2. The capacitance drift is caluculated by dividing the differences between the maximum and minimum measured values in the step 1,3 and 5 by the cap.value in step 3. (2)High Dielectric Constant Type The ranges of capacitance change compared with the 20℃/25℃ value over the temperature ranges shown in the table should be within the specified ranges. Step Temperature(C) 1 20±2/25±2 -55±3(for R1,R6,R7)/ -25±3(for B1,F1)/ -30±3(for F5) 20±2/25±2 125±3(for R1,R7)/ 85±3(for B1,R6,F1,F5) 20±2 -55±3(for R1)/ -25±3(for B1,F1) 20±2 125±3(for R1)/ 85±3(for B1,F1) 2 3 4 5 6 7 8 Applying Voltage(V) No bias 50% of the rated voltage Initial measurement for high dielectric constant type Perform a heat treatment at 150 +0/-10°C for one hour and then set for 24±2 hours at room temperature. Perform the initial measure-ment. 10 Adhesive Strength of Termination JEMCCS-0001K No removal of the terminations or other defect should occur. 2 Solder the capacitor on the test jig (glass epoxy board)shown in Fig.3 using a eutectic solder. Then apply 5N force in parallel with the test jig for 10±1sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. ■SPECIFICATIONS AND TEST METHODS Specification No Item 11 Vibration Temperature Compensating Type Appearance No defects or abnormalities. Capacitance Within the specified tolerance. Q/D.F. 30pF and over:Q≧1000 Test Method High Dielectric Type Solder the capacitor on the test jig (glass epoxy board) in Resistance the same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied [B1,R1,R6,R7] 30pF and beloow:Q≧400+20C W.V.: 25Vmin. :0.025max. C:Nominal Capacitance(pF) uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be W.V.:16V :0.035max. traversed in approximately 1 minute. This motion should be W.V.:6.3V :0.05max. applied for a period of 2 hours in each 3 mutually perpendicular directions(total of 6 hours). [F1,F5] W.V.:25Vmin : 0.05max. W.V.:16V 12 Deflection Appearance : 0.07max. No defects or abnormalities. Solder the capacitor on the test jig (glass epoxy board) shown in Fig.1 using an eutectic solder. Then apply a force in the direction Capacitance Change Within ±5% or± 0.5pF (Whichever is larger) Within ±10% shown in Fig 2 for 5±1 seconds. The soldering should be done by the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. 13 Solderability of Termination 75% of the terminations is to be soldered evenly and continuously. Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight propotion) . Preheat at 80 to 120℃ for 10 to 30 seconds. After preheating , immerse in an eutectic solder solution for 2±0.5 seconds at 230±5℃. 14 Resistance to Soldering Heat The measured and observed characteristics should satisfy Preheat the capacitor at 120 to 150℃ for 1 minute. Immerse the capacitor in an eutectic solder solution at the specifications in the following table. 270±5℃ for 10±0.5 seconds. Appearance No defects or abnormalities. Let Sit at room temperature for 24±2 hours, then measure. Capacitance Within ±2.5% or± 0.25pF B1,R1,R6,R7 :Within ±7.5% Change (Whichever is larger) F1,F5 Q/D.F. 30pF and over:Q≧1000 :Within ±20% [B1,R1,R6,R7] 30pF and beloow:Q≧400+20C W.V.: 25Vmin. :0.025max. W.V.:16V :0.035max. C:Nominal Capacitance(pF) W.V.:6.3V :0.05max. · Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10C for one hour and then set at room temperature for 24±2 hours. Perform the initial measurement. [F1,F5] W.V.:25Vmin : 0.05max. W.V.:16V : 0.07max. I.R. More than 10,000MW or 500W·F(Whichever is smaller) Dielectric No defects. Strength 15 Temperature Cycle The measured and observed characteristics should satisfy Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). the specifications in the following table. Perform the five cycles according to the four heat Appearance No defects or abnormalities. treatments shown in the following table. Set for 24±2 hours at room temperature, then measure. Capacitance Within ±2.5% or± 0.25pF Change (Whichever is larger) Q/D.F. B1,R1,R6,R7 :Within ±7.5% F1,F5 :Within ±20% [B1,R1,R6,R7] 30pF and beloow:Q≧400+20C W.V.: 25Vmin. :0.025max. W.V.:16V :0.035max. C:Nominal Capacitance(pF) W.V.:6.3V :0.05max. 30pF and over:Q≧1000 [F1,F5] W.V.:25Vmin : 0.05max. W.V.:16V : 0.07max. Step Temp.(C) Time (min) 1 Min. Operating Temp.+0/-3 30±3 2 Room Temp 2 to 3 3 Max. Operating Temp.+3/-0 30±3 4 Room Temp 2 to 3 · Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10C for one hour and then set at room temperature for 24±2 hours. I.R. More than 10,000MW or 500W·F(Whichever is smaller) Dielectric No defects. Strength JEMCCS-0001K 3 Perform the initial measurement. ■SPECIFICATIONS AND TEST METHODS Specification No Item 16 Humidit Steady State Appearance Capacitance Change Q/D.F. Temperature High Dielectric Type Compensating Type The measured and observed characteristics should satisfy the specifications in the following table. No defects or abnormalities. Within ±5% or± 0.5pF (Whichever is larger) 30pF and over:Q≧350 10pF and over 30pF and below:Q≧275+5/2C 10pF and below:Q≧200+10C B1,R1,R6,R7 :Within ±12.5% F1,F5 :Within ±30% [B1,R1,R6,R7] W.V.: 25Vmin. :0.05max. W.V.:16/10/6.3V :0.05max. C:Nominal Capacitance(pF) [F1,F5] W.V.:25Vmin : 0.075max. W.V.:16V : 0.1max. I.R. More than 1,000MW or 50W·F(Whichever is smaller) Dielectric Strength No failure. 17 Humidity Load Test Method Set the capacitor at 40±2℃ and in 90 to 95% humiduty for 500±12 hours. Remove and set for 24±2 hours at room temperature, then measure. The measured and observed characteristics should satisfy the specifications in the following table. Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours. Remove and set for 24±2 hours at room temprature then muasure. The charge/discharge current is Appearance No defects or abnormalities. less than 50mA. Capacitance Change Within ±7.5% or±0.75pF (Whichever is larger) B1,R1,R6,R7 :Within ±12.5% F1,F5 :Within ±30% Q/D.F. 30pF and over:Q≧200 30pF and below:Q≧100+10/3C [B1,R1,R6,R7] W.V.: 25Vmin. :0.05max. W.V.:16/10/6.3V :0.05max. C:Nominal Capacitance(pF) [F1,F5] W.V.:25Vmin : 0.075max. W.V.:16V : 0.1max. I.R. More than 500MΩ or 25Ω·F(Whichever is smaller) Dielectric Strength No failure. 18 High Temperature Load Appearance Capacitance Change The measured and observed characteristics should satisfy the specifications in the following table. No defects or abnormalities. Within ±3% or ±0.3pF (Whichever is larger) B1,R1,R6,R7 :Within ±12.5% F1,F5 :Within ±30% Q/D.F. 30pF and over:Q≧350 [B1,R1,R6,R7] 10pF and over W.V.: 25Vmin. :0.04max. 30pF and below: Q≧275+5/2C W.V.:16/10/6.3V :0.05max. 10pF and below:Q≧200+10C [F1,F5] C:Nominal Capacitance (pF) W.V.:25Vmin : 0.075max. W.V.:16V : 0.1max. I.R. More than 1,000MW or 50W·F(Whichever is smaller) Table A-1 Capacitance Change from 20C (%) -25 -10 Max. Min. Max. Min. Max. Min. 2C 0±60 0.82 -0.45 0.49 -0.27 0.33 -0.18 * Nominal values denote the temperature coefficient within a range of 20C to 125C Char. Nominal Values (ppm/C) * -55 Table A-2 Capacitance Change from 25C (%) -30 -10 Max. Min. Max. Min. Max. Min. 5C 0±30 0.58 -024 0.40 -0.17 0.25 -0.11 * Nominal values denote the temperature coefficient within a range of 25C to 125C Char. Nominal Values (ppm/C) * JEMCCS-0001K -55 4 Apply 200% of the rated voltage at the maximum operating temperature ±3℃ for 1000±12 hours. Set for 24±2 hours at room temperature, then measure. The charge/discharge current is less than 50mA. ・Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximun operating temperature ±3C for one hour. Remove and set for 24±2 hours at room temperature. Perform initial measurement. ■SPECIFICATIONS AND TEST METHODS Test method : Deflection ・Test substrate Material : Copper-clad laminated sheets for PCBs (Glass fabric base, epoxy resin) Thickness : t:0.8mm Copper foil thickness : 0.035mm (Coat with heat resistant resin for solder) ・GN□□□4 40 40 ・GNM□□2 100 100 5.0 a b Type GNM1M2 GNM212 GNM214 GN□314 5.0 a b c 1.0 c 1.0 d d a 2.0±0.05 2.0±0.05 2.0±0.05 2.5±0.05 b 0.5±0.05 0.6±0.05 0.7±0.05 0.8±0.05 c 0.32±0.05 0.5±0.05 0.3±0.05 0.4±0.05 d 0.32±0.05 0.5±0.05 0.2±0.05 0.4±0.05 Fig. 1 (in:mm) 20 Pressurization speed 1.0mm/s 50 Pressurize R230 Flexure:≦1 Capacitance meter 45 45 Fig.2 (in:mm) Adhesive Strength of Termination,Vibration Resistance,Temperature Cycle, Humidity Steady State,Humidity Load,High Temperature Load ・Test substrate Material : Copper-clad laminated sheets for PCBs (Glass fabric base, epoxy resin) Thickness : 1.6mm Copper foil thickness : 0.035mm ・GNM□□2 ・GN□□□4 b a b a c d c d Solder resist Copper foil Solder resist Copper foil Fig. 3 JEMCCS-0001K (in:mm) 5 Type GNM1M2 GNM212 GNM214 GN□314 a 0.5 0.6 0.6 0.8 b 1.6 1.8 2.0 2.5 c 0.32 0.5 0.25 0.4 d 0.32 0.5 0.25 0.4 Package GNM Type 1.Tape Carrier Packaging(Packaging Code:D/L/J/K) 1.1 Minimum Quantity(pcs./reel) φ180mm reel Paper Tape Plastic Tape Code:D Code:L Type GNM02 φ330mm reel Paper Tape Plastic Tape Code:J Code:K 10000 50000 T:0.5mm 4000 10000 GNM1M T:0.6mm 4000 10000 T:0.8mm 4000 10000 T:0.6mm 4000 10000 T:0.85mm 4000 10000 T:0.8mm 4000 10000 GNM21 GNM31 T:1.0mm T:1.15mm 3000 10000 3000 10000 1.2 Dimensions of Tape (1)GNM0M2 Paper Tape 4.0±0.1 +0.1 *1 *2 3.5±0.05 φ1.5 -0 B A 8.0±0.3 *1,2:2.0±0.05 1.75±0.1 (in:mm) 0.05 max. t Code A B t JEMCCP-01910 GNM0M2 0.72±0.5 1.02±0.5 0.8 max. 6 Package GNM Type 1.2 Dimensions of Tape (in:mm) (2)GNM1M/21/31 Paper Tape 1.75±0.1 +0.1 4.0±0.1 2.0±0.1 3.5±0.05 φ1.5 -0 B A 8.0±0.3 4.0±0.1 1.1 max. Code A B GNM1M 1.17±0.05 1.55±0.05 GNM21 1.55±0.15 2.3±0.15 GNM31 2.0±0.2 3.6±0.2 (in:mm) (3)GNM31 Plastic Tape 1.75±0.1 4.0±0.1 2.0±0.1 3.5±0.05 φ1.5 +0.1 -0 B A 0.25±0.1 8.0±0.3 4.0±0.1 * 1.7max.(T≦1.15mm) * 記号 A B JEMCCP-01910 GNM31 1.9±0.2 3.5±0.2 7 め状態 (単位:mm) Package GNM Type Fig.1 Package Chips (in:mm) Chip Fig.2 Dimensions of Reel φ13±0.5 φ180+0/-3.0 φ330±2.0 φ21±0.8 φ50 min 2.0±0.5 10±1.5 16.5 max Fig.3 Taping Diagram Top Tape:Thickness 0.06 Feeding Hole : As specified in 1.2 Hole for Chip : As specified in 1.2 Bottom Tape : Thickness 0.05 Base Tape : As specified in 1.2 (Only a bottom tape existence) JEMCCP-01910 8 チップ詰め状態 Package GNM Type (単位:mm) 1.3 Tapes for capacitors are wound clockwise shown in Fig.3. (The sprocket holes are to the right as the tape is pulled toward the user.) 1.4 Part of the leader and part of the vacant section are attached as follows. Tail vacant Section Chip-mounting Unit Leader vacant Section (in:mm) Leader Unit (Top Tape only) Direction of Feed 160 min. 190 min. 210 min. 1.5 Accumulate pitch : 10 of sprocket holes pitch = 40±0.3mm 1.6 Chip in the tape is enclosed by top tape and bottom tape as shown in Fig.1. 1.7 The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches. 1.8 There are no jointing for top tape and bottom tape. 1.9 There are no fuzz in the cavity. 1.10 Break down force of top tape : 5N min. Break down force of bottom tape : 5N min. (Only a bottom tape existence ) 1.11 Reel is made by resin and appeaser and dimension is shown in Fig 2. 図1 チップ詰め状態 (単位:mm) There are possibly to change the material and dimension due to some impairment. 1.12 Peeling off force : 0.1N to 0.6N in the direction as shown below. 165~180° Top tape 1.13 Label that show the customer parts number, our parts number, our company name, inspection number and quantity, will be put in outside of reel. JEMCCP-01910 9 ! Caution ■ Limitation of use Please contact our sales representatives or product engineers before using our products for the applications listed below which require of our products for other applications than specified in this product. ①Aircraft equipment ②Aerospace equipment ③Undersea equipment ④Power plant control equipment ⑤Medical equipment ⑥Transportation equipment(vehicles,trains,ships,etc.) ⑦Traffic signal equipment ⑧Disaster prevention / crime prevention equipment ⑨Data-processing equipment ⑩Application of similar complexity and/or requirements to the applications listed in the above ■ Storage and Operation condition 1. The performance of chip monolithic ceramic capacitors may be affected by the storage conditions. 1-1. Store capacitors in the following conditions: Temperature of +5℃ to +40℃ and a Relative Humidity of 20% to 70%. (1) Sunlight, dust, rapid temperature changes, corrosive gas atmosphere or high temperature and humidity conditions during storage may affect the solderability and the packaging performance Please use product within six months of receipt. (2) Please confirm solderability before using after six months. Store the capacitors without opening the original bag. Even if the storage period is short, do not exceed the specified atmospheric conditions. 1-2. Corrosive gas can react with the termination (external) electrodes or lead wires of capacitors, and result in poor solderability. Do not store the capacitors in an atmosphere consisting of corrosive gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.). 1-3. Due to moisture condensation caused by rapid humidity changes, or the photochemical change caused by direct sunlight on the terminal electrodes and/or the resin/epoxy coatings, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high huimidity conditions JEMCCC-0010Q 10 ! Caution ■Rating 1.Temperature Dependent Characteristics 1. The electrical characteristics of the capacitor can change with temperature. 1-1. For capacitors having larger temperature dependency, the capacitance may change with temperature changes. The following actions are recommended in order to insure suitable capacitance values. (1) Select a suitable capacitance for the operating temperature range. (2) The capacitance may change within the rated temperature. When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actual appliances at the intended environment and operating conditions. 20 15 10 5 0 -5 -10 -15 -20 □ Typical temperature characteristics Char.R7 (X7R) Capacitance Change (%) Capacitance Change (%) □ Typical temperature characteristics Char.R6 (X5R) -75 -50 -25 0 25 50 Temperature (℃) 75 100 20 15 10 5 0 -5 -10 -15 -20 -75 -50 -25 0 25 50 75 100 125 150 Temperature (℃) □ Typical temperature characteristics Char.F5 (Y5V) Capacitance Change (%) 40 20 0 -20 -40 -60 -80 -100 -50 -25 0 25 50 Temperature (℃) 75 100 2.Measurement of Capacitance 1. Measure capacitance with the voltage and the frequency specified in the product specifications. 1-1. The output voltage of the measuring equipment may decrease when capacitance is high occasionally. Please confirm whether a prescribed measured voltage is impressed to the capacitor. 1-2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied. Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit. JEMCCC-0010Q 11 ! Caution 3.Applied Voltage 1. Do not apply a voltage to the capacitor that exceeds the rated voltage as called-out in the specifications. 1-1. Applied voltage between the terminals of a capacitor shall be less than or equal to the rated voltage. (1) When AC voltage is superimposed on DC voltage, the zero-to-peak voltage shall not exceed the rated DC voltage. When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage. (2) Abnormal voltages (surge voltage, static electricity, pulse voltage, etc.) shall not exceed the rated DC voltage. Typical voltage applied to the DC capacitor DC voltage DC voltage+AC E E AC voltage E Pulse voltage 0 E 0 0 0 (E:Maximum possible applied voltage.) 1-2. Influence of overvoltage Overvoltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers . The time duration until breakdown depends on the applied voltage and the ambient temperature. 4. Applied Voltage and Self-heating Temperature 1. When the capacitor is used in a high-frequency voltage, pulse voltage, application, be sure to take into account self-heating may be caused by resistant factors of the capacitor. 1-1. The load should be contained to the level such that when measuring at atomospheric temperature of 25℃,the product's self-heating remains below 20℃ and surface temperature of the capacitor in the actual circuit remains wiyhin the maximum operating temperature. JEMCCC-0010Q 12 ! Caution 5. DC Voltage and AC Voltage Characteristic 1. The capacitance value of a high dielectric constant type capacitor changes depending on the DC voltage applied. Please consider the DC voltage characteristics when a capacitor is selected for use in a DC circuit. 1-1. The capacitance of ceramic capacitors may change sharply depending on the applied voltage. (See figure) Please confirm the following in order to secure the capacitance. (1) Whether the capacitance change caused by the applied voltage is within the range allowed or not. □ DC voltage characteristics 20 Capacitance Change(%) (2) In the DC voltage characteristics, the rate of capacitance change becomes larger as voltage increases. Even if the applied voltage is below the rated voltage. When a high dielectric constant type capacitor is in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actual appliances at the intended environment and operating conditions. 0 -20 -40 -60 -80 -100 0 1 2 3 4 5 6 7 DC Voltage (VDC) Capacitance Change (%) 2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied. Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit. □ AC voltage characteristics 30 20 10 0 -10 -20 -30 -40 -50 -60 0.0 0.5 1.0 1.5 2.0 2.5 AC Voltage (Vr.m.s) 6. Capacitance Aging 1. The high dielectric constant type capacitors have the characteristic in which the capacitance value decreases with passage of time. When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actual appliances at the intended environment and operating conditions. Capacitance Change (%) 20 10 0 -10 5C -20 RΔ -30 -40 10.0 100.0 1000.0 Time(Hr) JEMCCC-0010Q 13 10000.0 ! Caution 7.Vibration and Shock 1. Please confirm the kind of vibration and/or shock, its condition, and any generation of resonance. Please mount the capacitor so as not to generate resonance, and do not allow any impact on the terminals. 2. Mechanical shock due to falling may cause damage or a crack in the dielectric material of the capacitor. Do not use a fallen capacitor because the quality and reliability may be deteriorated. Crack Floor 3. When printed circuit boards are piled up or handled, the corners of another printed circuit board should not be allowed to hit the capacitor in order to avoid a crack or other damage to the capacitor. Mounting printed circuit board Crack ■ Soldering and Mounting 1.Mounting Position 1. Confirm the best mounting position and direction that minimizes the stress imposed on the capacitor during flexing or bending the printed circuit board. 1-1.Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board. [Component Direction] ① Locate chip horizontal to the direction in which stress acts 1A [Chip Mounting Close to Board Separation Point] Perforation C B D A Chip arrangement Worst A-C-(B~D) Best Slit ③② JEMCCC-0010Q 14 ! Caution 2.Information before mounting 1. Do Not re-use capacitors that were removed from the equipment. 2. Confirm capacitance characteristics under actual applied voltage. 3. Confirm the mechanical stress under actual process and equipment use. 4. Confirm the rated capacitance, rated voltage and other electrical characteristics before assembly. 5. Prior to use, confirm the Solderability for the capacitors that were in long-term storage. 6. Prior to measuring capacitance, carry out a heat treatment for capacitors that were in long-term storage. 7.The use of Sn-Zn based solder will deteriorate the reliability of the MLCC. Please contact our sales representative or product engineers on the use of Sn-Zn based solder in advance. 3.Maintenance of the Mounting (pick and place) Machine 1. Make sure that the following excessive forces are not applied to the capacitors. 1-1. In mounting the capacitors on the printed circuit board, any bending force against them shall be kept to a minimum to prevent them from any bending damage or cracking. Please take into account the following precautions and recommendations for use in your process. (1) Adjust the lowest position of the pickup nozzle so as not to bend the printed circuit board. (2) Adjust the nozzle pressure within a static load of 1N to 3N during mounting. [Incorrect] Suction Nozzle Deflection Board Board Guide [Correct] Support Pin 2.Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes greater force upon the chip during mounting, causing cracked chips. Also the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically. JEMCCC-0010Q 15 ! Caution 4-1.Reflow Soldering 1. When sudden heat is applied to the components, the mechanical strength of the components will decrease because a sudden temperature change causes deformation inside the components. In order to prevent mechanical damage to the components, preheating is required for both the components and the PCB board. Preheating conditions are shown in table 1. It is required to keep the temperature differential between the solder and the components surface (ΔT) as small as possible. [Standard Conditions for Reflow Soldering] Infrared Reflow Temperature(℃) Soldering Peak Temperature 200℃ Gradual Cooling ΔT 170℃ 150℃ 130℃ Preheating 2. Solderability of Tin plating termination chips might be deteriorated when a low temperature soldering profile where the peak solder temperature is below the melting point of Tin is used. Please confirm the Solderability of Tin plated termination chips before use. 60-120 seconds Time 30-60 seconds Vapor Reflow Temperature(℃) 3. When components are immersed in solvent after mounting, be sure to maintain the temperature difference (ΔT) between the component and the solvent within the range shown in the table 1. Soldering Peak Temperature Gradual Cooling ΔT 170℃ 150℃ 130℃ Preheating Table 1 Part Number Temperature Differential GNM0M/GNM1M/GNM21/ GNM31 Time 60-120 seconds 20 seconds max. ΔT≦130℃ [Allowable Soldering Temperature and Time] Pb-Sn Solder Lead Free Solder Infrared Reflow Vapor Reflow Peak Temperature 230~250℃ 230~240℃ 240~260℃ Atmosphere Air Air Air or N2 Pb-Sn Solder: Sn-37Pb Lead Free Solder: Sn-3.0Ag-0.5Cu Soldering Temperature(℃) Recommended Conditions 280 270 260 250 240 230 220 0 30 60 90 120 Soldering Time(sec.) In case of repeated soldering, the accumulated soldering time must be within the range shown above. 4. Optimum Solder Amount for Reflow Soldering 0.2mm min 4-1. Overly thick application of solder paste results in a excessive solder fillet height. This makes the chip more susceptible to mechanical and thermal stress on the board and may cause in section the chips to crack. 4-2. Too little solder paste results in a lack of adhesive strength on the outer electrode, which may result in chips breaking loose from the PCB. 4-3. Make sure the solder has been applied smoothly to the end surface to a height of 0.2mm min. Inverting the PCB JEMCCC-0010Q Make sure not to impose any abnormal mechanical shocks to the PCB. 16 ! Caution 4-2.Leaded Component Insertion 1. If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break. Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping. 5.Washing Excessive ultrasonic oscillation during cleaning can cause the PCBs to resonate, resulting in cracked chips or broken solder joints. Take note not to vibrate PCBs. 6.Electrical Test on Printed Circuit Board 1. Confirm position of the support pin or specific jig, when inspecting the electrical performance of a capacitor after mounting on the printed circuit board. 1-1. Avoid bending printed circuit board by the pressure of a test pin, etc. The thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints. Provide support pins on the back side of the PCB to prevent warping or flexing. 1-2. Avoid vibration of the board by shock when a test pin contacts a printed circuit board. □ Not recommended □ Recommended Support pin Peeling Test-pin JEMCCC-0010Q Test-pin 17 ! Caution 7.Printed Circuit Board Cropping 1. After mounting a capacitor on a printed circuit board, do not apply any stress to the capacitor that is caused by bending or twisting the board. 1-1. In cropping the board, the stress as shown right may cause the capacitor to crack. Try not to apply this type of stress to a capacitor. ① Bending Twisting 1A 2. Check of the cropping method for the printed circuit board in advance. 2-1. Printed circuit board cropping shall be carried out by using a jig or an apparatus to prevent the mechanical stress which can occur to the board. (1) Example of a suitable jig Recommended example: the board should be pushed as close to the near the cropping jig as possible and from the back side of board in order to minimize the compressive stress applied to capacitor. Not recommended example* when the board is pushed at a point far from the cropping jig and from the front side of board as below, the capacitor may form a crack caused by the tensile stress applied to capacitor. Recommended Outline of jig V-groove Printed circuit board Not recommended Direction of load Printed circuit board Direction of load Load point Component s Printed circuit board Load point Components Board cropping jig (2) Example of a suitable machine An outline of a printed circuit board cropping machine is shown as follows. Along the lines with the V-grooves on printed circuit board, the top and bottom blades are aligned to one another when cropping the board. The misalignment of the position between top and bottom blades may cause the capacitor to crack. Outline of machine Principle of operation Top blade Top blade Cross-section diagram Printed circuit board Bottom blade Printed circuit board Recommended JEMCCC-0010Q V-groove V-groove Not recommended Top-bottom misalignment Left-right misalignment Front-rear misalignment Top blade Top blade Top blade Top blade Bottom blade Bottom blade Bottom blade Bottom blade 18 ! Caution ■ Others 1. Under Operation of Equipment 1-1. Do not touch a capacitor directly with bare hands during operation in order to avoid the danger of a electric shock. 1-2. Do not allow the terminals of a capacitor to come in contact with any conductive objects (short-circuit). Do not expose a capacitor to a conductive liquid, inducing any acid or alkali solutions. 1-3. Confirm the environment in which the equipment will operation is under the specified conditions. Do not use the equipment under the following environment. (1) Being spattered with water or oil. (2) Being exposed to direct sunlight. (3) Being exposed to Ozone, ultraviolet rays or radiation. (4) Being exposed to toxic gas (e.g., hydrogen sulfide, sulfur dioxide, chlorine, ammonia gas etc.) (5) Any vibrations or mechanical shocks exceeding the specified limits. (6) Moisture condensing environments. 1-4. Use damp proof countermeasures if using under any conditions that can cause condensation. 2. Others 2-1. In an Emergency (1) If the equipment should generate smoke, fire or smell, immediately turn off or unplug the equipment. If the equipment is not turned off or unplugged, the hazards may be worsened by supplying continuous power. (2) In this type of situation, do not allow face and hands to come in contact with the capacitor or burns may be caused by the capacitors high temperature. 2-2. Disposal of waste When capacitors are disposed, they must be burned or buried by the industrial waste vender with the appropriate licenses. 2-3. Circuit Design GNM Series capacitors in this catalog are not safety recognized products. 2-4. Remarks Failure to follow the cautions may result, worst case, in a short circuit and smoking when the product is used. The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions. Select optimum conditions for operation as they determine the reliability of the product after assembly. The data herein are given in typical values, not guaranteed ratings. JEMCCC-0010Q 19 Notice ■ Rating 1.Operating Temperature 1. The operating temperature limit depends on the capacitor. 1-1.Do not apply temperatures exceeding the upper operating temperature. It is necessary to select a capacitor with a suitable rated temperature which will cover the operating temperature range. Also it is necessary to consider the temperature distribution in equipment and the seasonal temperature variable factor. 1-2.Consider the self-heating of the capacitor The surface temperature of the capacitor shall be the upper operating temperature or less when including the self-heating factors. 2.Atmosphere surroundings (gaseous and liquid) 1. Restriction on the operating environment of capacitors. 1-1. The capacitor, when used in the above, unsuitable, operating environments may deteriorate due to the corrosion of the terminations and the penetration of moisture into the capacitor. 1-2. The same phenomenon as the above may occur when the electrodes or terminals of the capacitor are subject to moisture condensation. 1-3. The deterioration of characteristics and insulation resistance due to the oxidization or corrosion of terminal electrodes may result in breakdown when the capacitor is exposed to corrosive or volatile gases or solvents for long periods of time. 3.Piezo-electric Phenomenon 1. When using high dielectric constant type capacitors in AC or pulse circuits, the capacitor itself vibrates at specific frequencies and noise may be generated. Moreover, when the mechanical vibration or shock is added to capacitor, noise may occur. JEMCCC-0010Q 20 Notice ■ Soldering and Mounting 1.PCB Design 1. Notice for Pattern Forms 1-1. Unlike leaded components, chip components are susceptible to flexing stresses since they are mounted directly on the substrate. They are also more sensitive to mechanical and thermal stresses than leaded components. Excess solder fillet height can multiply these stresses and cause chip cracking. When designing substrates, take land patterns and dimensions into consideration to eliminate the possibility of excess solder fillet height. 1-2.There is a possibility of chip crack caused by PCB expansion/contraction with heat. Because stress for chip is different depend on PCB material and structure.Especially metal PCB such as alumina has a greater risk of chip crack because of large difference of thermal expansion coefficient. In case of chip below 0402 size, there is also the same possibility of crack with a single-layered glass epoxy board. Pattern Forms Prohibited Correct Chassis Solder Resist Solder (ground) Placing Close to Chassis Electrode Pattern Lead Wire Solder Resist Placing of Chip Components and Leaded Components Soldering Iron Lead Wire Solder Resist Placing of Leaded Components after Chip Component Solder Resist ソルダレジスト Lateral Mounting JEMCCC-0010Q 21 Notice 2. Land Dimensions 2-1. Chip capacitor can be cracked due to the stress of PCB bending / etc if the land area is larger than needed and has an excess amount of solder. Please refer to the land dimensions in table 1 for reflow soldering. Please confirm the suitable land dimension by evaluating of the actual SET / PCB. GNM□□2 GNM□□4 Table 1 Reflow Soldering Method Dimensions L×W a b c p GNM0M2 0.9×0.6 0.12 to 0.20 ** 0.35 to 0.40 ** 0.30 0.45 GNM1M2 1.37×1.0 0.4 to 0.5 * 0.35 to 0.45 * 0.3 to 0.35 0.64 GNM212 2.0×1.25 0.6 to 0.7 0.5 to 0.7 0.4 to 0.5 1.0 GNM214 2.0×1.25 0.6 to 0.7 0.5 to 0.7 0.25 to 0.35 0.5 GNM314 3.2×1.6 0.8 to 1.0 0.7 to 0.9 0.3 to 0.4 0.8 Part Number (in mm) * a+2b < 1.35 ** 0.82≦a+2b≦1.0 JEMCCC-0010Q 22 Notice 2.Washing 1. Please evaluate a capacitor by actual cleaning equipment and condition surely for confirming the quality and select the applicable solvent. 2. Unsuitable cleaning solvent may leave residual flux, other foreign substances, causing deterioration of electrical characteristics and the reliability of the capacitors. 3. Select the proper cleaning conditions. 3-1. Improper cleaning conditions (excessive or insufficient) may result in the deterioration of the performance of the capacitors. 3.Coating 1. A crack may be caused in the capacitor due to the stress of the thermal contraction of the resin during curing process. The stress is affected by the amount of resin and curing contraction. Select a resin with small curing contraction. The difference in the thermal expansion coefficient between a coating resin or a molding resin and capacitor may cause the destruction and deterioration of the capacitor such as a crack or peeling, and lead to the deterioration of insulation resistance or dielectric breakdown. Select a resin for which the thermal expansion coefficient is as close to that of capacitor as possible. A silicone resin can be used as an under-coating to buffer against the stress. 2. Select a resin that is less hygroscopic. Using hygroscopic resins under high humidity conditions may cause the deterioration of the insulation resistance of a capacitor. An epoxy resin can be used as a less hygroscopic resin. ■ Others 1.Transportation 1. The performance of a capacitor may be affected by the conditions during transportation. 1-1. The capacitors shall be protected against excessive temperature, humidity and mechanical force during transportation. (1) Climatic condition - low air temperature:-40℃ - change of temperature air/air:-25℃/+25℃ - low air pressure:30 kPa - change of air pressure:6 kPa/min (2) Mechanical condition Transportation shall be done in such a way that the boxes are not deformed and forces are not directly passed on to the inner packaging. 1-2. Do not apply excessive vibration, shock, and pressure to the capacitor. (1) When excessive mechanical shock or pressure is applied to a capacitor, chipping or cracking may occur in the ceramic body of the capacitor. (2) When a sharp edge of an air driver, a soldering iron, tweezers, a chassis, etc. impacts strongly on the surface of capacitor, the capacitor may crack and short-circuit. 1-3. Do not use a capacitor to which excessive shock was applied by dropping etc. The capacitor dropped accidentally during processing may be damaged. JEMCCC-0010Q 23 ! NOTE 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product. 2.Your are requested not to use our product deviating from this product specification. 3.We consider it not appropriate to include any terms and conditions with regard to the business transaction in the product specifications, drawings or other technical documents. Therefore, if your technical documents as above include such terms and conditions such as warranty clause, product liability clause, or intellectual property infringement liability clause, they will be deemed to be invalid. JEMCCC-0010Q 24