LED2472G 24-channels LED driver with error detection and gain control Datasheet - production data Description 74)3(3 0/34(3[ Features • 24 constant current output channels • Output current: from 4 mA to 72 mA • 8 x 3 independently controlled channels (RGB) • Current programmable through external resistor • 7-bit global current gain adjustment in two ranges • Error detection mode (both open and shorted LED) • Programmable shorted LED detection thresholds • Auto power-saving / auto wakeup • Gradual output delay (selectable) The LED2472G is a monolithic, low voltage, low current power 24-bit shift register designed for LED panel displays with particular features oriented to indoor and outdoor LED screen billboards. The LED2472G guarantees 20 V of output driving capability, allowing several LEDs to be connected in series. The device is configured in 3 groups (red, green and blue) of 8 independently-controlled channels. The LED current can be separately regulated for each color within the range from 4 mA to 72 mA. This range is divided into two sub-ranges and the current can be adjusted within each range in 64 steps of resolution (6 bits per color). A single external resistor is required. All the controls and the shift register data are accessible via serial interface. A single 24-bit configuration register is used to choose features and settings to fit the application. The LED failure detection circuit checks 3 different conditions that can occur at the output line: short to GND, short to LED power supply rail or open channel. The auto power shutdown and auto power-on feature (selectable) allows the device to save power without any external intervention. Thermal management includes overtemperature flag and the output thermal shutdown (170 °C). The high clock frequency of up to 30 MHz makes the device suitable for high data rate transmission. A selectable gradual output delay reduces the inrush current. The supply voltage ranges from 3 V and 5.5 V. • Supply voltage: 3 V to 5.5 V • Thermal shutdown and thermal flag Table 1. Device summary • Up to 30 MHz CLK 4 wires interface • 20 V current generators rated voltage Order code Package LED2472GBTR TQFP48-EP LED2472GQTR MLPQ40-EP 5x5 Packaging Tape and reel Applications • Full color large displays • LED signage • LED screens for indoor and outdoor billboards April 2014 This is information on a product in full production. DocID024620 Rev 3 1/39 www.st.com 39 Contents LED2472G Contents 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.1 Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 7 Simplified Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 7.1 8 Equivalent circuits of inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . . 16 Digital blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8.1 Register access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8.2 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.3 Current ranges (CFG 0-CFG 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.4 Error detection conditions (CFG 3-CFG 5) . . . . . . . . . . . . . . . . . . . . . . . . 21 8.5 Auto power shutdown / wakeup (CFG 6) . . . . . . . . . . . . . . . . . . . . . . . . . 21 8.6 SDO delay (CFG 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 8.7 Gradual output delay (CFG 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 8.8 Data flow management (CFG 9-CFG 11) . . . . . . . . . . . . . . . . . . . . . . . . . 23 8.9 Gain register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 9 Current adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 10 LED error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 11 Thermal shutdown and thermal alert . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2/39 DocID024620 Rev 3 LED2472G Contents 12 Dropout voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 13 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 DocID024620 Rev 3 3/39 List of tables LED2472G List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. 4/39 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Digital keys summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Diagnostic thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Gradual output delay values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Gain register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Current adjustment example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Thermal alert status summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Minimum dropout voltage for some current values (only one channel ON) . . . . . . . . . . . . 31 TQFP48-EP mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 MLPQ40-EP 5x5 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 DocID024620 Rev 3 LED2472G List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Pinout for TQFP48EP (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pinout for MLPQ40 (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Typical application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Timing for clock, serial-in, serial-out, latch enable and outputs . . . . . . . . . . . . . . . . . . . . . 15 OE and Outputs timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 LED2472G simplified block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Input terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Data input time diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Digital key timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SDO Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Gradual delay on first four channels of RED color group . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Different color sequence in data loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Iout vs. gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 External resistor to connect to ISET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Error detection process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 LE high for 14 CLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Typical dropout voltage vs. output current (only one channel ON) . . . . . . . . . . . . . . . . . . . 31 TQFP48-EP package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 TQFP48-EP recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 MLPQ40-EP 5x5 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 MLPQ40-EP 5x5 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 DocID024620 Rev 3 5/39 Pin description 1 LED2472G Pin description 5 * % 5 * % 5 * % 5 * % Figure 1. Pinout for TQFP48EP (top view) 1& 1& 6', 6'2 /( 52( &/. *2( 1& %2( 1& 9'' 1& *1' 5(6(59(' *1' 5(6(59(' 1& 1& ,6(7 1& 1& 1& 1& * % 5 * % 5 * % 5 * % 5 74)3H[SRVHGSDG $09 5 * 5 % * 5 % * 5 % * Figure 2. Pinout for MLPQ40 (top view) % 6', 6'2 /( 52( 1& *2( 1& %2( 0/34/[ 1& 9'' &/. *1' 5(6(59(' *1' 5(6(59(' ,6(7 5 % * 5 % * 5 % * % * 5 $09 6/39 DocID024620 Rev 3 LED2472G Pin description Table 2. Pin description Pin Symbol Name and function 23, 24 GND Ground 2 2 SDI serial data input 3 3 LE Latch enable 8,9 8, 9 Reserved Not used in applications 4 7 CLK Clock 1, 5, 6, 7, 10, 11, 12, 25, 26, 28, 36 4, 5, 6 NC Not connected 31 25 VDD Power supply voltage 13 10 R1 Red output 1 14 11 G1 Green output 1 15 12 B1 Blue output 1 16 13 R2 Red output 2 17 14 G2 Green output 2 18 15 B2 Blue output 2 19 16 R3 Red output 3 20 17 G3 Green output 3 21 18 B3 Blue output 3 22 19 R4 Red output 4 23 20 G4 Green output 4 24 21 B4 Blue output 4 27 22 ISET Current setup 32 26 BOE Blue output enable 33 27 GOE Green output enable 34 28 ROE Red output enable 35 29 SDO Serial data output 37 30 B5 Red output 5 38 31 G5 Green output 5 39 32 R5 Blue output 5 40 33 B6 Red output 6 41 34 G6 Green output 6 42 35 R6 Blue output 6 43 36 B7 Red output 7 44 37 G7 Green output 7 45 38 R7 Blue output 7 46 39 B8 Red output 8 TQFP48 MLPQ40 29, 30 DocID024620 Rev 3 7/39 Pin description LED2472G Table 2. Pin description (continued) Pin 8/39 Symbol Name and function 40 G8 Green output 8 1 R8 Blue output 8 TQFP48 MLPQ40 47 48 DocID024620 Rev 3 LED2472G 2 Absolute maximum ratings Absolute maximum ratings Stressing the device above the ratings listed in the Table 3 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Table 3. Absolute maximum ratings Symbol VDD VI OUT Io IGND Parameter Value Unit -0.4 to 7 V -0.4 to Vdd+0.4 V Driver outputs voltage (R<1:8>, G<1:8>, B<1:8>) 20 V Output current 80 mA GND terminal current 1.9 A Electrostatic discharge protection HBM human body model ±2 KV ±200 V Supply voltage Digital inputs voltage ESD Electrostatic discharge protection MM machine model 3 Thermal characteristics Table 4. Thermal characteristics Symbol Ta TJ-OPR Tstg Parameter (1) Value Operative free-air temperature range -40 to +85 Operative thermal junction temperature range -40 to +125 Storage temperature range -55 to +150 Junction-ambient thermal resistance; QFN40-EP(2) Unit °C 25.3 °C/W 33 °C/W Rthja Junction-ambient thermal resistance; TSSOP48-EP(1) 1. This data must be considered in adequate power dissipation conditions. The junction temperature must be maintained below 150 °C. 2. In accordance with JEDEC standard 51-7B. The exposed pad should be soldered directly to the PCB to obtain the thermal benefits. DocID024620 Rev 3 9/39 Electrical characteristics 4 LED2472G Electrical characteristics Vdd = 3.3 V, Tj = 25 °C, GRG = “1” (gain reg), Rext = 13 kΩ, unless otherwise specified. Table 5. Electrical characteristics Symbol Parameter Vdd Supply voltage VOUT Output voltage VIH Test conditions Min. Typ. 3 For all outputs Max. Unit 5.5 - - 19 0.7•Vdd - Vdd GND - 0.3•Vdd Input voltage V VIL Serial data output voltage (SDO) VDD = 3 to 5.5 V I = +/- 1 mA - - 0.4 VDD-0.4 - - IOleak Output leakage current Vo = 19 V, all outputs OFF - - 0.5 uA Vuvlo1 UVLO threshold voltage (rising) 2.7 2.9 V Vuvlo1 UVLO threshold voltage (falling) Hyuvlo UVLO hysteresis VOL VOH 2.2 2.3 V 400 mV Vo = 0.3 V; (Io=5 mA) CFG-0 = CFG-1 = CFG-2 = “0” GRG = “0” - - ±4 Vo = 0.6 V; (Io = 21 mA) CFG-0 = CFG-1 = CFG-2 = “0” - - ±3 Vo = 0.5 V; (Io=15 mA) CFG-0 = CFG-1 = CFG-2 = “1” GRG = “0” - - ±3 ∆IOL4 Vo = 1.2 V; (Io=61 mA) CFG-0 = CFG-1 = CFG-2 = “1” - - ±3 ∆IOL1a Vo = 0.3 V; (Io = 5 mA) CFG-0 = CFG-1 = CFG-2 = “0” GRG = “0” ∆IOL1 ∆IOL3 ∆IOL2 Output current precision channel-to-channel per each color group (all outputs ON)(1)(2) % ∆IOL3a ∆IOL2a ∆IOL4a 10/39 Vo = 0.6 V; (Io=21 mA) Output current error device-toCFG-0 = CFG-1 = CFG-2 = “0” device per each color group Vo = 0.5 V; (Io = 15 mA) (all outputs ON)(1) CFG-0 = CFG-1 = CFG-2 = “1” GRG = “0” Vo = 1.2 V; (Io = 61 mA) CFG-0 = CFG-1 = CFG-2 = “1” DocID024620 Rev 3 - - ±6 - - ±6 - - ±6 - - ±6 LED2472G Electrical characteristics Table 5. Electrical characteristics (continued) Symbol Parameter Test conditions Min. Typ. Max. %/ΔVOUT Output current vs. output voltage regulation(3) Vo from 1.2 V to 3 V; (Io = 61 mA) CFG-0 = CFG-1 = CFG-2 = “1” - ±0.2 - %/ΔVDD Output current vs. supply voltage regulation(4) Vdd from 3 V to 5.5 V Vo = 1.2 V; (Io = 61 mA) CFG-0 = CFG-1 = CFG-2 = “1” Rup Pull-up resistor for OE pin Rdw Pull-down resistor for LE pin Rext External current setup resistance %/V - ±1 - 400 500 650 kΩ 100 No data transfers, all outputs OFF, CFG-0 = CFG-1 = CFG-2 = “0” GRG = “0”; CFG-6 = “0” IDD1 8 Supply current (OFF) mA IDD2 No data transfers, all outputs OFF, CFG-0 = CFG-1 = CFG-2 = “1” CFG-6 = “0” IDD1 No data transfers, all outputs ON, CFG-0 = CFG-1 = CFG-2 = “0” GRG = “0” - No data transfers, all outputs ON, CFG-0 = CFG-1 = CFG-2 = “1” - All output OFF CFG-6 = “1” - Supply current (ON) IDD2 IDD (AutoOFF) SDE1 Supply current (autoOFF) ODC 16 8 mA 15 200 CFG-3 = CFG-4 = CFG-5 = “0” 2.0 CFG-3 = CFG-4 = CFG-5 = “1” 3.0 LED short detection voltage SDE2 Unit 500 µA V 0.5 IOL LED open detection current DocID024620 Rev 3 11/39 Electrical characteristics LED2472G Table 5. Electrical characteristics (continued) Symbol Parameter Test conditions Min. Typ. Tflg Thermal flag 150 Tsd Thermal shutdown(5) 170 Tsd-hy Thermal shutdown hysteresis(5) 15 Max. Unit °C 20 1. Tested with just one output loaded 2. ((Ioutn - Ioutavg1-15)/ Ioutavg1-15) x 100 3. Δ (% / V ) = ( Ioutn @ Voutn = 3. 0 V ) − (Ioutn @ Voutn = 1 .0 V ) 100 × ( Ioutn @ Voutn = 1 .0 V ) 3 −1 4. Δ (% / V) = (Ioutn @ Vdd = 5. 5V) − (Ioutn @ Vdd = 3.0V ) 100 × (Ioutn @ Vdd = 3. 0V) 5. 5 − 3 5. Not tested, guaranteed by design. 4.1 Typical application circuit Figure 3. Typical application circuit 6XSSO\YROWDJH /('YROWDJHUDLO 2XWSXWHQDEOHIRU HDFKFRORUJURXS 'DWDORDGLQJDQG UHJLVWHUVDFFHVV WKURXJKVHULDO LQWHUIDFH $09 12/39 DocID024620 Rev 3 LED2472G 5 Switching characteristics Switching characteristics Vdd = 3.3 V, Tj = 25 °C, GRG = “1” (gain reg), Rext = 13 kΩ, unless otherwise specified. Table 6. Switching characteristics(1)(2) Symbol Parameter Conditions Min. Typ. Max. Unit fclk Clock frequency Cascade operation - - 30 MHz tr(SDO) SDO rise time - 5 - tf(SDO) SDO fall time - 5 - - 70 - - 100 - 8 15 25 - 70 - - 100 - 15 25 - - - - - - tPLH2 LE-OUTn(3) tPLH3 OE-OUTn(3) tPLH CLK-SDO CFG-7 = ‘0’ tPHL2 LE-OUTn(3) tPHL3 OE-OUTn(3) tPHL CLK-SDO CFG-7= ‘0’ tw(CLK) CLK tW(OE) OE tw(L) LE tgr-d Gradual delay Ch to Ch tsu(L) Setup time for LE 5 - - th(L) Hold time for LE 5 - - tsu(D) Setup time for SDI 5 - - th(D) Hold time for SDI 10 - - tor(5) Maximum CLK rise time - - 5 (5) Maximum CLK fall time - - 5 - - 10 % - - 1 µs tof Propagation delay time (“L” to “H”) Propagation delay time (“H” to “L”) Pulse width Rext = 13 kΩ; Iout = 21 mA 8 Vout = 0.6 V VIH = VDD; VIL = GND 20 RL = 56 Ω; CL = 10 pF 150(4) CFG-0 = CFG-1 = CFG-2 = “0” 20 ns 10 µs Iout-ov Output current turn-on overshoot tn-err Normal error detection minimum output ON time Vout = 0.3 to 3 V CL = 10 pF; Iout = 5 to 61 mA DocID024620 Rev 3 13/39 Switching characteristics LED2472G Table 6. Switching characteristics(1)(2) Symbol Parameter Conditions Min. Typ. Max. Unit tshut-down Auto power shutdown time (autoOFF) From LE falling edge to Rext voltage reference at -10% - 75 - ns twake-up Auto power wakeup time From LE falling edge to Rext voltage reference at 90% - 1 - µs 1. All table limits are guaranteed by design. 2. Not tested in production. 3. CFG-8 = “1” (no output gradual delay) 4. In normal error detection mode must be longer than 1µs 5. If devices are connected in cascade and tor or tof is large, it may be critical to achieve the timing required for data transfer between two cascaded devices 14/39 DocID024620 Rev 3 LED2472G 6 Timing Timing Figure 4. Timing for clock, serial-in, serial-out, latch enable and outputs AM13690V1 Correct sampling of the data depends on the stability of the data at SDI on the rising edge of the clock signal and it is assured by a proper data setup and hold time (tSU(D) and th(D)), as shown in Figure 4. The same figure shows the propagation delay from CLK to SDO (tPLH/tPHL). Figure 4 describes also the minimum duration of CLK and LE pulses (tW(CLK) and tW(L), respectively) and the propagation delay from LE to OUTn (tPLH1/tPHL1 and tPLH2/tPHL2, respectively). Finally, Figure 5 also defines the turn-on and turn-off time (tof and tor) of the output voltage. Figure 5. OE and Outputs timing $09 DocID024620 Rev 3 15/39 Simplified Internal block diagram 7 LED2472G Simplified Internal block diagram Figure 6. LED2472G simplified block diagram $09 7.1 Equivalent circuits of inputs and outputs Input terminals LE and /OE have pull-down and pull-up connections, respectively. CLK and SDI must be connected to external circuits to fix the logic level. 16/39 DocID024620 Rev 3 LED2472G Simplified Internal block diagram Figure 7. Input terminals OE terminal CLK, SDI terminal LE terminal SDO terminal AM13692V1 DocID024620 Rev 3 17/39 Digital blocks 8 LED2472G Digital blocks The data inputs come in through the serial interface at each CLK rising edge and after 24 CLK cycles all data are loaded into the shift register. The LE signal is used to latch the loaded data and also to generate digital keys for CFG management, scrolling, thermal check and LED error detection. When one of the output enable signal (OER, OEB or OEG) is low, the corresponding data are transferred to the relative output drivers. The data flow is “first in, first out”. To latch the data, the LE signal must be high during the last data loading CLK rising edge (Table 7). When one of the output enable signals (OER, OEB or OEG) is at low level, output terminals (R1-R8,G1-G8, B1-B8) respond to the data either ON or OFF. When one of the output enable signals (OER, OEB or OEG) goes to “1”, all outputs switch off all the data on the output terminal. LE and /OE signals are asynchronous with respect to the CLK signal. The time diagram below refers to RGB flow setting. Figure 8. Data input time diagram 6', &/. /( 2( 5*% 5 2)) 21 5 2)) 21 * 2)) 21 * 2)) 21 * 2)) 21 % 2)) 21 % 2)) 21 ELWGDWD $09 8.1 Register access Access to the different registers of the device (configuration register, gain register, etc.) is achieved by using different digital keys, defined as a number of CLK pulses during which the LE signal is asserted. The available digital keys are summarized in Table 7. 18/39 DocID024620 Rev 3 LED2472G Digital blocks Table 7. Digital keys summary #CLK rising edges with the LE asserted Description 1-2 Data latch 3-4 Write configuration register 5-6 Read configuration register 7-8 Write gain 9-10 Read gain 11 Open detection 12 Short detection 13 Open/short detection 14 Thermal alert reading 15 Reserved 16 Reserved Figure 9. Digital key timing diagram &/. /( 'DWDODWFK /( :ULWH&5 5HDG&5 /( :ULWHJDLQ /( 5HDGJDLQ /( 2SHQGHWHFWLRQ /( 6KRUWGHWHFWLRQ /( 2SHQVKRUWGHWHFWLRQ /( 6', 7KHUPDODOHUW 3UHYLRXVGDWD ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 3UHYLRXVGDWD ' ' ' ' ' ' ' ' ' 1H[WGDWD ' ' ' $09 8.2 Configuration register The configuration register is used to enable or disable some device features, to program some parameters and to change other settings. Access to this register (read or write) is DocID024620 Rev 3 19/39 Digital blocks LED2472G managed as described in Table 8 where a description is provided for each bit. The default value of the configuration register (when the device is switched ON or after a reset) is all bits set to “0”. To change anything in the configuration register, a 24-bit digital word must be sent (CFG-0 represents the LSB, CFG-23 the MSB). Figure 10. Configuration register 6', &/. /( ELWGDWD $09 Table 8. Configuration register 20/39 BIT Definition Attribute read/write CFG-0 RED current range R/W ”0” low current range “1” high current range 0 CFG-1 GREEN current range R/W ”0” low current range “1” high current range 0 CFG-2 BLUE current range R/W ”0” low current range “1” high current range 0 CFG-3 RED voltage det. thr. R/W “0” LED short-circuit detection threshold 2 V “1” LED short-circuit detection threshold 3 V 0 CFG-4 GREEN voltage det. thr. R/W “0” LED short-circuit detection threshold 2 V “1”LE D short-circuit detection threshold 3 V 0 CFG-5 BLUE voltage det. thr. R/W “0” LED short-circuit detection threshold 2 V “1” LED short-circuit detection threshold 3 V 0 CFG-6 Auto OFF R/W “0” device always ON ”1” auto power shutdown active (Auto OFF) 0 CFG-7 SDO delay R/W “0” SDO half clock delay disabled “1” SDO half clock delay enabled 0 CFG-8 Gradual output delay R/W “0” gradual outputs delay is applied ”1” all channels switch ON and OFF simultaneously 0 Configuration register function description DocID024620 Rev 3 Default LED2472G Digital blocks Table 8. Configuration register (continued) BIT Attribute read/write Definition Configuration register function description Default CFG9 CFG10 CFG11 CFG-9 Data flow R/W CFG-10 Color data flow management 0 0 0 RGB 0 0 1 GBR 0 1 0 GRB 0 1 1 BGR 1 0 0 BRG 1 0 1 RBG 0 CFG-11 0 CFG 12 ÷ 23 8.3 0 Don’t care Current ranges (CFG 0-CFG 2) The output LED currents can be programmed using an external resistor connected to GND from the ISET pin and can be adjusted using 6 bits in a dedicated gain register with two possible current ranges selectable in the configuration register. Each range can be separately selected for each color by the bits CFG-0, CFG-1 and CFG-2, respectively, for the RED, GREEN and BLUE channels. 8.4 Error detection conditions (CFG 3-CFG 5) During error detection phases for each channel, the following are checked: – output current for open circuit detection – output voltage for short-circuit detection The thresholds for the error diagnostics are summarized in the Table 9: Table 9. Diagnostic thresholds Error detection Checked malfunction CFG-x(1) Thresholds Open detection combined mode Open line or output short to GND Don’t care Io < 0.5 x Io_programmed 0 Vo > 2 V Short detection Short on LED or short to VLED 1 Vo > 3 V 1. x=3 for RED, x=4 for GREEN, x=5 for BLUE 8.5 Auto power shutdown / wakeup (CFG 6) This feature reduces the power consumption when all outputs are OFF. It is active when the bit CFG-6 of the configuration register is at “1”. The auto power shutdown (auto OFF) starts when the data latched is “0” for all channels, and the device will be active again (wakeup) at the first latched data string including at least one bit equal to “1” (at least one channel ON). DocID024620 Rev 3 21/39 Digital blocks LED2472G Timings for shutdown and wakeup are present in the dynamic features table. While the auto power shutdown is active, the device ignores any other command except channel power-on. 8.6 SDO delay (CFG 7) Normally, on SDO terminals data is shifted out at the rising edge of the CLK signal with a propagation delay of about 15 ns [signal (1) in Figure 11]. The device provides the possibility to shift data out also at the falling edge of the CLK signal with a propagation delay of few ns [signal (2) in Figure 11]. This feature can be activated by setting to “1” the bit CFG-7 of the configuration register. The default setting for this bit is “0”, hence the SDO delay is not activated by default. This feature is particularly useful when multiple devices are connected in daisy chain configuration with non-matched delays between the CLK and SDO data paths (board routing). Figure 11. SDO Delay 8.7 Gradual output delay (CFG 8) The gradual output delay consists in turning on gradually the current generators, avoiding turning on all channels at the same time. This feature prevents large inrush current and reduces the bypass capacitor values. The fixed delay time can be activated by bit CFG-8 of the configuration register, and the typical delay is 10 ns for each group of 8 outputs R, G, B (e.g. R1, G1, B1 has no delay, R2, G2, B2 has 10 ns of delay and R3, G3, B3, has 20 ns delay, and so on), as described in Table 10. 22/39 DocID024620 Rev 3 LED2472G Digital blocks Table 10. Gradual output delay values R1 R2 R3 R4 R5 R6 R7 R8 G1 G2 G3 G4 G5 G6 G7 G8 B1 B2 B3 B4 B5 B6 B7 B8 CFG-8 = “0” 0 10 20 30 40 50 60 70 CFG-8 = “1” 0 0 0 0 0 0 0 0 Delay time (ns) from the falling edge of xOE Figure 12 shows an example of the effect of the output gradual delay on the RED color group outputs. Figure 12. Gradual delay on first four channels of RED color group Zϭ ZϮ Zϯ Zϰ $09 8.8 Data flow management (CFG 9-CFG 11) The 8x3 shift registers have a default RGB sequence serial data flow according to the table shown into the configuration register (bit CFG-9, CFG-10 and CFG-11). Figure 13 shows how serial data are loaded in accordance with the data flow sequence selected through the configuration register. The default sequence is RGB (first bit will be R8, last bit B1 then: R8R1, G8-G1, B8-B1). DocID024620 Rev 3 23/39 Digital blocks LED2472G Figure 13. Different color sequence in data loading JURXS JURXS JURXS &)* 06% ILUVWELW 5*% 5 5 * * % % *%5 * * % % 5 5 *5% * * 5 5 % % %*5 % % * * 5 5 %5* % % 5 5 * * 5%* 5 5 % % * * /6% ODVWELW ELWVGDWDVWUHDP $09 8.9 Gain register The LED current can be programmed using an external resistor connected to GND from REXT pin and can be adjusted using the dedicated bits of the gain register (G-0 to G-17 defines the gain and CFG-0/1/2 the current range within the gain can be adjusted). The device can regulate the current up to 72 mA and down to 4 mA. To change anything in the gain register, a 24-bit digital word must be sent (CFG-0 represents the LSB, CFG-23 the MSB). The accuracy of the LED current depends on the selected range and it is assured only in the ranges indicated in the static electrical characteristics (see Table 5). Table 11. Gain register BIT Definition Attribute read/write Register function description 1 G-0 G-1 G-2 G-3 RED current gain adjustment R/W G-4 6-bit DAC allows adjustment of the device output current in 64 steps for each range (defined by CFG-0). default: gain = 1 1 1 1 1 G-5 1 G-6 1 G-7 G-8 G-9 G-10 GREEN current gain adjustment R/W 6-bit DAC allows adjustment of the device output current in 64 steps for each range (defined by CFG-1). default: gain = 1 G-11 24/39 Default 1 1 1 1 1 DocID024620 Rev 3 LED2472G Digital blocks Table 11. Gain register (continued) BIT Attribute read/write Definition Register function description Default G-12 1 G-13 G-14 G-15 BLUE current gain adjustment R/W G-16 1 6-bit DAC allows adjustment of the device output current in 64 steps for each range (defined by CFG-2). default: gain = 1 1 1 1 G-17 1 G-18 to G-23 Don’t care Figure 14. Iout vs. gain 5 UDQJHVHOHFWLRQ5H[W .RU. ϳϬ͘Ϭ ϭϯ<ZсϬ ϲϬ͘Ϭ ϭϯ<Zсϭ ,RXW P$ ϱϬ͘Ϭ ϭϴ<ZсϬ ϭϴ<Zсϭ ϰϬ͘Ϭ ϯϬ͘Ϭ ϮϬ͘Ϭ ϭϬ͘Ϭ Ϭ͘Ϭ Ϭ ϱ ϭϬ ϭϱ ϮϬ Ϯϱ ϯϬ ϯϱ ϰϬ ϰϱ ϱϬ ϱϱ ϲϬ ϲϱ ϳϬ *DLQUHJLVWHUGHFLPDOYDOXH $09 DocID024620 Rev 3 25/39 Current adjustment 9 LED2472G Current adjustment The LED2472G is designed to provide a current in the range between 4 mA and 72 mA per channel. The current is programmed for all color groups by connecting an external resistor (see Figure 15) to the pin ISET and then adjusted separately for each color by the gain register. The current ranges can be separately selected for each color by the bits CFG-0, CFG-1, CFG-2 of the configuration register (respectively, for RED, GREEN and BLUE). The current for each color can be adjusted in 64 steps using 6 bits (per color) contained in the gain register. Figure 15. External resistor to connect to ISET pin 1& 1& % ,6(7 * 5 1& % 56(7 $09 When the device is switched on, the default value of the gain register together with the bits of the configuration register selecting the current range set a current value that can be calculated as follows: I OL _ default = VREF ⋅K REXT Where VREF ≈ 1.23 V is the voltage of the ISET pin and K is the mirroring current ratio, whose value depends on the selected current range: K = 55 with low current range selected (CFG-0, CFG-1 or CFG-2 set to “0”) K = 160 with high current range selected (CFG-0, CFG-1 or CFG-2 set to “1”) The relationship between the programmed current and the current gain settings is the following: I OL = ( I OL _ default + G ⋅ ΔI step ) where G is the current gain (decimal value) defined by the dedicated bits of the current gain register. ΔIstep can be instead defined as follows: 26/39 DocID024620 Rev 3 LED2472G Current adjustment ΔI step = I OL _ default 21 The recommended resistor values to cover the above mentioned current range are 1118 kΩ, which respectively define the following ranges: Table 12. Current adjustment example Range RSET [kΩ] CFG-x (1) G-y to G-z (2) LED current(3) [mA] 18 0 000000 4 18 0 111111 15 18 1 000000 11 18 1 111111 44 13 0 000000 5 13 0 111111 21 13 1 000000 15 13 1 111111 61 11 0 000000 6 11 0 111111 25 11 1 000000 18 11 1 111111 72 Low High Low High Low High 1. x = 0 for RED, x = 1 for GREEN, x = 2 for BLUE 2. y = 0 & z = 5 for RED, y = 6 & z = 11 for GREEN, y = 12 & z = 17 for BLUE 3. The indicated values may be slightly different on the actual device The current values in bold in the Table 12 are the current default values. The above mentioned resistor values are not mandatory, but only suggested to cover precisely the current range indicated for this device. Due to internal power dissipation, it is important to highlight that, loading at the maximum current of all device channels simultaneously can cause a current shift for each output. In the worst case, with all channels loaded at the maximum current of about 72 mA, the regulated current could decrease in the range of about 3-5%. DocID024620 Rev 3 27/39 LED error detection 10 LED2472G LED error detection The LED error detection implemented by the LED2472G is performed in order to detect shorted LED and open LED conditions. The shorted LED condition is determined by checking the voltage across each current generator. If this voltage is higher than the threshold, programmed by bits CFG-3, CFG-4 and CFG-5 of the configuration register, the LED connected to that generator is considered shorted. The open LED condition is determined by measuring the current flowing through each current generator. If this current is lower than half the expected current, the LED connected to that generator is considered open. The error detection request and the acquisition of the results of the detection are managed by the serial interface. The steps to follow for correct performance of error detection are summarized as follows (see Figure 16): – Enter the error detection. To do this, the appropriate digital key must be provided (see Figure 9). There is both the possibility of “generic” error detection (open/short detection) and the possibility to specifically select the type of failure (short detection or open detection). – Performing the error detection. When the ROE, GOE and BOE signals become low, error detection starts. These signals must be kept low for at least 1 µs in order to correctly complete the error detection process. After this time, at least one CLK pulse must be provided in order to make the detection result available at the SDO pin while the output enable signals are still low. The bit shifted out of SDO after this clock pulse represents the first bit of the detection result word. – Detection results. To complete the detection result acquisition, at least another 23 CLK pulses must be provided after the xOE signals have been set high again (24 CLK pulses in total). The detection result will be always in RGB sequence regardless of any different programmed data flow (CFG9-CFG11). The detection result indicates “1” for each channel considered good, “0” for each channel that has a failure (shorted or open LED). To check the status of all channels and to obtain an accurate detection result, it is important to set all outputs to ON before starting the error detection process. If this is not done, it is worth noting that the detection result will indicate a “0” also for those channels not set to ON before the detection process, although they may not actually have any failure. 28/39 DocID024620 Rev 3 LED2472G LED error detection Figure 16. Error detection process $09 DocID024620 Rev 3 29/39 Thermal shutdown and thermal alert 11 LED2472G Thermal shutdown and thermal alert The device can monitor the internal temperature. Based on the temperature value, the device can simply provide an alert (if the temperature exceeds 150 °C) through the serial interface, or trigger a thermal shutdown (if the temperature exceeds 170 °C). The effect of the thermal shutdown is to turn off all channels until the temperature falls (considering a hysteresis of around 15 °C). The thermal alert can be read by running the digital key “Thermal alert reading”, holding the LE high for 14 CLK rising edges (see Figure 17). If thermal alert is asserted, a 24-bit string at “1” will be sent through SDO at the next 24 CLK rising edge. Table 13. Thermal alert status summary Thermal alert status Meaning “0000 0000 0000 0000 0000 0000” Device temperature under 150 °C “1111 1111 1111 1111 1111 1111” Device temperature over 150 °C Figure 17. LE high for 14 CLK $09 30/39 DocID024620 Rev 3 LED2472G Dropout voltage In order to correctly regulate the channel current, a minimum voltage (VDROP) across each current generator must be guaranteed. Figure 18 and Table 14 show the minimum VDROP related to the current to regulate. A VDROP lower than the minimum recommended implies the regulation of a current lower than that expected. However, an excess of VDROP increases the power dissipation. When all outputs are loaded simultaneously, the minimum working drop rises. In full load condition at 61 mA per channel the minimum voltage to apply on each channel must be increased by about 400 mV (550 mV at 72 mA). Figure 18. Typical dropout voltage vs. output current (only one channel ON) 7\ S GURS YV,RXW # 9GG 9 9GURS >P9@ 12 Dropout voltage ,RXW >P$@ $09 Table 14. Minimum dropout voltage for some current values (only one channel ON) Output nominal current [mA] Minimum VDROP [mV] VDD = 3.3 V 5 120 15 280 21 320 61 800 75 1050 DocID024620 Rev 3 31/39 Package mechanical data 13 LED2472G Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 19. TQFP48-EP package dimensions B( 32/39 DocID024620 Rev 3 LED2472G Package mechanical data Table 15. TQFP48-EP mechanical data mm Dim. Min. Typ. A Max. 1.20 A1 0.05 A2 0.95 1.00 1.05 b 0.17 0.22 0.27 c 0.09 D 8.80 9.00 9.20 D1 6.80 7.00 7.20 D2 2.00 D3 0.15 0.20 5.50 E 8.80 9.00 9.20 E1 6.80 7.00 7.20 E2 2.00 E3 5.50 e 0.50 L 0.45 L1 K 0.60 0.75 1.00 0 ccc 3.5 7 0.08 DocID024620 Rev 3 33/39 Package mechanical data LED2472G Figure 20. TQFP48-EP recommended footprint B( 34/39 DocID024620 Rev 3 LED2472G Package mechanical data Figure 21. MLPQ40-EP 5x5 package dimensions B$ DocID024620 Rev 3 35/39 Package mechanical data LED2472G Table 16. MLPQ40-EP 5x5 mechanical data mm Dim. Min. Typ. Max. A 0.90 0.80 1.00 A1 0.02 0.00 0.05 b 0.20 0.15 0.25 D 5 E 5 D2 3.65 3.50 3.75 E2 3.65 3.50 3.75 e 0.40 L1 0.377 0.277 0.477 L2 0.40 0.30 0.50 K 36/39 0.20 DocID024620 Rev 3 LED2472G Package mechanical data Figure 22. MLPQ40-EP 5x5 recommended footprint B$ DocID024620 Rev 3 37/39 Revision history 14 LED2472G Revision history Table 17. Document revision history 38/39 Date Revision Changes 19-Aug-2013 1 Initial release. 05-Mar-2014 2 Modified footnote1 in Table 6: Switching characteristics Added footnote 2 in Table 6: Switching characteristics and footnote 5 in Table 5: Electrical characteristics. 22-Apr-2014 3 Document status promoted from preliminary data to production data. DocID024620 Rev 3 LED2472G Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2014 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID024620 Rev 3 39/39