Compact Technology CTZ55C-Series Silicon Planar Power Zener Diodes Power Dissipation 500mW 1206 .134 (3.40) .118 (3.00) FEATURES This diode is also available in other case styles indluding the 0805 case with the type designation CTZ55C-S-Series. .067 (1.70) .051 (1.30) 12 Silicon planar power zener diodes 12 .037 (.95) .029 (.75) .030 (.75) .014 (.35) MECHANICAL DATA Mounting Pad Layout Case : 1206 Polarity : Color band denotes cathode Weight : 0.01 grams .085(2.16) Typ. .025(.635) Typ. .067 (1.70) Typ. MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25̺ ambient temperature unless otherwise specified. Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20% Maximum Ratings and Thermal Characteristics (T amb Parameter Power dissipation Junction temperature Storage temperature range Thermal resıstanceJunction to ambient aır Symbol Ptot Tj Tstg R JA = 25°C, unless otherwise specified) Value 500 175 - 65to + 175 300 Unit mW °C °C °C /W Electrical Characteristics Parameter Forward voltage IF = 200 mA Symbol VF Max 1.5 Unit V . 1 OF 6 Z55C-Series CTZ55C-Series Compact Technology Electrical Characteristics Nomınal Zener Voltage Part Number CTZ55C2V0 CTZ55C2V2 Marking Code 2 2V2 Max Reverse Leakage Current Max Zener Impedance ZZT@ IZT VZ @ IZT Min V Max V 1.90 2.09 2.10 2.31 85 ZZK@ IZK IR @ VR Ω mA µA V 600 1 1 100 75 1 1 Ω mA 85 5 5 600 CTZ55C2V4 2V4 2.28 2.52 85 5 600 1 50 1 CTZ55C2V7 2V7 2.57 2.84 85 5 600 1 10 1 CTZ55C3V0 3 2.85 3.15 85 5 600 1 4 1 CTZ55C3V3 3V3 3.14 3.47 85 5 600 1 2 1 CTZ55C3V6 3V6 3.42 3.78 85 5 600 1 2 1 CTZ55C3V9 3V9 3.71 4.10 85 5 600 1 2 1 CTZ55C4V3 4V3 4.09 4.52 80 5 600 1 1 1 CTZ55C4V7 4V7 4.47 4.94 70 5 600 1 0.5 1 CTZ55C5V1 5V1 4.85 5.36 50 5 550 1 0.1 1 1 CTZ55C5V6 5V6 5.32 5.88 30 5 450 1 0.1 CTZ55C6V2 6V2 5.89 6.51 10 5 200 1 0.1 2 CTZ55C6V8 6V8 6.46 7.14 8 5 150 1 0.1 3 CTZ55C7V5 7V5 7.13 7.88 7 5 50 1 0.1 5 CTZ55C8V2 8V2 7.79 8.61 7 5 50 1 0.1 6.1 CTZ55C9V1 9V1 8.65 9.56 10 5 50 1 0.1 6.8 CTZ55C10 10 9.50 10.50 15 5 70 1 0.1 7.5 CTZ55C11 11 10.45 11.55 20 5 70 1 0.1 8.2 CTZ55C12 12 11.40 12.60 20 5 90 1 0.1 9.0 CTZ55C13 13 12.35 13.65 26 5 110 1 0.1 9.7 CTZ55C15 15 14.25 15.75 30 5 110 1 0.1 11 CTZ55C16 16 15.20 16.80 40 5 170 1 0.1 12 CTZ55C18 18 17.10 18.90 50 5 170 1 0.1 14 CTZ55C20 20 19.00 21.00 55 5 220 1 0.1 15 CTZ55C22 22 20.90 23.10 55 5 220 1 0.1 17 CTZ55C24 24 22.80 25.20 80 5 220 1 0.1 18 CTZ55C27 27 25.65 28.35 80 5 220 1 0.1 20 CTZ55C30 30 28.50 31.50 80 5 220 1 0.1 22 CTZ55C33 33 31.35 34.65 80 5 220 1 0.1 24 CTZ55C36 36 34.20 37.80 80 5 220 1 0.1 27 2 OF 6 Z55C-Series CTZ55C-Series Compact Technology Typical Characteristics ( Tamb = 25°C, unless otherwise specified) Fig 4. Typical Change of Working Voltage vs. Junction Temperature 500 1.3 V Ztn =V Zt /V Z (25˚C) 400 V Ztn – RelativeVoltageChange R thJA – Therm.Resist.Junction/ Ambient ( K/W) Fig1. Thermal Resistance vs. Lead Length 300 l l 200 100 1.2 TK VZ =10x10 -4 /K 8x10 -4 /K 6x10 -4 /K 1.1 4x10 -4 /K 2x10 -4 /K 0 -2 x10 -4 /K 1.0 -4 x10 -4 /K 0.9 T L =constant 0 0.8 0 10 5 20 15 –60 l – Lead Length ( mm ) 0 60 120 180 240 T j – Junction Temperature (°C ) Fig5. Temperature Coefficient of Vz vs. Z-Voltage Z ( 10 -4 /K) Fig2. Total Power Dissipation vs. Ambient Temperature 15 500 10 TK VZ – Temperature Coefficient of V P tot – Total Power Dissipation ( mW) 600 400 300 200 100 0 0 40 80 120 160 200 5 I Z =5mA 0 -5 0 10 T amb – Ambient Temperature(°C ) Fig3. Typical Change of Working Voltage under Operating Conditions at Tamb=25°C 40 30 50 Fig 6. Diode Capacitance vs. Z-Voltage 200 1000 C D – Diode Capacitance ( pF ) T j =25˚C V Z – VoltageChange( mV ) 20 V Z – Z-Voltage ( V ) 100 I Z =5mA 10 150 V R =2V T j =25˚C 100 50 0 1 0 5 10 15 20 25 0 V Z – Z-Voltage ( V ) 10 5 V 3 OF 6 Z 15 20 25 – Z-Voltage ( V ) CTZ55C-Series CTZ55C-Series Compact Technology Fig 9. Z-Current vs. Z-Voltage 50 10 40 T j =25˚C I Z – Z-Current ( mA) I F – Forward Current ( mA) Fig 7. Forward Current vs. Forward Voltage 100 1 0.1 0.01 Ptot =500mW T amb =25˚C 30 20 10 0.001 0 0.2 0 0.4 0.6 0.8 1.0 15 20 V F – Forward Voltage ( V ) 35 30 V Z –Z-Voltage ( V ) Fig 8. Z-Current vs. Z-Voltage Fig10. Differential Z-Resistance vs. Z-Voltage 100 1000 80 I Z =1mA Ptot =500mW T amb =25˚C 100 I Z – Z-Current ( mA) I Z – Z-Current ( mA) 25 60 40 20 5mA 10mA 10 T j =25˚C 1 0 8 4 0 12 16 20 0 V Z –Z-Voltage ( V ) 5 10 15 20 25 V Z –Z-Voltage ( V ) Fig 11. Thermal Response Zthp – ThermalResistancefor PulseCond.(K/W) 1000 t p /T=0.5 100 t p /T=0.2 SinglePulse 10 R thJA =300K/W T=T jmax –T amb t p /T=0.01 t p /T=0.1 t p /T=0.02 t p /T=0.05 1 10 -1 i ZM =(–V Z +(V Z 2 +4r zj x T/Z thp ) 1/2 )/(2r zj ) 10 0 10 1 10 2 tp – Pulse Length ( ms ) 4 OF 6 CTZ55B-Series CTZ55C-Series Compact Technology Device outlook Shanghai plant (front side) Kunshan plant (front side) 12 12 Shanghai plant (back side) Kunshan plant (back side) 5 OF 6 CTZ55C-Series CTZ55C-Series Compact Technology Suggested thermal profiles for soldering processes 280 260 240 220 Temperature ( Co ) 200 180 Peak 160 Max 140 time dwell 4 sec 120 100 Soak Max 80 Cool gradient Max down gradient -4 oC/s 2 o C/s 60 40 Preheat 20 Max gradient 2 o C/s 30 60 90 120 150 180 Time Fig.1 Typical 210 240 270 300 330 360 (seconds) Wave Soldering Thermal 240 Profile Peak soldering 210 - 235 o C for 235 - 255 o C for 220 temperature standard devices Pb-free devices Temperatu re ( o C) 200 180 160 140 Reflow 120 Max 85 time sec 100 Soak 80 Max time Cool 2 min Max down gradient -4 oC/s 60 40 Preheat Max 20 Max 30 60 time gradient 90 Typical min. 2.5 120 Time Fig.2 4 IR o C/s 150 180 210 240 270 300 (seconds) Reflow Soldering 6 OF 6 Thermal Profile CTZ55C-Series