CTC CTZ55C2V2 Silicon planar power zener diode Datasheet

Compact Technology
CTZ55C-Series
Silicon Planar Power Zener Diodes
Power Dissipation 500mW
1206
.134 (3.40)
.118 (3.00)
FEATURES
This diode is also available in other case styles
indluding the 0805 case with the type designation
CTZ55C-S-Series.
.067 (1.70)
.051 (1.30)
12
Silicon planar power zener diodes
12
.037 (.95)
.029 (.75)
.030 (.75)
.014 (.35)
MECHANICAL DATA
Mounting Pad Layout
Case : 1206
Polarity : Color band denotes cathode
Weight : 0.01 grams
.085(2.16)
Typ.
.025(.635)
Typ.
.067 (1.70)
Typ.
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
Ratings at 25̺ ambient temperature unless otherwise specified.
Single phase, half wave, 60Hz, resistive or inductive load.
For capacitive load, derate current by 20%
Maximum Ratings and Thermal Characteristics (T amb
Parameter
Power dissipation
Junction temperature
Storage temperature range
Thermal resıstanceJunction to ambient aır
Symbol
Ptot
Tj
Tstg
R JA
= 25°C, unless otherwise specified)
Value
500
175
- 65to + 175
300
Unit
mW
°C
°C
°C /W
Electrical Characteristics
Parameter
Forward voltage IF = 200 mA
Symbol
VF
Max
1.5
Unit
V
.
1 OF 6
Z55C-Series
CTZ55C-Series
Compact Technology
Electrical Characteristics
Nomınal Zener Voltage
Part Number
CTZ55C2V0
CTZ55C2V2
Marking
Code
2
2V2
Max Reverse
Leakage Current
Max Zener Impedance
ZZT@ IZT
VZ @ IZT
Min V
Max V
1.90
2.09
2.10
2.31
85
ZZK@ IZK
IR @ VR
Ω
mA
µA
V
600
1
1
100
75
1
1
Ω
mA
85
5
5
600
CTZ55C2V4
2V4
2.28
2.52
85
5
600
1
50
1
CTZ55C2V7
2V7
2.57
2.84
85
5
600
1
10
1
CTZ55C3V0
3
2.85
3.15
85
5
600
1
4
1
CTZ55C3V3
3V3
3.14
3.47
85
5
600
1
2
1
CTZ55C3V6
3V6
3.42
3.78
85
5
600
1
2
1
CTZ55C3V9
3V9
3.71
4.10
85
5
600
1
2
1
CTZ55C4V3
4V3
4.09
4.52
80
5
600
1
1
1
CTZ55C4V7
4V7
4.47
4.94
70
5
600
1
0.5
1
CTZ55C5V1
5V1
4.85
5.36
50
5
550
1
0.1
1
1
CTZ55C5V6
5V6
5.32
5.88
30
5
450
1
0.1
CTZ55C6V2
6V2
5.89
6.51
10
5
200
1
0.1
2
CTZ55C6V8
6V8
6.46
7.14
8
5
150
1
0.1
3
CTZ55C7V5
7V5
7.13
7.88
7
5
50
1
0.1
5
CTZ55C8V2
8V2
7.79
8.61
7
5
50
1
0.1
6.1
CTZ55C9V1
9V1
8.65
9.56
10
5
50
1
0.1
6.8
CTZ55C10
10
9.50
10.50
15
5
70
1
0.1
7.5
CTZ55C11
11
10.45
11.55
20
5
70
1
0.1
8.2
CTZ55C12
12
11.40
12.60
20
5
90
1
0.1
9.0
CTZ55C13
13
12.35
13.65
26
5
110
1
0.1
9.7
CTZ55C15
15
14.25
15.75
30
5
110
1
0.1
11
CTZ55C16
16
15.20
16.80
40
5
170
1
0.1
12
CTZ55C18
18
17.10
18.90
50
5
170
1
0.1
14
CTZ55C20
20
19.00
21.00
55
5
220
1
0.1
15
CTZ55C22
22
20.90
23.10
55
5
220
1
0.1
17
CTZ55C24
24
22.80
25.20
80
5
220
1
0.1
18
CTZ55C27
27
25.65
28.35
80
5
220
1
0.1
20
CTZ55C30
30
28.50
31.50
80
5
220
1
0.1
22
CTZ55C33
33
31.35
34.65
80
5
220
1
0.1
24
CTZ55C36
36
34.20
37.80
80
5
220
1
0.1
27
2 OF 6
Z55C-Series
CTZ55C-Series
Compact Technology
Typical Characteristics (
Tamb
= 25°C, unless otherwise specified)
Fig 4. Typical Change of Working Voltage vs. Junction
Temperature
500
1.3
V Ztn =V Zt /V Z (25˚C)
400
V Ztn – RelativeVoltageChange
R thJA – Therm.Resist.Junction/ Ambient ( K/W)
Fig1. Thermal Resistance vs. Lead Length
300
l
l
200
100
1.2
TK VZ =10x10 -4 /K
8x10 -4 /K
6x10 -4 /K
1.1
4x10 -4 /K
2x10 -4 /K
0
-2 x10 -4 /K
1.0
-4 x10 -4 /K
0.9
T L =constant
0
0.8
0
10
5
20
15
–60
l – Lead Length ( mm )
0
60
120
180
240
T j – Junction Temperature (°C )
Fig5. Temperature Coefficient of Vz vs. Z-Voltage
Z ( 10 -4
/K)
Fig2. Total Power Dissipation vs. Ambient Temperature
15
500
10
TK VZ – Temperature Coefficient of V
P tot – Total Power Dissipation ( mW)
600
400
300
200
100
0
0
40
80
120
160
200
5
I Z =5mA
0
-5
0
10
T amb – Ambient Temperature(°C )
Fig3. Typical Change of Working Voltage under Operating
Conditions at Tamb=25°C
40
30
50
Fig 6. Diode Capacitance vs. Z-Voltage
200
1000
C D – Diode Capacitance ( pF )
T j =25˚C
V Z – VoltageChange( mV )
20
V Z – Z-Voltage ( V )
100
I Z =5mA
10
150
V R =2V
T j =25˚C
100
50
0
1
0
5
10
15
20
25
0
V Z – Z-Voltage ( V )
10
5
V
3 OF 6
Z
15
20
25
– Z-Voltage ( V )
CTZ55C-Series
CTZ55C-Series
Compact Technology
Fig 9. Z-Current vs. Z-Voltage
50
10
40
T j =25˚C
I Z – Z-Current ( mA)
I F – Forward Current ( mA)
Fig 7. Forward Current vs. Forward Voltage
100
1
0.1
0.01
Ptot =500mW
T amb =25˚C
30
20
10
0.001
0
0.2
0
0.4
0.6
0.8
1.0
15
20
V F – Forward Voltage ( V )
35
30
V Z –Z-Voltage ( V )
Fig 8. Z-Current vs. Z-Voltage
Fig10. Differential Z-Resistance vs. Z-Voltage
100
1000
80
I Z =1mA
Ptot =500mW
T amb =25˚C
100
I Z – Z-Current ( mA)
I Z – Z-Current ( mA)
25
60
40
20
5mA
10mA
10
T j =25˚C
1
0
8
4
0
12
16
20
0
V Z –Z-Voltage ( V )
5
10
15
20
25
V Z –Z-Voltage ( V )
Fig 11. Thermal Response
Zthp – ThermalResistancefor PulseCond.(K/W)
1000
t p /T=0.5
100
t p /T=0.2
SinglePulse
10
R thJA =300K/W
T=T jmax –T amb
t p /T=0.01
t p /T=0.1
t p /T=0.02
t p /T=0.05
1
10 -1
i ZM =(–V Z +(V Z 2 +4r zj x T/Z thp ) 1/2 )/(2r zj )
10 0
10 1
10 2
tp – Pulse Length ( ms )
4 OF 6
CTZ55B-Series
CTZ55C-Series
Compact Technology
Device outlook
Shanghai plant (front side)
Kunshan plant (front side)
12
12
Shanghai plant (back side)
Kunshan plant (back side)
5 OF 6
CTZ55C-Series
CTZ55C-Series
Compact Technology
Suggested
thermal
profiles
for
soldering
processes
280
260
240
220
Temperature ( Co )
200
180
Peak
160
Max
140
time
dwell
4
sec
120
100
Soak
Max
80
Cool
gradient
Max
down
gradient
-4 oC/s
2 o C/s
60
40
Preheat
20
Max
gradient
2 o C/s
30
60
90
120
150
180
Time
Fig.1
Typical
210
240
270
300
330
360
(seconds)
Wave
Soldering
Thermal
240
Profile
Peak
soldering
210
- 235 o C for
235
- 255 o C for
220
temperature
standard
devices
Pb-free
devices
Temperatu re ( o C)
200
180
160
140
Reflow
120
Max
85
time
sec
100
Soak
80
Max
time
Cool
2
min
Max
down
gradient
-4 oC/s
60
40
Preheat
Max
20
Max
30
60
time
gradient
90
Typical
min.
2.5
120
Time
Fig.2
4
IR
o
C/s
150
180
210
240
270
300
(seconds)
Reflow
Soldering
6 OF 6
Thermal
Profile
CTZ55C-Series
Similar pages