FEATURES PIN CONFIGURATION Low offset voltage B grade: 0.4 mV maximum (ADA4610-1/ADA4610-2 only) A grade: 1 mV maximum Low offset voltage drift B grade: 4 µV/°C maximum (ADA4610-1/ADA4610-2 only) A grade: 8 µV/°C maximum (SOIC, MSOP, LFCSP packages) Low input bias current: 5 pA typical Dual-supply operation: ±5 V to ±15 V Low voltage noise: 0.45 µV p-p at 0.1 Hz to 10 Hz Voltage noise density: 7.30 nV/√Hz at f = 1 kHz Low total harmonic distortion (THD) + noise: 0.00025% No phase reversal Rail-to-rail output Unity-gain stable 8 V+ ADA4610-2 7 TOP VIEW (Not to Scale) OUT B 6 –IN B 5 +IN B OUT A 1 –IN A 2 +IN A 3 V– 4 09646-002 Data Sheet Low Noise, Precision, Rail-to-Rail Output, JFET Single/Dual/Quad Op Amps ADA4610-1/ADA4610-2/ADA4610-4 Figure 1. ADA4610-2 8-Lead SOIC (R Suffix); for Additional Packages and Models, See the Pin Configurations and Function Descriptions Section APPLICATIONS Instrumentation Medical instruments Multipole filters Precision current measurement Photodiode amplifiers Sensors Audio GENERAL DESCRIPTION The ADA4610-1/ADA4610-2/ADA4610-4 are precision JFET amplifiers that feature low input noise voltage, current noise, offset voltage, input bias current, and rail-to-rail output. The ADA4610-1 is a single amplifier, the ADA4610-2 is a dual amplifier, and the ADA4610-4 is a quad amplifier. The combination of low offset, noise, and very low input bias current makes these amplifiers especially suitable for high impedance sensor amplification and precise current measurements using shunts. With excellent dc precision, low noise, and fast settling time, the ADA4610-1/ADA4610-2/ADA4610-4 provide superior accuracy in medical instruments, electronic measurement, and automated test equipment. Unlike many competitive amplifiers, the ADA4610-1/ADA4610-2/ADA4610-4 maintain fast settling performance with substantial capacitive loads. Unlike many older JFET amplifiers, the ADA4610-1/ADA4610-2/ ADA4610-4 do not suffer from output phase reversal when input voltages exceed the maximum common-mode voltage range. The fast slew rate and great stability with capacitive loads make the ADA4610-1/ADA4610-2/ADA4610-4 perfect fits for high performance filters. Low input bias currents, low offset, and low Rev. G noise result in a wide dynamic range for photodiode amplifier circuits. Low noise and distortion, high output current, and excellent speed make the ADA4610-1/ADA4610-2/ADA4610-4 great choices for audio applications. The ADA4610-1/ADA4610-2/ADA4610-4 are specified over the −40°C to +125°C extended industrial temperature range. The ADA4610-1 is available in an 8-lead SOIC package and in a 5-lead SOT-23 package. The ADA4610-2 is available in 8-lead SOIC, 8-lead MSOP, and 8-lead LFCSP packages. The ADA4610-4 is available in a 14-lead SOIC package and in a 16-lead LFCSP. Table 1. Related Precision JFET Operational Amplifiers Single AD8510 AD8610 AD820 ADA4627-1/ADA4637-1 Not applicable Dual AD8512 AD8620 AD822 Not applicable ADA4001-2 Quad AD8513 Not applicable AD824 Not applicable Not applicable Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2011–2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ........................................... 10 Applications ....................................................................................... 1 Comparative Voltage and Variable Voltage Graphs ............... 16 Pin Configuration ............................................................................. 1 Functional Description .................................................................. 19 General Description ......................................................................... 1 Applications Information .............................................................. 20 Revision History ............................................................................... 2 Input Overvoltage Protection ................................................... 20 Specifications..................................................................................... 3 Peak Detector .............................................................................. 20 Electrical Characteristics ............................................................. 4 Current to Voltage (I to V) Conversion Applications ........... 20 Absolute Maximum Ratings............................................................ 6 Comparator Operation .............................................................. 21 Thermal Resistance ...................................................................... 6 Outline Dimensions ....................................................................... 22 ESD Caution .................................................................................. 6 Ordering Guide .......................................................................... 25 Pin Configurations and Function Descriptions ........................... 7 REVISION HISTORY 5/2016—Rev. F to Rev. G Changed CP-8-20 to CP-8-21 ...................................... Throughout Changes to Figure 23 Caption and Figure 26 Caption .............. 13 Updated Outline Dimensions ....................................................... 24 Changes to Ordering Guide .......................................................... 25 1/2016—Rev. E to Rev. F Added 5-Lead SOT-23 ....................................................... Universal Changed CP-8-9 to CP-8-20 ........................................ Throughout Change to Features Section ............................................................. 1 Added Figure 3 and Table 7; Renumbered Sequentially ............. 8 Updated Outline Dimensions ....................................................... 23 Changes to Ordering Guide .......................................................... 25 4/2015—Rev. D to Rev. E Added ADA4610-1 ............................................................. Universal Added 16-Lead LFCSP_WQ ............................................. Universal Deleted Figure 1 and Figure 3; Renumbered Sequentially .......... 1 Changes to Features Section............................................................ 1 Changes to Table 2 ............................................................................ 4 Changes to Table 3 ............................................................................ 5 Added Figure 2 and Table 6; Renumbered Sequentially ............. 7 Added Figure 4 .................................................................................. 8 Added Figure 7 .................................................................................. 9 Changes to Table 8 ............................................................................ 9 Changes to Figure 10 Caption and Figure 13 Caption .............. 10 Changes to Figure 14 Caption, Figure 15, Figure 17 Caption, and Figure 18 ................................................................................... 11 Changes to Figure 22 and Figure 25 ............................................. 12 Changes to Figure 26 to Figure 31 ................................................ 13 Changes to Figure 32 and Figure 35 ............................................. 14 Changes to Figure 38 and Figure 40 ............................................. 15 Changes to Figure 42 to Figure 46 ................................................ 16 Changes to Figure 48, Figure 50, and Figure 53 ......................... 17 Changes to Figure 54 and Figure 55 ............................................. 18 Changes to Figure 57 and Figure 58 ............................................. 20 Updated Outline Dimensions ....................................................... 22 Added Figure 64.............................................................................. 23 Changes to Ordering Guide .......................................................... 24 11/2014—Rev. C to Rev. D Change to Figure 56 ....................................................................... 19 5/2014—Rev. B to Rev. C Added ADA4610-4 and 14-Lead SOIC ........................... Universal Added Voltage Noise Density to Features Section, Figure 3, and Table 1; Renumbered Sequentially ..................................................1 Changes to Table 2.............................................................................3 Changes to Table 3.............................................................................4 Changes to Table 4.............................................................................6 Added Pin Configurations and Function Descriptions Section, Figure 4 to Figure 6, Table 6, and Table 7 ........................7 Changes to Typical Performance Characteristics Section ...........8 Added Functional Description Section ....................................... 17 Added Input Overvoltage Protection Section, Peak Detector Section, I to V Conversion Applications Section, and Photodiode Circuits Section ......................................................... 18 Change to Figure 56 ....................................................................... 18 Added Figure 62, Outline Dimensions ........................................ 20 Changes to Ordering Guide .......................................................... 20 8/2012—Rev. A to Rev. B Changes to Figure 9 ...........................................................................8 5/2012—Rev. 0 to Rev. A Changes to Data Sheet Title and General Description Section ...1 Changed Input Impedance Parameter, Differential to Input Capacitance Parameter, and Differential Parameter, Table 1 ......3 Added Input Resistance in Table 1 ..................................................3 Changed Input Impedance, Differential Parameter to Input Capacitance, Differential Parameter, Table 2 .................................4 Added Input Resistance Parameter, Table 2 ...................................4 Added Figure 9, Figure 10, and Figure 14; Renumbered Sequentially ........................................................................................8 Added Figure 15 ................................................................................9 Updated Outline Dimensions ....................................................... 16 Changes to Ordering Guide .......................................................... 17 12/2011—Revision 0: Initial Version Rev. G | Page 2 of 25 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 SPECIFICATIONS VSY = ±5 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage B Grade (ADA4610-1/ADA4610-2) Symbol Test Conditions/Comments Min Typ Max Unit 0.2 0.4 0.8 1 1.8 mV mV mV mV 4 8 12 25 1.5 20 0.25 +2.5 µV/°C µV/°C µV/°C pA nA pA nA V dB dB VOS −40°C < TA < +125°C A Grade 0.4 −40°C < TA < +125°C Offset Voltage Drift B Grade (ADA4610-1/ADA4610-2) 1 A Grade1 (SOIC, MSOP, LFSCP) A Grade1 (SOT-23) Input Bias Current ΔVOS/ΔT IB Input Offset Current IOS 0.5 1 1 5 −40°C < TA < +125°C 2 −40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain ADA4610-2 CMRR AVO VCM = −2.5 V to +2.5 V −40°C < TA < +125°C RL = 2 kΩ, VOUT = −3.5 V to +3.5 V −40°C < TA < +125°C ADA4610-1/ADA4610-4 Input Capacitance Differential Common-Mode Input Resistance OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current POWER SUPPLY Power Supply Rejection Ratio −40°C < TA < +125°C VCM = 0 V 98 86 96 84 VCM = 0 V VOH VOL RL = 2 kΩ −40°C < TA < +125°C RL = 600 Ω −40°C < TA < +125°C RL = 2 kΩ −40°C < TA < +125°C RL = 600 Ω −40°C < TA < +125°C 4.85 4.60 4.60 4.05 PSRR 100 dB dB dB dB 98 3.1 4.8 >1013 pF pF Ω 4.90 V V V V V V V V mA 4.89 −4.90 −4.90 −4.75 −4.80 −4.40 ±63 VSY = ±4.5 V to ±18 V −40°C < TA < +125°C ADA4610-1/ADA4610-4 ISY 110 −4.95 ISC ADA4610-2 Supply Current per Amplifier −2.5 94 86 −40°C < TA < +125°C IOUT = 0 mA −40°C < TA < +125°C Rev. G | Page 3 of 25 106 103 104 100 125 117 1.50 1.70 1.85 dB dB dB dB mA mA ADA4610-1/ADA4610-2/ADA4610-4 Parameter DYNAMIC PERFORMANCE Slew Rate Rising Falling Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth Total Harmonic Distortion (THD) + Noise NOISE PERFORMANCE Voltage Noise Voltage Noise Density 1 Data Sheet Symbol Test Conditions/Comments ±SR RL = 2 kΩ, AV = +1 GBP UGC φM −3 dB THD + N Min Typ 151 151 AV = +1, VIN = 5 mV p-p 1 kHz, AV = +1, RL = 2 kΩ, VIN = 1 V rms 21 46 15.4 9.3 61 10.6 0.00025 V/µs V/µs MHz MHz Degrees MHz % 0.1 Hz to 10 Hz f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz 0.45 14 8.20 7.30 7.30 µV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz VIN = 5 mV p-p, RL = 2 kΩ, AV = +100 VIN = 5 mV p-p, RL = 2 kΩ,AV = +1 en p-p en Max Unit Guaranteed by design and characterization. ELECTRICAL CHARACTERISTICS VSY = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage B Grade (ADA4610-1/ADA4610-2) Symbol Test Conditions/Comments Min Typ Max Unit 0.2 0.4 0.8 1 1.8 mV mV mV mV 4 8 12 25 1.50 20 0.25 +12.5 µV/°C µV/°C µV/°C pA nA pA nA V dB dB VOS −40°C < TA < +125°C A Grade 0.4 −40°C < TA < +125°C Offset Voltage Drift B Grade (ADA4610-1/ADA4610-2) 1 A Grade1 (SOIC, MSOP, LFSCP) A Grade1 (SOT-23) Input Bias Current ΔVOS/ΔT IB Input Offset Current IOS 0.5 1 1 5 −40°C < TA < +125°C 2 −40°C < TA < +125°C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain ADA4610-2 CMRR AVO VCM = −12.5 V to +12.5 V −40°C < TA < +125°C RL = 2 kΩ, VOUT = ±13.5 V −40°C < TA < +125°C ADA4610-1/ADA4610-4 Input Capacitance Differential Common-Mode Input Resistance −40°C < TA < +125°C VCM = 0 V VCM = 0 V Rev. G | Page 4 of 25 −12.5 100 96 104 91 102 86 115 107 104 3.1 4.8 >1013 dB dB dB dB pF pF Ω Data Sheet Parameter OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current POWER SUPPLY Power Supply Rejection Ratio ADA4610-2 ADA4610-1/ADA4610-2/ADA4610-4 Symbol Test Conditions/Comments Min Typ VOH RL = 2 kΩ −40°C < TA < +125°C RL = 600 Ω −40°C < TA < +125°C RL = 2 kΩ −40°C < TA < +125°C RL = 600 Ω −40°C < TA < +125°C 14.80 14.65 14.25 13.35 14.90 VOL PSRR 1 Unit V V V V V V V V mA VSY = ±4.5 V to ±18 V ADA4610-1/ADA4610-4 DYNAMIC PERFORMANCE Slew Rate Rising Falling Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth Total Harmonic Distortion (THD) + Noise NOISE PERFORMANCE Peak-to-Peak Voltage Noise Voltage Noise Density −14.68 −14.85 −14.75 −14.60 −14.30 ±79 −40°C < TA < +125°C Supply Current per Amplifier 14.47 −14.90 ISC Max ISY −40°C < TA < +125°C IOUT = 0 mA −40°C < TA < +125°C ±SR RL = 2 kΩ, AV = +1 106 103 104 100 125 117 1.60 171 171 GBP UGC φM −3 dB THD + N VIN = 5 mV p-p, RL = 2 kΩ, AV = +100 VIN = 5 mV p-p, RL = 2 kΩ, AV = +1 AV = +1, VIN = 5 mV p-p 1 kHz, AV = +1, RL = 2 kΩ, VIN = 5 V rms 25 61 16.3 9.3 66 9.5 0.00025 en p-p en 0.1 Hz to 10 Hz bandwidth f = 10 Hz f = 100 Hz f = 1 kHz f = 10 kHz 0.45 14 8.50 7.30 7.30 Guaranteed by design and characterization. Rev. G | Page 5 of 25 1.85 2.0 dB dB dB dB mA mA V/µs V/µs MHz MHz Degrees MHz % µV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 4. Parameter Supply Voltage Input Voltage Input Current1 Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 10 sec) Electrostatic Discharge (Human Body Model)2 Field Induced Charge Device Model (FICDM)3 Rating ±18 V ±VS ±10 mA −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C 2500 V 1250 V The input pins have clamp diodes connected to the power supply pins. Limit the input current to 10 mA or less whenever input signals exceed the power supply rail by 0.3 V. 2 ESDA/JEDEC JS-001-2011 applicable standard. 3 JESD22-C101 (ESD FICDM standard of JEDEC) applicable standard. Table 5. Thermal Resistance Package Type 5-Lead SOT-23 8-Lead SOIC 8-Lead LFCSP 8-Lead MSOP 14-Lead SOIC 16-Lead LFCSP 1 θJA1 219.4 120 57 142 115 65 θJC 155.6 43 12 45 36 3.2 Unit °C/W °C/W °C/W °C/W °C/W °C/W θJA is specified for worst-case conditions, that is, θJA is specified for a device soldered in a circuit board for surface-mount packages. 1 ESD CAUTION Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. G | Page 6 of 25 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 NIC 1 –IN 2 +IN 3 V– 4 8 NIC ADA4610-1 7 V+ TOP VIEW (Not to Scale) 6 OUT 5 NIC NOTES 1. NIC = NOT INTERNALLY CONNECTED. 09646-101 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS Figure 2. ADA4610-1 Pin Configuration, 8-Lead SOIC (R Suffix) Table 6. ADA4610-1 Pin Function Descriptions, 8-Lead SOIC Mnemonic NIC −IN +IN V− OUT V+ Description Not Internally Connected Inverting Input Noninverting Input Negative Supply Voltage Output Positive Supply Voltage OUT 1 V– 2 ADA4610-1 5 V+ 4 –IN TOP VIEW (Not to Scale) +IN 3 09646-100 Pin No. 1, 5, 8 2 3 4 6 7 Figure 3. ADA4610-1 Pin Configuration, 5-Lead SOT-23 (RJ Suffix) Table 7. ADA4610-1 Pin Function Descriptions, 5-Lead SOT-23 Pin No. 1 2 3 4 5 Mnemonic OUT V− +IN −IN V+ Description Output Negative Supply Voltage Noninverting Input Inverting Input Positive Supply Voltage Rev. G | Page 7 of 25 ADA4610-1/ADA4610-2/ADA4610-4 +IN A 3 ADA4610-2 TOP VIEW (Not to Scale) V– 4 8 V+ 7 OUT B 6 –IN B 5 +IN B OUT A 1 –IN A 2 +IN A 3 V– 4 8 V+ ADA4610-2 TOP VIEW (Not to Scale) 7 OUT B 6 –IN B 5 +IN B NOTES 1. THE EXPOSED PAD MUST BE CONNECTED TO V–. Figure 4. ADA4610-2 Pin Configuration, 8-Lead SOIC (R Suffix) 8 V+ –IN A 2 ADA4610-2 7 OUT B +IN A 3 TOP VIEW (Not to Scale) 6 –IN B 5 +IN B V– 4 Figure 6. ADA4610-2 Pin Configuration, 8-Lead LFCSP (CP Suffix) 09646-102 OUT A 1 Figure 5. ADA4610-2 Pin Configuration, 8-Lead MSOP (RM Suffix) Table 8. ADA4610-2 Pin Function Descriptions, 8-Lead SOIC, 8-Lead MSOP, and 8-Lead LFCSP Pin No. 1 2 3 4 5 6 7 8 Mnemonic OUT A −IN A +IN A V− +IN B −IN B OUT B V+ EPAD 09646-105 –IN A 2 09646-104 OUT A 1 Data Sheet Description Output Channel A. Inverting Input Channel A. Noninverting Input Channel A. Negative Supply Voltage. Noninverting Input Channel B. Inverting Input Channel B. Output Channel B. Positive Supply Voltage. Exposed Pad for the 8-Lead LFCSP (CP Suffix). The exposed pad must be connected to V−. Rev. G | Page 8 of 25 13 NIC 14 OUT D 16 NIC ADA4610-1/ADA4610-2/ADA4610-4 15 OUT A –IN A 1 +IN A 2 12 –IN D ADA4610-4 TOP VIEW V+ 3 –IN D ADA4610-4 12 +IN D TOP VIEW (Not to Scale) 11 V– 10 +IN C –IN B 6 9 –IN C OUT B 7 8 OUT C +IN A 3 V+ 4 +IN B 5 9 +IN C –IN C 8 13 OUT C 7 –IN A 2 10 V– +IN B 4 –IN B 5 OUT D OUT B 6 14 NOTES 1. NIC = NOT INTERNALLY CONNECTED. 2.THE EXPOSED PAD MUST BE CONNECTED TO V–. 09646-106 OUT A 1 11 +IN D Figure 7. ADA4610-4 Pin Configuration, 14-Lead SOIC (R Suffix) Figure 8. ADA4610-4 Pin Configuration, 16-Lead LFCSP (CP Suffix) Table 9. ADA4610-4 Pin Function Descriptions, 14-Lead SOIC and 16-Lead LFCSP 14-Lead SOIC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Not applicable Not applicable Pin No. 16-Lead LFCSP 15 1 2 3 4 5 6 7 8 9 10 11 12 14 13, 16 Mnemonic OUT A −IN A +IN A V+ +IN B −IN B OUT B OUT C −IN C +IN C V− +IN D −IN D OUT D NIC EPAD 09646-107 Data Sheet Description Output Channel A. Inverting Input Channel A. Noninverting Input Channel A. Positive Supply Voltage. Noninverting Input Channel B. Inverting Input Channel B. Output Channel B. Output Channel C. Inverting Input Channel C. Noninverting Input Channel C. Negative Supply Voltage. Noninverting Input Channel D. Inverting Input Channel D. Output Channel D. Not Internally Connected. Exposed Pad. The exposed pad must be connected to V−. Rev. G | Page 9 of 25 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. 400 400 SOIC 350 350 300 300 NUMBER OF CHANNELS 250 200 150 100 250 200 150 100 50 800 1000 1200 0 –1000 –800 –600 –400 –200 0 200 400 600 OFFSET VOLTAGE (µV) 09646-003 0 –1000 –800 –600 –400 –200 0 200 400 600 OFFSET VOLTAGE (µV) Figure 9. Input Offset Voltage Distribution, VSY = ±5 V Figure 12. Input Offset Voltage Distribution, VSY = ±15 V 350 350 SOIC SOIC 200 150 100 250 200 150 100 50 0 0 TCVOS (µV/°C) 09646-004 50 TCVOS (µV/°C) Figure 10. Input Offset Voltage Drift (TCVOS) Distribution, VSY = ±5 V Figure 13. TCVOS Distribution, VSY = ±15 V 1500 1000 1000 INPUT OFFSET VOLTAGE (uV) 1500 500 0 –500 MEAN MEAN + 3σ MEAN – 3σ –1500 –5 –4 –3 –2 –1 0 1 VCM (V) 500 0 –500 MEAN MEAN + 3σ MEAN – 3σ –1000 2 3 4 5 –1500 –15 09646-005 –1000 09646-007 250 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 NUMBER OF CHANNELS 300 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 NUMBER OF CHANNELS 300 INPUT OFFSET VOLTAGE (µV) 800 1000 1200 09646-006 50 Figure 11. Input Offset Voltage vs. Common-Mode Input Voltage (VCM), VSY = ±5 V, RL = ∞ –10 –5 0 VCM (V) 5 10 15 09646-008 NUMBER OF CHANNELS SOIC Figure 14. Input Offset Voltage vs. Input Common-Mode Voltage (VCM), VSY = ±15 V, RL = ∞ Rev. G | Page 10 of 25 ADA4610-1/ADA4610-2/ADA4610-4 50 40 40 30 30 INPUT BIAS CURRENT (pA) 50 10 0 –10 MEAN MEAN + 3σ MEAN – 3σ –20 20 10 0 –10 –30 –30 –40 –40 –4 –3 –2 –1 0 1 2 3 4 5 VCM (V) –50 –15 –10 10 15 100k SOIC SOIC 10k 10k 1k INPUT BIAS CURRENT (pA) +125°C 100 10 +25°C 1 –40°C 1k +125°C 100 10 +25°C 1 0.1 –40°C –3 –2 –1 0 1 2 3 4 5 VCM (V) 09646-056 –4 0.1 –15 Figure 16. Input Bias Current vs. Common-Mode Input Voltage (VCM), VSY = ±5 V, RL = ∞ –10 –5 0 5 10 15 VCM (V) Figure 19. Input Bias Current vs. Common-Mode Input Voltage (VCM), VSY = ±15 V, RL = ∞ 100 INPUT BIAS CURRENT (pA) 100 10 1 –25 0 25 50 TEMPERATURE (°C) 75 100 125 1 0.1 –50 09646-009 0.1 –50 10 Figure 17. Input Bias Current vs. Temperature, VSY = ±5 V –25 0 25 50 TEMPERATURE (°C) 75 100 125 Figure 20. Input Bias Current vs. Temperature, VSY = ±15 V Rev. G | Page 11 of 25 09646-012 INPUT BIAS CURRENT (pA) 5 Figure 18. Input Bias Current vs. Common-Mode Input Voltage (VCM), VSY = ±15 V, RL = ∞ 100k INPUT BIAS CURRENT (pA) 0 VCM (V) Figure 15. Input Bias Current vs. Common-Mode Input Voltage (VCM), VSY = ±5 V, RL = ∞ 0.01 –5 –5 09646-058 –50 –5 MEAN MEAN + 3σ MEAN – 3σ –20 09646-057 20 09646-055 INPUT BIAS CURRENT (pA) Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet 0.1 0.01 0.1 1 10 IOUT SOURCE (mA) 100 0.01 0.1 10 IOUT SOURCE (mA) 100 10 (VOUT – V–) (V) 10 1 1 100 10 IOUT SINK (mA) 0.01 0.01 0.1 10 1 IOUT SINK (mA) 100 Figure 25. Dropout Voltage (VOUT − V−) vs. IOUT Sink, VSY = ±15 V Figure 22. Dropout Voltage (VOUT − V−) vs. IOUT Sink, VSY = ±5 V 225 100 80 180 80 180 60 135 60 135 GAIN 40 PHASE 90 20 45 0 0 –20 –40 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M –90 100M 270 225 GAIN 40 PHASE 90 20 45 0 0 –45 –20 –45 09646-016 100 GAIN (dB) 120 PHASE (Degrees) 270 120 –40 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M –90 100M Figure 26. Open-Loop Gain and Phase Margin vs. Frequency, VSY = ±15 V, RL = 2 kΩ, VIN = 5 mV Figure 23. Open-Loop Gain and Phase Margin vs. Frequency, VSY = ±5 V, RL = 2 kΩ, VIN = 5 mV Rev. G | Page 12 of 25 PHASE (Degrees) 1 09646-015 0.01 0.1 09646-018 0.1 0.1 09646-019 (VOUT – V–) (V) 1 Figure 24. Dropout Voltage (V+ − VOUT) vs. IOUT Source, VSY = ±15 V Figure 21. Dropout Voltage (V+ − VOUT) vs. IOUT Source, VSY = ±5 V GAIN (dB) 0.1 09646-014 (V+ – VOUT) (V) 1 09646-011 (V+ – VOUT) (V) 1 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 60 60 AV = +100 AV = +100 40 40 AV = +10 GAIN (dB) AV = +1 0 –20 20 AV = +1 0 10k 100k 1M FREQUENCY (Hz) 10M 100M –40 1k 09646-017 1k 1k 100 100 10 AV = +100 1 AV = +100 1 0.1 10k 100k 1M FREQUENCY (Hz) 10M 100M 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M Figure 31. Closed-Loop Output Impedance (ZOUT) vs. Frequency, VSY = ±15 V 120 120 100 100 80 80 PSRR (dB) PSRR– 60 40 PSRR– 60 40 PSRR+ PSRR+ 20 20 0 0 1k 10k 100k FREQUENCY (Hz) 1M 10M –20 100 09646-022 PSRR (dB) AV = +1 0.01 100 09646-021 1k Figure 28. Closed-Loop Output Impedance (ZOUT) vs. Frequency, VSY = ±5 V –20 100 100M AV = +10 AV = +1 0.01 100 10M 10 AV = +10 0.1 100k 1M FREQUENCY (Hz) Figure 30. Closed-Loop Gain vs. Frequency, VSY = ±15 V ZOUT (Ω) ZOUT (Ω) Figure 27. Closed-Loop Gain vs. Frequency, VSY = ±5 V 10k 09646-024 –40 1k 09646-020 –20 Figure 29. PSRR vs. Frequency, VSY = ±5 V 1k 10k 100k FREQUENCY (Hz) 1M Figure 32. PSRR vs. Frequency, VSY = ±15 V Rev. G | Page 13 of 25 10M 09646-025 GAIN (dB) AV = +10 20 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet 120 120 100 100 80 60 80 60 40 40 20 20 1k 10k 100k FREQUENCY (Hz) 1M 10M 0 100 09646-023 0 100 3 12 2 8 1 0 –1 –2 1M 10M 4 0 –4 1 2 3 4 5 6 TIME (µs) 7 8 9 10 –12 09646-027 0 0 1 2 3 4 5 6 TIME (µs) 7 8 9 10 09646-030 –8 –3 Figure 37. Large Signal Transient Response, VSY = ±15 V, AV = +1, RL = 2 kΩ, CL = 100 pF Figure 34. Large Signal Transient Response, VSY = ±5 V, AV = +1, RL = 2 kΩ, CL = 100 pF 75 75 50 50 OUTPUT VOLTAGE (mV) 25 0 –25 25 0 –25 –50 –50 0 1 2 3 4 5 6 TIME (µs) 7 8 9 10 –75 09646-028 –75 0 1 2 3 4 5 6 TIME (µs) 7 8 9 10 09646-031 OUTPUT VOLTAGE (mV) 10k 100k FREQUENCY (Hz) Figure 36. CMRR vs. Frequency, VSY = ±15 V OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) Figure 33. CMRR vs. Frequency, VSY = ±5 V 1k 09646-026 CMRR (dB) 140 CMRR (dB) 140 Figure 38. Small Signal Transient Response, VSY = ±15 V, AV = +1, RL = 2 kΩ, CL = 100 pF Figure 35. Small Signal Transient Response, VSY = ±5 V, AV = +1, RL = 2 kΩ, CL = 100 pF Rev. G | Page 14 of 25 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 100 1 1 10 100 1k FREQUENCY (Hz) 10k 100k 10 1 09646-033 10 1 Figure 39. Voltage Noise Density vs. Frequency, VSY = ±5 V 10 100 1k FREQUENCY (Hz) 10k 09646-036 VOLTAGE NOISE DENSITY (nV/ Hz) VOLTAGE NOISE DENSITY (nV/ Hz) 100 Figure 41. Voltage Noise Density vs. Frequency, VSY = ±15 V 50 50 40 40 OVERSHOOT (%) 30 20 OS– 10 20 OS– 10 0.1 LOAD CAPACITANCE (nF) 1 0 0.01 09646-034 0 0.01 OS+ 30 Figure 40. Overshoot vs. Load Capacitance, VSY = ±5 V, AV = +1, RL = 2 kΩ, VIN = 100 mV p-p 0.1 LOAD CAPACITANCE (nF) 1 09646-037 OVERSHOOT (%) OS+ Figure 42. Overshoot vs. Load Capacitance, VSY = ±15 V, AV = +1, RL = 2 kΩ, VIN = 100 mV p-p Rev. G | Page 15 of 25 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet COMPARATIVE VOLTAGE AND VARIABLE VOLTAGE GRAPHS 10 10 VSY = ±5V RL = 2kΩ fIN = 1kHz 1 80kHz FILTER 1 0.1 THD + N (%) 0.1 0.01 0.001 0.001 0.0001 0.0001 0.00001 0.01 0.1 1 0.00001 0.001 AMPLITUDE (V rms) 1 10 Figure 46. THD + N vs. Amplitude, VSY = ±15 V 1 VSY = ±5V VIN = 1.5V rms 0.1 VSY = ±15V VIN = 5V rms 0.1 0.001 500kHz BAND-PASS FILTER 0.0001 80kHz BAND-PASS FILTER 0.01 THD + N (%) 0.01 THD + N (%) 0.1 AMPLITUDE (V rms) Figure 43. THD + N vs. Amplitude, VSY = ±5 V 1 0.01 09646-040 0.01 09646-205 THD + N (%) VSY = ±15V RL = 2kΩ fIN = 1kHz 80kHz FILTER 0.001 500kHz BAND-PASS FILTER 100 1k 10k 100k FREQUENCY (Hz) 0.00001 80kHz BAND-PASS FILTER 10 1k 10k 100k FREQUENCY (Hz) Figure 47. THD + N vs. Frequency, VSY = ±15 V Figure 44. THD + N vs. Frequency, VSY = ±5 V 16 –40 12 –60 8 VOLTAGE (V) –80 –100 –120 4 0 –4 –8 –160 100 OUTPUT INPUT –12 1k 10k FREQUENCY (Hz) Figure 45. Channel Separation vs. Frequency 100k –16 0 0.1 0.2 0.3 0.4 0.5 0.6 TIME (ms) 0.7 0.8 0.9 1.0 09646-042 –140 09646-039 CHANNEL SEPARATION (dB) 100 09646-141 10 09646-204 0.00001 0.0001 Figure 48. No Phase Reversal, VSY = ±15 V, AV = +1, RL = 2 kΩ, CL = 100 pF Rev. G | Page 16 of 25 ADA4610-1/ADA4610-2/ADA4610-4 400 300 ISY PER AMPLIFIER (mA) 100 0 –100 –200 –400 0 1 2 3 4 5 6 TIME (Seconds) 7 8 9 10 09646-043 –300 Figure 49. Voltage Noise, 0.1 Hz to 10 Hz +25°C –40°C 0 5 12 12 10 10 15 20 VSY (V) 25 30 35 6 0.01% 0.01% 0.1% 6 4 4 2 2 0.2 0.4 0.6 0.8 1.0 SETTLING TIME (µs) 1.2 1.4 0 09646-044 0 0 0.2 Figure 50. Positive Step Settling Time 1.2 1.4 4 VOUT = 7.3 × VIN VOUT 0.6 0.8 1.0 SETTLING TIME (µs) Figure 53. Negative Step Settling Time 18 16 0.4 09646-045 STEP SIZE (V) 8 0.1% 0 VOUT = 7.3 × VIN 2 0 12 –2 10 –4 VOUT (V) 14 8 6 4 VIN –6 –8 –10 2 –12 VIN 0 –14 –2 –16 –4 –0.5 –18 –0.5 0 0.5 1.0 1.5 2.0 TIME (µs) 2.5 3.0 09646-200 VOUT (V) 10 Figure 52. Supply Current (ISY) per Amplifier vs. Supply Voltage (VSY) at Various Temperatures 8 STEP SIZE (V) +125°C +85°C VOUT 0 0.5 1.0 1.5 2.0 TIME (µs) Figure 51. Positive Overload Recovery Figure 54. Negative Overload Recovery Rev. G | Page 17 of 25 2.5 3.0 09646-201 VOLTAGE (nV) 200 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 09646-047 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet 3 15 VSY = ±5V VIN = ±2V AV = +1 RL = 2kΩ CL = 100pF 2 10 INPUT 0 OUTPUT VOUT 0 –1 –5 –2 –10 –3 –0.2 0 0.2 0.4 0.6 0.8 1.0 TIME (µs) 1.2 1.4 1.6 1.8 –15 –2.0 –1.5 –1.0 –0.5 TIME (µs) Figure 55. Positive and Negative Slew Rate (VSY = ±5 V, AV = +1, RL = 2 kΩ) 0 0.5 1.0 09646-202 VOLTAGE (V) 5 09646-203 VOLTAGE (V) 1 VSY = ±15V VIN = ±10V AV = +1 RL = 2kΩ CL = 100 pF VIN Figure 56. Positive and Negative Slew Rate (VSY = ±15 V, AV = +1, RL = 2 kΩ) Rev. G | Page 18 of 25 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 FUNCTIONAL DESCRIPTION The ADA4610-1/ADA4610-2/ADA4610-4 are manufactured using the Analog Devices, Inc., iPolar® process, a 36 V dielectrically isolated (DI) process with P-channel JFET technology. The unique architecture of the ADA4610-1/ADA4610-2/ADA4610-4 makes it possible to combine high precision and high speed characteristics into a high voltage, low power op amp. A simplified schematic for the ADA4610-1/ADA4610-2/ADA4610-4 is shown in Figure 57. The JFET input stage architecture offers advantages of low input bias current, high bandwidth, high gain, low noise, and no phase reversal when the applied input signal exceeds the common-mode voltage range. The output stage is rail to rail with high drive characteristics and low dropout voltage for both sinking and sourcing currents. characteristics are usually associated with very high precision bipolar input amplifiers. The gate current of a typical JFET doubles every 10°C, resulting in a similar increase in input bias current over temperature. The low power consumption characteristic of the ADA4610-1/ADA4610-2/ADA4610-4 minimizes the die temperature, which warrants low input bias currents even at elevated ambient temperatures, making the amplifiers ideal for applications that require low leakage specifications without active cooling. Give special care to the printed circuit board (PCB) layout to minimize leakage currents between PCB traces. Improper layout and board handling may generate leakage currents exceeding the bias currents of the operational amplifier. The ADA4610-1/ADA4610-2/ADA4610-4 are unconditionally stable for all gain configurations, even with capacitive loads well in excess of 1 nF. The devices have internal protective circuitry that allows voltages as high as 0.3 V beyond the supplies to be applied at the input of either terminal without causing damage (for higher input voltages, refer to the Input Overvoltage Protection section). The ADA4610-1/ADA4610-2 B grades achieve less than 0.4 mV of offset and 4 µV/°C of offset drift; these The ADA4610-1/ADA4610-2/ADA4610-4 are fully specified with supply voltages from ±5 V to ±15 V over the extended industrial temperature range of −40°C to +125°C. The ADA4610-1 is available in an 8-lead SOIC. The ADA4610-2 is available in an 8-lead MSOP, an 8-lead SOIC, and an 8-lead LFCSP. The ADA4610-4 is available in a 14-lead SOIC and a 16-lead LFCSP. All these packages are surface-mount type. V+ R6 D31 R7 C3 Q30 Q8 R16 Q29 Q9 Q28 + – 1+ Q12 Q15 Q14 A1 Q18 C2 RC4 DE5 C4 A2 DE1 R10 DE3 Q4 R2 VIN+ R11 Q5 Q1 J1 Q13 Q23 Q16 Q17 VOUT R3 J2 R5 DE6 VIN– C1 Q7 Q6 Q27 DE2 I2 I3 Q24 Q25 I4 R15 D26 V– Figure 57. Simplified Schematic Rev. G | Page 19 of 25 09646-054 DE4 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet APPLICATIONS INFORMATION INPUT OVERVOLTAGE PROTECTION required for C3. Reversing the diode directions causes the circuit to detect negative peaks. The ADA4610-1/ADA4610-2/ADA4610-4 have internal protective circuitry that allows voltages as high as 0.3 V beyond the supplies to be applied at the input of either terminal without causing damage. For higher input voltages, a series resistor is necessary to limit the input current. Determine the resistor value by Photodiode Circuits Common applications for I to V conversion include photodiode circuits where the amplifier converts a current emitted by a diode placed at the negative input terminal into an output voltage. ≤ 10 mA RS The low input bias current, wide bandwidth, and low noise of the ADA4610-1/ADA4610-2/ADA4610-4 make them excellent choices for various photodiode applications, including fax machines, fiber optic controls, motion sensors, and barcode readers. where: VIN is the input voltage. VS is the voltage of either V+ or V−. RS is the series resistor. With a very low bias current of <1.5 nA up to 125°C, higher resistor values can be used in series with the inputs. A 5 kΩ resistor protects the inputs from voltages as high as 25 V beyond the supplies and adds less than 10 µV to the offset. The circuit shown in Figure 59 uses a silicon diode with zero bias voltage. This setup is a photovoltaic mode, which uses many large photodiodes. This configuration limits the overall noise and is suitable for instrumentation applications. PEAK DETECTOR CF The function of a peak detector is to capture the peak value of a signal and produce an output equal to it. By taking advantage of the dc precision and super low input bias current of the JFET input amplifiers, such as the ADA4610-1/ADA4610-2/ADA4610-4, a highly accurate peak detector can be built, as shown in Figure 58. VCC + 2 U2A 4 – VIN C4 50pF D4 1N4148 6 C3 1µF R7 10kΩ D2 1N448 4 1/2 RD ADA4610-1/ ADA4610-2 8 5 ADA4610-4 U2B 1 D3 1N4148 2 ADA4610-1/ ADA4610-2 ADA4610-4 CT 3 1 8 7 4 VCC Figure 59. Equivalent Preamplifier Photodiode Circuit VEE 09646-149 3 VEE +PEAK ADA4610-1/ ADA4610-2 ADA4610-4 8 RF 09646-154 VIN − VS CURRENT TO VOLTAGE (I TO V) CONVERSION APPLICATIONS R6 1kΩ Figure 58. Positive Peak Detector In this application, Diode D3 and Diode D4 act as unidirectional current switches that open up when the output is kept constant (in hold mode). To detect a positive peak, U2A drives C3 through D3, and D4 until C3 is charged to a voltage equal to the input peak value. Feedback from the output of the U2B (+ peak) through R6 limits the output voltage of U2A. After detecting the peak, the output of U2A swings low but is clamped by D2. Diode D3 reverses bias and the common node of D3, D4, and R7 is held to a voltage equal to + peak by R7. The voltage across D4 is 0 V; therefore, its leakage is small. The bias current of U2B is also small. With almost no leakage, C3 has a long hold time. The ADA4610-1/ADA4610-2/ADA4610-4, shown in Figure 58, are a perfect fit for building a peak detector because U2A requires dc precision and high output current during fast peaks, and U2B requires low input bias current (IB) to minimize capacitance discharge between peaks. A low leakage and low dielectric absorption capacitor, such as polystyrene or polypropylene, is A larger signal bandwidth can be attained at the expense of additional output noise. The total input capacitance (CT) consists of the sum of the diode capacitance (typically 30 pF to 40 pF) and the amplifier input capacitance (<10 pF), which includes external parasitic capacitance. CT creates a zero in the frequency response that can lead to an unstable system. To ensure stability and optimize the bandwidth of the signal, place a capacitor in the feedback loop of the circuit shown in Figure 59. The capacitor creates a pole and yields a bandwidth with a corner frequency of 1/(2π(RFCF)) where: RF is the feedback resistor. CF is the feedback capacitor. Determine the RF value by the following ratio: V/ID where: V is the desired output voltage of the op amp. ID is the diode current. Rev. G | Page 20 of 25 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 For example, if ID is 100 µA and a 10 V output voltage is needed, RF must be 100 kΩ. The resistance of the photodiode (RD) is a junction resistance (see Figure 59). A typical value for RD is 1000 MΩ. Because RD >> RF, the circuit behavior is not impacted by the effect of the junction resistance. The maximum signal bandwidth is ft 2πR F CT where ft is the unity-gain frequency of the op amp. Calculate CF by CF = CT 2πRF ft where ft is the unity-gain frequency of the op amp, and it achieves a phase margin, φM, of approximately 45°. Increase the CF value to obtain a higher phase margin. Setting CF to twice the previous value yields approximately φM = 65° and a maximal flat frequency response, but it reduces the maximum signal bandwidth by 50%. Although op amps are quite different from comparators, occasionally an unused section of a dual or a quad op amp can be used as a comparator; however, this is not recommended for rail-to-rail output op amps. For rail-to-rail output op amps, the output stage is generally a ratioed current mirror with bipolar or MOSFET transistors. With the device operating in open-loop mode, the second stage increases the current drive to the ratioed mirror to close the loop. However, the second stage cannot close the loop, which results in an increase in supply current. With the ADA4610-1/ADA4610-2/ADA4610-4 op amps configured as comparators, the supply current can be significantly higher (see Figure 60 for the supply current vs. the supply voltage for the ADA4610-4). Configuring an unused section as a voltage follower with the noninverting input connected to a voltage within the input voltage range is recommended. The ADA4610-1/ADA4610-2/ ADA4610-4 have a unique output stage design that reduces the excess supply current but does not entirely eliminate this effect when the op amp is operating in open-loop mode. 9 COMPARATOR, VOUT = HIGH 8 ISY FOR ALL CHANNELS (mA) Using the previous parameters with a CF ≈ 7 pF, the signal bandwidth is approximately 250 kHz. COMPARATOR, VOUT = LOW 7 6 FOLLOWER 5 4 3 2 1 0 0 5 10 15 20 VSY (V) 25 30 35 40 09646-053 f MAX = COMPARATOR OPERATION Figure 60. Supply Current (ISY) vs. Supply Voltage (VSY) for the ADA4610-4 Only Rev. G | Page 21 of 25 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet OUTLINE DIMENSIONS 5.00 (0.1968) 4.80 (0.1890) 8 4.00 (0.1574) 3.80 (0.1497) 5 1 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) 6.20 (0.2441) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) COPLANARITY 0.10 SEATING PLANE 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) 012407-A COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 61. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) 3.20 3.00 2.80 8 3.20 3.00 2.80 1 5.15 4.90 4.65 5 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.40 0.25 6° 0° 0.23 0.09 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 62. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Rev. G | Page 22 of 25 0.80 0.55 0.40 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 3.00 2.90 2.80 1.70 1.60 1.50 5 1 4 2 3.00 2.80 2.60 3 0.95 BSC 1.90 BSC 1.45 MAX 0.95 MIN 0.15 MAX 0.05 MIN 0.50 MAX 0.35 MIN 0.20 MAX 0.08 MIN 10° 5° 0° SEATING PLANE 0.60 BSC 0.55 0.45 0.35 11-01-2010-A 1.30 1.15 0.90 COMPLIANT TO JEDEC STANDARDS MO-178-AA Figure 63. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5) Dimensions shown in millimeters 2.54 2.44 2.34 3.10 3.00 SQ 2.90 0.50 BSC 8 PIN 1 INDEX AREA 1.70 1.60 1.50 EXPOSED PAD 0.50 0.40 0.30 4 TOP VIEW PKG-004371 0.80 0.75 0.70 SEATING PLANE 0.05 MAX 0.02 NOM 0.30 0.25 0.20 1 BOTTOM VIEW FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 0.203 REF Figure 64. 8-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-8-21) Dimensions shown in millimeters Rev. G | Page 23 of 25 0.20 MIN PIN 1 INDICATOR (R 0.20) 12-03-2013-A 5 ADA4610-1/ADA4610-2/ADA4610-4 Data Sheet 8.75 (0.3445) 8.55 (0.3366) 4.00 (0.1575) 3.80 (0.1496) 8 14 1 7 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0039) COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 6.20 (0.2441) 5.80 (0.2283) 0.50 (0.0197) 0.25 (0.0098) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 45° 8° 0° 1.27 (0.0500) 0.40 (0.0157) 0.25 (0.0098) 0.17 (0.0067) 060606-A COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 65. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches) DETAIL A (JEDEC 95) 0.35 0.30 0.25 13 0.65 BSC PIN 1 INDIC ATOR AREA OPTIONS (SEE DETAIL A) 16 1 12 2.25 2.10 SQ 1.95 EXPOSED PAD 9 TOP VIEW PKG-004025/5112 0.80 0.75 0.70 SEATING PLANE 0.70 0.60 0.50 4 5 8 BOTTOM VIEW 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.203 REF FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. COMPLIANT TO JEDEC STANDARDS MO-220-WGGC. Figure 66. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-23) Dimensions shown in millimeters Rev. G | Page 24 of 25 0.25 MIN 04-15-2016-A PIN 1 INDICATOR 4.10 4.00 SQ 3.90 Data Sheet ADA4610-1/ADA4610-2/ADA4610-4 ORDERING GUIDE Model 1 ADA4610-1ARZ ADA4610-1ARZ-R7 ADA4610-1ARZ-RL ADA4610-1BRZ ADA4610-1BRZ-R7 ADA4610-1BRZ-RL ADA4610-1ARJZ-R2 ADA4610-1ARJZ-R7 ADA4610-1ARJZ-RL ADA4610-2ACPZ-R7 ADA4610-2ACPZ-RL ADA4610-2ARMZ ADA4610-2ARMZ-R7 ADA4610-2ARMZ-RL ADA4610-2ARZ ADA4610-2ARZ-R7 ADA4610-2ARZ-RL ADA4610-2BRZ ADA4610-2BRZ-R7 ADA4610-2BRZ-RL ADA4610-4ARZ ADA4610-4ARZ-R7 ADA4610-4ARZ-RL ADA4610-4ACPZ-R7 ADA4610-4ACPZ-RL 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 5-Lead Small Outline Transistor Package [SOT-23] 5-Lead Small Outline Transistor Package [SOT-23] 5-Lead Small Outline Transistor Package [SOT-23] 8-Lead Lead Frame Chip Scale Package [LFCSP] 8-Lead Lead Frame Chip Scale Package [LFCSP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 8-Lead Standard Small Outline Package [SOIC_N] 14-Lead Standard Small Outline Package [SOIC_N] 14-Lead Standard Small Outline Package [SOIC_N] 14-Lead Standard Small Outline Package [SOIC_N] 16-Lead Lead Frame Chip Scale Package [LFCSP] 16-Lead Lead Frame Chip Scale Package [LFCSP] Z = RoHS Compliant Part. ©2011–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09646-0-5/16(G) Rev. G | Page 25 of 25 Package Option R-8 R-8 R-8 R-8 R-8 R-8 RJ-5 RJ-5 RJ-5 CP-8-21 CP-8-21 RM-8 RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 R-14 R-14 R-14 CP-16-23 CP-16-23 Branding A37 A37 A37 A2U A2U A2U A2U A2U