MCNIX MX25U8033EZNI12G 8m-bit [x 1/x 2/x 4] 1.8v cmos mxsmio (serial multi i/o) flash memory Datasheet

MX25U8033E
MX25U8033E DATASHEET
P/N: PM1718
1
REV. 1.4, NOV. 06, 2013
MX25U8033E
Contents
FEATURES..................................................................................................................................................................5
Table 1. Additional Feature Comparison............................................................................................................7
PIN CONFIGURATIONS .............................................................................................................................................8
PIN DESCRIPTION......................................................................................................................................................8
BLOCK DIAGRAM.......................................................................................................................................................9
DATA PROTECTION..................................................................................................................................................10
Table 2. Protected Area Sizes.......................................................................................................................... 11
Table 3. 4K-bit Secured OTP Definition............................................................................................................ 11
Memory Organization...............................................................................................................................................12
Table 4. Memory Organization........................................................................................................................12
DEVICE OPERATION................................................................................................................................................13
Figure 1. Serial Modes Supported...................................................................................................................13
HOLD FEATURE........................................................................................................................................................14
Figure 2. Hold Condition Operation .................................................................................................................14
COMMAND DESCRIPTION.......................................................................................................................................15
Table 5. Command Set.....................................................................................................................................15
(1) Write Enable (WREN).................................................................................................................................17
(2) Write Disable (WRDI)..................................................................................................................................17
(3) Read Identification (RDID)..........................................................................................................................17
(4) Read Status Register (RDSR)....................................................................................................................17
Program/ Erase Flow with Read Array Data....................................................................................................18
Program/ Erase Flow without Read Array Data (read P_FAIL/E_FAIL flag).....................................................19
WRSR Flow......................................................................................................................................................20
(5) Write Status Register (WRSR)....................................................................................................................22
Table 7. Protection Modes................................................................................................................................22
(6) Read Data Bytes (READ)...........................................................................................................................23
(7) Read Data Bytes at Higher Speed (FAST_READ).....................................................................................23
(8) Dual Read Mode (DREAD).........................................................................................................................23
(9) 2 x I/O Read Mode (2READ)......................................................................................................................24
(10) 4 x I/O Read Mode (4READ)....................................................................................................................24
(11) Performance Enhance Mode....................................................................................................................25
(12) Sector Erase (SE).....................................................................................................................................25
(13) Block Erase (BE32K)................................................................................................................................26
(14) Block Erase (BE)......................................................................................................................................26
(15) Chip Erase (CE)........................................................................................................................................26
(16) Page Program (PP)..................................................................................................................................27
(17) 4 x I/O Page Program (4PP).....................................................................................................................27
(18) Deep Power-down (DP)............................................................................................................................27
P/N: PM1718
2
REV. 1.4, NOV. 06, 2013
MX25U8033E
(19) Release from Deep Power-down (RDP), Read Electronic Signature (RES)............................................28
(20) Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4)..........................................28
Table 8. ID Definitions .....................................................................................................................................29
(21) Enter Secured OTP (ENSO).....................................................................................................................29
(22) Exit Secured OTP (EXSO)........................................................................................................................29
(23) Read Security Register (RDSCUR)..........................................................................................................29
Table 9. Security Register Definition................................................................................................................30
(24) Write Security Register (WRSCUR)..........................................................................................................30
(25) Write Protection Selection (WPSEL).........................................................................................................30
Figure 3. WPSEL Flow....................................................................................................................................31
(26) Single Block Lock/Unlock Protection (SBLK/SBULK)...............................................................................32
Figure 4. Block Lock Flow................................................................................................................................32
Figure 5. Block Unlock Flow.............................................................................................................................33
(27) Read Block Lock Status (RDBLOCK).......................................................................................................34
(28) Gang Block Lock/Unlock (GBLK/GBULK)................................................................................................34
(29) Read SFDP Mode (RDSFDP)...................................................................................................................35
Figure 6. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence..................................................35
Table 10. Signature and Parameter Identification Data Values .......................................................................36
Table 11. Parameter Table (0): JEDEC Flash Parameter Tables.....................................................................37
Table 12. Parameter Table (1): Macronix Flash Parameter Tables..................................................................39
POWER-ON STATE...................................................................................................................................................41
ELECTRICAL SPECIFICATIONS..............................................................................................................................42
ABSOLUTE MAXIMUM RATINGS...................................................................................................................42
Figure 7. Maximum Negative Overshoot Waveform........................................................................................42
CAPACITANCE TA = 25°C, f = 1.0 MHz...........................................................................................................42
Figure 8. Maximum Positive Overshoot Waveform..........................................................................................42
Figure 9. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL............................................................43
Figure 10. OUTPUT LOADING.......................................................................................................................43
Table 13. DC CHARACTERISTICS (Temperature = -40°C to 85°C, VCC = 1.65V ~ 2.0V) ............................44
Table 14. AC CHARACTERISTICS (Temperature = -40°C to 85°C, VCC = 1.65V ~ 2.0V) ...........................45
Timing Analysis........................................................................................................................................................46
Figure 11. Serial Input Timing...........................................................................................................................46
Figure 12. Output Timing..................................................................................................................................46
Figure 13. Hold Timing.....................................................................................................................................47
Figure 14. WP# Setup Timing and Hold Timing during WRSR when SRWD=1...............................................47
Figure 15. Write Enable (WREN) Sequence (Command 06)...........................................................................47
Figure 16. Write Disable (WRDI) Sequence (Command 04)............................................................................48
Figure 17. Read Identification (RDID) Sequence (Command 9F) ...................................................................48
Figure 18. Read Status Register (RDSR) Sequence (Command 05) .............................................................48
Figure 19. Write Status Register (WRSR) Sequence (Command 01).............................................................49
P/N: PM1718
3
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 20. Read Data Bytes (READ) Sequence (Command 03) (50MHz).....................................................49
Figure 21. Read at Higher Speed (FAST_READ) Sequence (Command 0B) ...............................................50
Figure 22. Dual Read Mode Sequence (Command 3B)..................................................................................50
Figure 23. 2 x I/O Read Mode Sequence (Command BB)...............................................................................51
Figure 24. 4 x I/O Read Mode Sequence (Command EB) .............................................................................51
Figure 25. 2 x I/O Read Enhance Performance Mode Sequence (Command BB)..........................................52
Figure 26. 4 x I/O Read Enhance Performance Mode Sequence (Command EB)..........................................53
Figure 27. Page Program (PP) Sequence (Command 02) ............................................................................54
Figure 28. 4 x I/O Page Program (4PP) Sequence (Command 38)................................................................54
Figure 29. Sector Erase (SE) Sequence (Command 20)................................................................................55
Figure 30. Block Erase 32KB (BE32K) Sequence (Command 52).................................................................55
Figure 31. Block Erase (BE) Sequence (Command D8).................................................................................55
Figure 32. Chip Erase (CE) Sequence (Command 60 or C7).........................................................................55
Figure 33. Deep Power-down (DP) Sequence (Command B9)......................................................................56
Figure 34. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command AB)
56
Figure 35. Release from Deep Power-down (RDP) Sequence (Command AB).............................................57
Figure 36. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90/EF/DF)................57
Figure 37. Read Security Register (RDSCUR) Sequence (Command 2B)......................................................58
Figure 38. Write Security Register (WRSCUR) Sequence (Command 2F).....................................................58
Figure 39. Power-up Timing.............................................................................................................................59
Table 15. Power-Up Timing and VWI Threshold..............................................................................................59
INITIAL DELIVERY STATE..............................................................................................................................59
OPERATING CONDITIONS.......................................................................................................................................60
Figure 40. AC Timing at Device Power-Up.......................................................................................................60
Figure 41. Power-Down Sequence..................................................................................................................61
ERASE AND PROGRAMMING PERFORMANCE....................................................................................................62
LATCH-UP CHARACTERISTICS..............................................................................................................................62
ORDERING INFORMATION......................................................................................................................................63
PART NAME DESCRIPTION.....................................................................................................................................64
PACKAGE INFORMATION........................................................................................................................................65
REVISION HISTORY .................................................................................................................................................69
P/N: PM1718
4
REV. 1.4, NOV. 06, 2013
MX25U8033E
8M-BIT [x 1/x 2/x 4] 1.8V CMOS MXSMIO (SERIAL MULTI I/O) FLASH MEMORY
FEATURES
GENERAL
• Single Power Supply Operation
- 1.65 to 2.0 volt for read, erase, and program operations
• Serial Peripheral Interface compatible -- Mode 0 and Mode 3
• 8M: 8,388,608 x 1 bit structure or 4,194,304 x 2 bits (two I/O read mode) structure or 2,097,152 x 4 bits (four I/O
read mode) structure
• 256 Equal Sectors with 4K byte each
- Any Sector can be erased individually
• 32 Equal Blocks with 32K byte each
- Any Block can be erased individually
• 16 Equal Blocks with 64K byte each
- Any Block can be erased individually
• Program Capability
- Byte base
- Page base (256 bytes)
• Latch-up protected to 100mA from -1V to Vcc +1V
PERFORMANCE
• High Performance
- Fast read
- 1 I/O: 80MHz with 8 dummy cycles
- 2 I/O: 80MHz with 4 dummy cycles, equivalent to 160MHz
- 4 I/O: 70MHz with 6 dummy cycles, equivalent to 280MHz;
- Fast program time: 1.2ms(typ.) and 3.0ms(max.)/page (256-byte per page)
- Byte program time: 10us (typ.)
- Fast erase time
- 30ms(typ.) and 200ms(max.)/sector (4K-byte per sector)
- 200ms(typ.) and 1000ms(max.)/block (32K-byte per block)
- 500ms(typ.) and 2000ms(max.)/block (64K-byte per block)
- 5.0s(typ.) and 10s(max.)/chip
• Low Power Consumption
- Low active read current: 12mA(max.) at 80MHz, 7mA(max.) at 33MHz
- Low active erase/programming current: 25mA (max.)
- Low standby current: 8uA (typ.)/30uA (max.)
• Low Deep Power Down current: 8uA(max.)
• Typical 100,000 erase/program cycles
• 20 years data retention
SOFTWARE FEATURES
• Input Data Format
- 1-byte Command code
• Advanced Security Features
- Block lock protection
The BP0-BP3 status bit defines the size of the area to be software protection against program and erase instructions
- Additional 4K-bit secured OTP for unique identifier
• Auto Erase and Auto Program Algorithm
- Automatically erases and verifies data at selected sector or block
- Automatically programs and verifies data at selected page by an internal algorithm that automatically times the
program pulse widths (Any page to be programed should have page in the erased state first).
P/N: PM1718
5
REV. 1.4, NOV. 06, 2013
MX25U8033E
• Status Register Feature
• Electronic Identification
- JEDEC 1-byte manufacturer ID and 2-byte device ID
- RES command for 1-byte Device ID
- REMS, REMS2 and REMS4 commands for 1-byte manufacturer ID and 1-byte device ID
• Support Serial Flash Discoverable Parameter (SFDP) mode
HARDWARE FEATURES
• SCLK Input
- Serial clock input
• SI/SIO0
- Serial Data Input or Serial Data Input/Output for 2 x I/O read mode and 4 x I/O read mode
• SO/SIO1
- Serial Data Output or Serial Data Input/Output for 2 x I/O read mode and 4 x I/O read mode
• WP#/SIO2
- Hardware write protection or serial data Input/Output for 4 x I/O read mode
• HOLD#/SIO3
- HOLD feature, to pause the device without deselecting the device or serial data Input/Output for 4 x I/O read
mode
• PACKAGE
- 8-land USON (4x4mm)
- 8-pin SOP (150mil)
- 8-pin SOP (200mil)
- 8-land WSON (6x5mm)
- All devices are RoHS Compliant and Halogen-free
GENERAL DESCRIPTION
The MX25U8033E is 8,388,608 bit serial Flash memory, which is configured as 1,048,576 x 8 internally. The
MX25U8033E features a serial peripheral interface and software protocol allowing operation on a simple 4-wire bus
while it is in single I/O mode. The four bus signals are a clock input (SCLK), a serial data input (SI), a serial data
output (SO) and a chip select (CS#). Serial access to the device is enabled by CS# input.
When it is in two I/O read mode, the SI pin and SO pin become SIO0 pin and SIO1 pin for address/dummy bits
input and data output. When it is in four I/O read mode, the SI pin, SO pin, WP# pin and HOLD# pin become SIO0
pin, SIO1 pin, SIO2 pin and SIO3 pin for address/dummy bits input and data output.
The MX25U8033E MXSMIO (Serial Multi I/O) provides sequential read operation on the whole chip.
After program/erase command is issued, auto program/erase algorithms which program/erase and verify the
specified page or sector/block locations will be executed. Program command is executed on byte basis, or page
(256 bytes) basis. Erase command is executed on 4K-byte sector, 32K-byte block, or 64K-byte block, or whole chip
basis.
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read
command can be issued to detect completion status of a program or erase operation via the WIP bit.
Advanced security features enhance the protection and security functions, please see security features section for
more details.
When the device is not in operation and CS# is high, it is put in standby mode.
The MX25U8033E utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after
100,000 program and erase cycles.
P/N: PM1718
6
REV. 1.4, NOV. 06, 2013
MX25U8033E
Table 1. Additional Feature Comparison
Additional
Features
Part
Name
MX25U8033E
P/N: PM1718
Protection and Security
Flexible
Block
Protection
(BP0-BP3)
Individual
Protect
V
V
Read Performance
4K-bit
2 I/O Read
secured OTP
V
V
7
4 I/O Read
V
Identifier
REMS/
REMS2/
RES
RDID
REMS4
(Command:
(Command:
(Command:
AB hex)
9F hex)
90/EF/DF
hex)
C2 34 (hex) C2 25 34
34 (hex)
(if ADD=0)
(hex)
REV. 1.4, NOV. 06, 2013
MX25U8033E
PIN CONFIGURATIONS
8-PIN SOP (150mil/200mil)
8-LAND USON (4x4mm)
CS#
SO/SIO1
WP#/SIO2
GND
1
2
3
4
8
7
6
5
VCC
HOLD#/SIO3
SCLK
SI/SIO0
CS#
SO/SIO1
WP#/SIO2
GND
P/N: PM1718
1
2
3
4
8
7
6
5
8
7
6
5
VCC
HOLD#/SIO3
SCLK
SI/SIO0
PIN DESCRIPTION
8-LAND WSON (6x5mm)
CS#
SO/SIO1
WP#/SIO2
GND
1
2
3
4
SYMBOL
CS#
DESCRIPTION
Chip Select
Serial Data Input (for 1 x I/O)/ Serial
SI/SIO0
Data Input & Output (for 2xI/O or 4xI/
O read mode)
Serial Data Output (for 1 x I/O)/ Serial
SO/SIO1
Data Input & Output (for 2xI/O or 4xI/
O read mode)
SCLK
Clock Input
Hardware write protection: connect to
WP#/SIO2 GND or Serial Data Input & Output (for
4xI/O read mode)
To pause the device without
HOLD#/SIO3 deselecting the device or Serial Data
Input & Output (for 4xI/O read mode)
VCC
+ 1.8V Power Supply
GND
Ground
VCC
HOLD#/SIO3
SCLK
SI/SIO0
8
REV. 1.4, NOV. 06, 2013
MX25U8033E
BLOCK DIAGRAM
X-Decoder
Address
Generator
Memory Array
Page Buffer
SI/SIO0
Data
Register
Y-Decoder
SRAM
Buffer
CS#
WP#/SIO2
HOLD#/SIO3
SCLK
Mode
Logic
State
Machine
HV
Generator
Clock Generator
Output
Buffer
SO/SIO1
P/N: PM1718
Sense
Amplifier
9
REV. 1.4, NOV. 06, 2013
MX25U8033E
DATA PROTECTION
During power transition, there may be some false system level signals which result in inadvertent erasure or programming. The device is designed to protect itself from these accidental write cycles.
The state machine will be reset as standby mode automatically during power up. In addition, the control register architecture of the device constrains that the memory contents can only be changed after specific command sequences have completed successfully.
In the following, there are several features to protect the system from the accidental write cycles during VCC powerup and power-down or from system noise.
•
Valid command length checking: The command length will be checked whether it is at byte base and completed
on byte boundary.
•
Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before issuing other commands to change data. The WEL bit will return to resetting stage while the following conditions
occurred:
- Power-up
- Completion of Write Disable (WRDI) command
- Completion of Write Status Register (WRSR) command
- Completion of Page Program (PP) command
- Completion of Quad page program (4PP) command
- Completion of Sector Erase (SE) command
- Completion of Block Erase 32KB (BE32K) command
- Completion of Block Erase (BE) command
- Completion of Chip Erase (CE) command
- Completion of Write Protection Select (WPSEL) command
- Completion of Write Security Register (WRSCUR) command
- Completion of Single Block Lock/Unlock (SBLK/SBULK) command
- Completion of Gang Block Lock/Unlock (GBLK/GBULK) command
•
Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from writing all commands except Release from deep power down mode command (RDP) and Read Electronic Signature
command (RES).
•
Advanced Security Features: there are some protection and security features which protect content from inadvertent write and hostile access.
I. Block lock protection
- The Software Protected Mode (SPM) use (BP3, BP2, BP1, BP0) bits to allow part of memory to be protected
as read only. The protected area definition is shown as table of "Protected Area Sizes", the protected areas are
more flexible which may protect various area by setting value of BP0-BP3 bits.
Please refer to table of "Protected Area Sizes".
- The Hardware Protected Mode (HPM) use WP#/SIO2 to protect the (BP3, BP2, BP1, BP0) bits and SRWD bit.
If the system goes into four I/O read mode, the feature of HPM will be disabled.
P/N: PM1718
10
REV. 1.4, NOV. 06, 2013
MX25U8033E
Table 2. Protected Area Sizes
BP3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Status Bit
BP2
BP1
0
0
0
0
0
1
0
1
1
0
1
0
1
1
1
1
0
0
0
0
0
1
0
1
1
0
1
0
1
1
1
1
BP0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Protect Level
8Mb
0 (none)
1 (1block, protected block 15th)
2 (2blocks, protected block 14th~15th)
3 (4blocks, protected block 12nd~15th)
4 (8blocks, protected block 8th~15th)
5 (16blocks, protected all)
6 (16blocks, protected all)
7 (16blocks, protected all)
8 (16blocks, protected all)
9 (16blocks, protected all)
10 (16blocks, protected all)
11 (8blocks, protected block 0th~7th)
12 (12blocks, protected block 0th~11st)
13 (14blocks, protected block 0th~13rd)
14 (15blocks, protected block 0th~14th)
15 (16blocks, protected all)
II. Additional 4K-bit secured OTP for unique identifier: to provide 4K-bit One-Time Program area for setting device unique serial number - Which may be set by factory or system maker. Please refer to Table 3. 4K-bit Secured OTP Definition.
- Security register bit 0 indicates whether the chip is locked by factory or not.
- To program the 4K-bit secured OTP by entering 4K-bit secured OTP mode (with ENSO command), and going
through normal program procedure, and then exiting 4K-bit secured OTP mode by writing EXSO command.
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register)
command to set customer lock-down bit1 as "1". Please refer to table of "Security Register Definition" for security
register bit definition and table of "4K-bit Secured OTP Definition" for address range definition.
Note:
Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4K-bit Secured OTP
mode, array access is not allowed.
Table 3. 4K-bit Secured OTP Definition
Address range
Size
Standard Factory Lock
xxx000~xxx00F
128-bit
ESN (electrical serial number)
xxx010~xxx1FF
3968-bit
N/A
P/N: PM1718
11
Customer Lock
Determined by customer
REV. 1.4, NOV. 06, 2013
MX25U8033E
Memory Organization
Table 4. Memory Organization
Block
(64KB)
15
Block
(32KB)
31
|
30
14
29
|
28
13
27
|
26
12
25
|
24
11
23
|
22
10
21
|
20
9
19
|
18
8
17
|
16
7
15
|
14
6
13
|
12
5
11
|
10
4
9
|
8
3
7
|
6
2
5
|
4
1
3
|
2
0
P/N: PM1718
1
|
0
Sector
(4KB)
255
:
240
239
:
224
223
:
208
207
:
192
191
:
176
175
:
160
159
:
144
143
:
128
127
:
112
111
:
96
95
:
80
79
:
64
63
:
48
47
:
32
31
:
16
15
:
2
1
0
Address Range
0FF000h
:
0F0000h
0EF000h
:
0E0000h
0DF000h
:
0D0000h
0CF000h
:
0C0000h
0BF000h
:
0B0000h
0AF000h
:
0A0000h
09F000h
:
090000h
08F000h
:
080000h
07F000h
:
070000h
06F000h
:
060000h
05F000h
:
050000h
04F000h
:
040000h
03F000h
:
030000h
02F000h
:
020000h
01F000h
:
010000h
00F000h
:
002000h
001000h
000000h
0FFFFFh
:
0F0FFFh
0EFFFFh
:
0E0FFFh
0DFFFFh
:
0D0FFFh
0CFFFFh
:
0C0FFFh
0BFFFFh
:
0B0FFFh
0AFFFFh
:
0A0FFFh
09FFFFh
:
090FFFh
08FFFFh
:
080FFFh
07FFFFh
:
070FFFh
06FFFFh
:
060FFFh
05FFFFh
:
050FFFh
04FFFFh
:
040FFFh
03FFFFh
:
030FFFh
02FFFFh
:
020FFFh
01FFFFh
:
010FFFh
00FFFFh
:
002FFFh
001FFFh
000FFFh
▲
Individual Sector Lock/Unlock
▼
▲
Individual Block Lock/Unlock
▼
▲
Individual Sector Lock/Unlock
▼
12
REV. 1.4, NOV. 06, 2013
MX25U8033E
DEVICE OPERATION
1. Before a command is issued, status register should be checked to ensure device is ready for the intended operation.
2. When incorrect command is inputted to this device, it enters standby mode and remains in the standby mode
until next CS# falling edge. In standby mode, SO pin of the device is High-Z.
3. When correct command is inputted to this device, it becomes active mode and remains in the active mode until
next CS# rising edge.
4. Input data is latched on the rising edge of Serial Clock (SCLK) and data is shifted out on the falling edge of
SCLK. The difference of Serial mode 0 and mode 3 is shown as Figure 1. "Serial Modes Supported".
5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, 2READ, DREAD, 4READ, RES,
REMS, REMS2, REMS4 and RDSFDP, the shifted-in instruction sequence is followed by a data-out sequence.
After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN, WRDI, WRSR,
SE, BE32K, BE, CE, PP, 4PP, RDP, DP, WPSEL, SBLK, SBULK, GBLK, GBULK,ENSO, EXSO, and WRSCUR,
the CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.
6. While a Write Status Register, Program or Erase operation is in progress, to the memory array is neglected and
while not affect the current operation of WRSCUR, WPSEL Write Status Register, Program and Erase.
Figure 1. Serial Modes Supported
CPOL
CPHA
shift in
(Serial mode 0)
0
0
SCLK
(Serial mode 3)
1
1
SCLK
SI
shift out
MSB
SO
MSB
Note:
CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not
transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial mode is
supported.
P/N: PM1718
13
REV. 1.4, NOV. 06, 2013
MX25U8033E
HOLD FEATURE
HOLD# pin signal goes low to hold any serial communications with the device. The HOLD feature will not stop the
operation of write status register, programming, or erasing in progress.
The operation of HOLD requires Chip Select (CS#) keeping low and starts on falling edge of HOLD# pin signal while
Serial Clock (SCLK) signal is being low (if Serial Clock signal is not being low, HOLD operation will not start until Serial Clock signal being low). The HOLD condition ends on the rising edge of HOLD# pin signal while Serial Clock (SCLK)
signal is being low (if Serial Clock signal is not being low, HOLD operation will not end until Serial Clock being low),
see Figure 2.
Figure 2. Hold Condition Operation
CS#
SCLK
HOLD#
Hold
Condition
(standard)
Hold
Condition
(non-standard)
The Serial Data Output (SO) is high impedance, both Serial Data Input (SI) and Serial Clock (SCLK) are don't care
during the HOLD operation. If Chip Select (CS#) drives high during HOLD operation, it will reset the internal logic of
the device. To re-start communication with chip, the HOLD# must be at high and CS# must be at low.
P/N: PM1718
14
REV. 1.4, NOV. 06, 2013
MX25U8033E
COMMAND DESCRIPTION
Table 5. Command Set
Read Commands
I/O
Command
(byte)
Clock rate
(MHz)
1st byte
2nd byte
3rd byte
4th byte
5th byte
Action
1
1
1
READ
FAST READ
RDSFDP
(normal read) (fast read data) (Read SFDP)
2
2
4
2READ
(2 x I/O read
command)
DREAD
(1I / 2O read
command)
4READ
(4 x I/O read
command)
50
80
80
80
80
70
03 (hex)
AD1
AD2
AD3
0B (hex)
AD1
AD2
AD3
Dummy
n bytes read
out until CS#
goes high
5A (hex)
AD1
AD2
AD3
Dummy
Read SFDP
mode
BB (hex)
AD1
AD2
AD3
Dummy
n bytes read
out by 2 x I/O
until CS# goes
high
3B (hex)
AD1
AD2
AD3
Dummy
EB (hex)
AD1
AD2
AD3
Dummy
n bytes read
out by 4 x I/O
until CS# goes
high
RDSR
(read status
register)
05 (hex)
WRSR
(write status
register)
01 (hex)
Values
4PP
(Quad page
program)
DP
(Deep power
down)
n bytes read
out until CS#
goes high
Program/Erase Commands
Command
(byte)
1st byte
2nd byte
3rd byte
4th byte
Action
BE 32K
BE
(block erase
(block erase
32KB)
64KB)
06 (hex)
04 (hex)
20 (hex)
52 (hex)
D8 (hex)
AD1
AD1
AD1
AD2
AD2
AD2
AD3
AD3
AD3
to read out the to write new
to erase the
to erase the
to erase the
sets the (WEL)
resets the
values of the values of the selected sector selected 32KB selected block
write enable
(WEL) write
block
latch bit
enable latch bit status register status register
WREN
WRDI
(write enable) (write disable)
Command
(byte)
CE
(chip erase)
1st byte
2nd byte
3rd byte
4th byte
60 or C7 (hex)
Action
P/N: PM1718
PP
(page program)
02 (hex)
38 (hex)
AD1
AD1
AD2
AD2
AD3
AD3
to erase whole to program the quad input to
chip
selected page program the
selected page
15
SE
(sector erase)
B9 (hex)
RDP
(Release from
deep power
down)
AB (hex)
enters deep
power down
mode
release from
deep power
down mode
REV. 1.4, NOV. 06, 2013
MX25U8033E
Security/ID/Mode Setting/Reset Commands
Command
(byte)
RDID
(read identification)
1st byte
2nd byte
3rd byte
4th byte
9F (hex)
Action
Command
(byte)
1st byte
2nd byte
3rd byte
4th byte
Action
Command
(byte)
1st byte
2nd byte
3rd byte
4th byte
Action
Note
RES (read
electronic ID)
REMS (read REMS2 (read
electronic
ID for 2x I/O
manufacturer &
mode)
device ID)
REMS4 (read
ID for 4x I/O
mode)
ENSO (enter
EXSO (exit
secured OTP) secured OTP)
AB (hex)
90 (hex)
EF (hex)
DF (hex)
B1 (hex)
C1 (hex)
x
x
X
x
x
x
X
x
x
ADD
ADD
ADD
to enter the
to exit the
outputs JEDEC to read out
output the
output the
output the
ID: 1-byte
1-byte Device Manufacturer Manufacturer Manufacturer 4K-bit secured 4K-bit secured
OTP mode
OTP mode
Manufacturer
ID
ID & Device ID ID & Device ID ID & Device ID
ID & 2-byte
Device ID
RDSCUR
(read security
register)
2B (hex)
to read value
of security
register
WRSCUR
(write security
register)
2F (hex)
SBLK
(single block
lock
36 (hex)
AD1
AD2
AD3
to set the lock- individual block
down bit as
(64K-byte) or
"1" (once lock- sector (4K-byte)
down, cannot
write protect
be update)
SBULK
RDBLOCK
(single block (block protect
unlock)
read)
39 (hex)
3C (hex)
AD1
AD1
AD2
AD2
AD3
AD3
individual block read individual
(64K-byte) or block or sector
sector (4K-byte) write protect
unprotect
status
GBLK
(gang block
lock)
7E (hex)
GBULK
(gang block
unlock)
98 (hex)
whole chip
write protect
whole chip
unprotect
WPSEL
(Write Protect
Selection)
68 (hex)
to enter and
enable individal
block protect
mode
1: ADD=00H will output the manufacturer ID first and ADD=01H will output device ID first.
2: It is not recommended to adopt any other code not in the command definition table, which will potentially enter the
hidden mode.
P/N: PM1718
16
REV. 1.4, NOV. 06, 2013
MX25U8033E
(1) Write Enable (WREN)
The Write Enable (WREN) instruction is to set Write Enable Latch (WEL) bit. For those instructions like PP, 4PP, SE,
BE32K, BE, CE, WPSEL, WRSCUR, SBLK, SBULK, GBLK, GBULK and WRSR, which are intended to change the
device content WEL bit should be set every time after the WREN instruction setting the WEL bit.
The sequence of issuing WREN instruction is: CS# goes low→sending WREN instruction code→ CS# goes high.
(Please refer to Figure 15)
(2) Write Disable (WRDI)
The Write Disable (WRDI) instruction is to reset Write Enable Latch (WEL) bit.
The sequence of issuing WRDI instruction is: CS# goes low→sending WRDI instruction code→CS# goes high.
(Please refer to Figure 16)
The WEL bit will be reset while the following conditions occurred:
- Power-up
- Completion of Write Disable (WRDI) instruction
- Completion of Write Status Register (WRSR) instruction
- Completion of Page Program (PP) instruction
- Completion of Quad page program (4PP) instruction
- Completion of Sector Erase (SE) instruction
- Completion of Block Erase 32KB (BE32K) instruction
- Completion of Block Erase (BE) instruction
- Completion of Chip Erase (CE) instruction
- Completion of Write Protection Select (WPSEL) instruction
- Completion of Write Security Register (WRSCUR) instruction
- Completion of Single Block Lock/Unlock (SBLK/SBULK) instruction
- Completion of Gang Block Lock/Unlock (GBLK/GBULK) instruction
(3) Read Identification (RDID)
The RDID instruction is to read the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Macronix
Manufacturer ID is C2(hex), the memory type ID is 25(hex) as the first-byte device ID, and the individual device ID
of second-byte ID are listed as table of "ID Definitions". (Please refer to Table 8)
The sequence of issuing RDID instruction is: CS# goes low→ sending RDID instruction code→24-bits ID data out
on SO→ to end RDID operation can drive CS# to high at any time during data out. (Please refer to Figure 17)
While Program/Erase operation is in progress, it will not decode the RDID instruction, therefore there's no effect on
the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby
stage.
(4) Read Status Register (RDSR)
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in
program/erase/WPSEL/WRSCUR/write status register condition). It is recommended to check the Write in Progress (WIP)
bit before sending a new instruction when a program, erase, or write status register operation is in progress.
P/N: PM1718
17
REV. 1.4, NOV. 06, 2013
MX25U8033E
The sequence of issuing RDSR instruction is: CS# goes low→ sending RDSR instruction code→ Status Register data
out on SO. (Please refer to Figure 18)
For user to check if Program/Erase operation is finished or not, RDSR instruction flow are shown as follows:
Program/ Erase Flow with Read Array Data
start
WREN command
RDSR command*
WREN=1?
No
Yes
Program/erase command
Write program data/address
(Write erase address)
RDSR command
WIP=0?
No
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
Read array data
(same address of PGM/ERS)
Verify OK?
No
Yes
Program/erase successfully
Program/erase
another block?
Program/erase fail
Yes
* Issue RDSR to check BP[3:0].
* If WPSEL = 1, issue RDSLOCK to check the block status.
No
Program/erase completed
P/N: PM1718
18
REV. 1.4, NOV. 06, 2013
MX25U8033E
Program/ Erase Flow without Read Array Data (read P_FAIL/E_FAIL flag)
start
WREN command
RDSR command*
WREN=1?
No
Yes
Program/erase command
Write program data/address
(Write erase address)
RDSR command
WIP=0?
No
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
RDSCUR command
Yes
P_FAIL/E_FAIL=1 ?
No
Program/erase fail
Program/erase successfully
Program/erase
another block?
No
Yes
* Issue RDSR to check BP[3:0].
* If WPSEL = 1, issue RDBLOCK to check the block status.
Program/erase completed
P/N: PM1718
19
REV. 1.4, NOV. 06, 2013
MX25U8033E
WRSR Flow
start
WREN command
RDSR command
No
WREN=1?
Yes
WRSR command
Write status register data
RDSR command
No
WIP=0?
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
No
Verify OK?
Yes
WRSR successfully
P/N: PM1718
20
WRSR fail
REV. 1.4, NOV. 06, 2013
MX25U8033E
The definition of the status register bits is as below:
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register
progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register
cycle.
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable
latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/
erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device
will not accept program/erase/write status register instruction. The program/erase command will be ignored if it is applied to a protected memory area. To ensure both WIP bit & WEL bit are both set to 0 and available for next program/
erase/operations, WIP bit needs to be confirm to be 0 before polling WEL bit. After WIP bit confirmed, WEL bit needs
to be confirm to be 0.
BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area (as
defined in table 2) of the device to against the program/erase instruction without hardware protection mode being set.
To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruction to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector Erase (SE), Block
Erase 32KB (BE32K), Block Erase (BE) and Chip Erase (CE) instructions (only if Block Protect bits (BP3:BP0) set to 0,
the CE instruction can be executed). The BP3, BP2, BP1, BP0 bits are "0" as default. Which is un-protected.
QE bit. The Quad Enable (QE) bit, non-volatile bit, while it is "0" (factory default), it performs non-Quad and WP# is
enable. While QE is "1", it performs Quad I/O mode and WP# is disabled. In the other word, if the system goes into
four I/O mode (QE=1), the features of HPM and HOLD will be disabled.
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection
(WP#/SIO2) pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and
WP#/SIO2 pin signal is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is
no longer accepted for execution and the SRWD bit and Block Protect bits (BP3, BP2, BP1, BP0) are read only. The
SRWD bit defaults to be "0".
Table 6. Status Register
bit7
bit6
SRWD (status
register write
protect)
QE
(Quad
Enable)
bit5
BP3
(level of
protected
block)
bit4
BP2
(level of
protected
block)
1=Quad
1=status
Enable
register write
(note 1)
(note 1)
0=not Quad
disable
Enable
Non-volatile Non-volatile Non-volatile Non-volatile
bit
bit
bit
bit
Note 1: see the Table 2 "Protected Area Size".
P/N: PM1718
bit3
BP1
(level of
protected
block)
bit2
BP0
(level of
protected
block)
(note 1)
(note 1)
Non-volatile
bit
Non-volatile
bit
21
bit1
bit0
WEL
WIP
(write enable
(write in
latch)
progress bit)
1=write
1=write
enable
operation
0=not write 0=not in write
enable
operation
volatile bit
volatile bit
REV. 1.4, NOV. 06, 2013
MX25U8033E
(5) Write Status Register (WRSR)
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the
Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1, BP0) bits to define the protected area of memory (as shown in Table 2). The WRSR also can set or reset the Quad enable (QE) bit and set or
reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#/SIO2) pin signal, but
has no effect on bit1(WEL) and bit0 (WIP) of the status register. The WRSR instruction cannot be executed once the
Hardware Protected Mode (HPM) is entered.
The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register
data on SI→CS# goes high. (Please refer to Figure 19)
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.
The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write
in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1
during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL)
bit is reset.
Table 7. Protection Modes
Mode
Software protection
mode (SPM)
Hardware protection
mode (HPM)
Status register condition
WP# and SRWD bit status
Memory
Status register can be written
in (WEL bit is set to "1") and
the SRWD, BP0-BP3
bits can be changed
WP#=1 and SRWD bit=0, or
WP#=0 and SRWD bit=0, or
WP#=1 and SRWD=1
The protected area
cannot
be program or erase.
The SRWD, BP0-BP3 of
status register bits cannot be
changed
WP#=0, SRWD bit=1
The protected area
cannot
be program or erase.
Note:
1. As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in Table 2.
As the above table showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM).
Software Protected Mode (SPM):
- When SRWD bit=0, no matter WP#/SIO2 is low or high, the WREN instruction may set the WEL bit and can
change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1,
BP0, is at software protected mode (SPM).
- When SRWD bit=1 and WP#/SIO2 is high, the WREN instruction may set the WEL bit can change the values of
SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0, is at software protected mode (SPM)
Note:
If SRWD bit=1 but WP#/SIO2 is low, it is impossible to write the Status Register even if the WEL bit has previously
been set. It is rejected to write the Status Register and not be executed.
P/N: PM1718
22
REV. 1.4, NOV. 06, 2013
MX25U8033E
Hardware Protected Mode (HPM):
- When SRWD bit=1, and then WP#/SIO2 is low (or WP#/SIO2 is low before SRWD bit=1), it enters the hardware
protected mode (HPM). The data of the protected area is protected by software protected mode by BP3, BP2,
BP1, BP0 and hardware protected mode by the WP#/SIO2 to against data modification.
Note:
To exit the hardware protected mode requires WP#/SIO2 driving high once the hardware protected mode is entered.
If the WP#/SIO2 pin is permanently connected to high, the hardware protected mode can never be entered; only
can use software protected mode via BP3, BP2, BP1, BP0.
If the system enter Quad I/O QE=1, the feature of HPM will be disabled.
(6) Read Data Bytes (READ)
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on
the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address
is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can
be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been
reached.
The sequence of issuing READ instruction is: CS# goes low→sending READ instruction code→ 3-byte address on
SI→ data out on SO→to end READ operation can use CS# to high at any time during data out. (Please refer to Figure 20)
(7) Read Data Bytes at Higher Speed (FAST_READ)
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at
any location. The address is automatically increased to the next higher address after each byte data is shifted out,
so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when
the highest address has been reached.
The sequence of issuing FAST_READ instruction is: CS# goes low→ sending FAST_READ instruction code→
3-byte address on SI→1-dummy byte (default) address on SI→ data out on SO→ to end FAST_READ operation
can use CS# to high at any time during data out. (Please refer to Figure 21)
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.
(8) Dual Read Mode (DREAD)
The DREAD instruction enable double throughput of Serial Flash in read mode. The address is latched on rising
edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next
higher address after each byte data is shifted out, so the whole memory can be read out at a single DREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing DREAD instruction, the following data out will perform as 2-bit instead of previous 1-bit.
The sequence of issuing DREAD instruction is: CS# goes low → sending DREAD instruction → 3-byte address on
SI → 8-bit dummy cycle → data out interleave on SO1 & SO0 → to end DREAD operation can use CS# to high at
any time during data out. (Please refer to Figure 22)
P/N: PM1718
23
REV. 1.4, NOV. 06, 2013
MX25U8033E
While Program/Erase/Write Status Register cycle is in progress, DREAD instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
(9) 2 x I/O Read Mode (2READ)
The 2READ instruction enable double throughput of Serial Flash in read mode. The address is latched on rising
edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next
higher address after each byte data is shifted out, so the whole memory can be read out at a single 2READ instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing 2READ instruction, the following address/dummy/data out will perform as 2-bit instead of previous 1-bit.
The sequence of issuing 2READ instruction is: CS# goes low→ sending 2READ instruction→ 24-bit address interleave on SIO1 & SIO0→ 4 dummy cycles on SIO1 & SIO0→ data out interleave on SIO1 & SIO0→ to end 2READ
operation can use CS# to high at any time during data out (Please refer to Figure 23 for 2 x I/O Read Mode Timing
Waveform).
While Program/Erase/Write Status Register cycle is in progress, 2READ instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
(10) 4 x I/O Read Mode (4READ)
The 4READ instruction enable quad throughput of Serial Flash in read mode. A Quad Enable (QE) bit of status Register must be set to "1" before sending the 4READ instruction. The address is latched on rising edge of SCLK, and
data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fQ.
The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single 4READ instruction. The address
counter rolls over to 0 when the highest address has been reached. Once writing 4READ instruction, the following
address/dummy/data out will perform as 4-bit instead of previous 1-bit.
The sequence of issuing 4READ instruction is: CS# goes low→ sending 4READ instruction→ 24-bit address interleave on SIO3, SIO2, SIO1 & SIO0→2+4 dummy cycles→data out interleave on SIO3, SIO2, SIO1 & SIO0→ to end
4READ operation can use CS# to high at any time during data out. (Please refer to Figure 24)
While Program/Erase/Write Status Register cycle is in progress, 4READ instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
P/N: PM1718
24
REV. 1.4, NOV. 06, 2013
MX25U8033E
(11) Performance Enhance Mode
The device could waive the command cycle bits if the two cycle bits after address cycle toggles. (Please note Figure
25 2xI/O Read Enhance Performance Mode Sequence and Figure 26 4xI/O Read Enhance Performance Mode Sequence)
After entering enhance mode, following CS# go high, the device will stay in the read mode and treat CS# go low of
the first clock as address instead of command cycle.
Another sequence of issuing 2READ (or 4READ) instruction especially useful in random access is: CS# goes
low→sending 2READ (or 4READ) instruction→3-bytes address interleave on SIO1, SIO0 (SIO3, SIO2, SIO1 &
SIO0)→Performance enhance toggling bit P[3:0] ( P[7:0] )→ 2 (or 4) dummy cycles →data out still CS# goes high
→ CS# goes low (reduce 2READ or 4READ instruction) →24-bit random access address (Please refer to Figure 25
and Figure 26 for 2x I/O and 4xI/O Read Enhance Performance Mode Timing Waveforms).
In the 2xI/O performance-enhancing mode, P[3:2] must be toggling with P[1:0]; likewise P[3:0]=21h, 12h, 30h or
03h can make this mode continue and reduce the next 2READ instruction. Once P[3:2] is no longer toggling with
P[1:0]; likewise P[3:0]=33h, 00h, 22h or 11h and afterwards CS# is raised and then lowered, the system then will escape from performance enhance mode and return to normal operation.
In the 4xI/O performance-enhancing mode, P[7:4] must be toggling with P[3:0] ; likewise P[7:0]=A5h, 5Ah, F0h or
0Fh can make this mode continue and reduce the next 4READ instruction. Once P[7:4] is no longer toggling with
P[3:0]; likewise P[7:0]=FFh,00h,AAh or 55h and afterwards CS# is raised and then lowered, the system then will escape from performance enhance mode and return to normal operation.
(12) Sector Erase (SE)
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used for
any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before
sending the Sector Erase (SE). Any address of the sector (see table of memory organization) is a valid address for
Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the least significant bit of the
address been latched-in); otherwise, the instruction will be rejected and not executed.
Address bits [Am-A12] (Am is the most significant address) select the sector address.
The sequence of issuing SE instruction is: CS# goes low→ sending SE instruction code→ 3-byte address on SI→
CS# goes high. (Please refer to Figure 29)
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked while the Sector Erase cycle is in progress. The WIP sets during the tSE
timing, and clears when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the
sector is protected by BP3 ~ 0 (WPSEL=0) or by individual lock (WPSEL=1), the Sector Erase (SE) instruction will
not be executed on the sector.
P/N: PM1718
25
REV. 1.4, NOV. 06, 2013
MX25U8033E
(13) Block Erase (BE32K)
The Block Erase (BE32K) instruction is for erasing the data of the chosen block to be "1". The instruction is used
for 32K-byte block erase operation. A Write Enable (WREN) instruction must be executed to set the Write Enable
Latch (WEL) bit before sending the Block Erase (BE32K). Any address of the block (see table of memory organization) is a valid address for Block Erase (BE32K) instruction. The CS# must go high exactly at the byte boundary (the
least significant bit of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing BE32K instruction is: CS# goes low→ sending BE32K instruction code→ 3-byte address
on SI→CS# goes high. (Please refer to Figure 30)
The self-timed Block Erase Cycle time (tBE32K) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked while he Block Erase cycle is in progress. The WIP sets during the tBE32K
timing, and clears when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the
block is protected by BP3 ~ 0 (WPSEL=0) or by individual lock (WPSEL=1), the Block Erase (tBE32K) instruction
will not be executed on the block.
(14) Block Erase (BE)
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used
for 64K-byte block erase operation. A Write Enable (WREN) instruction must be executed to set the Write Enable
Latch (WEL) bit before sending the Block Erase (BE). Any address of the block (Please refer to table of memory
organization) is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the
least significant bit of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing BE instruction is: CS# goes low→ sending BE instruction code→ 3-byte address on SI→
CS# goes high. (Please refer to Figure 31)
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked while the Block Erase cycle is in progress. The WIP sets during the tBE
timing, and clears when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the
block is protected by BP3 ~ 0 (WPSEL=0) or by individual lock (WPSEL=1), the Block Erase (BE) instruction will not
be executed on the block.
(15) Chip Erase (CE)
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS# must
go high exactly at the byte boundary, otherwise the instruction will be rejected and not executed.
The sequence of issuing CE instruction is: CS# goes low→sending CE instruction code→CS# goes high. (Please
refer to Figure 32)
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked while the Chip Erase cycle is in progress. The WIP sets during the tCE timing, and clears when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the chip is
protected by BP3 ~ 0 (WPSEL=0) or by individual lock (WPSEL=1), the Chip Erase (CE) instruction will not be executed. It will be only executed when BP3, BP2, BP1, BP0 all set to "0".
P/N: PM1718
26
REV. 1.4, NOV. 06, 2013
MX25U8033E
(16) Page Program (PP)
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction
must be executed to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). The device programs only the last 256 data bytes sent to the device. If the entire 256 data bytes are going to be programmed, A7A0 (The eight least significant address bits) should be cleared. The last address byte (the 8 least significant address
bits, A7-A0) should be set to 0 for 256 bytes page program. If A7-A0 are not all zero, transmitted data that exceed
page length are programmed from the starting address (24-bit address that last 8 bit are all 0) of currently selected
page. If the data bytes sent to the device exceeds 256, the last 256 data byte is programmed at the request page
and previous data will be disregarded. If the data bytes sent to the device has not exceeded 256, the data will be
programmed at the request address of the page. There will be no effort on the other data bytes of the same page.
The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte address on SI→ at
least 1-byte on data on SI→ CS# goes high. (Please refer to Figure 27)
The CS# must be kept to low during the whole Page Program cycle; The CS# must go high exactly at the byte
boundary (the latest eighth bit of data being latched in), otherwise the instruction will be rejected and will not be executed.
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked while the Page Program cycle is in progress. The WIP sets during the tPP
timing, and clears when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is cleared. If the
page is protected by BP3 ~ 0 (WPSEL=0) or by individual lock (WPSEL=1), the Page Program (PP) instruction will
not be executed.
(17) 4 x I/O Page Program (4PP)
The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must be executed to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to "1" before sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SIO0, SIO1, SIO2, and
SIO3 as address and data input, which can improve programmer performance and the effectiveness of application
of lower clock less than 70MHz. For system with faster clock, the Quad page program cannot provide more actual
favors, because the required internal page program time is far more than the time data flows in. Therefore, we suggest that while executing this command (especially during sending data), user can slow the clock speed down to
70MHz below. The other function descriptions are as same as standard page program.
The sequence of issuing 4PP instruction is: CS# goes low→ sending 4PP instruction code→ 3-byte address on
SIO[3:0]→ at least 1-byte on data on SIO[3:0]→CS# goes high. (Please refer to Figure 28)
If the page protected by BP3 ~ 0 (WPSEL=0) or by individual lock (WPSEL=1), the Quad page program (4PP)
instruction will not be executed.
(18) Deep Power-down (DP)
The Deep Power-down (DP) instruction is for setting the device to minimizing the power consumption, (the standby
current is reduced from ISB1 to ISB2). The Deep Power-down mode requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/Program/Erase instruction
are ignored.
The sequence of issuing DP instruction is: CS# goes low→sending DP instruction code→CS# goes high.
(Please refer to Figure 33)
P/N: PM1718
27
REV. 1.4, NOV. 06, 2013
MX25U8033E
Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP)
and Read Electronic Signature (RES) instruction. (Those instructions allow the ID being reading out). When Powerdown, or software reset command the deep power-down mode automatically stops, and when power-up, the device
automatically is in standby mode. For DP instruction the CS# must go high exactly at the byte boundary (the latest
eighth bit of instruction code been latched-in); otherwise, the instruction will not executed. As soon as Chip Select (CS#)
goes high, a delay of tDP is required before entering the Deep Power-down mode.
(19) Release from Deep Power-down (RDP), Read Electronic Signature (RES)
The Release from Deep Power-down (RDP) instruction is completed by driving Chip Select (CS#) High. When Chip
Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the
Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in
the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip
Select (CS#) must remain High for at least tRES2(max), as specified in Table 14. AC Characteristics. Once in the
Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. The
RDP instruction is only for releasing from Deep Power Down Mode.
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of ID
Definitions on next page. This is not the same as RDID instruction. It is not recommended to use for new design.
For new design, please use RDID instruction.
The sequence is shown as Figure 34 and Figure 35. Even in Deep power-down mode, the RDP and RES are also
allowed to be executed, only except the device is in progress of program/erase/write cycle; there's no effect on the
current program/erase/write cycle in progress.
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously
in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in
Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least
tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute
instruction.
(20) Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4)
The REMS, REMS2 and REMS4 instruction provides both the JEDEC assigned Manufacturer ID and the specific
Device ID.
The instruction is initiated by driving the CS# pin low and shift the instruction code "90h", "DFh" or "EFh" followed
by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for Macronix (C2h) and the
Device ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first as shown in Figure 36. The
Device ID values are listed in table of ID Definitions. If the one-byte address is initially set to 01h, then the Device ID
will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving CS# high.
P/N: PM1718
28
REV. 1.4, NOV. 06, 2013
MX25U8033E
Table 8. ID Definitions
Command Type
RDID (JEDEC ID)
manufacturer ID
C2
RES
REMS/REMS2/REMS4
manufacturer ID
C2
MX25U8033E
memory type
25
electronic ID
34
device ID
34
memory density
34
(21) Enter Secured OTP (ENSO)
The ENSO instruction is for entering the additional 4K-bit secured OTP mode. While device is in 4K-bit secured
OTP mode, main array access is not available. The additional 4K-bit secured OTP is independent from main array,
and may be used to store unique serial number for system identifier. After entering the Secured OTP mode, follow
standard read or program procedure to read out the data or update data. The Secured OTP data cannot be updated
again once it is lock-down.
The sequence of issuing ENSO instruction is: CS# goes low→ sending ENSO instruction to enter Secured OTP
mode→ CS# goes high.
Please note that WRSR/WRSCUR/WPSEL commands are not acceptable during the access of secure OTP region,
once security OTP is lock down, only read related commands are valid.
(22) Exit Secured OTP (EXSO)
The EXSO instruction is for exiting the additional 4K-bit secured OTP mode.
The sequence of issuing EXSO instruction is: CS# goes low→ sending EXSO instruction to exit Secured OTP
mode→ CS# goes high.
(23) Read Security Register (RDSCUR)
The RDSCUR instruction is for reading the value of Security Register bits. The Read Security Register can be read
at any time (even in program/erase/write status register/write security register condition) and continuously.
The sequence of issuing RDSCUR instruction is : CS# goes low→sending RDSCUR instruction→Security Register
data out on SO→ CS# goes high. (Please see Figure 37)
The definition of the Security Register bits is as below:
Secured OTP Indicator bit. The Secured OTP indicator bit shows the chip is locked by factory or not. When it is
"0", it indicates non-factory lock; "1" indicates factory-lock.
Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for customer lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 4K-bit Secured OTP
area cannot be updated any more.
P/N: PM1718
29
REV. 1.4, NOV. 06, 2013
MX25U8033E
Table 9. Security Register Definition
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
WPSEL
E_FAIL
P_FAIL
Reserved
Reserved
Reserved
0=normal
WP mode
1=individual
mode
(default=0)
0=normal
Erase
succeed
1=individual
Erase failed
(default=0)
0=normal
Program
succeed
1=indicate
Program
failed
(default=0)
-
-
-
Non-volatile
bit (OTP)
Volatile bit
Volatile bit
Volatile bit
Volatile bit
Volatile bit
Bit1
Bit0
LDSO
Secured OTP
(indicate if
indicator bit
lock-down)
0 = not lockdown
0 = non1 = lock-down
factory
(cannot
lock
program/
1 = factory
erase
lock
OTP)
Non-volatile
Non-volatile
bit
bit (OTP)
(OTP)
(24) Write Security Register (WRSCUR)
The WRSCUR instruction is for setting the values of Security Register Bits. The WREN (Write Enable) instruction is
required before issuing WRSCUR instruction. The WRSCUR instruction may change the values of bit1 (LDSO bit)
for customer to lock-down the 4K-bit Secured OTP area. Once the LDSO bit is set to "1", the Secured OTP area
cannot be updated any more. The LDSO bit is an OTP bit. Once the LDSO bit is set, the value of LDSO bit can not
be altered any more.
The sequence of issuing WRSCUR instruction is :CS# goes low→ sending WRSCUR instruction → CS# goes high.
(Please see Figure 38)
The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.
(25) Write Protection Selection (WPSEL)
When the system accepts and executes WPSEL instruction, bit 7 in the security register will be set. The WREN (Write
Enable) instruction is required before issuing WPSEL instruction. It will activate SBLK, SBULK, RDBLOCK, GBLK,
GBULK etc instructions to conduct block lock protection and replace the original Software Protect Mode (SPM) use
(BP3~BP0) indicated block methods.
The sequence of issuing WPSEL instruction is: CS# goes low → sending WPSEL instruction to enter the individual
block protect mode→ CS# goes high.
Every time after the system is powered-on the Security Register bit 7 is checked, if WPSEL=1, then all the blocks
and sectors will be write-protected by default. User may only unlock the blocks or sectors via SBULK and GBULK
instructions. Program or erase functions can only be operated after the Unlock instruction is executed.
Once WPSEL is set, it cannot be changed.
P/N: PM1718
30
REV. 1.4, NOV. 06, 2013
MX25U8033E
WPSEL instruction function flow is as follows:
Figure 3. WPSEL Flow
start
WREN command
RDSCUR(2Bh) command
Yes
WPSEL=1?
No
WPSEL disable,
block protected by BP[3:0]
WPSEL(68h) command
RDSR command
WIP=0?
No
Yes
RDSCUR(2Bh) command
WPSEL=1?
No
Yes
WPSEL set successfully
WPSEL set fail
WPSEL enable.
Block protected by individual lock
(SBLK, SBULK,
… etc).
P/N: PM1718
31
REV. 1.4, NOV. 06, 2013
MX25U8033E
(26) Single Block Lock/Unlock Protection (SBLK/SBULK)
These instructions are only effective after WPSEL was executed. The SBLK instruction is for write protection a specified block (or sector) of memory, using AMAX-A16 or (AMAX-A12) address bits to assign a 64Kbyte block (or 4K bytes
sector) to be protected as read only. The SBULK instruction will cancel the block (or sector) write protection state.
This feature allows user to stop protecting the entire block (or sector) through the chip unprotect command (GBULK).
The WREN (Write Enable) instruction is required before issuing SBLK/SBULK instruction.
The sequence of issuing SBLK/SBULK instruction is: CS# goes low → send SBLK/SBULK (36h/39h)
instruction→send 3 address bytes assign one block (or sector) to be protected on SI pin → CS# goes high. The CS#
must go high exactly at the byte boundary, otherwise the instruction will be rejected and not be executed.
SBLK/SBULK instruction function flow is as follows:
Figure 4. Block Lock Flow
Start
RDSCUR(2Bh) command
WPSEL=1?
No
WPSEL command
Yes
WREN command
SBLK command
( 36h + 24bit address )
RDSR command
WIP=0?
No
Yes
RDBLOCK command
( 3Ch + 24bit address )
Data = FFh ?
No
Yes
Block lock successfully
Lock another block?
Block lock fail
Yes
No
Block lock
P/N: PM1718
completed
32
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 5. Block Unlock Flow
start
RDSCUR(2Bh) command
WPSEL=1?
No
WPSEL command
Yes
WREN command
SBULK command
( 39h + 24bit address )
RDSR command
No
WIP=0?
Yes
Unlock another block?
Yes
Unlock block completed?
P/N: PM1718
33
REV. 1.4, NOV. 06, 2013
MX25U8033E
(27) Read Block Lock Status (RDBLOCK)
This instruction is only effective after WPSEL was executed. The RDBLOCK instruction is for reading the status of
protection lock of a specified block (or sector), using AMAX-A16 (or AMAX-A12) address bits to assign a 64K bytes
block (4K bytes sector) and read protection lock status bit which the first byte of Read-out cycle. The status bit is"1"
to indicate that this block has be protected, that user can read only but cannot write/program /erase this block. The
status bit is "0" to indicate that this block hasn't be protected, and user can read and write this block.
The sequence of issuing RDBLOCK instruction is: CS# goes low → send RDBLOCK (3Ch) instruction → send 3
address bytes to assign one block on SI pin → read block's protection lock status bit on SO pin → CS# goes high.
(28) Gang Block Lock/Unlock (GBLK/GBULK)
These instructions are only effective after WPSEL was executed. The GBLK/GBULK instruction is for enable/disable
the lock protection block of the whole chip.
The WREN (Write Enable) instruction is required before issuing GBLK/GBULK instruction.
The sequence of issuing GBLK/GBULK instruction is: CS# goes low → send GBLK/GBULK (7Eh/98h) instruction
→CS# goes high.
The CS# must go high exactly at the byte boundary, otherwise, the instruction will be rejected and not be executed.
P/N: PM1718
34
REV. 1.4, NOV. 06, 2013
MX25U8033E
(29) Read SFDP Mode (RDSFDP)
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the
functional and feature capabilities of serial flash devices in a standard set of internal parameter tables. These
parameter tables can be interrogated by host system software to enable adjustments needed to accommodate
divergent features from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC
Standard, JESD68 on CFI.
The sequence of issuing RDSFDP instruction is CS# goes low→send RDSFDP instruction (5Ah)→send 3 address
bytes on SI pin→send 1 dummy byte on SI pin→read SFDP code on SO→to end RDSFDP operation can use CS#
to high at any time during data out.
SFDP is a JEDEC Standard, JESD216.
Figure 6. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
SO
24 BIT ADDRESS
23 22 21
5Ah
3
2
1
0
High-Z
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Cycle
SI
7
6
5
4
3
2
1
0
DATA OUT 2
DATA OUT 1
SO
7
6
5
3
2
1
0
7
MSB
MSB
P/N: PM1718
4
35
6
5
4
3
2
1
0
7
MSB
REV. 1.4, NOV. 06, 2013
MX25U8033E
Table 10. Signature and Parameter Identification Data Values
Description
SFDP Signature
Comment
Fixed: 50444653h
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
00h
07:00
53h
Data
(h)
53h
01h
15:08
46h
46h
02h
23:16
44h
44h
03h
31:24
50h
50h
SFDP Minor Revision Number
Start from 00h
04h
07:00
00h
00h
SFDP Major Revision Number
Start from 01h
This number is 0-based. Therefore,
0 indicates 1 parameter header.
05h
15:08
01h
01h
06h
23:16
01h
01h
07h
31:24
FFh
FFh
00h: it indicates a JEDEC specified
header.
08h
07:00
00h
00h
Start from 00h
09h
15:08
00h
00h
Start from 01h
0Ah
23:16
01h
01h
How many DWORDs in the
Parameter table
0Bh
31:24
09h
09h
0Ch
07:00
30h
30h
0Dh
15:08
00h
00h
0Eh
23:16
00h
00h
0Fh
31:24
FFh
FFh
it indicates Macronix manufacturer
ID
10h
07:00
C2h
C2h
Start from 00h
11h
15:08
00h
00h
Start from 01h
12h
23:16
01h
01h
How many DWORDs in the
Parameter table
13h
31:24
04h
04h
14h
07:00
60h
60h
15h
15:08
00h
00h
16h
23:16
00h
00h
17h
31:24
FFh
FFh
Number of Parameter Headers
Unused
ID number (JEDEC)
Parameter Table Minor Revision
Number
Parameter Table Major Revision
Number
Parameter Table Length
(in double word)
Parameter Table Pointer (PTP)
First address of JEDEC Flash
Parameter table
Unused
ID number
(Macronix manufacturer ID)
Parameter Table Minor Revision
Number
Parameter Table Major Revision
Number
Parameter Table Length
(in double word)
Parameter Table Pointer (PTP)
First address of Macronix Flash
Parameter table
Unused
P/N: PM1718
36
REV. 1.4, NOV. 06, 2013
MX25U8033E
Table 11. Parameter Table (0): JEDEC Flash Parameter Tables
Description
Comment
Block/Sector Erase sizes
00: Reserved, 01: 4KB erase,
10: Reserved,
11: not support 4KB erase
Write Granularity
0: 1Byte, 1: 64Byte or larger
Write Enable Instruction Required 0: not required
1: required 00h to be written to the
for Writing to Volatile Status
status register
Registers
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
31h
(1-1-2) Fast Read (Note2)
0=not support 1=support
Address Bytes Number used in
addressing flash array
Double Transfer Rate (DTR)
Clocking
00: 3Byte only, 01: 3 or 4Byte,
10: 4Byte only, 11: Reserved
01b
02
1b
03
0b
30h
0: use 50h opcode,
1: use 06h opcode
Write Enable Opcode Select for
Note: If target flash status register
Writing to Volatile Status Registers
is nonvolatile, then bits 3 and 4
must be set to 00b.
Contains 111b and can never be
Unused
changed
4KB Erase Opcode
01:00
0=not support 1=support
32h
E5h
04
0b
07:05
111b
15:08
20h
16
1b
18:17
00b
19
0b
20
1b
0=not support 1=support
(1-4-4) Fast Read
0=not support 1=support
21
1b
(1-1-4) Fast Read
0=not support 1=support
22
0b
23
1b
33h
31:24
FFh
37h:34h
31:00
Unused
Flash Memory Density
(1-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states (Note3)
Clocks) not support
(1-4-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits (Note4)
38h
(1-4-4) Fast Read Opcode
39h
(1-1-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-1-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits
3Ah
(1-1-4) Fast Read Opcode
3Bh
P/N: PM1718
37
20h
B1h
(1-2-2) Fast Read
Unused
Data
(h)
FFh
007FFFFFh
04:00
0 0100b
07:05
010b
15:08
EBh
20:16
0 0000b
23:21
000b
31:24
FFh
44h
EBh
00h
FFh
REV. 1.4, NOV. 06, 2013
MX25U8033E
Description
Comment
(1-1-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-1-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
3Ch
(1-1-2) Fast Read Opcode
3Dh
(1-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-2-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
3Eh
(1-2-2) Fast Read Opcode
3Fh
(2-2-2) Fast Read
0=not support 1=support
Unused
(4-4-4) Fast Read
0=not support 1=support
40h
Unused
04:00
0 1000b
07:05
000b
15:08
3Bh
20:16
0 0100b
23:21
000b
31:24
BBh
00
0b
03:01
111b
04
0b
07:05
111b
Data
(h)
08h
3Bh
04h
BBh
EEh
Unused
43h:41h
31:08
FFh
FFh
Unused
45h:44h
15:00
FFh
FFh
20:16
0 0000b
23:21
000b
(2-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(2-2-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
46h
(2-2-2) Fast Read Opcode
47h
31:24
FFh
FFh
49h:48h
15:00
FFh
FFh
20:16
0 0000b
23:21
000b
Unused
00h
(4-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(4-4-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits
4Ah
(4-4-4) Fast Read Opcode
4Bh
31:24
FFh
FFh
4Ch
07:00
0Ch
0Ch
4Dh
15:08
20h
20h
4Eh
23:16
0Fh
0Fh
4Fh
31:24
52h
52h
50h
07:00
10h
10h
51h
15:08
D8h
D8h
52h
23:16
00h
00h
53h
31:24
FFh
FFh
Sector Type 1 Size
Sector/block size = 2^N bytes (Note5)
0x00b: this sector type doesn't exist
Sector Type 1 erase Opcode
Sector Type 2 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 2 erase Opcode
Sector Type 3 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 3 erase Opcode
Sector Type 4 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 4 erase Opcode
P/N: PM1718
38
00h
REV. 1.4, NOV. 06, 2013
MX25U8033E
Table 12. Parameter Table (1): Macronix Flash Parameter Tables
Description
Comment
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
Data
(h)
Vcc Supply Maximum Voltage
2000h=2.000V
2700h=2.700V
3600h=3.600V
61h:60h
07:00
15:08
00h
20h
00h
20h
Vcc Supply Minimum Voltage
1650h=1.650V
2250h=2.250V
2350h=2.350V
2700h=2.700V
63h:62h
23:16
31:24
50h
16h
50h
16h
H/W Reset# pin
0=not support 1=support
00
0b
H/W Hold# pin
0=not support 1=support
01
1b
Deep Power Down Mode
0=not support 1=support
02
1b
S/W Reset
0=not support 1=support
03
0b
S/W Reset Opcode
Reset Enable (66h) should be
issued before Reset Opcode
11:04
1111 1111b
(FFh)
Program Suspend/Resume
0=not support 1=support
12
0b
Erase Suspend/Resume
0=not support 1=support
13
0b
14
1b
15
0b
66h
23:16
FFh
FFh
67h
31:24
FFh
FFh
65h:64h
Unused
Wrap-Around Read mode
0=not support 1=support
Wrap-Around Read mode Opcode
Wrap-Around Read data length
08h:support 8B wrap-around read
16h:8B&16B
32h:8B&16B&32B
64h:8B&16B&32B&64B
Individual block lock
0=not support 1=support
00
1b
Individual block lock bit
(Volatile/Nonvolatile)
0=Volatile 1=Nonvolatile
01
0b
09:02
0011 0110b
(36h)
10
0b
11
1b
Individual block lock Opcode
4FF6h
Individual block lock Volatile
protect bit default protect status
0=protect 1=unprotect
Secured OTP
0=not support 1=support
Read Lock
0=not support 1=support
12
0b
Permanent Lock
0=not support 1=support
13
0b
Unused
15:14
11b
Unused
31:16
FFh
FFh
31:00
FFh
FFh
Unused
P/N: PM1718
6Bh:68h
6Fh:6Ch
39
C8D9h
REV. 1.4, NOV. 06, 2013
MX25U8033E
Note 1: h/b is hexadecimal or binary.
Note 2: (x-y-z) means I/O mode nomenclature used to indicate the number of active pins used for the opcode (x),
address (y), and data (z). At the present time, the only valid Read SFDP instruction modes are: (1-1-1), (2-2-2),
and (4-4-4)
Note 3: Wait States is required dummy clock cycles after the address bits or optional mode bits.
Note 4: Mode Bits is optional control bits that follow the address bits. These bits are driven by the system controller
if they are specified. (eg,read performance enhance toggling bits)
Note 5: 4KB=2^0Ch,32KB=2^0Fh,64KB=2^10h
Note 6: All unused and undefined area data is blank FFh.
P/N: PM1718
40
REV. 1.4, NOV. 06, 2013
MX25U8033E
POWER-ON STATE
The device is at the following states after power-up:
- Standby mode (please note it is not deep power-down mode)
- Write Enable Latch (WEL) bit is reset
The device must not be selected during power-up and power-down stage while the VCC reaches the following lev
- VCC minimum at power-up stage and then after a delay of tVSL
- GND at power-down
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.
An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change
during power up state. When VCC is lower than VWI (POR threshold voltage value), the internal logic is reset and
the flash device has no response to any command.
For further protection on the device, after VCC reaching the VWI level, a tPUW time delay is required before the
device is fully accessible for commands like write enable (WREN), page program (PP), quad page program (4PP),
sector erase (SE), block erase 32KB (BE32K), block erase (BE), chip erase (CE), WRSCUR and write status register (WRSR). If the VCC does not reach the VCC minimum level, the correct operation is not guaranteed. The write,
erase, and program command should be sent after the below time delay:
- tPUW after VCC reached VWI level
- tVSL after VCC reached VCC minimum level
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL, even time of
tPUW has not passed.
Please refer to the figure of "power-up timing".
Note:
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommended. (generally around 0.1uF)
- At power-down stage, the VCC drops below VWI level, all operations are disable and device has no response to
any command. The data corruption might occur during this stage if a write, program, erase cycle is in progress.
P/N: PM1718
41
REV. 1.4, NOV. 06, 2013
MX25U8033E
ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS
RATING
VALUE
Ambient Operating Temperature
Industrial grade
-40°C to 85°C
Storage Temperature
-65°C to 150°C
Applied Input Voltage
-0.5V to VCC+0.5V
Applied Output Voltage
-0.5V to VCC+0.5V
VCC to Ground Potential
-0.5V to 2.5V
NOTICE:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage
to the device. This is stress rating only and functional operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended period may affect reliability.
2. Specifications contained within the following tables are subject to change.
3. During voltage transitions, all pins may overshoot to VCC+1.0V or -1.0V for period up to 20ns.
Figure 8. Maximum Positive Overshoot Waveform
Figure 7. Maximum Negative Overshoot Waveform
20ns
0V
VCC+1.0V
-1.0V
2.0V
20ns
CAPACITANCE TA = 25°C, f = 1.0 MHz
SYMBOL PARAMETER
CIN
COUT
P/N: PM1718
MIN.
TYP.
MAX.
UNIT
Input Capacitance
6
pF
VIN = 0V
Output Capacitance
8
pF
VOUT = 0V
42
CONDITIONS
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 9. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL
Input timing reference level
0.8VCC
Output timing reference level
0.7VCC
AC
Measurement
Level
0.3VCC
0.2VCC
0.5VCC
Note: Input pulse rise and fall time are <5ns
Figure 10. OUTPUT LOADING
25K ohm
DEVICE UNDER
TEST
CL
+1.8V
25K ohm
CL=30pF Including jig capacitance
P/N: PM1718
43
REV. 1.4, NOV. 06, 2013
MX25U8033E
Table 13. DC CHARACTERISTICS (Temperature = -40°C to 85°C, VCC = 1.65V ~ 2.0V)
SYMBOL PARAMETER
NOTES
MIN.
TYP.
MAX.
UNITS TEST CONDITIONS
ILI
Input Load Current
1
±2
uA
VCC = VCC Max,
VIN = VCC or GND
ILO
Output Leakage Current
1
±2
uA
VCC = VCC Max,
VOUT = VCC or GND
ISB1
VCC Standby Current
1
8
30
uA
VIN = VCC or GND,
CS# = VCC
ISB2
Deep Power-down
Current
2
8
uA
VIN = VCC or GND,
CS# = VCC
12
mA
f=80MHz,
SCLK=0.1VCC/0.9VCC,
SO=Open
7
mA
f=33MHz,
SCLK=0.1VCC/0.9VCC,
SO=Open
20
25
mA
8
20
mA
1
20
25
mA
Erase in Progress,
CS#=VCC
1
20
25
mA
Erase in Progress,
CS#=VCC
-0.5
0.2VCC
V
0.8VCC
VCC+0.4
V
0.2
V
IOL = 100uA
V
IOH = -100uA
ICC1
VCC Read
VIL
VCC Program Current
(PP)
VCC Write Status
Register (WRSR) Current
VCC Sector/Block (32K,
64K) Erase Current
(SE/BE/BE32K)
VCC Chip Erase Current
(CE)
Input Low Voltage
VIH
Input High Voltage
VOL
Output Low Voltage
VOH
Output High Voltage
ICC2
ICC3
ICC4
ICC5
1
1
VCC-0.2
Program in Progress,
CS# = VCC
Program status register in
progress, CS#=VCC
Note 1. Typical values at VCC = 1.8V, T = 25°C. These currents are valid for all product versions (package and
speeds).
P/N: PM1718
44
REV. 1.4, NOV. 06, 2013
MX25U8033E
Table 14. AC CHARACTERISTICS (Temperature = -40°C to 85°C, VCC = 1.65V ~ 2.0V)
Symbol
Alt. Parameter
fSCLK
fC
fRSCLK
fR
fT
fQ
fTSCLK
f4PP
tCH(1)
tCLH
tCL(1)
tCLL
tCLCH(2)
tCHCL(2)
tSLCH
tCHSL
tDVCH
tCHDX
tCHSH
tSHCH
tCSS
tDSU
tDH
tSHSL(3)
tCSH
tSHQZ(2)
tHLCH
tCHHH
tHHCH
tCHHL
tHHQX
tHLQZ
tDIS
tCLQV
tV
tCLQX
tWHSL
tSHWL
tDP(2)
tRES1(2)
tRES2(2)
tW
tBP
tPP
tSE
tBE32
tBE
tCE
tHO
tLZ
tHZ
Min.
Clock Frequency for the following instructions:
FAST_READ, RDSFDP, PP, SE, BE, CE, DP, RES,RDP
WREN, WRDI, RDID, RDSR, WRSR
Clock Frequency for READ instructions
Clock Frequency for 2READ instructions
Clock Frequency for 4READ instructions
Clock Frequency for 4PP (Quad page program)
Serial (fSCLK)
Clock High Time
Normal Read (fRSCLK)
4PP (70MHz)
Serial (fSCLK)
Clock Low Time
Normal Read (fRSCLK)
4PP (70MHz)
Clock Rise Time (3) (peak to peak)
Clock Fall Time (3) (peak to peak)
CS# Active Setup Time (relative to SCLK)
CS# Not Active Hold Time (relative to SCLK)
Data In Setup Time
Data In Hold Time
CS# Active Hold Time (relative to SCLK)
CS# Not Active Setup Time (relative to SCLK)
Read
CS# Deselect Time
Write/Erase/Program
Output Disable Time
HOLD# Active Setup Time (relative to SCLK)
HOLD# Active Hold Time (relative to SCLK)
HOLD# Not Active Setup Time (relative to SCLK)
HOLD# Not Active Hold Time (relative to SCLK)
HOLD# to Output Low-Z
HOLD# to Output High-Z
Loading: 30pF
Clock Low to Output Valid
Loading: 30pF/15pF
Loading: 15pF
Output Hold Time
Write Protect Setup Time
Write Protect Hold Time
CS# High to Deep Power-down Mode
CS# High to Standby Mode without Electronic Signature Read
CS# High to Standby Mode with Electronic Signature Read
Write Status Register Cycle Time
Byte-Program
Page Program Cycle Time
Sector Erase Cycle Time
Block Erase (32KB) Cycle Time
Block Erase (64KB) Cycle Time
Chip Erase Cycle Time
Typ.
D.C.
Max.
Unit
80
MHz
50
80
70
70
MHz
MHz
MHz
MHz
ns
6
9
7
6
9
7
0.1
0.1
7
5
2
5
5
7
12
30
ns
ns
ns
8
4
4
4
4
8
8
8
6
0
20
100
10
1.2
30
200
500
5
10
10
10
40
30
3
200
1000
2000
10
V/ns
V/ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
us
us
us
ms
us
ms
ms
ms
ms
s
Notes:
1. tCH + tCL must be greater than or equal to 1/ Frequency.
2. Value guaranteed by characterization, not 100% tested in production.
3. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.
4. Test condition is shown as "Figure 9. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL", "Figure 10.
OUTPUT LOADING".
P/N: PM1718
45
REV. 1.4, NOV. 06, 2013
MX25U8033E
Timing Analysis
Figure 11. Serial Input Timing
tSHSL
CS#
tCHSL
tSLCH
tCHSH
tSHCH
SCLK
tDVCH
tCHCL
tCHDX
tCLCH
LSB
MSB
SI
High-Z
SO
Figure 12. Output Timing
CS#
tCH
SCLK
tCLQV
tCLQX
tCL
tCLQV
tCLQX
LSB
SO
SI
P/N: PM1718
tSHQZ
ADDR.LSB IN
46
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 13. Hold Timing
CS#
tHLCH
tCHHL
tHHCH
SCLK
tCHHH
tHLQZ
tHHQX
SO
HOLD#
Figure 14. WP# Setup Timing and Hold Timing during WRSR when SRWD=1
WP#
tSHWL
tWHSL
CS#
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
SCLK
01h
SI
High-Z
SO
Figure 15. Write Enable (WREN) Sequence (Command 06)
CS#
0
1
2
3
4
5
6
7
SCLK
Command
SI
SO
P/N: PM1718
06h
High-Z
47
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 16. Write Disable (WRDI) Sequence (Command 04)
CS#
1
0
2
3
4
5
6
7
SCLK
Command
SI
04h
High-Z
SO
Figure 17. Read Identification (RDID) Sequence (Command 9F)
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18
28 29 30 31
SCLK
Command
SI
9Fh
Manufacturer Identification
SO
High-Z
7
6
5
3
2
1
Device Identification
0 15 14 13
MSB
3
2
1
0
MSB
Figure 18. Read Status Register (RDSR) Sequence (Command 05)
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
command
05h
SI
SO
High-Z
Status Register Out
7
6
5
4
2
1
0
7
6
5
4
3
2
1
0
7
MSB
MSB
P/N: PM1718
3
Status Register Out
48
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 19. Write Status Register (WRSR) Sequence (Command 01)
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
command
SI
Status
Register In
01h
7
5
4
3
2
0
1
MSB
High-Z
SO
6
Figure 20. Read Data Bytes (READ) Sequence (Command 03) (50MHz)
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
command
SI
03h
24-Bit Address
23 22 21
3
2
1
0
MSB
SO
Data Out 1
High-Z
7
6
5
4
3
2
Data Out 2
1
0
7
MSB
P/N: PM1718
49
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 21. Read at Higher Speed (FAST_READ) Sequence (Command 0B)
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
24 BIT ADDRESS
23 22 21
0Bh
3
2
1
0
High-Z
SO
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Configurable
Dummy Cycle
7
SI
6
5
4
3
2
1
0
DATA OUT 2
DATA OUT 1
7
SO
6
5
4
3
2
1
0
7
6
5
4
3
2
1
MSB
MSB
0
7
MSB
Figure 22. Dual Read Mode Sequence (Command 3B)
CS#
0
1
2
3
4
5
6
7
8
SCLK
…
Command
SI/SIO0
SO/SIO1
P/N: PM1718
30 31 32
9
3B
…
24 ADD Cycle
A23 A22
…
39 40 41 42 43 44 45
A1 A0
High Impedance
8 dummy
cycle
Data Out
1
Data Out
2
D6 D4 D2 D0 D6 D4
D7 D5 D3 D1 D7 D5
50
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 23. 2 x I/O Read Mode Sequence (Command BB)
CS#
0
1
2
3
4
5
6
7
8
18 19 20 21 22 23 24 25 26 27
9 10 11
SCLK
8 Bit Instruction
Notes:
Performance
2
Enhance
Indicator (Note)
High Impedance
dummy
cycles
Data Output
P2 P0
data
bit6, bit4, bit2...bit0, bit6, bit4....
address
bit23, bit21, bit19...bit1 P3 P1
data
bit7, bit5, bit3...bit1, bit7, bit5....
address
bit22, bit20, bit18...bit0
BBh
SI/SIO0
SO/SIO1
12 BIT Address
1. Hi-impedance is inhibited for the two clock cycles.
2. P3≠P1 & P2≠P0 (Toggling) is inhibited.
Figure 24. 4 x I/O Read Mode Sequence (Command EB)
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
n
SCLK
8 Bit Instruction
SI/SIO0
SO/SIO1
WP#/SIO2
NC/SIO3
Notes:
6 Address cycles
Performance
enhance
indicator (Note)
4 dummy
cycles
Data Output
address
bit20, bit16..bit0
P4 P0
data
bit4, bit0, bit4....
High Impedance
address
bit21, bit17..bit1
P5 P1
data
bit5 bit1, bit5....
High Impedance
address
bit22, bit18..bit2
P6 P2
data
bit6 bit2, bit6....
High Impedance
address
bit23, bit19..bit3
P7 P3
data
bit7 bit3, bit7....
EBh
1. Hi-impedance is inhibited for the two clock cycles.
2. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) is inhibited.
P/N: PM1718
51
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 25. 2 x I/O Read Enhance Performance Mode Sequence (Command BB)
CS#
0
1
2
3
4
5
6
7
8
18 19 20 21 22 23 24 25 26 27
9 10 11
SCLK
8 Bit Instruction
BBh
SI/SIO0
SO/SIO1
High Impedance
12 BIT Address
Performance
2
Enhance
Indicator (Note)
dummy
cycles
Data Output
P2 P0
data
bit6, bit4, bit2...bit0, bit6, bit4....
address
bit23, bit21, bit19...bit1 P3 P1
data
bit7, bit5, bit3...bit1, bit7, bit5....
address
bit22, bit20, bit18...bit0
CS#
n+1
...........
n+12 ....... n+15 .... n+17 ...........
SCLK
12 BIT Address
Data Output
Performance 2 dummy
Enhance
cycles
Indicator (Note)
SI/SIO0
address
bit22, bit20, bit18...bit0 P2 P0
data
bit6, bit4, bit2...bit0, bit6, bit4....
SO/SIO1
address
bit23, bit21, bit19...bit1 P3 P1
data
bit7, bit5, bit3...bit1, bit7, bit5....
Notes:
1. Performance enhance mode, if P3≠P1 & P2≠P0 (Toggling), ex: 21h, 12h, 30h or 03h.
Performance enhance recommend to keep 1 or 0 in performance enhance indicator.
2. Reset the performance enhance mode, if P3=P1 or P2=P0 (Not Toggling), ex: 33h, 00h, 22h or 11h.
P/N: PM1718
52
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 26. 4 x I/O Read Enhance Performance Mode Sequence (Command EB)
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
n
SCLK
8 Bit Instruction
WP#/SIO2
NC/SIO3
Performance
enhance
indicator (Note)
4 dummy
cycles
Data Output
address
bit20, bit16..bit0
P4 P0
data
bit4, bit0, bit4....
High Impedance
address
bit21, bit17..bit1
P5 P1
data
bit5 bit1, bit5....
High Impedance
address
bit22, bit18..bit2
P6 P2
data
bit6 bit2, bit6....
High Impedance
address
bit23, bit19..bit3
P7 P3
data
bit7 bit3, bit7....
EBh
SI/SIO0
SO/SIO1
6 Address cycles
CS#
n+1
...........
n+7 ...... n+9
........... n+13
...........
SCLK
6 Address cycles
Performance
enhance
indicator (Note)
4 dummy
cycles
Data Output
SI/SIO0
address
bit20, bit16..bit0
P4 P0
data
bit4, bit0, bit4....
SO/SIO1
address
bit21, bit17..bit1
P5 P1
data
bit5 bit1, bit5....
WP#/SIO2
address
bit22, bit18..bit2
P6 P2
data
bit6 bit2, bit6....
NC/SIO3
address
bit23, bit19..bit3
P7 P3
data
bit7 bit3, bit7....
Notes:
1. Performance enhance mode, if P7≠P3 & P6≠P2 & P5≠P1 & P4≠P0 (Toggling), ex: A5h, 5Ah, 0Fh, F0h.
Performance enhance recommend to keep 1 or 0 in performance enhance indicator.
2. Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0 (Not Toggling),
ex: AAh, 55h, 00h, FFh.
P/N: PM1718
53
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 27. Page Program (PP) Sequence (Command 02)
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
1
0
7
6
5
3
2
1
0
2079
2
2078
3
2077
23 22 21
02h
SI
Data Byte 1
2076
24-Bit Address
2075
Command
4
1
0
MSB
MSB
2074
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
2073
2072
CS#
SCLK
Data Byte 2
SI
7
6
5
4
3
2
Data Byte 3
0
1
MSB
7
6
5
4
3
2
Data Byte 256
7
0
1
MSB
6
5
4
3
2
MSB
Figure 28. 4 x I/O Page Program (4PP) Sequence (Command 38)
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
SCLK
Command
20 16 12 8
4
0
4
0
4
0
4
0
4
0
SO/SIO1
21 17 13 9
5
1
5
1
5
1
5
1
5
1
WP#/SIO2
22 18 14 10
6
2
6
2
6
2
6
2
6
2
NC/SIO3
23 19 15 11
7
3
7
3
7
3
7
3
7
3
SI/SIO0
P/N: PM1718
Data Data Data Data
Byte 1 Byte 2 Byte 3 Byte 4
6 Address cycle
38h
54
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 29. Sector Erase (SE) Sequence (Command 20)
CS#
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
24 Bit Address
Command
SI
23 22
20h
2
1
0
MSB
Figure 30. Block Erase 32KB (BE32K) Sequence (Command 52)
CS#
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Command
SI
24 Bit Address
23 22
52h
2
0
1
MSB
Figure 31. Block Erase (BE) Sequence (Command D8)
CS#
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Command
SI
24 Bit Address
23 22
D8h
2
1
0
MSB
Figure 32. Chip Erase (CE) Sequence (Command 60 or C7)
CS#
0
1
2
3
4
5
6
7
SCLK
Command
SI
P/N: PM1718
60h or C7h
55
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 33. Deep Power-down (DP) Sequence (Command B9)
CS#
0
1
2
3
4
5
6
tDP
7
SCLK
Command
B9h
SI
Deep Power-down Mode
Stand-by Mode
Figure 34. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command AB)
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38
SCLK
Command
SI
ABh
tRES2
3 Dummy Bytes
23 22 21
3
2
1
0
MSB
SO
Electronic Signature Out
High-Z
7
6
5
4
3
2
1
0
MSB
Deep Power-down Mode
P/N: PM1718
56
Stand-by Mode
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 35. Release from Deep Power-down (RDP) Sequence (Command AB)
CS#
0
1
2
3
4
5
6
tRES1
7
SCLK
Command
SI
ABh
High-Z
SO
Deep Power-down Mode
Stand-by Mode
Figure 36. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90/EF/DF)
CS#
0
1
2
3
4
5
6
7
8
9 10
SCLK
Command
SI
2 Dummy Bytes
15 14 13
90h
3
2
1
0
High-Z
SO
CS#
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
ADD (1)
SI
7
6
5
4
3
2
1
0
Manufacturer ID
SO
7
6
5
4
3
2
1
Device ID
0
7
6
5
4
3
2
1
MSB
MSB
0
7
MSB
Note: ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.
P/N: PM1718
57
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 37. Read Security Register (RDSCUR) Sequence (Command 2B)
CS#
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
command
2B
SI
SO
Security Register Out
High-Z
7
6
5
4
3
2
1
Security Register Out
0
7
6
5
4
3
2
1
0
7
MSB
MSB
Figure 38. Write Security Register (WRSCUR) Sequence (Command 2F)
CS#
0
1
2
3
4
5
6
7
SCLK
Command
SI
P/N: PM1718
2F
58
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 39. Power-up Timing
VCC
VCC(max)
Program, Erase and Write Commands are Ignored
Chip Selection is Not Allowed
VCC(min)
tVSL
Reset State
of the
Flash
Read Command is
allowed
Device is fully
accessible
VWI
tPUW
time
Note: VCC (max.) is 2.0V and VCC (min.) is 1.65V.
Table 15. Power-Up Timing and VWI Threshold
Symbol
tVSL(1)
tPUW(1)
VWI(1)
Parameter
VCC(min) to CS# low (VCC Rise Time)
Time delay to Write instruction
Command Inhibit Voltage
Min.
300
1
1.0
Max.
10
1.4
Unit
us
ms
V
Note: 1. These parameters are characterized only.
INITIAL DELIVERY STATE
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status
Register contains 00h (all Status Register bits are 0).
P/N: PM1718
59
REV. 1.4, NOV. 06, 2013
MX25U8033E
OPERATING CONDITIONS
At Device Power-Up and Power-Down
AC timing illustrated in Figure 40 and Figure 41 are for the supply voltages and the control signals at device powerup and power-down. If the timing in the figures is ignored, the device will not operate correctly.
During power-up and power-down, CS# needs to follow the voltage applied on VCC to keep the device not to be
selected. The CS# can be driven low when VCC reach Vcc(min.) and wait a period of tVSL.
Figure 40. AC Timing at Device Power-Up
VCC
VCC(min)
GND
tVR
tSHSL
CS#
tSLCH
tCHSL
tCHSH
tSHCH
SCLK
tDVCH
tCHCL
tCHDX
LSB IN
MSB IN
SI
High Impedance
SO
Symbol
tVR
tCLCH
Parameter
VCC Rise Time
Notes
1
Min.
20
Max.
500000
Unit
us/V
Notes :
1. Sampled, not 100% tested.
2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to
"AC CHARACTERISTICS" table.
P/N: PM1718
60
REV. 1.4, NOV. 06, 2013
MX25U8033E
Figure 41. Power-Down Sequence
During power-down, CS# needs to follow the voltage drop on VCC to avoid mis-operation.
VCC
CS#
SCLK
P/N: PM1718
61
REV. 1.4, NOV. 06, 2013
MX25U8033E
ERASE AND PROGRAMMING PERFORMANCE
Parameter
Min.
Typ. (1)
Max. (2)
Unit
40
ms
Write Status Register Cycle Time
Sector Erase Cycle Time (4KB)
30
200
ms
Block Erase Cycle Time (32KB)
200
1000
ms
Block Erase Cycle Time (64KB)
500
2000
ms
Chip Erase Cycle Time
5
10
s
Byte Program Time (via page program command)
10
30
us
Page Program Time
1.2
3
ms
Erase/Program Cycle
100,000
cycles
Note:
1. Typical program and erase time assumes the following conditions: 25°C, 1.8V, and checkerboard pattern.
2. Under worst conditions of 85°C and 1.65V.
3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming command.
DATA RETENTION
Parameter
Condition
Min.
Data retention
55˚C
20
Max.
Unit
years
LATCH-UP CHARACTERISTICS
MIN.
MAX.
Input Voltage with respect to GND on all power pins, SI, CS#
-1.0V
2 VCCmax
Input Voltage with respect to GND on SO
-1.0V
VCC + 1.0V
-100mA
+100mA
Current
Includes all pins except VCC. Test conditions: VCC = 1.8V, one pin at a time.
P/N: PM1718
62
REV. 1.4, NOV. 06, 2013
MX25U8033E
ORDERING INFORMATION
CLOCK
(MHz)
TEMPERATURE
MX25U8033EM1I-12G
80
-40°C~85°C
MX25U8033EZUI-12G
80
-40°C~85°C
MX25U8033EZNI-12G
80
-40°C~85°C
MX25U8033EM2I-12G
80
-40°C~85°C
PART NO.
P/N: PM1718
PACKAGE
Remark
8-SOP
(150mil)
8-USON
(4x4mm)
8-WSON
(6x5mm)
8-SOP
(200mil)
63
REV. 1.4, NOV. 06, 2013
MX25U8033E
PART NAME DESCRIPTION
MX 25
U 8033E
M1
I
12 G
OPTION:
G: RoHS Compliant and Halogen-free
SPEED:
12: 80MHz
TEMPERATURE RANGE:
I: Industrial (-40°C to 85°C)
PACKAGE:
M1: 150mil 8-SOP
M2: 200mil 8-SOP
ZU: USON
ZN: WSON
DENSITY & MODE:
8033E: 8Mb
TYPE:
U: 1.8V
DEVICE:
25: Serial Flash
P/N: PM1718
64
REV. 1.4, NOV. 06, 2013
MX25U8033E
PACKAGE INFORMATION
P/N: PM1718
65
REV. 1.4, NOV. 06, 2013
MX25U8033E
P/N: PM1718
66
REV. 1.4, NOV. 06, 2013
MX25U8033E
P/N: PM1718
67
REV. 1.4, NOV. 06, 2013
MX25U8033E
P/N: PM1718
68
REV. 1.4, NOV. 06, 2013
MX25U8033E
REVISION HISTORY
Rev. No.
DescriptionsPageDate
1.0
1. Added 200mil 8SOP Package solution
2. Modified Order Information format
P3,5,54,55,57
P54
NOV/09/2011
1.11. Removed Advanced Information from P54DEC/27/2011
Ordering Information
1.2
1. Added SFDP content
P12,32~37,42
MAR/20/2012
1.31. Added DREAD functionP13,15,23,37,38,50
2. Modified SFDP wording
P35~40
APR/15/2013
1.4
1. Modified ABSOLUTE MAXIMUM RATINGS Table
2. Updated parameters for DC Characteristics.
3. Updated Erase and Programming Performance.
NOV/06/2013
P/N: PM1718
69
P42
P5, 44
P5, 45, 62
REV. 1.4, NOV. 06, 2013
MX25U8033E
Except for customized products which has been expressly identified in the applicable agreement, Macronix's
products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or
household applications only, and not for use in any applications which may, directly or indirectly, cause death,
personal injury, or severe property damages. In the event Macronix products are used in contradicted to their
target usage above, the buyer shall take any and all actions to ensure said Macronix's product qualified for its
actual use in accordance with the applicable laws and regulations; and Macronix as well as it’s suppliers and/or
distributors shall be released from any and all liability arisen therefrom.
Copyright© Macronix International Co., Ltd. 2011~2013. All rights reserved, including the trademarks and
tradename thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, Nbit,
NBiit, Macronix NBit, eLiteFlash, HybridNVM, HybridFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC,
Kingtech, MXSMIO, Macronix vEE, Macronix MAP, Rich Au­dio, Rich Book, Rich TV, and FitCAM. The names
and brands of third party referred thereto (if any) are for identification purposes only.
For the contact and order information, please visit Macronix’s Web site at: http://www.macronix.com
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.
70
Similar pages