NTC thermistors for temperature measurement SMD NTC thermistors, case size 0805 (2012), automotive series Series/Type: B574**V5 Date: January 2016 © EPCOS AG 2016. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited. EPCOS AG is a TDK Group Company. Temperature measurement and compensation B574**V5 SMD NTC thermistors, case size 0805 (2012) Automotive series Applications Temperature measurement and compensation Dimensional drawing Features Qualification based on AEC-Q200 Rev-D Multilayer SMD NTC with inner electrodes Nickel barrier termination For temperature measurement up to 150 °C Excellent long-term aging stability in high temperature and high humidity environment UL approval (E69802) Options Alternative resistance ratings, resistance tolerances and B value tolerances available on request. Dimensions in mm Approx. weight 13 mg Delivery mode Cardboard tape, 180-mm reel General technical data Operating temperature range Max. power Resistance tolerance Rated temperature Dissipation factor Thermal cooling time constant Heat capacity Top (at 25 °C, on PCB) P251) ∆RR/RR TR (on PCB) δth1) (on PCB) τc1) Cth1) 40 ... 150 210 ±3, ±5 25 approx. 3.5 approx. 10 approx. 35 °C mW % °C mW/K s mJ/K Electrical specification and ordering codes R25 Ω 4.7 k 4.7 k 10 k 10 k 10 k 33 k 47 k 100 k ∆RR/RR % ±3, ±5 ±3, ±5 ±3, ±5 ±3, ±5 ±3, ±5 ±3, ±5 ±3, ±5 ±3, ±5 No. of R/T characteristic 8500 8507 8500 8502 8507 8502 8502 8507 B25/50 K 3590 4386 3590 3940 4386 3940 3940 4386 B25/85 K 3635 4455 3635 3980 4455 3980 3980 4455 + = Resistance tolerance H = ±3% J = ±5% 1) Depends on mounting situation Please read Cautions and warnings and Important notes at the end of this document. Page 2 of 21 B25/100 K 3650 ±3% 4480 ±3% 3650 ±3% 4000 ±3% 4480 ±3% 4000 ±3% 4000 ±3% 4480 ±3% Ordering code B57442V5472+062 B57452V5472+062 B57442V5103+062 B57451V5103+062 B57452V5103+062 B57451V5333+062 B57451V5473+062 B57452V5104+062 Temperature measurement and compensation SMD NTC thermistors, case size 0805 (2012) B574**V5 Automotive series Reliability data Tests of SMD NTC thermistors are based on AEC-Q200 Rev-D. The parts are mounted on standardized PCB. Test Pre- and post-stress electrical test High temperature exposure (storage) Temperature cycling Standard Test conditions Resistance at: 25 °C and 100 °C Physical dimensions Test temperature: 150 °C Duration: 1000 h Unpowered JESD22, Lower test temperature: 40 °C method JA-104 Upper test temperature: 150 °C Number of cycles: 1000 Transfer time: < 10 s Dwell time: 15 min Air Air MIL-STD-202, Test temperature: 85 °C method 103 Rel. humidity of air: 85% Duration: 1000 h Test voltage: VNTC = 0.3 V DC MIL-STD-202, Test temperature: 150 °C method 108 Pmax = 0.35 mW Duration: 1000 h MIL-STD-883E, Visual inspection method 2009 JESD22, Measured with calibers method JB-100 Resistance to solvents MIL-STD-202, method 215 Mechanical shock MIL-STD-202, method 213 Vibration MIL-STD-202, method 204 Resistance to soldering heat MIL-STD-202, method 210 Biased humidity Operational life External visual ∆R25/R25 Remarks (typical) MIL-STD-202, method 108 Please read Cautions and warnings and Important notes at the end of this document. Not applicable for SMD thermistors (component has no marking, color coding or coating) Peak value: 1500 g Half sine Condition F Acceleration: 5 g Sweep time: 20 min Frequency range: 10 ... 2000 Hz 3 × 12 cycles Dip: 260 °C; 10 s 1 heat cycle Page 3 of 21 < 5% < 5% < 5% < 5% Within the specified values < 5% < 5% < 3% Temperature measurement and compensation B574**V5 SMD NTC thermistors, case size 0805 (2012) Automotive series Test Standard ESD AEC-Q200-002, Discharge capacitance: 150 pF method -002 Discharge resistance: 2 kΩ Charging voltage: 6 kV Contact discharge 2 pulses in each polarity J-STD-002 a) Dip: 235 °C; 5 s: aging 4 h @ 155 °C b) Dip: 215 °C; 5 s: steam aging 8 h @ 92 °C c) Dip: 260 °C; 7 s: steam aging 8 h @ 92 °C R(25 °C), R(100 °C), B(25/100) ∆R25/R25 Remarks (typical) < 5% Solderability Electrical characterization Flammability Board flex Terminal strength Resistance drift after soldering Test conditions Not applicable for SMD thermistors (component is not coated or encapsulated with plastic materials) AEC-Q200-005, Max. bending: 2 mm method -005 Duration @ max. bending: 60 s AEC-Q200-006, Max. F: 17.7 N method -006 Reflow soldering profile Wave soldering profile 95% of termination wetted Within the specified values UL-94, V-0 or V-1 Please read Cautions and warnings and Important notes at the end of this document. Page 4 of 21 < 5% < 5% < 1% Temperature measurement and compensation B574**V5 SMD NTC thermistors, case size 0805 (2012) Automotive series R/T characteristics R/T No. T (°C) 8500 8502 8507 B25/100 = 3650 K B25/100 = 4000 K B25/100 = 4480 K RT/R25 α (%/K) RT/R25 α (%/K) RT/R25 α (%/K) 55.0 50.0 45.0 40.0 35.0 63.917 45.889 33.344 24.504 18.201 6.8 6.5 6.3 6.1 5.8 96.158 66.892 47.127 33.606 24.243 7.4 7.1 6.9 6.6 6.4 30.0 25.0 20.0 15.0 10.0 13.657 10.347 7.9114 6.1019 4.7454 5.6 5.5 5.3 5.1 4.9 17.681 13.032 9.702 7.2923 5.5314 6.2 6.0 5.8 5.6 5.4 23.213 16.686 12.115 8.8803 6.5692 6.7 6.5 6.3 6.1 5.9 5.0 0.0 5.0 10.0 15.0 3.7198 2.938 2.3372 1.8722 1.5096 4.8 4.6 4.5 4.4 4.2 4.2325 3.2657 2.54 1.9907 1.5716 5.3 5.1 4.9 4.8 4.7 4.9025 3.6896 2.7994 2.1406 1.6492 5.8 5.6 5.4 5.3 5.1 20.0 25.0 30.0 35.0 40.0 1.2249 1.0000 0.82111 0.67798 0.56279 4.1 4.0 3.9 3.8 3.7 1.2494 1.0000 0.80552 0.65288 0.53229 4.5 4.4 4.3 4.1 4.0 1.2798 1.0000 0.78663 0.62277 0.4961 5.0 4.9 4.7 4.6 4.5 45.0 50.0 55.0 60.0 65.0 0.46958 0.39374 0.33171 0.28073 0.23863 3.6 3.5 3.4 3.3 3.2 0.43645 0.35981 0.29819 0.24837 0.20787 3.9 3.8 3.7 3.6 3.5 0.39757 0.32044 0.2597 0.21161 0.17331 4.4 4.3 4.1 4.0 3.9 70.0 75.0 80.0 85.0 90.0 0.2037 0.17459 0.15022 0.12975 0.11247 3.1 3.0 3.0 2.9 2.8 0.17479 0.14763 0.12523 0.10667 0.091227 3.4 3.3 3.2 3.2 3.1 0.14265 0.11799 0.098035 0.081823 0.068589 3.8 3.8 3.7 3.6 3.5 95.0 100.0 105.0 110.0 115.0 0.097838 0.085396 0.074781 0.065691 0.057883 2.8 2.7 2.6 2.6 2.5 0.078319 0.067488 0.058363 0.050647 0.044098 3.0 2.9 2.9 2.8 2.7 0.057735 0.048796 0.041403 0.035263 0.030143 3.4 3.3 3.2 3.2 3.1 120.0 125.0 130.0 135.0 140.0 0.051153 0.045335 0.040289 0.0359 0.032071 2.4 2.4 2.3 2.3 2.2 0.03852 0.033752 0.029663 0.026146 0.023111 2.7 2.6 2.6 2.5 2.4 0.025858 0.022258 0.019223 0.016655 0.014476 3.0 3.0 2.9 2.8 2.8 145.0 150.0 0.028723 0.025786 2.2 2.1 0.020484 0.018203 2.4 2.3 0.012619 0.011033 2.7 2.7 Please read Cautions and warnings and Important notes at the end of this document. Page 5 of 21 142.71 96.913 66.637 46.366 32.629 7.9 7.6 7.4 7.1 6.9 Temperature measurement and compensation SMD NTC thermistors, case size 0805 (2012) B574**V5 Automotive series Taping and packing 1 Taping of SMD NTC thermistors 1.1 Cardboard tape for case size 0402 and 0603 (taping to IEC 60286-3) Dimensions (mm) Case size 0402 (8-mm tape) Case size 0603 (8-mm tape) Tolerance A0 × B0 0.60 × 1.15 0.95 × 1.80 ±0.2 T2 0.70 1.10 T 0.60 0.95 max. D0 1.50 1.50 ±0.10 P0 4.00 4.00 ±0.101) P2 2.00 2.00 ±0.05 P1 2.00 4.00 ±0.10 W 8.00 8.00 ±0.30 E 1.75 1.75 ±0.10 F 3.50 3.50 ±0.05 G 0.75 0.75 min. 1) ≤0.2 mm over 10 sprocket holes. Please read Cautions and warnings and Important notes at the end of this document. Page 6 of 21 Temperature measurement and compensation SMD NTC thermistors, case size 0805 (2012) 1.2 Blister tape for case size 0805 and 1206 (taping to IEC 60286-3) Dimensions (mm) Case size 0805 (8-mm tape) Case size 1206 (8-mm tape) Tolerance A0 × B0 1.50 × 2.30 1.80 × 3.40 ±0.2 K0 1.40 1.40 max. T2 2.5 2.5 max. D0 1.50 1.50 +0.10/–0 D1 0.30 0.30 min. P0 4.00 4.00 ±0.102) P2 2.00 2.00 ±0.05 P1 4.00 4.00 ±0.10 W 8.00 8.00 ±0.30 E 1.75 1.75 ±0.10 F 3.50 3.50 ±0.05 G 0.75 0.75 min. 2) ≤0.2 mm over 10 sprocket holes. Please read Cautions and warnings and Important notes at the end of this document. Page 7 of 21 B574**V5 Automotive series Temperature measurement and compensation B574**V5 SMD NTC thermistors, case size 0805 (2012) 1.3 Automotive series Reel packing Dimensions in mm 8-mm tape 180-mm reel 330-mm reel A 180 +0/3 330 +0/2.0 W1 8.4 +1.5/0 8.4 +1.5/0 W2 14.4 max. 14.4 max. Leader, trailer Please read Cautions and warnings and Important notes at the end of this document. Page 8 of 21 Temperature measurement and compensation B574**V5 SMD NTC thermistors, case size 0805 (2012) 1.4 Packing units for discrete chip and array chip Case size Chip thickness inch/mm 0402/1005 0603/1608 0805/2012 1206/3216 2 Automotive series th 0.5 mm 0.8 mm 0.8 mm 1.2 mm 0.8 mm 1.2 mm Cardboard tape Blister tape W 8 mm 8 mm W 8 mm 8 mm 8 mm 8 mm 8 mm ∅ 180-mm reel ∅ 330-mm reel pcs. 10000 4000 4000 3000 3000 3000 pcs. 50000 16000 16000 12000 12000 12000 Packing codes The last two digits of the complete ordering code state the packing mode: Last two digits 60 SMD Cardboard tape 180-mm reel packing 62 SMD Blister tape 180-mm reel packing 70 SMD Cardboard tape 330-mm reel packing 72 SMD Blister tape 330-mm reel packing Please read Cautions and warnings and Important notes at the end of this document. Page 9 of 21 Temperature measurement and compensation SMD NTC thermistors, case size 0805 (2012) B574**V5 Automotive series Mounting instructions 1 Soldering 1.1 SMD NTC thermistors SMD NTC thermistors can be provided with a nickel barrier termination or on special request with silver-palladium termination. The usage of mild, non-activated fluxes for soldering is recommended as well as a proper cleaning of the PCB. The nickel barrier layer of the silver/nickel/tin termination (see figure 1) prevents leaching of the silver base metalization layer. This allows great flexibility in the selection of soldering parameters. The tin prevents the nickel layer from oxidizing and thus ensures better wetting by the solder. The nickel barrier termination is suitable for all commonly-used soldering methods. Note: SMD NTCs with AgPd termination are not approved for lead-free soldering. Figure 1 SMD NTC thermistors, structure of nickel barrier termination 1.1.1 Solderability (test to IEC 60068-2-58) Preconditioning: Immersion into flux F-SW 32. Evaluation criterion: Wetting of soldering areas ≥95%. Solder Bath temperature (°C) Dwell time (s) SnPb 60/40 215 ±3 3 ±0.3 SnAg (3.0 ... 4.0), Cu (0.5 ... 0.9) 245 ±3 3 ±0.3 1.1.2 Resistance to soldering heat (test to IEC 60068-2-58) Preconditioning: Immersion into flux F-SW 32. Evaluation criterion: Leaching of side edges ≤1/3. Solder Bath temperature (°C) Dwell time (s) SnPb 60/40 260 ±5 10 ±1 SnAg (3.0 ... 4.0), Cu (0.5 ... 0.9) 260 ±5 10 ±1 Please read Cautions and warnings and Important notes at the end of this document. Page 10 of 21 Temperature measurement and compensation SMD NTC thermistors, case size 0805 (2012) Wave soldering Temperature characteristic at component terminal with dual wave soldering Solder joint profiles for silver/nickel/tin terminations Please read Cautions and warnings and Important notes at the end of this document. Page 11 of 21 B574**V5 Automotive series Temperature measurement and compensation SMD NTC thermistors, case size 0805 (2012) B574**V5 Automotive series Reflow soldering Recommended temperature characteristic for reflow soldering following JEDEC J-STD-020D Profile feature Preheat and soak - Temperature min - Temperature max - Time Average ramp-up rate Liquidous temperature Time at liquidous Peak package body temperature Time (tP)3) within 5 °C of specified classification temperature (Tc) Average ramp-down rate Time 25 °C to peak temperature Tsmin Tsmax tsmin to tsmax Tsmax to Tp TL tL Tp1) Tp to Tsmax Sn-Pb eutectic assembly Pb-free assembly 100 °C 150 °C 60 ... 120 s 3 °C/ s max. 183 °C 60 ... 150 s 220 °C ... 235 °C2) 150 °C 200 °C 60 ... 180 s 3 °C/ s max. 217 °C 60 ... 150 s 245 °C ... 260 °C2) 20 s3) 30 s3) 6 °C/ s max. maximum 6 min 6 °C/ s max. maximum 8 min 1) Tolerance for peak profile temperature (TP) is defined as a supplier minimum and a user maximum. 2) Depending on package thickness. For details please refer to JEDEC J-STD-020D. 3) Tolerance for time at peak profile temperature (tP) is defined as a supplier minimum and a user maximum. Note: All temperatures refer to topside of the package, measured on the package body surface. Number of reflow cycles: 3 Please read Cautions and warnings and Important notes at the end of this document. Page 12 of 21 Temperature measurement and compensation SMD NTC thermistors, case size 0805 (2012) B574**V5 Automotive series Solder joint profiles for silver/nickel/tin terminations 1.1.3 Recommended geometry of solder pads Recommended maximum dimensions (mm) Case size inch/mm A B C 0402/1005 0.6 0.6 1.7 0603/1608 1.0 1.0 3.0 0805/2012 1.3 1.2 3.4 1206/3216 1.8 1.2 4.5 1.1.4 Notes Iron soldering should be avoided, hot air methods are recommended for repair purposes. Please read Cautions and warnings and Important notes at the end of this document. Page 13 of 21 Temperature measurement and compensation SMD NTC thermistors, case size 0805 (2012) 2 B574**V5 Automotive series Conductive adhesion An alternative to soldering is the gluing of thermistors with conductive adhesives. The benefit of this method is that it involves no thermal stress. The adhesives used must be chemically inert. 3 Clamp contacting Pressure contacting by means of clamps is particularly suitable for applications involving frequent switching and high turn-on powers. 4 Sealing and potting When thermistors are sealed, potted or overmolded, there must be no mechanical stress caused by thermal expansion during the production process (curing / overmolding process) and during later operation. The upper category temperature of the thermistor must not be exceeded. Ensure that the materials used (sealing / potting compound and plastic material) are chemically neutral. 5 Cleaning If cleaning is necessary, mild cleaning agents such as ethyl alcohol and cleaning gasoline are recommended. Cleaning agents based on water are not allowed. Ultrasonic cleaning methods are permissible. 6 Storage In order to maintain their solderability, thermistors must be stored in a non-corrosive atmosphere. Humidity, temperature and container materials are critical factors. Do not store SMDs where they are exposed to heat or direct sunlight. Otherwise, the packing material may be deformed or SMDs may stick together, causing problems during mounting. After opening the factory seals, such as polyvinyl-sealed packages, use the SMDs as soon as possible. The components should be left in the original packing. Touching the metallization of unsoldered thermistors may change their soldering properties. Storage temperature: 25 °C up to 45 °C Relative humidity (without condensation): ≤75% annual mean <95%, maximum 30 days per annum Solder the thermistors listed in this data book after shipment from EPCOS within the time specified: SMDs: Please read Cautions and warnings and Important notes at the end of this document. 12 months for Ni-barrier termination 6 months for AgPd termination Page 14 of 21 Temperature measurement and compensation B574**V5 SMD NTC thermistors, case size 0805 (2012) 7 Automotive series Placement and orientation of SMD NTC thermistors on PCB a) Component placement It is recommended that the PC board should be held by means of some adequate supporting pins such as shown left to prevent the SMDs from being damaged or cracked. b) Cracks When placing a component near an area which is apt to bend or a grid groove on the PC board, it is advisable to have both electrodes subjected to uniform stress, or to position the component's electrodes at right angles to the grid groove or bending line (see c) Component orientation). c) Component orientation Choose a mounting position that minimizes the stress imposed on the chip during flexing or bending of the board. Please read Cautions and warnings and Important notes at the end of this document. Page 15 of 21 Temperature measurement and compensation SMD NTC thermistors, case size 0805 (2012) B574**V5 Automotive series Cautions and warnings General See "Important notes". Storage Store thermistors only in original packaging. Do not open the package prior to processing. Storage conditions in original packaging: storage temperature 25 °C ... +45 °C, relative humidity ≤75% annual mean, <95% maximum 30 days per annum, dew precipitation is inadmissible. Do not store thermistors where they are exposed to heat or direct sunlight. Otherwise, the packing material may be deformed or components may stick together, causing problems during mounting. Avoid contamination of thermistor surface during storage, handling and processing. Avoid storage of thermistors in harmful environments like corrosive gases (SOx, Cl etc). Use the components as soon as possible after opening the factory seals, i.e. the polyvinyl-sealed packages. Solder SMD NTC thermistors within the time specified after shipment from EPCOS. For SMD components with nickel barrier termination 12 months, for SMD components with AgPd termination 6 months. Handling NTC thermistors must not be dropped. Chip-offs or any other damage must not be caused during handling of NTCs. Do not touch components with bare hands. Gloves are recommended. Avoid contamination of thermistor surface during handling. Washing processes may damage the product due to the possible static or cyclic mechanical loads (e.g. ultrasonic cleaning). They may cause cracks to develop on the product and its parts, which might lead to reduced reliability or lifetime. Soldering Use resin-type flux or non-activated flux. Insufficient preheating may cause ceramic cracks. Rapid cooling by dipping in solvent is not recommended. Complete removal of flux is recommended. Please read Cautions and warnings and Important notes at the end of this document. Page 16 of 21 Temperature measurement and compensation SMD NTC thermistors, case size 0805 (2012) B574**V5 Automotive series Mounting Ensure that no thermo-mechanical stress occurs due to production processes (curing or overmolding processes) when thermistors are sealed, potted or overmolded or during their subsequent operation. The maximum temperature of the thermistor must not be exceeded. Ensure that the materials used (sealing/potting compound and plastic material) are chemically neutral. Electrodes/contacts must not be scratched or damaged before/during/after the mounting process. Contacts and housing used for assembly with the thermistor must be clean before mounting. Ensure that adjacent materials are designed for operation at temperatures comparable to the surface temperature of the thermistor. Be sure that surrounding parts and materials can withstand the temperature. Avoid contamination of the thermistor surface during processing. The connections of sensors (e.g. cable end, wire end, plug terminal) may only be exposed to an environment with normal atmospheric conditions. Avoid using chemical substances as mounting aids. It must be ensured that no water or other liquids enter the NTC thermistors (e.g. through plug terminals). In particular, water based substances (e.g. soap suds) must not be used as mounting aids for sensors. Operation Use thermistors only within the specified operating temperature range. Use thermistors only within the specified power range. Environmental conditions must not harm the thermistors. Only use the thermistors under normal atmospheric conditions or within the specified conditions. Contact of NTC thermistors with any liquids and solvents should be prevented. It must be ensured that no water enters the NTC thermistors (e.g. through plug terminals). For measurement purposes (checking the specified resistance vs. temperature), the component must not be immersed in water but in suitable liquids (e.g. perfluoropolyethers such as Galden). Avoid dewing and condensation unless thermistor is specified for these conditions. Be sure to provide an appropriate fail-safe function to prevent secondary product damage caused by malfunction. This listing does not claim to be complete, but merely reflects the experience of EPCOS AG. Please read Cautions and warnings and Important notes at the end of this document. Page 17 of 21 Temperature measurement and compensation B574**V5 SMD NTC thermistors, case size 0805 (2012) Automotive series Symbols and terms Symbol English German A Area Fläche B B25/100 B value B value determined by resistance measurement at 25 °C and 100 °C B-Wert B-Wert, ermittelt durch Widerstandsmessungen bei 25 °C und 100 °C Cth Heat capacitance Wärmekapazität I Current Strom N Number (integer) Anzahl (ganzzahliger Wert) P25 Pdiss Pel Pmax Maximum power at 25 °C Power dissipation Electrical power Maximum power within stated temperature range Maximale Leistung bei 25 °C Verlustleistung Elektrische Leistung Maximale Leistung im angegebenenTemperaturbereich ∆RB/RB Resistance tolerance caused by spread of B value Insulation resistance Parallel resistance Rated resistance Resistance tolerance Series resistance Resistance at temperature T (e.g. R25 = resistance at 25 °C) Widerstandstoleranz, die durch die Streuung des B-Wertes verursacht wird Isolationswiderstand Parallelwiderstand Nennwiderstand Widerstandstoleranz Serienwiderstand Widerstand bei Temperatur T (z.B. R25 = Widerstand bei 25 °C) T ∆T t TA Tmax Temperature Temperature tolerance Time Ambient temperature Upper category temperature Tmin Lower category temperature Temperatur Temperaturtoleranz Zeit Umgebungstemperatur Obere Grenztemperatur (Kategorietemperatur) Untere Grenztemperatur (Kategorietemperatur) Top TR Tsurf Operating temperature Rated temperature Surface temperature Betriebstemperatur Nenntemperatur Oberflächentemperatur V Vins Vop Vtest Voltage Insulation test voltage Operating voltage Test voltage Spannung Isolationsprüfspannung Betriebsspannung Prüfspannung Rins RP RR ∆RR/RR RS RT Please read Cautions and warnings and Important notes at the end of this document. Page 18 of 21 Temperature measurement and compensation B574**V5 SMD NTC thermistors, case size 0805 (2012) Automotive series Symbol English German α Temperature coefficient Temperaturkoeffizient ∆ Tolerance, change Toleranz, Änderung δth Dissipation factor Wärmeleitwert τc τa Thermal cooling time constant Thermal time constant Thermische Abkühlzeitkonstante Thermische Zeitkonstante Abbreviations / Notes Symbol English German Surface-mounted devices Oberflächenmontierbares Bauelement * To be replaced by a number in ordering Platzhalter für Zahl im Bestellnummerncodes, type designations etc. code oder für die Typenbezeichnung. + To be replaced by a letter. Platzhalter für einen Buchstaben. All dimensions are given in mm. Alle Maße sind in mm angegeben. The commas used in numerical values denote decimal points. Verwendete Kommas in Zahlenwerten bezeichnen Dezimalpunkte. Please read Cautions and warnings and Important notes at the end of this document. Page 19 of 21 Important notes The following applies to all products named in this publication: 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application. 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component. 3. The warnings, cautions and product-specific notes must be observed. 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices. 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products. 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI). Page 20 of 21 Important notes 7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks. Page 21 of 21