TI1 MSP430FR5731IRHAT Mixed signal microcontroller Datasheet

MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
MIXED SIGNAL MICROCONTROLLER
FEATURES
•
2
•
•
•
•
•
Embedded Nonvolatile FRAM
– Supports Universal Memory
– Ultra-Fast Ultra-Low-Power Write Cycle
– Error Correction Coding (ECC)
– Memory Protection Unit
Low Supply Voltage Range, 2.0 V to 3.6 V
16-Bit RISC Architecture, Up to 24-MHz
Low Power Consumption
– Active Mode (AM):
All System Clocks Active
103 µA/MHz at 8 MHz, 3.0 V, FRAM Program
Execution (Typical)
60 µA/MHz at 8 MHz, 3.0 V, RAM Program
Execution (Typical)
– Standby Mode (LPM3):
Real-Time Clock With Crystal , Watchdog,
and Supply Supervisor Operational, Full
System State Retention:
6.4 µA at 3.0 V (Typical)
Low-Power Oscillator (VLO),
General-Purpose Counter, Watchdog, and
Supply Supervisor Operational, Full System
State Retention:
6.3 µA at 3.0 V (Typical)
– Off Mode (LPM4):
Full System State Retention, Supply
Supervisor Operational:
5.9 µA at 3.0 V (Typical)
– Real-Time Clock Mode (LPM3.5):
1.5 µA at 3.0 V (Typical)
– Shutdown Mode (LPM4.5):
0.32 µA at 3.0 V (Typical)
Power Management System
– Fully Integrated LDO
– Supply Voltage Supervision and Brownout
Clock System
– Factory Trimmed DCO With Three
Selectable Frequencies
– Low-Power/Low-Frequency Internal Clock
Source (VLO)
– 32-kHz Watch Crystals and High-Frequency
Crystals up to 24 MHz
•
•
•
•
•
•
•
•
•
•
•
•
•
•
16-Bit Timer TA0, Timer_A With Three
Capture/Compare Registers
16-Bit Timer TA1, Timer_A With Three
Capture/Compare Registers
16-Bit Timer TB0, Timer_B With Three
Capture/Compare Shadow Registers
16-Bit Timer TB1, Timer_B With Three
Capture/Compare Shadow Registers
16-Bit Timer TB2, Timer_B With Three
Capture/Compare Shadow Registers
Enhanced Universal Serial Communication
Interfaces
– eUSCI_A0 and eUSCI_A1 Each Supporting
– Enhanced UART supporting
Auto-Baudrate Detection
– IrDA Encoder and Decoder
– Synchronous SPI
– eUSCI_B0 Supporting
– I2C With Multi-Slave Addressing
– Synchronous SPI
10-Bit Analog-to-Digital (A/D) Converter With
Internal Reference, Sample-and-Hold
On-chip Comparator
Hardware Multiplier Supporting 32-Bit
Operations
Three Channel Internal DMA
Real-Time Clock with Calendar and Alarm
Functions
Serial Onboard Programming, No External
Programming Voltage Needed
Family Members and Available Options Are
Summarized in Table 1.
For Complete Module Descriptions, See the
MSP430FR57xx Family User's Guide
(SLAU272)
1
2
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
I2C is a trademark of others.
PRODUCT PREVIEW information concerns products in the
formative or design phase of development. Characteristic data and
other specifications are design goals. Texas Instruments reserves
the right to change or discontinue these products without notice.
Copyright © 2011, Texas Instruments Incorporated
PRODUCT PREVIEW
1
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
CAUTION
www.ti.com
These products use FRAM non-volatile memory technology. FRAM retention is sensitive to extreme temperatures, such
as those experienced during reflow or hand soldering. See Absolute Maximum Ratings for more information.
DESCRIPTION
The Texas Instruments MSP430FR57xx family of ultralow-power microcontrollers consists of several devices
featuring embedded FRAM nonvolatile memory, ultralow power 16-bit MSP430 CPU, and different sets of
peripherals targeted for various applications. The architecture, FRAM, and peripherals, combined with seven
low-power modes, is optimized to achieve extended battery life in portable and wireless sensing applications.
FRAM is a new nonvolatile memory that combines the speed, flexibility, and endurance of SRAM with the
stability and reliability of Flash all at lower total power consumption.
Table 1. Family Members
eUSCI
Device
FRAM
(KB)
SRAM
(KB)
System
Clock
(MHz)
ADC10_B
Comp_D
MSP430FR5739
16
1
24
12 ext /
2 int ch.
16 ch.
6 ext /
2 int ch.
10 ch.
8 ext /
2 int ch.
12 ch.
MSP430FR5738
1
24
PRODUCT PREVIEW
MSP430FR5737 (3)
16
1
24
MSP430FR5736 (3)
16
1
24
MSP430FR5735
8
1
24
MSP430FR5734
(3)
MSP430FR5733 (3)
8
8
1
1
24
8
1
24
MSP430FR5731 (3)
4
0.5
24
MSP430FR5730
4
0.5
24
MSP430FR5728
MSP430FR5727 (3)
(1)
(2)
(3)
16
16
16
1
1
1
16 ch.
10 ch.
12 ch.
12 ext /
2 int ch.
16 ch.
6 ext /
2 int ch.
10 ch.
8 ext /
2 int ch.
12 ch.
24
MSP430FR5732 (3)
MSP430FR5729
2
16
8
8
8
16 ch.
10 ch.
12 ch.
12 ext /
2 int ch.
16 ch.
6 ext /
2 int ch.
10 ch
8 ext /
2 int ch.
12 ch.
12 ext /
2 int ch.
16 ch.
6 ext /
2 int ch.
10 ch.
8 ext /
2 int ch.
12 ch.
16 ch.
Timer_A
(1)
Timer_B
(2)
Channel
A:
UART/
IrDA/SPI
Channel
B:
SPI/I2C
3, 3
3, 3, 3
2
1
3, 3
3
1
1
3, 3
3, 3, 3
2
1
3, 3
3
1
1
3, 3
3, 3, 3
2
1
3, 3
3
1
1
3, 3
3, 3, 3
2
1
3, 3
3
1
1
3, 3
3, 3, 3
2
1
3, 3
3
1
1
3, 3
3, 3, 3
2
1
3, 3
3
1
1
3, 3
3, 3, 3
2
1
I/O
Package
Types
32
RHA
30
DA
17
RGE
21
PW (3)
32
RHA (3)
30
DA (3)
17
RGE (3)
21
PW (3)
32
RHA
30
DA (3)
17
RGE (3)
21
PW (3)
32
RHA (3)
30
DA (3)
17
RGE (3)
21
PW (3)
32
RHA (3)
30
DA (3)
17
RGE
21
PW (3)
32
RHA
30
DA
17
RGE
21
PW (3)
32
RHA (3)
30
DA (3)
Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
Product Preview
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 1. Family Members (continued)
Device
SRAM
(KB)
System
Clock
(MHz)
MSP430FR5726 (3)
16
1
8
MSP430FR5725
8
1
8
MSP430FR5724
(3)
MSP430FR5723 (3)
8
8
1
8
1
ADC10_B
10 ch.
12 ch.
12 ext /
2 int ch.
16 ch.
6 ext /
2 int ch.
10 ch.
8 ext /
2 int ch.
12 ch.
8
MSP430FR5722 (3)
8
1
8
MSP430FR5721 (3)
4
0.5
8
MSP430FR5720
4
0.5
8
Timer_A (1) Timer_B (2)
Comp_D
16 ch.
12 ch.
12 ext /
2 int ch.
16 ch.
6 ext /
2 int ch.
10 ch.
8 ext /
2 int ch.
12 ch.
Channel
B:
SPI/I2C
3, 3
3
1
1
3, 3
3, 3, 3
2
1
3, 3
3
1
1
3, 3
10 ch.
Channel
A:
UART/
IrDA/SPI
3, 3, 3
2
1
3, 3
3
1
1
3, 3
3, 3, 3
2
1
3, 3
3
1
1
I/O
Package
Types
17
RGE (3)
21
PW (3)
32
RHA
30
DA (3)
17
RGE (3)
21
PW (3)
32
RHA (3)
30
DA (3)
17
RGE (3)
21
PW (3)
32
RHA (3)
30
DA (3)
17
RGE
21
PW (3)
PRODUCT PREVIEW
eUSCI
FRAM
(KB)
Table 2. Ordering Information (1)
PACKAGED DEVICES (2)
TA
PLASTIC 40-PIN VQFN
(RHA)
PLASTIC 24-PIN VQFN
(RGE)
PLASTIC 38-PIN TSSOP
(DA)
PLASTIC 28-PIN TSSOP
(PW)
MSP430FR5721IRHA (3)
MSP430FR5720IRGE
MSP430FR5721IDA (3)
MSP430FR5720IPW (3)
(3)
MSP430FR5722IPW (3)
MSP430FR5724IRGE (3)
MSP430FR5725IDA (3)
MSP430FR5724IPW (3)
(3)
(3)
MSP430FR5726IPW (3)
MSP430FR5723IRHA
(3)
MSP430FR5725IRHA
MSP430FR5727IRHA
–40°C to
85°C
(3)
MSP430FR5729IDA
MSP430FR5728IPW (3)
MSP430FR5731IRHA (3)
MSP430FR5730IRGE
MSP430FR5731IDA (3)
MSP430FR5730IPW (3)
MSP430FR5733IDA
(3)
MSP430FR5732IPW (3)
MSP430FR5735IDA
(3)
MSP430FR5734IPW (3)
MSP430FR5737IDA
(3)
MSP430FR5736IPW (3)
MSP430FR5737IRHA
(3)
(3)
MSP430FR5739IRHA
(3)
MSP430FR5727IDA
MSP430FR5728IRGE
MSP430FR5735IRHA
(2)
MSP430FR5726IRGE
MSP430FR5723IDA
MSP430FR5729IRHA
MSP430FR5733IRHA
(1)
MSP430FR5722IRGE
(3)
MSP430FR5732IRGE
(3)
MSP430FR5734IRGE
(3)
MSP430FR5736IRGE
(3)
MSP430FR5738IRGE
MSP430FR5739IDA
MSP430FR5738IPW (3)
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/package.
Product Preview
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
3
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Functional Block Diagram –
MSP430FR5721IRHA, MSP430FR5725IRHA, MSP430FR5729IRHA
MSP430FR5731IRHA MSP430FR5735IRHA, MSP430FR5739IRHA
PJ.4/XIN
DVCC DVSS VCORE
PJ.5/XOUT
AVCC AVSS
P1.x
16 KB
Clock
System
8 KB
(’5735, ‘5725)
4 KB
SMCLK
(’5731, ‘5721)
1 KB
(’5739, ’5735)
(’5729, ’5725)
0.5 KB
(’5731, ’5721)
Power
Management
Boot
ROM
MCLK
CPUXV2
and
Working
Registers
Memory
Protection
Unit
SYS
Watchdog
Interrupt
& Wakeup
PA
1×16 I/Os
RAM
PB
P4.x
I/O Ports
P3/P4
1×8 I/Os
1x 2 I/Os
Interrupt
& Wakeup
PB
1×10 I/Os
REF
SVS
FRAM
P3.x
I/O Ports
P1/P2
2×8 I/Os
(’5739, ’5729)
ACLK
PA
P2.x
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
PRODUCT PREVIEW
RST/NMI/SBWTDIO
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
JTAG/
SBW
Interface
eUSCI_A1:
UART,
IrDA, SPI
eUSCI_A0:
UART,
IrDA, SPI
TA0
TA1
TB0
TB1
TB2
(2) Timer_A
3 CC
Registers
(3) Timer_B
3 CC
Registers
RTC_B
MPY32
CRC
eUSCI_B0:
SPI, I2C
ADC10_B
10 Bit
200KSPS
Comp_D
16 channels
16 channels
(12 ext/2 int)
Functional Block Diagram –
MSP430FR5723IRHA, MSP430FR5727IRHA
MSP430FR5733IRHA, MSP430FR5737IRHA
PJ.4/XIN
DVCC DVSS VCORE
PJ.5/XOUT
AVCC AVSS
P1.x
16 KB
Clock
System
ACLK
8 KB
SMCLK
FRAM
MCLK
CPUXV2
and
Working
Registers
Memory
Protection
Unit
1 KB
(’5737, ’5733)
(’5727, ’5723)
Boot
ROM
Power
Management
P3.x
I/O Ports
P1/P2
2×8 I/Os
(’5737, ’5727)
(’5733, ‘5723)
PA
P2.x
SYS
Watchdog
Interrupt
& Wakeup
PA
1×16 I/Os
SVS
RAM
PB
P4.x
I/O Ports
P3/P4
1×8 I/Os
1x 2 I/Os
Interrupt
& Wakeup
PB
1×10 I/Os
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
RST/NMI/SBWTDIO
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
4
JTAG/
SBW
Interface
TA0
TA1
TB0
TB1
TB2
(2) Timer_A
3 CC
Registers
(3) Timer_B
3 CC
Registers
RTC_B
MPY32
Submit Documentation Feedback
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
eUSCI_A1:
UART,
IrDA, SPI
Comp_D
REF
16 channels
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Pin Designation –
MSP430FR5721IRHA, MSP430FR5723IRHA, MSP430FR5725IRHA, MSP430FR5727IRHA,
MSP430FR5729IRHA
MSP430FR5731IRHA, MSP430FR5733IRHA, MSP430FR5735IRHA, MSP430FR5737IRHA,
MSP430FR5739IRHA
RHA PACKAGE
(TOP VIEW)
P2.4/TA1.0/UCA1CLK/A7*/CD11
P2.3/TA0.0/UCA1STE/A6*/CD10
P2.7
DVCC
DVSS
29
MSP430FR5721
MSP430FR5723
MSP430FR5725
MSP430FR5727
MSP430FR5729
MSP430FR5731
MSP430FR5733
MSP430FR5735
MSP430FR5737
MSP430FR5739
3
4
5
6
7
8
9
28
27
26
25
24
23
22
10
PJ.0/TDO/TB0OUTH/SMCLK/CD6
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7
PJ.2/TMS/TB2OUTH/ACLK/CD8
PJ.3/TCK/CD9
P4.0/TB2.0
20
19
18
17
16
15
14
13
11
21
VCORE
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0
P3.7/TB2.2
P3.6/TB2.1/TB1CLK
P3.5/TB1.2/CDOUT
P3.4/TB1.1/TB2CLK/SMCLK
P2.2/TB2.2/UCB0CLK/TB1.0
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
RST/NMI/SBWTDIO
TEST/SBWTCK
P2.6/TB1.0/UCA1RXD/UCA1SOMI
P2.5/TB0.0/UCA1TXD/UCA1SIMO
P4.1
* Not available on MSP430FR5737, MSP430FR5733, MSP430FR5727, MSP430FR5723
Note: Power Pad connection to VSS recommended.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
5
PRODUCT PREVIEW
31
32
33
35
34
36
37
39
30
1
2
12
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2
P3.0/A12*/CD12
P3.1/A13*/CD13
P3.2/A14*/CD14
P3.3/A15*/CD15
P1.3/TA1.2/UCB0STE/A3*/CD3
P1.4/TB0.1/UCA0STE/A4*/CD4
P1.5/TB0.2/UCA0CLK/A5*/CD5
38
40
AVSS
PJ.4/XIN
PJ.5/XOUT
AVSS
AVCC
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Functional Block Diagram –
MSP430FR5721IDA, MSP430FR5725IDA, MSP430FR5729IDA
MSP430FR5731IDA MSP430FR5735IDA, MSP430FR5739IDA
PJ.4/XIN
DVCC DVSS VCORE
PJ.5/XOUT
AVCC AVSS
P1.x
16 KB
Clock
System
(’5739, ’5729)
ACLK
8 KB
(’5735, ‘5725)
4 KB
SMCLK
(’5731, ‘5721)
1 KB
(’5739, ’5735)
(’5729, ’5725)
Power
Management
Boot
ROM
0.5 KB
(’5731, ’5721)
CPUXV2
and
Working
Registers
Memory
Protection
Unit
Watchdog
PB
P3.x
I/O Ports
P1/P2
2×8 I/Os
I/O Ports
P3
1×8 I/Os
Interrupt
& Wakeup
PA
1×16 I/Os
Interrupt
& Wakeup
PB
1×8 I/Os
REF
SVS
FRAM
MCLK
SYS
PA
P2.x
RAM
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
PRODUCT PREVIEW
RST/NMI/SBWTDIO
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
JTAG/
SBW
Interface
eUSCI_A1:
UART,
IrDA, SPI
eUSCI_A0:
UART,
IrDA, SPI
TA0
TA1
TB0
TB1
TB2
(2) Timer_A
3 CC
Registers
(3) Timer_B
3 CC
Registers
RTC_B
MPY32
CRC
eUSCI_B0:
SPI, I2C
ADC10_B
10 Bit
200KSPS
Comp_D
16 channels
16 channels
(12 ext/2 int)
Functional Block Diagram –
MSP430FR5723IDA, MSP430FR5727IDA
MSP430FR5733IDA, MSP430FR5737IDA
PJ.4/XIN
DVCC DVSS VCORE
PJ.5/XOUT
AVCC AVSS
P1.x
16 KB
Clock
System
ACLK
(’5737, ’5727)
8 KB
(’5733, ‘5723)
SMCLK
1 KB
(’5737, ’5733)
(’5727, ’5723)
Boot
ROM
CPUXV2
and
Working
Registers
Memory
Protection
Unit
SYS
PB
P3.x
I/O Ports
P1/P2
2×8 I/Os
I/O Ports
P3
1×8 I/Os
Interrupt
& Wakeup
PA
1×16 I/Os
Interrupt
& Wakeup
PB
1×8 I/Os
Watchdog
SVS
FRAM
MCLK
Power
Management
PA
P2.x
RAM
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
RST/NMI/SBWTDIO
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
6
JTAG/
SBW
Interface
TA0
TA1
TB0
TB1
TB2
(2) Timer_A
3 CC
Registers
(3) Timer_B
3 CC
Registers
RTC_B
MPY32
Submit Documentation Feedback
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
eUSCI_A1:
UART,
IrDA, SPI
Comp_D
REF
16 channels
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Pin Designation –
MSP430FR5721IDA, MSP430FR5723IDA, MSP430FR5725IDA, MSP430FR5727IDA,
MSP430FR5729IDA
MSP430FR5731IDA, MSP430FR5733IDA, MSP430FR5735IDA, MSP430FR5737IDA,
MSP430FR5739IDA
PJ.4/XIN
PJ.5/XOUT
AVSS
AVCC
1
38
2
37
3
36
4
35
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2
P3.0/A12*/CD12
P3.1/A13*/CD13
P3.2/A14*/CD14
P3.3/A15*/CD15
P1.3/TA1.2/UCB0STE/A3*/CD3
P1.4/TB0.1/UCA0STE/A4*/CD4
P1.5/TB0.2/UCA0CLK/A5*/CD5
PJ.0/TDO/TB0OUTH/SMCLK/CD6
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7
PJ.2/TMS/TB2OUTH/ACLK/CD8
PJ.3/TCK/CD9
P2.5/TB0.0/UCA1TXD/UCA1SIMO
5
34
6 MSP430FR5721 33
7 MSP430FR5723 32
8
MSP430FR5725
31
MSP430FR5727
9 MSP430FR5729 30
10
29
11 MSP430FR5731 28
12 MSP430FR5733 27
MSP430FR5735
13
26
MSP430FR5737
14 MSP430FR5739 25
15
24
16
23
17
22
18
21
19
20
AVSS
P2.4/TA1.0/UCA1CLK/A7*/CD11
P2.3/TA0.0/UCA1STE/A6*/CD10
P2.7
DVCC
DVSS
VCORE
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0
P3.7/TB2.2
P3.6/TB2.1/TB1CLK
P3.5/TB1.2/CDOUT
P3.4/TB1.1/TB2CLK/SMCLK
P2.2/TB2.2/UCB0CLK/TB1.0
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
RST/NMI/SBWTDIO
TEST/SBWTCK
P2.6/TB1.0/UCA1RXD/UCA1SOMI
* Not available on MSP430FR5737, MSP430FR5733, MSP430FR5727, MSP430FR5723
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
7
PRODUCT PREVIEW
DA PACKAGE
(TOP VIEW)
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Functional Block Diagram –
MSP430FR5720IRGE, MSP430FR5724IRGE, MSP430FR5728IRGE
MSP430FR5730IRGE MSP430FR5734IRGE, MSP430FR5738IRGE
PJ.4/XIN
DVCC DVSS VCORE
PJ.5/XOUT
AVCC AVSS
P1.x
16 KB
Clock
System
8 KB
(’5734, ‘5724)
4 KB
SMCLK
(’5730, ‘5720)
1 KB
(’5738, ’5734)
(’5728, ’5724)
0.5 KB
(’5730, ’5720)
Power
Management
Boot
ROM
MCLK
Memory
Protection
Unit
SYS
Watchdog
REF
SVS
FRAM
CPUXV2
and
Working
Registers
I/O Ports
P1/P2
1×8 I/Os
1×3 I/Os
(’5738, ’5728)
ACLK
PA
P2.x
Interrupt
& Wakeup
PA
1×11 I/Os
RAM
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
PRODUCT PREVIEW
RST/NMI/SBWTDIO
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
JTAG/
SBW
Interface
eUSCI_A0:
UART,
IrDA, SPI
TA0
TA1
TB0
(2) Timer_A
3 CC
Registers
(1) Timer_B
3 CC
Registers
RTC_B
MPY32
ADC10_B
10 Bit
200KSPS
CRC
eUSCI_B0:
SPI, I2C
Comp_D
10 channels
8 channels
(6 ext/2 int)
Functional Block Diagram –
MSP430FR5722IRGE, MSP430FR5726IRGE
MSP430FR5732IRGE, MSP430FR5736IRGE
PJ.4/XIN
DVCC DVSS VCORE
PJ.5/XOUT
AVCC AVSS
P1.x
16 KB
Clock
System
ACLK
(’5732, ‘5722)
SMCLK
1 KB
(’5736, ’5732)
(’5726, ’5722)
Boot
ROM
CPUXV2
and
Working
Registers
Memory
Protection
Unit
Power
Management
SYS
Watchdog
SVS
FRAM
MCLK
I/O Ports
P1/P2
1×8 I/Os
1×3 I/Os
(’5736, ’5726)
8 KB
PA
P2.x
Interrupt
& Wakeup
PA
1×11 I/Os
RAM
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
RST/NMI/SBWTDIO
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
8
JTAG/
SBW
Interface
TA0
TA1
TB0
(2) Timer_A
3 CC
Registers
(1) Timer_B
3 CC
Registers
RTC_B
MPY32
Submit Documentation Feedback
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
Comp_D
REF
10 channels
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Pin Designation –
MSP430FR5720IRGE, MSP430FR5722IRGE, MSP430FR5724IRGE, MSP430FR5726IRGE,
MSP430FR5728IRGE
MSP430FR5730IRGE, MSP430FR5732IRGE, MSP430FR5734IRGE, MSP430FR5736IRGE,
MSP430FR5738IRGE
RGE PACKAGE
(TOP VIEW)
PJ.4/XIN
DVCC
DVSS
20
21
23
19
18
17
16
15
14
13
VCORE
P1.7/UCB0SOMI/UCB0SCL/TA1.0
P1.6/UCB0SIMO/UCB0SDA/TA0.0
P2.2/UCB0CLK
P2.1/UCA0RXD/UCA0SOMI/TB0.0
P2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
12
7
PJ.0/TDO/TB0OUTH/SMCLK/CD6
PJ.1/TDI/TCLK/MCLK/CD7
PJ.2/TMS/ACLK/CD8
11
5
6
10
3
4
9
MSP430FR5720
MSP430FR5722
MSP430FR5724
MSP430FR5726
MSP430FR5728
MSP430FR5730
MSP430FR5732
MSP430FR5734
MSP430FR5736
MSP430FR5738
PRODUCT PREVIEW
1
2
8
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2
P1.3/TA1.2/UCB0STE/A3*/CD3
P1.4/TB0.1/UCA0STE/A4*/CD4
P1.5/TB0.2/UCA0CLK/A5*/CD5
22
24
PJ.5/XOUT
AVSS
AVCC
RST/NMI/SBWTDIO
TEST/SBWTCK
PJ.3/TCK/CD9
* Not available on MSP430FR5736, MSP430FR5732, MSP430FR5726, MSP430FR5722
Note: Power Pad connection to VSS recommended.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
9
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Functional Block Diagram –
MSP430FR5720IPW, MSP430FR5724IPW, MSP430FR5728IPW
MSP430FR5730IPW MSP430FR5734IPW, MSP430FR5738IPW
PJ.4/XIN
DVCC DVSS VCORE
PJ.5/XOUT
AVCC AVSS
P1.x
16 KB
Clock
System
8 KB
(’5734, ‘5724)
4 KB
SMCLK
(’5730, ‘5720)
1 KB
(’5738, ’5734)
(’5728, ’5724)
Power
Management
Boot
ROM
0.5 KB
(’5730, ’5720)
MCLK
Memory
Protection
Unit
SYS
Watchdog
REF
SVS
FRAM
CPUXV2
and
Working
Registers
I/O Ports
P1/P2
1×8 I/Os
1×7 I/Os
(’5738, ’5728)
ACLK
PA
P2.x
Interrupt
& Wakeup
PA
1×15 I/Os
RAM
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
PRODUCT PREVIEW
RST/NMI/SBWTDIO
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
JTAG/
SBW
Interface
eUSCI_A0:
UART,
IrDA, SPI
TA0
TA1
TB0
(2) Timer_A
3 CC
Registers
(1) Timer_B
3 CC
Registers
RTC_B
MPY32
ADC10_B
10 Bit
200KSPS
CRC
eUSCI_B0:
SPI, I2C
Comp_D
12 channels
12 channels
(8 ext/2 int)
Functional Block Diagram –
MSP430FR5722IPW, MSP430FR5726IPW
MSP430FR5732IPW, MSP430FR5736IPW
PJ.4/XIN
DVCC DVSS VCORE
PJ.5/XOUT
AVCC AVSS
P1.x
16 KB
Clock
System
ACLK
(’5732, ‘5722)
SMCLK
1 KB
(’5736, ’5732)
(’5726, ’5722)
Boot
ROM
CPUXV2
and
Working
Registers
Memory
Protection
Unit
Power
Management
SYS
Watchdog
SVS
FRAM
MCLK
I/O Ports
P1/P2
1×8 I/Os
1×7 I/Os
(’5736, ’5726)
8 KB
PA
P2.x
Interrupt
& Wakeup
PA
1×15 I/Os
RAM
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
RST/NMI/SBWTDIO
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
10
JTAG/
SBW
Interface
TA0
TA1
TB0
(2) Timer_A
3 CC
Registers
(1) Timer_B
3 CC
Registers
RTC_B
MPY32
Submit Documentation Feedback
CRC
eUSCI_A0:
UART,
IrDA, SPI
eUSCI_B0:
SPI, I2C
Comp_D
REF
12 channels
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Pin Designation –
MSP430FR5720IPW, MSP430FR5722IPW, MSP430FR5724IPW, MSP430FR5726IPW,
MSP430FR5728IPW
MSP430FR5730IPW, MSP430FR5732IPW, MSP430FR5734IPW, MSP430FR5736IPW,
MSP430FR5738IPW
PJ.4/XIN
PJ.5/XOUT
AVSS
AVCC
P1.0/TA0.1/DMAE0/RTCCLK/A0*/CD0/VeREF-*
P1.1/TA0.2/TA1CLK/CDOUT/A1*/CD1/VeREF+*
P1.2/TA1.1/TA0CLK/CDOUT/A2*/CD2
P1.3/TA1.2/UCB0STE/A3*/CD3
P1.4/TB0.1/UCA0STE/A4*/CD4
P1.5/TB0.2/UCA0CLK/A5*/CD5
PJ.0/TDO/TB0OUTH/SMCLK/CD6
PJ.1/TDI/TCLK/MCLK/CD7
PJ.2/TMS/ACLK/CD8
PJ.3/TCK/CD9
1
28
2
27
3
26
4
25
MSP430FR5738
MSP430FR5736
5 MSP430FR5734
6 MSP430FR5732
7 MSP430FR5730
24
23
22
8
21
9
20
MSP430FR5728
MSP430FR5726
10 MSP430FR5724
11 MSP430FR5722
12 MSP430FR5720
19
18
17
13
16
14
15
P2.4/TA1.0/A7*/CD11
P2.3/TA0.0/A6*/CD10
DVCC
DVSS
VCORE
P1.7/UCB0SOMI/UCB0SCL/TA1.0
P1.6/UCB0SIMO/UCB0SDA/TA0.0
P2.2/UCB0CLK
P2.1/UCA0RXD/UCA0SOMI/TB0.0
P2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
RST/NMI/SBWTDIO
TEST/SBWTCK
P2.6
P2.5/TB0.0
* Not available on MSP430FR5736, MSP430FR5732, MSP430FR5726, MSP430FR5722
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
11
PRODUCT PREVIEW
PW PACKAGE
(TOP VIEW)
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 3. TERMINAL FUNCTIONS
TERMINAL
NO.
NAME
P1.0/TA0.1/DMAE0/
RTCCLK/A0/CD0/VeREF-
P1.1/TA0.2/TA1CLK/
CDOUT/A1/CD1/VeREF+
PRODUCT PREVIEW
P1.2/TA1.1/TA0CLK/
CDOUT/A2/CD2
P3.0/A12/CD12
P3.1/A13/CD13
P3.2/A14/CD14
P3.3/A15/CD15
P1.3/TA1.2/UCB0STE/
A3/CD3
P1.4/TB0.1/UCA0STE/
A4/CD4
P1.5/TB0.2/UCA0CLK/
A5/CD5
RH
A
1
2
3
4
5
6
7
8
9
10
RG
E
1
2
3
N/A
N/A
N/A
N/A
4
5
6
I/O (1)
DA
5
6
7
8
9
10
11
12
13
14
(1)
I = input, O = output, N/A = not available
12
Submit Documentation Feedback
DESCRIPTION
PW
5
6
7
N/A
N/A
N/A
N/A
8
9
10
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TA0 CCR1 capture: CCI1A input, compare: Out1
External DMA trigger
RTC clock calibration output
Analog input A0 – ADC (not available on devices without ADC)
Comparator_D input CD0
External applied reference voltage (not available on devices without ADC)
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TA0 CCR2 capture: CCI2A input, compare: Out2
TA1 input clock
Comparator_D output
Analog input A1 – ADC (not available on devices without ADC)
Comparator_D input CD1
Input for an external reference voltage to the ADC (not available on
devices without ADC)
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TA1 CCR1 capture: CCI1A input, compare: Out1
TA0 input clock
Comparator_D output
Analog input A2 – ADC (not available on devices without ADC)
Comparator_D input CD2
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options PW, RGE)
Analog input A12 – ADC (not available on devices without ADC or package
options PW, RGE)
Comparator_D input CD12 (not available on package options PW, RGE)
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options PW, RGE)
Analog input A13 – ADC (not available on devices without ADC or package
options PW, RGE)
Comparator_D input CD13 (not available on package options PW, RGE)
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options PW, RGE)
Analog input A14 – ADC (not available on devices without ADC or package
options PW, RGE)
Comparator_D input CD14 (not available on package options PW, RGE)
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options PW, RGE)
Analog input A15 – ADC (not available on devices without ADC or package
options PW, RGE)
Comparator_D input CD15 (not available on package options PW, RGE)
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TA1 CCR2 capture: CCI2A input, compare: Out2
Slave transmit enable – eUSCI_B0 SPI mode
Analog input A3 – ADC (not available on devices without ADC)
Comparator_D input CD3
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TB0 CCR1 capture: CCI1A input, compare: Out1
Slave transmit enable – eUSCI_A0 SPI mode
Analog input A4 – ADC (not available on devices without ADC)
Comparator_D input CD4
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TB0 CCR2 capture: CCI2A input, compare: Out2
Clock signal input – eUSCI_B0 SPI slave mode, Clock signal output –
eUSCI_B0 SPI master mode
Analog input A5 – ADC (not available on devices without ADC)
Comparator_D input CD5
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 3. TERMINAL FUNCTIONS (continued)
TERMINAL
NO.
PJ.0/TDO/TB0OUTH/
SMCLK/CD6
PJ.1/TDI/TCLK/TB1OUTH/
MCLK/CD7
RH
A
11
12
RG
E
DA
7
8
15
16
I/O (1)
DESCRIPTION
PW
11
12
I/O
General-purpose digital I/O
Test data output port
Switch all PWM outputs high impedance input – TB0
SMCLK output
Comparator_D input CD6
I/O
General-purpose digital I/O
Test data input or test clock input
Switch all PWM outputs high impedance input – TB1 (not available on
devices without TB1)
MCLK output
Comparator_D input CD7
PJ.2/TMS/TB2OUTH/
ACLK/CD8
13
9
17
13
I/O
General-purpose digital I/O
Test mode select
Switch all PWM outputs high impedance input – TB2 (not available on
devices without TB2)
ACLK output
Comparator_D input CD8
PJ.3/TCK/CD9
14
10
18
14
I/O
General-purpose digital I/O
Test clock
Comparator_D input CD9
P4.0/TB2.0
15
N/A N/A N/A
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options PW, RGE)
TB2 CCR0 capture: CCI0B input, compare: Out0 (not available on devices
without TB2 or package options DA, PW, RGE)
P4.1
16
N/A N/A N/A
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options DA, PW, RGE)
P2.5/TB0.0/UCA1TXD/
UCA1SIMO
17
N/A
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TB0 CCR0 capture: CCI0A input, compare: Out0
Transmit data – eUSCI_A1 UART mode, Slave in, master out – eUSCI_A1
SPI mode (not available on devices without UCSI_A1)
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on devices
without TB1)
Receive data – eUSCI_A1 UART mode, Slave out, master in – eUSCI_A1
SPI mode (not available on devices without UCSI_A1)
19
15
P2.6/TB1.0/UCA1RXD/
UCA1SOMI
18
N/A
20
16
I/O
TEST/SBWTCK
19
11
21
17
I
RST/NMI/SBWTDIO
20
12
22
18
I/O
Reset input active low
Non-maskable interrupt input
Spy-bi-wire data input/output
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TB2 CCR0 capture: CCI0A input, compare: Out0 (not available on devices
without TB2)
Transmit data – eUSCI_A0 UART mode, Slave in, master out – eUSCI_A0
SPI mode
TB0 clock input
ACLK output
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TB2 CCR1 capture: CCI1A input, compare: Out1 (not available on devices
without TB2)
Receive data – eUSCI_A0 UART mode, Slave out, master in – eUSCI_A0
SPI mode,
TB0 CCR0 capture: CCI0A input, compare: Out0
P2.0/TB2.0/UCA0TXD/
UCA0SIMO/TB0CLK/ACLK
P2.1/TB2.1/UCA0RXD/
UCA0SOMI/TB0.0
21
22
13
14
Copyright © 2011, Texas Instruments Incorporated
23
24
19
20
Test mode pin – enable JTAG pins
Spy-bi-wire input clock
Submit Documentation Feedback
13
PRODUCT PREVIEW
NAME
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 3. TERMINAL FUNCTIONS (continued)
TERMINAL
NO.
NAME
P2.2/TB2.2/UCB0CLK/ TB1.0
P3.4/TB1.1/TB2CLK/ SMCLK
P3.5/TB1.2/CDOUT
RH
A
23
24
25
RG
E
15
N/A
N/A
DA
25
26
27
PRODUCT PREVIEW
I/O (1)
DESCRIPTION
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TB2 CCR2 capture: CCI2A input, compare: Out2 (not available on devices
without TB2)
Clock signal input – eUSCI_B0 SPI slave mode, Clock signal output –
eUSCI_B0 SPI master mode
TB1 CCR0 capture: CCI0A input, compare: Out0 (not available on devices
without TB1)
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options PW, RGE)
TB1 CCR1 capture: CCI1B input, compare: Out1 (not available on devices
without TB1)
TB2 clock input (not available on devices without TB2 or package options
PW, RGE)
SMCLK output (not available on package options PW, RGE)
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options PW, RGE)
TB1 CCR2 capture: CCI2B input, compare: Out2 (not available on devices
without TB1)
Comparator_D output (not available on package options PW, RGE)
PW
21
N/A
N/A
P3.6/TB2.1/TB1CLK
26
N/A
28
N/A
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options PW, RGE)
TB2 CCR1 capture: CCI1B input, compare: Out1 (not available on devices
without TB2)
TB1 clock input (not available on devices without TB1 or package options
PW, RGE)
P3.7/TB2.2
27
N/A
29
N/A
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options PW, RGE)
TB2 CCR2 capture: CCI2B input, compare: Out2 (not available on devices
without TB2 or package options PW, RGE)
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TB1 CCR1 capture: CCI1A input, compare: Out1 (not available on devices
without TB1)
Slave in, master out – eUSCI_B0 SPI mode
I2C data – eUSCI_B0 I2C mode
TA0 CCR0 capture: CCI0A input, compare: Out0
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
TB1 CCR2 capture: CCI2A input, compare: Out2 (not available on devices
without TB1)
Slave out, master in – eUSCI_B0 SPI mode
I2C clock – eUSCI_B0 I2C mode
TA1 CCR0 capture: CCI0A input, compare: Out0
P1.6/TB1.1/UCB0SIMO/
UCB0SDA/TA0.0
28
16
30
22
P1.7/TB1.2/UCB0SOMI/
UCB0SCL/TA1.0
29
17
31
23
VCORE (2)
30
18
32
24
Regulated core power supply (internal usage only, no external current
loading)
DVSS
31
19
33
25
Digital ground supply
DVCC
32
20
34
26
Digital power supply
P2.7
33
N/A
35
N/A
P2.3/TA0.0/UCA1STE/
A6/CD10
(2)
14
34
N/A
36
27
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options PW, RGE)
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options RGE)
TA0 CCR0 capture: CCI0B input, compare: Out0 (not available on package
options RGE)
Slave transmit enable – eUSCI_A1 SPI mode (not available on devices
without eUSCI_A1)
Analog input A6 – ADC (not available on devices without ADC)
Comparator_D input CD10 (not available on package options RGE)
VCORE is for internal usage only. No external current loading is possible. VCORE should only be connected to the recommended
capacitor value, CVCORE.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 3. TERMINAL FUNCTIONS (continued)
TERMINAL
NO.
NAME
RH
A
RG
E
DA
I/O (1)
DESCRIPTION
I/O
General-purpose digital I/O with port interrupt and wake up from LPMx.5
(not available on package options RGE)
TA1 CCR0 capture: CCI0B input, compare: Out0 (not available on package
options RGE)
Clock signal input – eUSCI_A1 SPI slave mode, Clock signal output –
eUSCI_A1 SPI master mode (not available on devices without eUSCI_A1)
Analog input A7 – ADC (not available on devices without ADC)
Comparator_D input CD11 (not available on package options RGE)
PW
P2.4/TA1.0/UCA1CLK/
A7/CD11
35
N/A
37
28
AVSS
36
N/A
38
N/A
PJ.4/XIN
37
21
1
1
I/O
General-purpose digital I/O
Input terminal for crystal oscillator XT1
PJ.5/XOUT
38
22
2
2
I/O
General-purpose digital I/O
Output terminal of crystal oscillator XT1
AVSS
39
23
3
3
Analog ground supply
AVCC
40
24
4
4
Analog power supply
Pad Pad N/A N/A
QFN package pad. Connection to VSS recommended.
PRODUCT PREVIEW
QFN Pad
Analog ground supply
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
15
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
SHORT-FORM DESCRIPTION
CPU
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,
other than program-flow instructions, are performed as register operations in conjunction with seven addressing
modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register
operation execution time is one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant
generator, respectively. The remaining registers are general-purpose registers.
Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all
instructions.
The instruction set consists of the original 51 instructions with three formats and seven address modes and
additional instructions for the expanded address range. Each instruction can operate on word and byte data.
PRODUCT PREVIEW
16
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
Operating Modes
The MSP430 has one active mode and seven software selectable low-power modes of operation. An interrupt
event can wake up the device from low-power modes LPM0 through LPM4, service the request, and restore back
to the low-power mode on return from the interrupt program. Low-power modes LPM3.5 and LPM4.5 disable the
core supply to minimize power consumption.
Copyright © 2011, Texas Instruments Incorporated
PRODUCT PREVIEW
The following eight operating modes can be configured by software:
• Active mode (AM)
– All clocks are active
• Low-power mode 0 (LPM0)
– CPU is disabled
– ACLK active, MCLK disabled, SMCLK optionally active
– Complete data retention
• Low-power mode 1 (LPM1)
– CPU is disabled
– ACLK active, MCLK disabled, SMCLK optionally active
– DCO disabled
– Complete data retention
• Low-power mode 2 (LPM2)
– CPU is disabled
– ACLK active, MCLK disabled, SMCLK optionally active
– DCO disabled
– Complete data retention
• Low-power mode 3 (LPM3)
– CPU is disabled
– ACLK active, MCLK and SMCLK disabled
– DCO disabled
– Complete data retention
• Low-power mode 4 (LPM4)
– CPU is disabled
– ACLK, MCLK, SMCLK disabled
– Complete data retention
• Low-power mode 3.5 (LPM3.5)
– RTC operation
– Internal regulator disabled
– No data retention
– I/O pad state retention
– Wake up from RST, general purpose I/O, RTC events.
• Low-power mode 4.5 (LPM4.5)
– Internal regulator disabled
– No data retention
– I/O pad state retention
– Wake up from RST and general purpose I/O.
Submit Documentation Feedback
17
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Interrupt Vector Addresses
The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The
vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
Table 4. Interrupt Sources, Flags, and Vectors
PRODUCT PREVIEW
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
System Reset
Power-Up, Brownout, Supply
Supervisors
External Reset RST
Watchdog Timeout (Watchdog
mode)
WDT, FRCTL MPU, CS, PMM
Password Violation
FRAM double bit error detection
MPU segment violation
Software POR, BOR
SVSLIFG, SVSHIFG
PMMRSTIFG
WDTIFG
WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW
DBDIFG
MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG,
MPUSEG3IFG
PMMPORIFG, PMMBORIFG
(SYSRSTIV) (1) (2)
Reset
0FFFEh
63, highest
System NMI
Vacant Memory Access
JTAG Mailbox
FRAM access time error
Access violation
FRAM single, double bit error
detection
VMAIFG
JMBNIFG, JMBOUTIFG
ACCTIMIFG
ACCVIFG
SBDIFG, DBDIFG
(SYSSNIV) (1)
(Non)maskable
0FFFCh
62
User NMI
External NMI
Oscillator Fault
NMIIFG, OFIFG
(SYSUNIV) (1) (2)
(Non)maskable
0FFFAh
61
Comparator_D
Comparator_D interrupt flags
(CBIV) (1) (3)
Maskable
0FFF8h
60
TB0
Maskable
0FFF6h
59
TB0
TB0CCR1 CCIFG1 to TB0CCR2 CCIFG2,
TB0IFG
(TB0IV) (1) (3)
Maskable
0FFF4h
58
Watchdog Timer (Interval Timer
Mode)
WDTIFG
Maskable
0FFF2h
57
eUSCI_A0 Receive/Transmit
UCA0RXIFG, UCA0TXIFG (SPI mode)
UCA0STTIFG, UCA0TXCPTIFG, UCA0RXIFG,
UXA0TXIFG (UART mode)
(UCA0IV) (1) (3)
Maskable
0FFF0h
56
eUSCI_B0 Receive/Transmit
UCB0STTIFG, UCB0TXCPTIFG, UCB0RXIFG,
UCB0TXIFG (SPI mode)
UCB0ALIFG, UCB0NACKIFG, UCB0STTIFG,
UCB0STPIFG, UCB0RXIFG0, UCB0TXIFG0,
UCB0RXIFG1, UCB0TXIFG1, UCB0RXIFG2,
UCB0TXIFG2, UCB0RXIFG3, UCB0TXIFG3,
UCB0CNTIFG, UCB0BIT9IFG (I2C mode)
(UCB0IV) (1) (3)
Maskable
0FFEEh
55
ADC10_B
ADC10OVIFG, ADC10TOVIFG, ADC10HIIFG,
ADC10LOIFG
ADC10INIFG, ADC10IFG0
(ADC10IV) (1) (3) (4)
Maskable
0FFECh
54
TA0
TA0CCR0 CCIFG0 (3)
Maskable
0FFEAh
53
TA0
TA0CCR1 CCIFG1 to TA0CCR2 CCIFG2,
TA0IFG
(TA0IV) (1) (3)
Maskable
0FFE8h
52
(1)
(2)
(3)
(4)
18
TB0CCR0 CCIFG0
(3)
Multiple source flags
A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
Interrupt flags are located in the module.
Only on devices with ADC, otherwise reserved.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
eUSCI_A1 Receive/Transmit
UCA1RXIFG, UCA1TXIFG (SPI mode)
UCA1STTIFG, UCA1TXCPTIFG, UCA1RXIFG,
UXA1TXIFG (UART mode)
(UCA1IV) (1) (3)
Maskable
0FFE6h
51
DMA
DMA0IFG, DMA1IFG, DMA2IFG
(DMAIV) (1) (3)
Maskable
0FFE4h
50
TA1
TA1CCR0 CCIFG0 (3)
Maskable
0FFE2h
49
TA1
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,
TA1IFG
(TA1IV) (1) (3)
Maskable
0FFE0h
48
I/O Port P1
P1IFG.0 to P1IFG.7
(P1IV) (1) (3)
Maskable
0FFDEh
47
TB1
TB1CCR0 CCIFG0
Maskable
0FFDCh
46
TB1
TB1CCR1 CCIFG1 to TB1CCR2 CCIFG2,
TB1IFG
(TB1IV) (1) (3)
Maskable
0FFDAh
45
I/O Port P2
P2IFG.0 to P2IFG.7
(P2IV) (1) (3)
Maskable
0FFD8h
44
TB2
(5)
(6)
(7)
(3)
TB2CCR0 CCIFG0
(3)
Maskable
0FFD6h
43
TB2
TB2CCR1 CCIFG1 to TB2CCR2 CCIFG2,
TB2IFG
(TB2IV) (1) (3)
Maskable
0FFD4h
42
I/O Port P3
P3IFG.0 to P3IFG.7
(P3IV) (5) (6)
Maskable
0FFD2h
41
I/O Port P4
P4IFG.0 to P4IFG.2
(P4IV) (5) (6)
Maskable
0FFD0h
40
RTC_B
RTCRDYIFG, RTCTEVIFG, RTCAIFG,
RT0PSIFG, RT1PSIFG, RTCOFIFG
(RTCIV) (5) (6)
Maskable
0FFCEh
39
0FFCCh
38
Reserved
Reserved (7)
⋮
⋮
0FF80h
0, lowest
Multiple source flags
Interrupt flags are located in the module.
Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain
compatibility with other devices, it is recommended to reserve these locations.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
19
PRODUCT PREVIEW
Table 4. Interrupt Sources, Flags, and Vectors (continued)
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Memory Organization
Table 5. Memory Organization (1)
(2)
MSP430FR5726
MSP430FR5727
MSP430FR5728
MSP430FR5729
MSP430FR5736
MSP430FR5737
MSP430FR5738
MSP430FR5739
MSP430FR5722
MSP430FR5723
MSP430FR5724
MSP430FR5725
MSP430FR5732
MSP430FR5733
MSP430FR5734
MSP430FR5735
MSP430FR5720
MSP430FR5721
MSP430FR5730
MSP430FR5731
15.5 KB
00FFFFh–00FF80h
00FF7Fh–00C200h
8.0 KB
00FFFFh–00FF80h
00FF7Fh–00E000h
4 KB
00FFFFh–00FF80h
00FF7Fh–00F000h
RAM
1 KB
001FFFh–001C00h
1 KB
001FFFh–001C00h
0.5 KB
001DFFh–001C00h
Device Descriptor Info
(TLV) (FRAM)
128 B
001A7Fh–001A00h
128 B
001A7Fh–001A00h
128 B
001A7Fh–001A00h
N/A
0019FFh–001980h
Address space mirrored to Info A
0019FFh–001980h
Address space mirrored to
Info A
0019FFh–001980h
Address space mirrored to
Info B
N/A
00197Fh–001900h
Address space mirrored to Info B
00197Fh–001900h
Address space mirrored to
Info B
00197Fh–001900h
Address space mirrored to
Info A
Info A
128 B
0018FFh–001880h
128 B
0018FFh–001880h
128 B
0018FFh–001880h
Info B
128 B
00187Fh–001800h
128 B
00187Fh–001800h
128 B
00187Fh–001800h
BSL 3
512 B
0017FFh–001600h
512 B
0017FFh–001600h
512 B
0017FFh–001600h
BSL 2
512 B
0015FFh–001400h
512 B
0015FFh–001400h
512 B
0015FFh–001400h
BSL 1
512 B
0013FFh–001200h
512 B
0013FFh–001200h
512 B
0013FFh–001200h
BSL 0
512 B
0011FFh–001000h
512 B
0011FFh–001000h
512 B
0011FFh–001000h
4 KB
000FFFh–0h
4 KB
000FFFh–0h
4 KB
000FFFh–0h
Memory (FRAM)
Main: interrupt vectors
Main: code memory
Total Size
PRODUCT PREVIEW
Information memory
(FRAM)
Bootstrap loader (BSL)
memory (ROM)
Peripherals
(1)
(2)
20
Size
N/A = Not available.
All address space not listed above is considered vacant memory.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Bootstrap Loader (BSL)
The BSL enables users to program the FRAM or RAM using a UART serial interface. Access to the device
memory via the BSL is protected by an user-defined password. Usage of the BSL requires four pins as shown in
Table 6. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For
complete description of the features of the BSL and its implementation, see the MSP430 Memory Programming
User's Guide (SLAU265).
Table 6. BSL Pin Requirements and Functions
DEVICE SIGNAL
BSL FUNCTION
RST/NMI/SBWTDIO
Entry sequence signal
TEST/SBWTCK
Entry sequence signal
P2.0
Data transmit
P2.1
Data receive
VCC
Power supply
VSS
Ground supply
JTAG Operation
The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430
development tools and device programmers. The JTAG pin requirements are shown in Table 7. For further
details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's
Guide (SLAU278).
Table 7. JTAG Pin Requirements and Functions
DEVICE SIGNAL
Direction
FUNCTION
PJ.3/TCK
IN
JTAG clock input
PJ.2/TMS
IN
JTAG state control
PJ.1/TDI/TCLK
IN
JTAG data input/TCLK input
PJ.0/TDO
OUT
JTAG data output
TEST/SBWTCK
IN
Enable JTAG pins
RST/NMI/SBWTDIO
IN
External reset
VCC
Power supply
VSS
Ground supply
Spy-Bi-Wire Interface
In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface.
Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire
interface pin requirements are shown in Table 8. For further details on interfacing to development tools and
device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278).
Table 8. Spy-Bi-Wire Pin Requirements and Functions
DEVICE SIGNAL
Direction
FUNCTION
TEST/SBWTCK
IN
Spy-Bi-Wire clock input
RST/NMI/SBWTDIO
IN, OUT
Spy-Bi-Wire data input/output
VCC
Power supply
VSS
Ground supply
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
21
PRODUCT PREVIEW
JTAG Standard Interface
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
FRAM
The FRAM can be programmed via the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU.
Features of the FRAM include:
• Low power, ultra fast write non-volatile memory.
• Byte and word access capability.
• Programmable and automated wait state generation.
• Error Correction Coding (ECC) with single bit detection and correction, double bit detection.
Memory Protection Unit (MPU)
The FRAM can be protected from inadvertent CPU execution or write access by the MPU. Features of the MPU
include:
• Main memory partitioning programmable up to three segments.
• Each segment's (main and information memory) access rights can be individually selected.
• Access violation flags with interrupt capability for easy servicing of access violations.
Peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all
instructions. For complete module descriptions, see the MSP430FR57xx Family User's Guide (SLAU272).
PRODUCT PREVIEW
Digital I/O
There are up to four 8-bit I/O ports implemented:
• All individual I/O bits are independently programmable.
• Any combination of input, output, and interrupt conditions is possible.
• Programmable pullup or pulldown on all ports.
• Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all ports.
• Read/write access to port-control registers is supported by all instructions.
• Ports can be accessed byte-wise or word-wise in pairs.
Oscillator and Clock System (CS)
The clock system includes support for a 32-kHz watch crystal oscillator XT1 (LF mode), an internal
very-low-power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a
high-frequency crystal oscillator XT1 (HF mode). The clock system module is designed to meet the requirements
of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The
clock system module provides the following clock signals:
• Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1 LF mode), a high-frequency crystal (XT1
HF mode), the internal VLO, or the internal DCO.
• Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by the same sources made
available to ACLK.
• Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by
the same sources made available to ACLK.
Power Management Module (PMM)
The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also
includes supply voltage supervisor (SVS) and brownout protection. The brownout circuit is implemented to
provide the proper internal reset signal to the device during power-on and power-off. The SVS circuitry detects if
the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the primary and core
supplies.
Hardware Multiplier
The multiplication operation is supported by a dedicated peripheral module. The module performs operations with
32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication
as well as signed and unsigned multiply-and-accumulate operations.
22
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
Real-Time Clock (RTC_B)
The RTC_B module contains an integrated real-time clock (RTC) (calendar mode). Calendar mode integrates an
internal calendar which compensates for months with fewer than 31 days and includes leap year correction. The
RTC_B also supports flexible alarm functions and offset-calibration hardware. RTC operation is available in
LPM3.5 mode to minimize power consumption.
Watchdog Timer (WDT_A)
The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a
software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog
function is not needed in an application, the module can be configured as an interval timer and can generate
interrupts at selected time intervals.
System Module (SYS)
PRODUCT PREVIEW
The SYS module handles many of the system functions within the device. These include power-on reset and
power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootstrap
loader entry mechanisms, and configuration management (device descriptors). It also includes a data exchange
mechanism via JTAG called a JTAG mailbox that can be used in the application.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
23
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 9. System Module Interrupt Vector Registers
INTERRUPT VECTOR REGISTER
ADDRESS
INTERRUPT EVENT
VALUE
SYSRSTIV , System Reset
019Eh
No interrupt pending
00h
PRODUCT PREVIEW
SYSSNIV , System NMI
SYSUNIV, User NMI
24
Submit Documentation Feedback
019Ch
019Ah
Brownout (BOR)
02h
RSTIFG RST/NMI (BOR)
04h
PMMSWBOR software BOR (BOR)
06h
LPMx.5 wake up (BOR)
08h
Security violation (BOR)
0Ah
SVSLIFG SVSL event (BOR)
0Ch
SVSHIFG SVSH event (BOR)
0Eh
Reserved
10h
Reserved
12h
PMMSWPOR software POR (POR)
14h
WDTIFG watchdog timeout (PUC)
16h
WDTPW password violation (PUC)
18h
FRCTLPW password violation (PUC)
1Ah
DBDIFG FRAM double bit error (PUC)
1Ch
Peripheral area fetch (PUC)
1Eh
PMMPW PMM password violation (PUC)
20h
MPUPW MPU password violation (PUC)
22h
CSPW CS password violation (PUC)
24h
MPUSEGIIFG information memory segment violation
(PUC)
26h
MPUSEG1IFG segment 1 memory violation (PUC)
28h
MPUSEG2IFG segment 2 memory violation (PUC)
2Ah
MPUSEG3IFG segment 3 memory violation (PUC)
2Ch
Reserved
2Eh
Reserved
30h to 3Eh
No interrupt pending
00h
DBDIFG FRAM double bit error
02h
ACCTIMIFG access time error
04h
MPUSEGIIFG information memory segment violation
06h
MPUSEG1IFG segment 1 memory violation
08h
MPUSEG2IFG segment 2 memory violation
0Ah
MPUSEG3IFG segment 3 memory violation
0Ch
ACCVIFG access violation
0Eh
VMAIFG Vacant memory access
10h
JMBINIFG JTAG mailbox input
12h
JMBOUTIFG JTAG mailbox output
14h
SBDIFG FRAM single bit error
16h
Reserved
18h to 1Eh
No interrupt pending
00h
NMIFG NMI pin
02h
OFIFG oscillator fault
04h
Reserved
06h
Reserved
08h
Reserved
0Ah to 1Eh
PRIORITY
Highest
Lowest
Highest
Lowest
Highest
Lowest
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
DMA Controller
The DMA controller allows movement of data from one memory address to another without CPU intervention. For
example, the DMA controller can be used to move data from the ADC10_B conversion memory to RAM. Using
the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system
power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or
from a peripheral.
Table 10. DMA Trigger Assignments (1)
Channel 0
Channel 1
0
DMAREQ
DMAREQ
DMAREQ
1
TA0CCR0 CCIFG
TA0CCR0 CCIFG
TA0CCR0 CCIFG
2
TA0CCR2 CCIFG
TA0CCR2 CCIFG
TA0CCR2 CCIFG
3
TA1CCR0 CCIFG
TA1CCR0 CCIFG
TA1CCR0 CCIFG
4
TA1CCR2 CCIFG
TA1CCR2 CCIFG
TA1CCR2 CCIFG
5
Reserved
Reserved
Reserved
6
Reserved
Reserved
Reserved
7
TB0CCR0 CCIFG
TB0CCR0 CCIFG
TB0CCR0 CCIFG
8
TB0CCR2 CCIFG
TB0CCR2 CCIFG
TB0CCR2 CCIFG
TB1CCR0 CCIFG
(2)
TB1CCR2 CCIFG
(2)
11
TB2CCR0 CCIFG
(3)
12
TB2CCR2 CCIFG (3)
9
10
TB1CCR0 CCIFG
(2)
TB1CCR0 CCIFG (2)
TB1CCR2 CCIFG
(2)
TB1CCR2 CCIFG (2)
TB2CCR0 CCIFG
(3)
TB2CCR0 CCIFG (3)
TB2CCR2 CCIFG (3)
TB2CCR2 CCIFG (3)
13
Reserved
Reserved
Reserved
14
UCA0RXIFG
UCA0RXIFG
UCA0RXIFG
15
UCA0TXIFG
UCA0TXIFG
UCA0TXIFG
UCA1RXIFG
(4)
17
UCA1TXIFG
(4)
18
UCB0RXIFG0
16
(1)
(2)
(3)
(4)
(5)
Channel 2
UCA1RXIFG
(4)
UCA1RXIFG (4)
UCA1TXIFG
(4)
UCA1TXIFG (4)
UCB0RXIFG0
UCB0RXIFG0
19
UCB0TXIFG0
UCB0TXIFG0
UCB0TXIFG0
20
UCB0RXIFG1
UCB0RXIFG1
UCB0RXIFG1
21
UCB0TXIFG1
UCB0TXIFG1
UCB0TXIFG1
22
UCB0RXIFG2
UCB0RXIFG2
UCB0RXIFG2
23
UCB0TXIFG2
UCB0TXIFG2
UCB0TXIFG2
24
UCB0RXIFG3
UCB0RXIFG3
UCB0RXIFG3
25
UCB0TXIFG3
UCB0TXIFG3
UCB0TXIFG3
26
ADC10IFGx
(5)
(5)
ADC10IFGx (5)
27
Reserved
Reserved
Reserved
28
Reserved
Reserved
Reserved
29
MPY ready
MPY ready
MPY ready
30
DMA2IFG
DMA0IFG
DMA1IFG
31
DMAE0
DMAE0
DMAE0
ADC10IFGx
PRODUCT PREVIEW
Trigger
If a reserved trigger source is selected, no trigger is generated.
Only on devices with TB1, otherwise reserved
Only on devices with TB2, otherwise reserved
Only on devices with eUSCI_A1, otherwise reserved
Only on devices with ADC, otherwise reserved
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
25
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Enhanced Universal Serial Communication Interface (eUSCI)
The eUSCI modules are used for serial data communication. The eUSCI module supports synchronous
communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as
UART, enhanced UART with automatic baudrate detection, and IrDA. Each eUSCI module contains two portions,
A and B.
The eUSCI_An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, or IrDA.
The eUSCI_Bn module provides support for SPI (3 pin or 4 pin) or I2C.
The MSP430FR572x and MSP430FR573x series include one or two eUSCI_An modules (eUSCI_A0,
eUSCI_A1) and one eUSCI_Bn module (eUSCI_B).
TA0, TA1
TA0 and TA1 are 16-bit timers/counters (Timer_A type) with three capture/compare registers each. Each can
support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Table 11. TA0 Signal Connections
INPUT PIN NUMBER
PRODUCT PREVIEW
RHA
RGE
DA
PW
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
3-P1.2
3-P1.2
7-P1.2
7-P1.2
TA0CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
N/A
N/A
OUTPUT PIN NUMBER
RHA
RGE
DA
PW
3-P1.2
3-P1.2
7-P1.2
7-P1.2
TA0CLK
TACLK
28-P1.6
16-1.6
30-P1.6
22-P1.6
TA0.0
CCI0A
28-P1.6
16-1.6
30-P1.6
22-P1.6
34-P2.3
N/A
36-P2.3
27-P2.3
TA0.0
CCI0B
34-P2.3
N/A
36-P2.3
27-P2.3
DVSS
GND
CCR0
1-P1.0
2-P1.1
(1)
26
1-P1.0
2-P1.1
5-P1.0
6-P1.1
5-P1.0
6-P1.1
TA0
TA0.0
DVCC
VCC
TA0.1
CCI1A
1-P1.0
1-P1.0
5-P1.0
5-P1.0
CDOUT
(internal)
CCI1B
ADC10
(internal) (1)
ADC10SHSx
= {1}
ADC10
(internal) (1)
ADC10SHSx
= {1}
ADC10
(internal) (1)
ADC10SHSx
= {1}
ADC10
(internal) (1)
ADC10SHSx
= {1}
DVSS
GND
2-P1.1
2-P1.1
6-P1.1
6-P1.1
CCR1
DVCC
VCC
TA0.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
CCR2
TA1
TA2
TA0.1
TA0.2
Only on devices with ADC.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 12. TA1 Signal Connections
RHA
INPUT PIN NUMBER
RGE
DA
PW
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
2-P1.1
2-P1.1
6-P1.1
6-P1.1
TA1CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
N/A
N/A
OUTPUT PIN NUMBER
RHA
RGE
DA
PW
2-P1.1
2-P1.1
6-P1.1
6-P1.1
TA1CLK
TACLK
29-P1.7
17-P1.7
31-P1.7
23-P1.7
TA1.0
CCI0A
29-P1.7
17-P1.7
31-P1.7
23-P1.7
35-P2.4
N/A
37-P2.4
28-P2.4
TA1.0
CCI0B
35-P2.4
N/A
37-P2.4
28-P2.4
DVSS
GND
3-P1.2
3-P1.2
7-P1.2
7-P1.2
8-P1.3
4-P1.3
12-P1.3
8-P1.3
3-P1.2
8-P1.3
3-P1.2
4-P1.3
7-P1.2
12-P1.3
7-P1.2
8-P1.3
Copyright © 2011, Texas Instruments Incorporated
DVCC
VCC
TA1.1
CCI1A
CDOUT
(internal)
CCI1B
DVSS
GND
CCR1
DVCC
VCC
TA1.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
CCR2
TA0
TA1
TA2
TA1.0
TA1.1
TA1.2
PRODUCT PREVIEW
CCR0
Submit Documentation Feedback
27
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
TB0, TB1, TB2
TB0, TB1, TB2 are 16-bit timers/counters (Timer_B type) with three capture/compare registers each. Each can
support multiple capture/compares, PWM outputs, and interval timing. Each has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Table 13. TB0 Signal Connections
RHA
INPUT PIN NUMBER
RGE
DA
PW
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
21-P2.0
13-P2.0
23-P2.0
19-P2.0
TB0CLK
TBCLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
N/A
N/A
OUTPUT PIN NUMBER
RHA
RGE
DA
PW
21-P2.0
13-P2.0
23-P2.0
19-P2.0
TB0CLK
TBCLK
22-P2.1
14-P2.1
24-P2.1
20-P2.1
TB0.0
CCI0A
22-P2.1
14-P2.1
24-P2.1
20-P2.1
17-P2.5
N/A
19-P2.5
15-P2.5
TB0.0
CCI0B
17-P2.5
N/A
19-P2.5
15-P2.5
GND
ADC10
(internal) (1)
ADC10SHS
x = {2}
ADC10
(internal) (1)
ADC10SHS
x = {2}
ADC10
(internal) (1)
ADC10SHS
x = {2}
ADC10
(internal) (1)
ADC10SHS
x = {2}
CCR0
DVSS
PRODUCT PREVIEW
9-P1.4
10-P1.5
(1)
28
5-P1.4
6-P1.5
13-P1.4
14-P1.5
9-P1.4
19-P1.5
TB0
TB0.0
DVCC
VCC
TB0.1
CCI1A
9-P1.4
5-P1.4
13-P1.4
9-P1.4
CDOUT
(internal)
CCI1B
ADC10
(internal) (1)
ADC10SHS
x = {3}
ADC10
(internal) (1)
ADC10SHS
x = {3}
ADC10
(internal) (1)
ADC10SHS
x = {3}
ADC10
(internal) (1)
ADC10SHS
x = {3}
DVSS
GND
10-P1.5
6-P1.5
14-P1.5
19-P1.5
CCR1
DVCC
VCC
TB0.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
CCR2
TB1
TB2
TB0.1
TB0.2
Only on devices with ADC.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 14. TB1 Signal Connections (1)
RHA
INPUT PIN NUMBER
RGE
DA
PW
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
26-P3.6
N/A (DVSS)
28-P3.6
N/A (DVSS)
TB1CLK
TBCLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
N/A
N/A
OUTPUT PIN NUMBER
RHA
RGE
DA
PW
26-P3.6
N/A (DVSS)
28-P3.6
N/A (DVSS)
TB1CLK
TBCLK
23-P2.2
N/A (DVSS)
25-P2.2
N/A (DVSS)
TB1.0
CCI0A
23-P2.2
N/A
25-P2.2
N/A
18-P2.6
N/A (DVSS)
20-P2.6
N/A (DVSS)
TB1.0
CCI0B
18-P2.6
N/A
20-P2.6
N/A
DVSS
GND
CCR0
TB0
TB1.0
DVCC
VCC
28-P1.6
N/A (DVSS)
30-P1.6
N/A (DVSS)
TB1.1
CCI1A
28-P1.6
N/A
30-P1.6
N/A
24-P3.4
N/A (DVSS)
26-P3.4
N/A (DVSS)
TB1.1
CCI1B
24-P3.4
N/A
26-P3.4
N/A
DVSS
GND
CCR1
TB1
TB1.1
DVCC
VCC
29-P1.7
N/A (DVSS)
31-P1.7
N/A (DVSS)
TB1.2
CCI2A
29-P1.7
N/A
31-P1.7
N/A
25-P3.5
N/A (DVSS)
27-P3.5
N/A (DVSS)
TB1.2
CCI2B
25-P3.5
N/A
27-P3.5
N/A
DVSS
GND
DVCC
VCC
TB2
TB1.2
PRODUCT PREVIEW
(1)
CCR2
TB1 is not present on all device types.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
29
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 15. TB2 Signal Connections (1)
RHA
INPUT PIN NUMBER
RGE
DA
PW
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
24-P3.4
N/A (DVSS)
26-P3.4
N/A (DVSS)
TB2CLK
TBCLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
N/A
N/A
OUTPUT PIN NUMBER
RHA
RGE
DA
PW
24-P3.4
N/A (DVSS)
26-P3.4
N/A (DVSS)
TB2CLK
TBCLK
21-P2.0
N/A (DVSS)
23-P2.0
N/A (DVSS)
TB2.0
CCI0A
21-P2.0
N/A
23-P2.0
N/A
15-P4.0
N/A (DVSS)
N/A (DVSS)
N/A (DVSS)
TB2.0
CCI0B
15-P4.0
N/A
36-P4.0
N/A
DVSS
GND
CCR0
TB0
TB2.0
DVCC
VCC
22-P2.1
N/A (DVSS)
24-P2.1
N/A (DVSS)
TB2.1
CCI1A
22-P2.1
N/A
24-P2.1
N/A
26-P3.6
N/A (DVSS)
28-P3.6
N/A (DVSS)
TB2.1
CCI1B
26-P3.6
N/A
28-P3.6
N/A
DVSS
GND
CCR1
TB1
TB2.1
DVCC
VCC
23-P2.2
N/A (DVSS)
25-P2.2
N/A (DVSS)
TB2.2
CCI2A
23-P2.2
N/A
25-P2.2
N/A
27-P3.7
N/A (DVSS)
29-P3.7
N/A (DVSS)
TB2.2
CCI2B
27-P3.7
N/A
29-P3.7
N/A
DVSS
GND
DVCC
VCC
PRODUCT PREVIEW
(1)
30
CCR2
TB2
TB2.2
TB2 is not present on all device types.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
www.ti.com
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
ADC10_B
The ADC10_B module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR
core, sample select control, reference generator and a conversion result buffer. A window comparator with a
lower and upper limit allows CPU independent result monitoring with three window comparator interrupt flags.
Comparator_D
The primary function of the Comparator_D module is to support precision slope analog-to-digital conversions,
battery voltage supervision, and monitoring of external analog signals.
CRC16
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.
Shared Reference (REF)
The reference module (REF) is responsible for generation of all critical reference voltages that can be used by
the various analog peripherals in the device.
The Embedded Emulation Module (EEM) supports real-time in-system debugging. The S version of the EEM
implemented on all devices has the following features:
• Three hardware triggers/breakpoints on memory access
• One hardware trigger/breakpoint on CPU register write access
• Up to four hardware triggers can be combined to form complex triggers/breakpoints
• One cycle counter
• Clock control on module level
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
31
PRODUCT PREVIEW
Embedded Emulation Module (EEM)
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Peripheral File Map
Table 16. Peripherals
PRODUCT PREVIEW
32
MODULE NAME
BASE ADDRESS
OFFSET ADDRESS
RANGE
Special Functions (see Table 17)
0100h
000h - 01Fh
PMM (see Table 18)
0120h
000h - 010h
FRAM Control (see Table 19)
0140h
000h - 00Fh
CRC16 (see Table 20)
0150h
000h - 007h
Watchdog (see Table 21)
015Ch
000h - 001h
CS (see Table 22)
0160h
000h - 00Fh
SYS (see Table 23)
0180h
000h - 01Fh
Shared Reference (see Table 24)
01B0h
000h - 001h
Port P1/P2 (see Table 25)
0200h
000h - 01Fh
Port P3/P4 (see Table 26)
0220h
000h - 01Fh
Port PJ (see Table 27)
0320h
000h - 01Fh
TA0 (see Table 28)
0340h
000h - 02Fh
TA1 (see Table 29)
0380h
000h - 02Fh
TB0 (see Table 30)
03C0h
000h - 02Fh
TB1 (see Table 31)
0400h
000h - 02Fh
TB2 (see Table 32)
0440h
000h - 02Fh
Real Timer Clock (RTC_B) (see Table 33)
04A0h
000h - 01Fh
32-bit Hardware Multiplier (see Table 34)
04C0h
000h - 02Fh
DMA General Control (see Table 35)
0500h
000h - 00Fh
DMA Channel 0 (see Table 35)
0510h
000h - 00Ah
DMA Channel 1 (see Table 35)
0520h
000h - 00Ah
DMA Channel 2 (see Table 35)
0530h
000h - 00Ah
MPU Control (see Table 36)
05A0h
000h - 00Fh
eUSCI_A0 (see Table 37)
05C0h
000h - 01Fh
eUSCI_A1 (see Table 38)
05E0h
000h - 01Fh
eUSCI_B0 (see Table 39)
0640h
000h - 02Fh
ADC10_B (see Table 40)
0700h
000h - 03Fh
Comparator_D (see Table 41)
08C0h
000h - 00Fh
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 17. Special Function Registers (Base Address: 0100h)
REGISTER DESCRIPTION
REGISTER
OFFSET
SFR interrupt enable
SFRIE1
00h
SFR interrupt flag
SFRIFG1
02h
SFR reset pin control
SFRRPCR
04h
Table 18. PMM Registers (Base Address: 0120h)
REGISTER DESCRIPTION
REGISTER
OFFSET
PMM Control 0
PMMCTL0
00h
PMM interrupt flags
PMMIFG
0Ah
PM5 Control 0
PM5CTL0
10h
Table 19. FRAM Control Registers (Base Address: 0140h)
REGISTER
OFFSET
FRAM control 0
FRCTLCTL0
00h
General control 0
GCCTL0
04h
General control 1
GCCTL1
06h
PRODUCT PREVIEW
REGISTER DESCRIPTION
Table 20. CRC16 Registers (Base Address: 0150h)
REGISTER DESCRIPTION
REGISTER
OFFSET
CRC data input
CRC16DI
00h
CRC data input reverse byte
CRCDIRB
02h
CRC initialization and result
CRCINIRES
04h
CRC result reverse byte
CRCRESR
06h
Table 21. Watchdog Registers (Base Address: 015Ch)
REGISTER DESCRIPTION
Watchdog timer control
REGISTER
WDTCTL
OFFSET
00h
Table 22. CS Registers (Base Address: 0160h)
REGISTER DESCRIPTION
REGISTER
OFFSET
CS control 0
CSCTL0
00h
CS control 1
CSCTL1
02h
CS control 2
CSCTL2
04h
CS control 3
CSCTL3
06h
CS control 4
CSCTL4
08h
CS control 5
CSCTL5
0Ah
CS control 6
CSCTL6
0Ch
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
33
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 23. SYS Registers (Base Address: 0180h)
REGISTER DESCRIPTION
REGISTER
OFFSET
System control
SYSCTL
00h
Bootstrap loader configuration area
SYSBSLC
02h
JTAG mailbox control
SYSJMBC
06h
JTAG mailbox input 0
SYSJMBI0
08h
JTAG mailbox input 1
SYSJMBI1
0Ah
JTAG mailbox output 0
SYSJMBO0
0Ch
JTAG mailbox output 1
SYSJMBO1
0Eh
Bus Error vector generator
SYSBERRIV
18h
User NMI vector generator
SYSUNIV
1Ah
System NMI vector generator
SYSSNIV
1Ch
Reset vector generator
SYSRSTIV
1Eh
Table 24. Shared Reference Registers (Base Address: 01B0h)
REGISTER DESCRIPTION
Shared reference control
REGISTER
REFCTL
OFFSET
00h
PRODUCT PREVIEW
Table 25. Port P1/P2 Registers (Base Address: 0200h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P1 input
P1IN
00h
Port P1 output
P1OUT
02h
Port P1 direction
P1DIR
04h
Port P1 pullup/pulldown enable
P1REN
06h
Port P1 selection 0
P1SEL0
0Ah
Port P1 selection 1
P1SEL1
0Ch
Port P1 interrupt vector word
P1IV
0Eh
Port P1 complement selection
P1SELC
10h
Port P1 interrupt edge select
P1IES
18h
Port P1 interrupt enable
P1IE
1Ah
Port P1 interrupt flag
P1IFG
1Ch
Port P2 input
P2IN
01h
Port P2 output
P2OUT
03h
Port P2 direction
P2DIR
05h
Port P2 pullup/pulldown enable
P2REN
07h
Port P2 selection 0
P2SEL0
0Bh
Port P2 selection 1
P2SEL1
0Dh
Port P2 complement selection
P2SELC
11h
Port P2 interrupt vector word
P2IV
1Eh
Port P2 interrupt edge select
P2IES
19h
Port P2 interrupt enable
P2IE
1Bh
Port P2 interrupt flag
P2IFG
1Dh
34
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 26. Port P3/P4 Registers (Base Address: 0220h)
REGISTER
OFFSET
P3IN
00h
Port P3 output
P3OUT
02h
Port P3 direction
P3DIR
04h
Port P3 pullup/pulldown enable
P3REN
06h
Port P3 selection 0
P3SEL0
0Ah
Port P3 selection 1
P3SEL1
0Ch
Port P3 interrupt vector word
P3IV
0Eh
Port P3 complement selection
P3SELC
10h
Port P3 interrupt edge select
P3IES
18h
Port P3 interrupt enable
P3IE
1Ah
Port P3 interrupt flag
P3IFG
1Ch
Port P4 input
P4IN
01h
Port P4 output
P4OUT
03h
Port P4 direction
P4DIR
05h
Port P4 pullup/pulldown enable
P4REN
07h
Port P4 selection 0
P4SEL0
0Bh
Port P4 selection 1
P4SEL1
0Dh
Port P4 complement selection
P4SELC
11h
Port P4 interrupt vector word
P4IV
1Eh
Port P4 interrupt edge select
P4IES
19h
Port P4 interrupt enable
P4IE
1Bh
Port P4 interrupt flag
P4IFG
1Dh
PRODUCT PREVIEW
REGISTER DESCRIPTION
Port P3 input
Table 27. Port J Registers (Base Address: 0320h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port PJ input
PJIN
00h
Port PJ output
PJOUT
02h
Port PJ direction
PJDIR
04h
Port PJ pullup/pulldown enable
PJREN
06h
Port PJ selection 0
PJSEL0
0Ah
Port PJ selection 1
PJSEL1
0Ch
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
35
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 28. TA0 Registers (Base Address: 0340h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA0 control
TA0CTL
00h
Capture/compare control 0
TA0CCTL0
02h
Capture/compare control 1
TA0CCTL1
04h
Capture/compare control 2
TA0CCTL2
06h
Capture/compare control 3
TA0CCTL3
08h
Capture/compare control 4
TA0CCTL4
0Ah
TA0 counter register
TA0R
10h
Capture/compare register 0
TA0CCR0
12h
Capture/compare register 1
TA0CCR1
14h
Capture/compare register 2
TA0CCR2
16h
Capture/compare register 3
TA0CCR3
18h
Capture/compare register 4
TA0CCR4
1Ah
TA0 expansion register 0
TA0EX0
20h
TA0 interrupt vector
TA0IV
2Eh
Table 29. TA1 Registers (Base Address: 0380h)
PRODUCT PREVIEW
REGISTER DESCRIPTION
REGISTER
OFFSET
TA1 control
TA1CTL
00h
Capture/compare control 0
TA1CCTL0
02h
Capture/compare control 1
TA1CCTL1
04h
Capture/compare control 2
TA1CCTL2
06h
TA1 counter register
TA1R
10h
Capture/compare register 0
TA1CCR0
12h
Capture/compare register 1
TA1CCR1
14h
Capture/compare register 2
TA1CCR2
16h
TA1 expansion register 0
TA1EX0
20h
TA1 interrupt vector
TA1IV
2Eh
Table 30. TB0 Registers (Base Address: 03C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TB0 control
TB0CTL
00h
Capture/compare control 0
TB0CCTL0
02h
Capture/compare control 1
TB0CCTL1
04h
Capture/compare control 2
TB0CCTL2
06h
TB0 register
TB0R
10h
Capture/compare register 0
TB0CCR0
12h
Capture/compare register 1
TB0CCR1
14h
Capture/compare register 2
TB0CCR2
16h
TB0 expansion register 0
TB0EX0
20h
TB0 interrupt vector
TB0IV
2Eh
36
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 31. TB1 Registers (Base Address: 0400h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TB1 control
TB1CTL
00h
Capture/compare control 0
TB1CCTL0
02h
Capture/compare control 1
TB1CCTL1
04h
Capture/compare control 2
TB1CCTL2
06h
TB1 register
TB1R
10h
Capture/compare register 0
TB1CCR0
12h
Capture/compare register 1
TB1CCR1
14h
Capture/compare register 2
TB1CCR2
16h
TB1 expansion register 0
TB1EX0
20h
TB1 interrupt vector
TB1IV
2Eh
Table 32. TB2 Registers (Base Address: 0440h)
REGISTER
OFFSET
TB2 control
TB2CTL
00h
Capture/compare control 0
TB2CCTL0
02h
Capture/compare control 1
TB2CCTL1
04h
Capture/compare control 2
TB2CCTL2
06h
TB2 register
TB2R
10h
Capture/compare register 0
TB2CCR0
12h
Capture/compare register 1
TB2CCR1
14h
Capture/compare register 2
TB2CCR2
16h
TB2 expansion register 0
TB2EX0
20h
TB2 interrupt vector
TB2IV
2Eh
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
REGISTER DESCRIPTION
37
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 33. Real-Time Clock Registers (Base Address: 04A0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
PRODUCT PREVIEW
RTC control 0
RTCCTL0
00h
RTC control 1
RTCCTL1
01h
RTC control 2
RTCCTL2
02h
RTC control 3
RTCCTL3
03h
RTC prescaler 0 control
RTCPS0CTL
08h
RTC prescaler 1 control
RTCPS1CTL
0Ah
RTC prescaler 0
RTCPS0
0Ch
RTC prescaler 1
RTCPS1
0Dh
RTC interrupt vector word
RTCIV
0Eh
RTC seconds/counter register 1
RTCSEC/RTCNT1
10h
RTC minutes/counter register 2
RTCMIN/RTCNT2
11h
RTC hours/counter register 3
RTCHOUR/RTCNT3
12h
RTC day of week/counter register 4
RTCDOW/RTCNT4
13h
RTC days
RTCDAY
14h
RTC month
RTCMON
15h
RTC year low
RTCYEARL
16h
RTC year high
RTCYEARH
17h
RTC alarm minutes
RTCAMIN
18h
RTC alarm hours
RTCAHOUR
19h
RTC alarm day of week
RTCADOW
1Ah
RTC alarm days
RTCADAY
1Bh
Binary-to-BCD conversion register
BIN2BCD
1Ch
BCD-to-binary conversion register
BCD2BIN
1Eh
38
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 34. 32-bit Hardware Multiplier Registers (Base Address: 04C0h)
REGISTER
OFFSET
MPY
00h
16-bit operand 1 – signed multiply
MPYS
02h
16-bit operand 1 – multiply accumulate
MAC
04h
16-bit operand 1 – signed multiply accumulate
MACS
06h
16-bit operand 2
OP2
08h
16 × 16 result low word
RESLO
0Ah
16 × 16 result high word
RESHI
0Ch
16 × 16 sum extension register
SUMEXT
0Eh
32-bit operand 1 – multiply low word
MPY32L
10h
32-bit operand 1 – multiply high word
MPY32H
12h
32-bit operand 1 – signed multiply low word
MPYS32L
14h
32-bit operand 1 – signed multiply high word
MPYS32H
16h
32-bit operand 1 – multiply accumulate low word
MAC32L
18h
32-bit operand 1 – multiply accumulate high word
MAC32H
1Ah
32-bit operand 1 – signed multiply accumulate low word
MACS32L
1Ch
32-bit operand 1 – signed multiply accumulate high word
MACS32H
1Eh
32-bit operand 2 – low word
OP2L
20h
32-bit operand 2 – high word
OP2H
22h
32 × 32 result 0 – least significant word
RES0
24h
32 × 32 result 1
RES1
26h
32 × 32 result 2
RES2
28h
32 × 32 result 3 – most significant word
RES3
2Ah
MPY32 control register 0
MPY32CTL0
2Ch
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
REGISTER DESCRIPTION
16-bit operand 1 – multiply
39
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 35. DMA Registers (Base Address DMA General Control: 0500h,
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)
REGISTER DESCRIPTION
REGISTER
OFFSET
PRODUCT PREVIEW
DMA channel 0 control
DMA0CTL
00h
DMA channel 0 source address low
DMA0SAL
02h
DMA channel 0 source address high
DMA0SAH
04h
DMA channel 0 destination address low
DMA0DAL
06h
DMA channel 0 destination address high
DMA0DAH
08h
DMA channel 0 transfer size
DMA0SZ
0Ah
DMA channel 1 control
DMA1CTL
00h
DMA channel 1 source address low
DMA1SAL
02h
DMA channel 1 source address high
DMA1SAH
04h
DMA channel 1 destination address low
DMA1DAL
06h
DMA channel 1 destination address high
DMA1DAH
08h
DMA channel 1 transfer size
DMA1SZ
0Ah
DMA channel 2 control
DMA2CTL
00h
DMA channel 2 source address low
DMA2SAL
02h
DMA channel 2 source address high
DMA2SAH
04h
DMA channel 2 destination address low
DMA2DAL
06h
DMA channel 2 destination address high
DMA2DAH
08h
DMA channel 2 transfer size
DMA2SZ
0Ah
DMA module control 0
DMACTL0
00h
DMA module control 1
DMACTL1
02h
DMA module control 2
DMACTL2
04h
DMA module control 3
DMACTL3
06h
DMA module control 4
DMACTL4
08h
DMA interrupt vector
DMAIV
0Ah
Table 36. MPU Control Registers (Base Address: 05A0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
MPU control 0
MPUCTL0
00h
MPU control 1
MPUCTL1
02h
MPU Segmentation Register
MPUSEG
04h
MPU access management
MPUSAM
06h
40
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 37. eUSCI_A0 Registers (Base Address: 05C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
eUSCI_A control word 0
UCA0CTLW0
00h
eUSCI _A control word 1
UCA0CTLW1
03h
eUSCI_A baud rate 0
UCA0BR0
06h
eUSCI_A baud rate 1
UCA0BR1
07h
eUSCI_A modulation control
UCA0MCTLW
08h
eUSCI_A status
UCA0STAT
0Ah
eUSCI_A receive buffer
UCA0RXBUF
0Ch
eUSCI_A transmit buffer
UCA0TXBUF
0Eh
eUSCI_A LIN control
UCA0ABCTL
10h
eUSCI_A IrDA transmit control
UCA0IRTCTL
12h
eUSCI_A IrDA receive control
UCA0IRRCTL
13h
eUSCI_A interrupt enable
UCA0IE
1Ah
eUSCI_A interrupt flags
UCA0IFG
1Ch
eUSCI_A interrupt vector word
UCA0IV
1Eh
REGISTER
OFFSET
eUSCI_A control word 0
UCA1CTLW0
00h
eUSCI _A control word 1
UCA1CTLW1
03h
eUSCI_A baud rate 0
UCA1BR0
06h
eUSCI_A baud rate 1
UCA1BR1
07h
eUSCI_A modulation control
UCA1MCTLW
08h
eUSCI_A status
UCA1STAT
0Ah
eUSCI_A receive buffer
UCA1RXBUF
0Ch
eUSCI_A transmit buffer
UCA1TXBUF
0Eh
eUSCI_A LIN control
UCA1ABCTL
10h
eUSCI_A IrDA transmit control
UCA1IRTCTL
12h
eUSCI_A IrDA receive control
UCA1IRRCTL
13h
eUSCI_A interrupt enable
UCA1IE
1Ah
eUSCI_A interrupt flags
UCA1IFG
1Ch
eUSCI_A interrupt vector word
UCA1IV
1Eh
Copyright © 2011, Texas Instruments Incorporated
PRODUCT PREVIEW
Table 38. eUSCI_A1 Registers (Base Address: 05E0h)
REGISTER DESCRIPTION
Submit Documentation Feedback
41
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 39. eUSCI_B0 Registers (Base Address: 0640h)
REGISTER DESCRIPTION
REGISTER
OFFSET
PRODUCT PREVIEW
eUSCI_B control word 0
UCB0CTLW0
00h
eUSCI_B control word 1
UCB0CTLW1
02h
eUSCI_B bit rate 0
UCB0BR0
06h
eUSCI_B bit rate 1
UCB0BR1
07h
eUSCI_B status word
UCB0STATW
08h
eUSCI_B byte counter threshold
UCB0TBCNT
0Ah
eUSCI_B receive buffer
UCB0RXBUF
0Ch
eUSCI_B transmit buffer
UCB0TXBUF
0Eh
eUSCI_B I2C own address 0
UCB0I2COA0
14h
eUSCI_B I2C own address 1
UCB0I2COA1
16h
eUSCI_B I2C own address 2
UCB0I2COA2
18h
eUSCI_B I2C own address 3
UCB0I2COA3
1Ah
eUSCI_B received address
UCB0ADDRX
1Ch
eUSCI_B address mask
UCB0ADDMASK
1Eh
eUSCI I2C slave address
UCB0I2CSA
20h
eUSCI interrupt enable
UCB0IE
2Ah
eUSCI interrupt flags
UCB0IFG
2Ch
eUSCI interrupt vector word
UCB0IV
2Eh
Table 40. ADC10_B Registers (Base Address: 0700h)
REGISTER DESCRIPTION
REGISTER
OFFSET
ADC10_B Control register 0
ADC10CTL0
00h
ADC10_B Control register 1
ADC10CTL1
02h
ADC10_B Control register 2
ADC10CTL2
04h
ADC10_B Window Comparator Low Threshold
ADC10LO
06h
ADC10_B Window Comparator High Threshold
ADC10HI
08h
ADC10_B Memory Control Register 0
ADC10MCTL0
0Ah
ADC10_B Conversion Memory Register
ADC10MEM0
12h
ADC10_B Interrupt Enable
ADC10IE
1Ah
ADC10_B Interrupt Flags
ADC10IGH
1Ch
ADC10_B Interrupt Vector Word
ADC10IV
1Eh
Table 41. Comparator_D Registers (Base Address: 08C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Comparator_D control register 0
CDCTL0
00h
Comparator_D control register 1
CDCTL1
02h
Comparator_D control register 2
CDCTL2
04h
Comparator_D control register 3
CDCTL3
06h
Comparator_D interrupt register
CDINT
0Ch
Comparator_D interrupt vector word
CDIV
0Eh
42
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
–0.3 V to 4.1 V
Voltage applied at VCC to VSS
Voltage applied to any pin (excluding VCORE)
(2)
–0.3 V to VCC + 0.3 V
±2 mA
Diode current at any device pin
Storage temperature range, Tstg
(3) (4) (5)
–40°C to 125°C
Maximum junction temperature, TJ
(1)
(2)
(3)
(4)
(5)
95°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages referenced to VSS. VCORE is for internal device usage only. No external DC loading or voltage should be applied.
Data retention on FRAM memory cannot be ensured when exceeding the specified maximum storage temperature, Tstg.
For soldering during board manufacturing, it is required to follow the current JEDEC J-STD-020 specification with peak reflow
temperatures not higher than classified on the device label on the shipping boxes or reels. If hand soldering is required for application
prototyping, peak temperature must not exceed 250°C for a total of 5 minutes for any single device.
Programming of devices with user application code should only be performed post reflow/hand soldering. Factory programmed
information, such as calibration values, are designed to withstand the temperatures reached in the current JEDEC J-STD-020
specification.
Recommended Operating Conditions
Supply voltage during program execution and FRAM programming(AVCC = DVCC) (1)
VSS
Supply voltage (AVSS= DVSS)
TA
Operating free-air temperature
I version
TJ
Operating junction temperature
I version
CVCORE
Required capacitor at VCORE
CVCC/
CVCORE
Capacitor ratio of VCC to VCORE
fSYSTEM
(1)
(2)
Processor frequency (maximum MCLK frequency) (2)
NOM
2.0
MAX
UNIT
3.6
V
-40
85
°C
-40
85
°C
0
V
470
nF
10
No FRAM wait states
2.0 V ≤ VCC ≤ 3.6 V
0
8.0
With FRAM wait states
NACCESS = {1},
NPRECHG = {2}
2.0 V ≤ VCC ≤ 3.6 V
0
24.0
MHz
It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be
tolerated during power up and operation.
Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
43
PRODUCT PREVIEW
MIN
VCC
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Electrical Characteristics
Active Mode Supply Current Into VCC Excluding External Current
over recommended operating free-air temperature (unless otherwise noted) (1)
(2) (3)
Frequency (fMCLK = fSMCLK)
PARAMETER
Execution
Memory
VCC
1 MHz
TYP
IAM,
(5)
FRAM_UNI
AM, FRAM
PRODUCT PREVIEW
IAM,
(1)
(2)
(3)
(4)
(5)
(6)
44
RAM
(6)
4 MHz
MAX
TYP
16 MHz (4)
8 MHz
MAX
0.58
TYP
MAX
MAX
MAX
FRAM
0% cache hit
ratio
3.0 V
0.42
FRAM
50% cache hit
ratio
3.0 V
0.31
0.73
1.3
1.75
2.1
2.5
FRAM
66% cache hit
ratio
3.0 V
0.27
0.58
1.0
1.55
1.9
2.2
FRAM
75% cache hit
ratio
3.0 V
0.25
0.5
0.82
1.3
1.6
1.8
FRAM
100% cache
hit ratio
3.0 V
0.2
0.43
0.3
0.55
0.42
0.8
0.73
1.15
0.88
1.3
1.0
1.5
RAM
3.0 V
0.2
0.4
0.35
0.55
0.55
0.75
1.0
1.25
1.20
1.45
1.45
1.75
2.2
2.8
2.3
2.9
2.8
2.2
3.6
3.45
UNIT
MAX
0.27
1.6
1.9
TYP
3.0 V
1.2
1.53
TYP
24 MHz (4)
FRAM
0.73
1.0
TYP
20 MHz (4)
mA
4.3
mA
mA
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance are chosen to closely match the required 9 pF.
Characterized with program executing typical data processing.
fACLK = 32786 Hz, fMCLK = fSMCLK at specified frequency. No peripherals active.
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.
MSPFR573x series only
Program and data reside entirely in FRAM. No wait states enabled. DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz). MCLK = SMCLK
and is appropriately divided to achieve the specified frequency.
All execution is from RAM.
For 1, 4, and 8 MHz, DCORSEL = 0, DCOFSELx = 3 (fDCO = 8 MHz).MCLK = SMCLK and is appropriately divided to achieve the
specified frequency.
For 16 MHz, DCORSEL = 1, DCOFSELx = 0 (fDCO = 16 MHz).MCLK = SMCLK.
For 20 MHz, DCORSEL = 1, DCOFSELx = 2 (fDCO = 20 MHz).MCLK = SMCLK.
For 24 MHz, DCORSEL = 1, DCOFSELx = 3 (fDCO = 24 MHz).MCLK = SMCLK.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Low-Power Mode Supply Currents (Into VCC) Excluding External Current
PARAMETER
VCC
-40°C
TYP
MAX
25°C
TYP
ILPM0,1MHz
Low-power mode 0 (3)
(4)
2.0 V
3.0 V
166
175
LPM0,8MHz
Low-power mode 0 (5)
(4)
2.0 V
3.0 V
170
177
LPM0,24MHz
Low-power mode 0 (6)
(4)
2.0 V
3.0 V
274
ILPM2
Low-power mode 2 (7)
(4)
2.0 V
3.0 V
ILPM3,XT1LF
Low-power mode 3, crystal
mode (8) (4)
ILPM3,VLO
Low-power mode 3,
VLO mode (9) (4)
ILPM4
Low-power mode 4 (10)
ILPM3.5
ILPM4.5
60°C
MAX
TYP
MAX
(2)
85°C
TYP
MAX
UNIT
μA
190
225
244
195
225
360
μA
285
340
315
340
455
μA
56
61
80
75
110
210
μA
2.0 V
3.0 V
3.4
6.4
15
18
48
150
μA
2.0 V
3.0 V
3.3
6.3
15
18
48
150
μA
2.0 V
3.0 V
2.9
5.9
15
18
48
150
μA
Low-power mode 3.5 (11)
2.0 V
3.0 V
1.3
1.5
2.2
1.9
2.8
5.0
μA
Low-power mode 4.5 (12)
2.0 V
3.0 V
0.3
0.32
0.66
0.38
0.57
2.55
μA
(4)
PRODUCT PREVIEW
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
(1)
(2)
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance are chosen to closely match the required 9 pF.
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 1 MHz. DCORSEL = 0,
DCOFSELx = 3 (fDCO = 8 MHz)
(4) Current for brownout, high-side supervisor (SVSH) normal mode included. Low-side supervisor disabled (SVSL).
(5) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 8 MHz. DCORSEL = 0,
DCOFSELx = 3 (fDCO = 8 MHz)
(6) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = 24 MHz. DCORSEL = 1,
DCOFSELx = 3 (fDCO = 24 MHz)
(7) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCORSEL = 0,
DCOFSELx = 3, DCO bias generator enabled.
(8) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
(9) Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz
(10) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
(11) Internal regulator disabled. No data retention. RTC active.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM3.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
(12) Internal regulator disabled. No data retention.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
45
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Schmitt-Trigger Inputs – General Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ – VIT–)
RPull
Pullup/pulldown resistor
For pullup: VIN = VSS
For pulldown: VIN = VCC
CI
Input capacitance
VIN = VSS or VCC
VCC
MIN
2.0 V
0.80
1.40
3V
1.50
2.10
2.0 V
0.45
1.10
3V
0.75
1.65
2.0 V
0.25
0.8
3V
0.30
1.0
20
TYP
35
MAX
50
5
UNIT
V
V
V
kΩ
pF
Inputs – Ports P1 and P2 (1)
(P1.0 to P1.7, P2.0 to P2.7)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
PRODUCT PREVIEW
External interrupt timing (2)
t(int)
(1)
(2)
TEST CONDITIONS
External trigger pulse duration to set interrupt flag
VCC
2.0 V/3 V
MIN
MAX
20
UNIT
ns
Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.
An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals
shorter than t(int).
Leakage Current – General Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5, RST/NMI)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.x)
(1)
(2)
46
High-impedance leakage current
TEST CONDITIONS
(1) (2)
VCC
MIN
MAX
2.0 V
3V
-50
50
UNIT
nA
The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is
disabled.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Outputs – General Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
I(OHmax) = –1 mA (1)
VOH
I(OHmax) = –3 mA (2)
High-level output voltage
I(OHmax) = –2 mA (1)
I(OHmax) = –6 mA (2)
I(OLmax) = 1 mA (1)
VOL
I(OLmax) = 3 mA (2)
Low-level output voltage
I(OLmax) = 2 mA (1)
I(OLmax) = 6 mA (2)
(1)
(2)
VCC
2.0 V
3.0 V
MIN
MAX
VCC – 0.25
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
UNIT
V
VSS VSS + 0.25
2.0 V
VSS VSS + 0.60
VSS VSS + 0.25
3.0 V
V
VSS VSS + 0.60
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
specified.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage
drop specified.
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fPx.y
Port output frequency
(with load)
fPort_CLK
Clock output frequency
(1)
(2)
TEST CONDITIONS
Px.y
(1) (2)
ACLK, SMCLK, or MCLK at configured output port,
CL = 20 pF, no DC loading (2)
VCC
MIN
MAX
2.0 V
16
3.0 V
24
2.0 V
16
3.0 V
24
UNIT
MHz
MHz
A resistive divider with 2 × 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. CL =
20 pF is connected from the output to VSS.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
47
PRODUCT PREVIEW
Output Frequency – General Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.7, P4.0 to P4.1, PJ.0 to PJ.5)
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Typical Characteristics – Outputs
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
16
V CC = 2.0 V
Px.y
TA = -40 ° C
IOL - Typical Low-Level Output Current - mA
14
TA = 25 ° C
12
TA = 85 ° C
10
8
6
4
0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
V OL Low-Level Output Voltage - V
Figure 1.
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
35
V CC = 3.0 V
Px.y
IOL - Typical Low-Level Output Current - mA
PRODUCT PREVIEW
2
TA = -40 ° C
30
TA = 25 ° C
TA = 85 ° C
25
20
15
10
5
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
V OL Low-Level Output Voltage - V
Figure 2.
48
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Typical Characteristics – Outputs (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0
-2
-4
-6
-8
-10
TA = 85 ° C
-12
TA = 25 ° C
-14
TA = -40 ° C
-16
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
V OH High-Level Output Voltage - V
Figure 3.
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0
IOH - Typical High-Level Output Current - mA
V CC = 3.0 V
Px.y
-5
-10
-15
-20
-25
TA = 85 ° C
-30
TA = 25 ° C
-35
TA = -40 ° C
-40
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
V OH High-Level Output Voltage - V
Figure 4.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
49
PRODUCT PREVIEW
IOH - Typical High-Level Output Current - mA
V CC = 2.0 V
Px.y
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Crystal Oscillator, XT1, Low-Frequency (LF) Mode (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
ΔIVCC.LF
TEST CONDITIONS
Additional current consumption
XT1 LF mode from lowest drive
setting.
60
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {2},
TA = 25°C, CL,eff = 9 pF
3.0 V
90
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {3},
TA = 25°C, CL,eff = 12 pF
3.0 V
140
XTS = 0, XT1BYPASS = 0
fXT1,LF,SW
XT1 oscillator logic-level
square-wave input frequency,
LF mode
XTS = 0, XT1BYPASS = 1 (2)
PRODUCT PREVIEW
fFault,LF
tSTART,LF
CL,eff
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
50
TYP
3.0 V
XT1 oscillator crystal frequency,
LF mode
Oscillation allowance for
LF crystals (4)
MIN
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {1},
CL,eff = 9 pF, TA = 25°C,
fXT1,LF0
OALF
VCC
MAX
nA
32768
(3)
10
32.768
XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {0},
fXT1,LF = 32768 Hz, CL,eff = 6 pF
210
XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {3},
fXT1,LF = 32768 Hz, CL,eff = 12 pF
300
UNIT
Hz
50
kHz
kΩ
Duty cycle, LF mode
XTS = 0, Measured at ACLK,
fXT1,LF = 32768 Hz
30
70
%
Oscillator fault frequency,
LF mode (5)
XTS = 0 (6)
10
10000
Hz
Startup time, LF mode
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {0},
TA = 25°C, CL,eff = 6 pF
(7)
Integrated effective load
capacitance, LF mode (8)
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVE = {3},
TA = 25°C, CL,eff = 12 pF
(9)
XTS = 0
1000
3.0 V
ms
1000
1
pF
To improve EMI on the XT1 oscillator, the following guidelines should be observed.
(a) Keep the trace between the device and the crystal as short as possible.
(b) Design a good ground plane around the oscillator pins.
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in
the Schmitt-trigger Inputs section of this data sheet.
Maximum frequency of operation of the entire device cannot be exceeded.
Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVE
settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but
should be evaluated based on the actual crystal selected for the application:
(a) For XT1DRIVE = {0}, CL,ef f ≤ 6 pF.
(b) For XT1DRIVE = {1}, 6 pF ≤ CL,ef f ≤ 9 pF.
(c) For XT1DRIVE = {2}, 6 pF ≤ CL,ef f ≤ 10 pF.
(d) For XT1DRIVE = {3}, 6 pF ≤ CL,ef f ≤ 12 pF.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies in between might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals.
Includes startup counter of 4096 clock cycles.
Requires external capacitors at both terminals.
Values are specified by crystal manufacturers. Include parasitic bond and package capacitance (approximately 2 pF per pin).
Recommended values supported are 6 pF, 9pF, and 12 pF. Maximum shunt capacitance of 1.6 pF.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Crystal Oscillator, XT1, High-Frequency (HF) Mode (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
IVCC.HF
TEST CONDITIONS
XT1 oscillator crystal current HF
mode
VCC
MIN
TYP
fOSC = 4 MHz,
XTS = 1, XOSCOFF = 0,
XT1BYPASS = 0, XT1DRIVE = {0},
TA = 25°C, CL,eff = 16 pF
175
fOSC = 8 MHz,
XTS = 1, XOSCOFF = 0,
XT1BYPASS = 0, XT1DRIVE = {1},
TA = 25°C, CL,eff = 16 pF
300
fOSC = 16 MHz,
XTS = 1, XOSCOFF = 0,
XT1BYPASS = 0, XT1DRIVE = {2},
TA = 25°C, CL,eff = 16 pF
MAX
UNIT
μA
3.0 V
350
fOSC = 24 MHz,
XTS = 1, XOSCOFF = 0,
XT1BYPASS = 0, XT1DRIVE = {3},
TA = 25°C, CL,eff = 16 pF
550
fXT1,HF0
XT1 oscillator crystal frequency,
HF mode 0
XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {0} (2)
4
6
MHz
fXT1,HF1
XT1 oscillator crystal frequency,
HF mode 1
XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {1} (2)
6
10
MHz
fXT1,HF2
XT1 oscillator crystal frequency,
HF mode 2
XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {2} (2)
10
16
MHz
fXT1,HF3
XT1 oscillator crystal frequency,
HF mode 3
XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {3} (2)
16
24
MHz
fXT1,HF,SW
XT1 oscillator logic-level
square-wave input frequency,
HF mode
XTS = 1,
XT1BYPASS = 1 (3)
1
24
MHz
OAHF
tSTART,HF
(1)
(2)
(3)
(4)
(5)
Oscillation allowance for
HF crystals (4)
Startup time, HF mode
(5)
(2)
XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {0},
fXT1,HF = 4 MHz, CL,eff = 16 pF
450
XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {1},
fXT1,HF = 8 MHz, CL,eff = 16 pF
320
XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {2},
fXT1,HF = 16 MHz, CL,eff = 16 pF
200
XTS = 1,
XT1BYPASS = 0, XT1DRIVE = {3},
fXT1,HF = 24 MHz, CL,eff = 16 pF
200
fOSC = 4 MHz, XTS = 1,
XT2BYPASS = 0, XT2DRIVE = {0},
TA = 25°C, CL,eff = 16 pF
8
fOSC = 24 MHz, XTS = 1,
XT2BYPASS = 0, XT2DRIVE = {3},
TA = 25°C, CL,eff = 16 pF
Ω
3.0 V
ms
2
To improve EMI on the XT1 oscillator the following guidelines should be observed.
(a) Keep the traces between the device and the crystal as short as possible.
(b) Design a good ground plane around the oscillator pins.
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
Maximum frequency of operation of the entire device cannot be exceeded.
When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in
the Schmitt-trigger Inputs section of this data sheet.
Oscillation allowance is based on a safety factor of 5 for recommended crystals.
Includes startup counter of 4096 clock cycles.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
51
PRODUCT PREVIEW
PARAMETER
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Crystal Oscillator, XT1, High-Frequency (HF) Mode(1) (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
CL,eff
fFault,HF
(6)
(7)
(8)
(9)
TEST CONDITIONS
Integrated effective load
capacitance (6) (7)
XTS = 1
Duty cycle, HF mode
XTS = 1, Measured at ACLK,
fXT1,HF2 = 24 MHz
Oscillator fault frequency,
HF mode (8)
XTS = 1 (9)
VCC
MIN
TYP
MAX
1
40
50
145
UNIT
pF
60
%
900
kHz
Includes parasitic bond and package capacitance (approximately 2 pF per pin).Since the PCB adds additional capacitance, it is
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should
always match the specification of the used crystal.
Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Recommended values supported are 14
pF, 16pF, and 18 pF. Maximum shunt capacitance of 7 pF.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies in between might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals.
Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
PRODUCT PREVIEW
MIN
TYP
MAX
5
8.3
13
UNIT
fVLO
VLO frequency
Measured at ACLK
2.0 V to 3.6 V
dfVLO/dT
VLO frequency temperature drift
Measured at ACLK (1)
2.0 V to 3.6 V
0.5
%/°C
dfVLO/dVCC VLO frequency supply voltage drift
Measured at ACLK (2)
2.0 V to 3.6 V
4
%/V
fVLO,DC
Measured at ACLK
2.0 V to 3.6 V
(1)
(2)
52
Duty cycle
40
50
60
kHz
%
Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(2.0 to 3.6 V) – MIN(2.0 to 3.6 V)) / MIN(2.0 to 3.6 V) / (3.6 V – 2.0 V)
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
DCO Frequencies
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TEST CONDITIONS
Measured at ACLK
DCORSEL = 0
fDCO,LO
DCO frequency low, trimmed
Measured at ACLK
DCORSEL = 1 (1)
Measured at ACLK
DCORSEL = 0
fDCO,MID
DCO frequency mid, trimmed
Measured at ACLK
DCORSEL = 1 (1)
Measured at ACLK
DCORSEL = 0
fDCO,HI
DCO frequency high, trimmed
Measured at ACLK
DCORSEL = 1 (1)
fDCO,DC
(1)
Duty cycle
Measured at ACLK, divide by 1
No external divide, all DCO
settings
VCC
TA
MIN
TYP
MAX
2.0 V to 3.6 V
-40°C to 85°C
5.37
±3.5%
2.0 V to 3.6 V
0°C to 50°C
5.37
±2.0%
2.0 V to 3.6 V
-40°C to 85°C
16.2
±3.5%
2.0 V to 3.6 V
0°C to 50°C
16.2
±2.0%
2.0 V to 3.6 V
-40°C to 85°C
6.67
±3.5%
2.0 V to 3.6 V
0°C to 50°C
6.67
±2.0%
2.0 V to 3.6 V
-40°C to 85°C
20
±3.5%
2.0 V to 3.6 V
0°C to 50°C
20
±2.0%
2.0 V to 3.6 V
-40°C to 85°C
8
±3.5%
2.0 V to 3.6 V
0°C to 50°C
8
±2.0%
2.0 V to 3.6 V
-40°C to 85°C
23.8
±3.5%
2.0 V to 3.6 V
0°C to 50°C
23.8
±2.0%
UNIT
MHz
MHz
MHz
MHz
MHz
MHz
2.0 V to 3.6 V
-40°C to 85°C
40
50
60
VCC
MIN
TYP
MAX
44
80
μA
%
MSP40FR573x devices only
MODOSC
over operating free-air temperature range (unless otherwise noted)
PARAMETER
IMODOSC
Current consumption
fMODOSC
MODOSC frequency
fMODOSC,DC
Duty cycle
Copyright © 2011, Texas Instruments Incorporated
TEST CONDITIONS
Enabled
Measured at ACLK, divide by 1
2.0 V to 3.6 V
UNIT
2.0 V to 3.6 V
4.5
5.0
5.5
MHz
2.0 V to 3.6 V
40
50
60
%
Submit Documentation Feedback
53
PRODUCT PREVIEW
PARAMETER
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
PMM, Core Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VCORE(AM)
Core voltage, active mode
2.0 V ≤ DVCC ≤ 3.6 V
1.5
V
VCORE(LPM)
Core voltage, low-current mode
2.0 V ≤ DVCC ≤ 3.6 V
1.5
V
PMM, SVS, BOR
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
μA
ISVSH,AM
SVSH current consumption, active mode
VCC = 3.6 V
5
ISVSH,LPM
SVSH current consumption, low power modes
VCC = 3.6 V
0.8
1.5
μA
VSVSH-
SVSH on voltage level, falling supply voltage
1.83
1.88
1.93
V
1.88
1.93
1.98
VSVSH+
SVSH off voltage level, rising supply voltage
V
tPD,SVSH,
AM
SVSH propagation delay, active mode
dVCC/dt = 10 mV/μs
10
μs
tPD,SVSH,
LPM
SVSH propagation delay, low power modes
dVCC/dt = 1 mV/μs
30
μs
ISVSL
SVSL current consumption
0.3
0.5
μA
Wake-Up from Low Power Modes
PRODUCT PREVIEW
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
TA
MIN
TYP
MAX
UNIT
tWAKE-UP LPM0
Wake-up time from LPM0 to active
mode (1)
2.0 V
3.0 V
-40°C to 85°C
0.58
1
μs
tWAKE-UP LPM12
Wake-up time from LPM1, LPM2 to
active mode (1)
2.0 V
3.0 V
-40°C to 85°C
12
25
μs
tWAKE-UP LPM34
Wake-up time from LPM3 or LPM4 to
active mode (1)
2.0 V
3.0 V
-40°C to 85°C
78
120
μs
2.0 V
3.0 V
0°C to 85°C
310
575
μs
2.0 V
3.0 V
-40°C to 85°C
310
1100
μs
tWAKE-UP LPMx.5
Wake-up time from LPM3.5 or
LPM4.5 to active mode (1)
tWAKE-UP RESET
Wake-up time from RST to active
mode. (2)
VCC stable
2.0 V
3.0 V
-40°C to 85°C
170
210
μs
tWAKE-UP BOR
Wake-up time from BOR or power-up
to active mode
dVCC/dt = TBD V/s
2.0 V
3.0 V
-40°C to 85°C
TBD
TBD
μs
(1)
(2)
54
The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first
instruction of the user program is executed.
The wake-up time is measured from the rising edge of the RST signal until the first instruction of the user program is executed.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
fTA
Timer_A input clock frequency
Internal: SMCLK, ACLK
External: TACLK
Duty cycle = 50% ± 10%
2.0 V
3.0 V
tTA,cap
Timer_A capture timing
All capture inputs, Minimum pulse
duration required for capture
2.0 V
3.0 V
(1)
MIN
TYP
MAX
UNIT
8
24 (1)
20
MHz
ns
MSP430FR573x devices only
Timer_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
fTB
Timer_B input clock frequency
Internal: SMCLK, ACLK
External: TBCLK
Duty cycle = 50% ± 10%
2.0 V
3.0 V
tTB,cap
Timer_B capture timing
All capture inputs, Minimum pulse
duration required for capture
2.0 V
3.0 V
20
VCC
MIN
MAX
UNIT
8
24
(1)
MHz
ns
MSP430FR573x devices only
eUSCI (UART Mode) Recommended Operating Conditions
PARAMETER
feUSCI
eUSCI input clock frequency
fBITCLK
BITCLK clock frequency
(equals baud rate in MBaud)
CONDITIONS
TYP
Internal: SMCLK, ACLK
External: UCLK
Duty cycle = 50% ± 10%
MAX
UNIT
fSYSTEM
MHz
5
MHz
UNIT
eUSCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
UCGLITx = 0
tt
UART receive deglitch time (1)
UCGLITx = 1
UCGLITx = 2
UCGLITx = 3
(1)
2.0 V
3.0 V
MIN
TYP
MAX
5
15
20
20
45
60
35
80
120
50
110
180
ns
Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized, their duration should exceed the maximum specification of the deglitch time.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
55
PRODUCT PREVIEW
(1)
TYP
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
eUSCI (SPI Master Mode) Recommended Operating Conditions
PARAMETER
feUSCI
eUSCI input clock frequency
CONDITIONS
VCC
MIN
TYP
Internal: SMCLK, ACLK
Duty cycle = 50% ± 10%
MAX
UNIT
fSYSTEM
MHz
eUSCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1))
PARAMETER
tSTE,LEAD
tSTE,LAG
tSTE,ACC
STE lead time, STE active to clock
STE lag time, Last clock to STE
inactive
STE access time, STE active to SIMO
data out
PRODUCT PREVIEW
STE disable time, STE inactive to
SIMO high impedance
tSTE,DIS
TEST CONDITIONS
2.0 V
3.0 V
1
UCSTEM = 0,
UCMODEx = 01 or 10
2.0 V
3.0 V
1
UCSTEM = 1,
UCMODEx = 01 or 10
2.0 V
3.0 V
1
UCSTEM = 0,
UCMODEx = 01 or 10
2.0 V
3.0 V
55
UCSTEM = 1,
UCMODEx = 01 or 10
2.0 V
3.0 V
35
UCSTEM = 0,
UCMODEx = 01 or 10
2.0 V
3.0 V
40
UCSTEM = 1,
UCMODEx = 01 or 10
2.0 V
3.0 V
30
SOMI input data hold time
tVALID,MO
SIMO output data valid time (2)
UCLK edge to SIMO valid,
CL = 20 pF
tHD,MO
SIMO output data hold time (3)
CL = 20 pF
56
MAX
UCSTEM = 1,
UCMODEx = 01 or 10
tHD,MI
(3)
TYP
1
SOMI input data setup time
(2)
MIN
2.0 V
3.0 V
tSU,MI
(1)
VCC
UCSTEM = 0,
UCMODEx = 01 or 10
UNIT
UCxCLK
cycles
UCxCLK
cycles
ns
ns
2.0 V
35
3.0 V
35
2.0 V
0
3.0 V
0
ns
ns
2.0 V
30
3.0 V
30
2.0 V
0
3.0 V
0
ns
ns
fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)).
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave.
Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams
in Figure 5 and Figure 6.
Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 5
and Figure 6.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
UCMODEx = 01
tSTE,LEAD
STE
tSTE,LAG
UCMODEx = 10
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tLOW/HIGH
tSU,MI
tHD,MI
SOMI
tSTE,DIS
tVALID,MO
tSTE,ACC
PRODUCT PREVIEW
SIMO
Figure 5. SPI Master Mode, CKPH = 0
UCMODEx = 01
tSTE,LEAD
STE
tSTE,LAG
UCMODEx = 10
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tLOW/HIGH
tSU,MI
tHD,MI
SOMI
tSTE,ACC
tVALID,MO
tSTE,DIS
SIMO
Figure 6. SPI Master Mode, CKPH = 1
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
57
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
eUSCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1))
PARAMETER
TEST CONDITIONS
PRODUCT PREVIEW
tSTE,LEAD
STE lead time, STE active to clock
tSTE,LAG
STE lag time, Last clock to STE inactive
tSTE,ACC
STE access time, STE active to SOMI data out
tSTE,DIS
STE disable time, STE inactive to SOMI high
impedance
tSU,SI
SIMO input data setup time
tHD,SI
SIMO input data hold time
tVALID,SO
SOMI output data valid time (2)
UCLK edge to SOMI valid,
CL = 20 pF
tHD,SO
SOMI output data hold time (3)
CL = 20 pF
(1)
(2)
(3)
58
VCC
MIN
2.0 V
7
3.0 V
7
2.0 V
0
3.0 V
0
TYP
MAX
ns
ns
2.0 V
65
3.0 V
40
2.0 V
40
3.0 V
35
2.0 V
2
3.0 V
2
2.0 V
5
3.0 V
5
30
30
4
4
ns
ns
3.0 V
3.0 V
ns
ns
2.0 V
2.0 V
UNIT
ns
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)).
For the master's parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave.
Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams
in Figure 7 and Figure 8.
Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 7
and Figure 8.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
UCMODEx = 01
tSTE,LEAD
STE
tSTE,LAG
UCMODEx = 10
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tSU,SIMO
tLOW/HIGH
tHD,SIMO
SIMO
tACC
tDIS
tVALID,SOMI
PRODUCT PREVIEW
SOMI
Figure 7. SPI Slave Mode, CKPH = 0
UCMODEx = 01
tSTE,LEAD
STE
tSTE,LAG
UCMODEx = 10
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tLOW/HIGH
tHD,SI
tSU,SI
SIMO
tACC
tVALID,SO
tDIS
SOMI
Figure 8. SPI Slave Mode, CKPH = 1
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
59
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
eUSCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 9)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
Internal: SMCLK, ACLK
External: UCLK
Duty cycle = 50% ± 10%
MAX
UNIT
fSYSTEM
MHz
400
kHz
feUSCI
eUSCI input clock frequency
fSCL
SCL clock frequency
tHD,STA
Hold time (repeated) START
tSU,STA
Setup time for a repeated START
tHD,DAT
Data hold time
2.0 V
3.0 V
0
ns
tSU,DAT
Data setup time
2.0 V
3.0 V
250
ns
tSU,STO
Setup time for STOP
2.0 V
3.0 V
fSCL = 100 kHz
fSCL > 100 kHz
fSCL = 100 kHz
fSCL > 100 kHz
fSCL = 100 kHz
PRODUCT PREVIEW
Pulse duration of spikes suppressed by input
filter
tSP
2.0 V
3.0 V
4.0
2.0 V
3.0 V
4.7
2.0 V
3.0 V
fSCL > 100 kHz
0
µs
0.6
µs
0.6
4.0
µs
0.6
UCGLITx = 0
50
600
ns
UCGLITx = 1
25
300
ns
12.5
150
ns
2.0 V
3.0 V
UCGLITx = 2
UCGLITx = 3
6.25
75
UCCLTOx = 1
tTIMEOUT
Clock low timeout
2.0 V
3.0 V
UCCLTOx = 2
UCCLTOx = 3
tSU,STA
tHD,STA
tHD,STA
ns
27
ms
30
ms
33
ms
tBUF
SDA
tLOW
tHIGH
tSP
SCL
tSU,DAT
tSU,STO
tHD,DAT
Figure 9. I2C Mode Timing
60
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
10-Bit ADC, Power Supply and Input Range Conditions
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
AVCC
Analog supply voltage
AVCC and DVCC are connected together,
AVSS and DVSS are connected together,
V(AVSS) = V(DVSS) = 0 V
V(Ax)
Analog input voltage range
All ADC10 pins
IADC10_A
Operating supply current into
AVCC terminal, reference
current not included
fADC10CLK = 5.0 MHz, ADC10ON = 1,
REFON = 0, SHT0 = 0, SHT1 = 0,
ADC10DIV = 0
CI
Input capacitance
Only one terminal Ax can be selected at one
time from the pad to the ADC10_A capacitor
array including wiring and pad.
RI
Input MUX ON resistance
AVCC ≥ 2.0 V, 0 V ≤ VAx ≤ AVCC
VCC
MIN
TYP
MAX
UNIT
2.0
3.6
V
0
AVCC
V
2.0 V
90
140
3V
100
160
6
8
pF
36
kΩ
2.2 V
μA
10-Bit ADC, Timing Parameters
PARAMETER
TEST CONDITIONS
fADC10CLK
fADC10OSC
tCONVERT
VCC
MIN
TYP
MAX
UNIT
2.0 V to
3.6V
0.45
5
5.5
MHz
2.0 V to
3.6V
4.5
4.5
5.5
MHz
REFON = 0, Internal oscillator, 12 ADC10CLK
cycles, 10-bit mode,
fADC10OSC = 4.5 MHz to 5.5 MHz
2.0 V to
3.6V
2.18
External fADC10CLK from ACLK, MCLK, or SMCLK,
ADC10SSEL ≠ 0
2.0 V to
3.6V
For specified performance of ADC10 linearity
parameters
Internal ADC10 oscillator
ADC10DIV = 0, fADC10CLK = fADC10OSC
(MODOSC)
Conversion time
tADC10ON
Turn on settling time of
the ADC
The error in a conversion started after tADC10ON is
less than ±0.5 LSB. The reference and input signal
are already settled.
tSample
Sampling time
RS = 1000 Ω, RI = 36000 Ω, CI = 3.5 pF.
Approximately eight Tau (τ) are required to get an
error of less than ±0.5 LSB
(1)
2.67
μs
(1)
100
2.0 V
1.5
3.0 V
2.0
VCC
MIN
1.4
1.6 V < (VeREF+ – VREF–/VeREF–)min ≤ VAVCC
2.0 V to
3.6 V
-1.4
-1.1
1.1
ns
μs
12 × ADC10DIV × 1/fADC10CLK
10-Bit ADC, Linearity Parameters
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
1.4 V ≤ (VeREF+ – VREF–/VeREF–)min ≤ 1.6 V
TYP
MAX
UNIT
EI
Integral
linearity error
ED
Differential
linearity error
(VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–)
2.0 V to
3.6 V
-1
1
LSB
EO
Offset error
(VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–)
2.0 V to
3.6 V
-6.5
6.5
mV
Gain error, external
reference
(VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–)
2.0 V to
3.6 V
-1.2
1.2
LSB
-4
4
%
-2
2
LSB
-4
4
%
EG
ET
(1)
Gain error, internal
reference (1)
Total unadjusted
error, external
reference
(VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–)
Total unadjusted
error, internal
reference (1)
2.0 V to
3.6 V
LSB
Error is dominated by the internal reference.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
61
PRODUCT PREVIEW
over operating free-air temperature range (unless otherwise noted)
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
REF, External Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
VeREF+
Positive external reference voltage input
VeREF+ > VeREF–
(2)
1.4
AVCC
V
VeREF–
Negative external reference voltage input
VeREF+ > VeREF–
(3)
0
1.2
V
(VeREF+ –
VREF–/VeREF–)
Differential external reference voltage
input
VeREF+ > VeREF–
(4)
1.4
AVCC
V
IVeREF+
IVeREF–
Static input current
CVREF+/(1)
PRODUCT PREVIEW
(2)
(3)
(4)
(5)
1.4 V ≤ VeREF+ ≤ VAVCC,
VeREF– = 0 V,
fADC10CLK = 5 MHz,
ADC10SHTx = 1h,
Conversion rate 200ksps
2.2 V/3 V
-6
6
μA
1.4 V ≤ VeREF+ ≤ VAVCC,
VeREF– = 0 V,
fADC10CLK = 5 MHz,
ADC10SHTx = 8h,
Conversion rate 20 ksps
2.2 V/3 V
-1
1
μA
(5)
Capacitance at VREF+/- terminal
μF
10
The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
Two decoupling capacitors, 10 μF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external
reference source if it is used for the ADC10_B. Also see the MSP430FR57xx Family User's Guide (SLAU272)
REF, Built-In Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Positive built-in reference
voltage output
VREF+
AVCC(min)
AVCC minimum voltage,
Positive built-in reference
active
VCC
MIN
TYP
MAX
REFVSEL = {2} for 2.5 V, REFON = 1
TEST CONDITIONS
3V
2.4
2.5
2.6
REFVSEL = {1} for 2.0 V, REFON = 1
3V
1.92
2.0
2.08
REFVSEL = {0} for 1.5 V, REFON = 1
3V
1.44
1.5
1.56
REFVSEL = {0} for 1.5 V
2.0
REFVSEL = {1} for 2.0 V
2.2
REFVSEL = {2} for 2.5 V
2.7
IREF+
Operating supply current into
AVCC terminal (1)
fADC12CLK = 5.0 MHz,
REFON = 1, REFBURST = 0
TREF+
Temperature coefficient of
built-in reference
REFVSEL = (0, 1, 2}, REFON = 1
PSRR_DC
tSETTLE
(1)
(2)
62
Power supply rejection ratio
(DC)
Settling time of reference
voltage (2)
3V
V
V
33
45
±35
AVCC = AVCC (min) - AVCC(max),
TA = 25°C, REFON = 1
REFVSEL = (0} for 1.5 V
1600
AVCC = AVCC (min) - AVCC(max),
TA = 25°C, REFON = 1
REFVSEL = (1} for 2.0 V
1900
AVCC = AVCC (min) - AVCC(max),
TA = 25°C, REFON = 1
REFVSEL = (2} for 2.5 V
3600
AVCC = AVCC (min) - AVCC(max),
REFVSEL = (0, 1, 2}, REFON = 0 → 1
UNIT
30
μA
ppm/
°C
μV/V
μs
The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
REF, Temperature Sensor and Built-In VMID
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VSENSOR
See
TEST CONDITIONS
(1)
TCSENSOR
VCC
MIN
TYP
MAX
ADC10ON = 1, INCH = 0Ah,
TA = 0°C
2.0 V
3.0 V
790
mV
ADC10ON = 1, INCH = 0Ah
2.0 V
3.0 V
2.55
mV/°C
tSENSOR(sample)
Sample time required if
channel 10 is selected (2)
ADC10ON = 1, INCH = 0Ah,
Error of conversion result ≤ 1 LSB
2.0 V
30
3.0 V
30
VMID
AVCC divider at channel 11
ADC10ON = 1, INCH = 0Bh,
VMID is ~0.5 × VAVCC
2.0 V
0.97
1.0
1.03
3.0 V
1.46
1.5
1.54
tVMID(sample)
Sample time required if
channel 11 is selected (3)
ADC10ON = 1, INCH = 0Bh,
Error of conversion result ≤ 1 LSB
2.0 V
3.0 V
1000
(1)
(2)
(3)
UNIT
μs
V
ns
The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended to minimize the offset error of the
built-in temperature sensor.
The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on).
The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
1050
PRODUCT PREVIEW
Typical Temperature Sensor Voltage - mV
1000
950
900
850
800
750
700
650
600
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
Ambient Temperature - Degrees Celsius
Figure 10. Typical Temperature Sensor Voltage
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
63
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Comparator D
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
50
100
200
ns
Overdrive = 10 mV,
VIN- = (VIN+ – 400 mV) to (VIN+ + 10 mV)
Propagation delay,
AVCC = 2.0 V to 3.6 V
tpd
Filter timer added to the
propagation delay of the
comparator
tfilter
Overdrive = 100 mV,
VIN- = (VIN+ – 400 mV) to (VIN+ + 100 mV)
80
ns
Overdrive = 250 mV,
(VIN+ – 400 mV) to (VIN+ + 250 mV)
50
ns
CDF = 1, CDFDLY = 00
0.3
0.5
0.9
μs
CDF = 1, CDFDLY = 01
0.5
0.9
1.5
μs
CDF = 1, CDFDLY = 10
0.9
1.6
2.8
μs
CDF = 1, CDFDLY = 11
1.6
3.0
5.5
μs
mV
PRODUCT PREVIEW
Voffset
Input offset
AVCC = 2.0 V to 3.6 V
-20
20
Vic
Common mode input
range
AVCC = 2.0 V to 3.6 V
0
AVcc - 1
V
Icomp(AVCC)
Comparator only
CDON = 1, AVCC = 2.0 V to 3.6 V
29
34
μA
Iref(AVCC)
Reference buffer and
R-ladder
CDREFLx = 01, AVCC = 2.0 V to 3.6 V
20
24
μA
tenable,comp
Comparator enable time
CDON = 0 to CDON = 1,
AVCC = 2.0 V to 3.6 V
1.1
2.0
μs
tenable,rladder
Resistor ladder enable
time
CDON = 0 to CDON = 1,
AVCC = 2.0 V to 3.6 V
1.1
2.0
μs
VCB_REF
Reference voltage for a
tap
VIN = voltage input to the R-ladder,
n = 0 to 31
VIN ×
VIN ×
(n + 0.5)
(n + 1) / 32
/ 32
VIN ×
(n + 1.5)
/ 32
V
FRAM
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
DVCC(WRITE)
Write supply voltage
tWRITE
Word or byte write time
TEST CONDITIONS
TYP
2.0
Read/write endurance
tRetention
MIN
Data retention duration
TJ = 85°C
MAX
UNIT
3.6
V
125
ns
1015
cycles
10
years
JTAG and Spy-Bi-Wire Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
fSBW
Spy-Bi-Wire input frequency
2.0 V
3.0 V
tSBW,Low
Spy-Bi-Wire low clock pulse length
2.0 V
3.0 V
tSBW,
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1)
2.0 V
3.0 V
En
tSBW,Rst
Rinternal
(1)
(2)
64
Internal pull-down resistance on TEST
TYP
MAX
UNIT
0
20
MHz
0.025
15
μs
1
μs
19
35
μs
2.0 V
0
5
MHz
3.0 V
0
10
MHz
2.0 V
3.0 V
20
50
kΩ
Spy-Bi-Wire return to normal operation time
TCK input frequency, 4-wire JTAG (2)
fTCK
MIN
35
Tools accessing the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the
first SBWTCK clock edge.
fTCK may be restricted to meet the timing requirements of the module selected.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
INPUT/OUTPUT SCHEMATICS
Port P1, P1.0 to P1.2, Input/Output With Schmitt Trigger
Pad Logic
External ADC reference
(P1.0, P1.1)
To ADC
From ADC
To Comparator
From Comparator
CDPD.x
P1REN.x
00
01
10
Direction
0: Input
1: Output
11
P1OUT.x
DVSS
0
DVCC
1
1
00
From module 1
01
From module 2
10
DVSS
11
PRODUCT PREVIEW
P1DIR.x
P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREFP1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+
P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2
P1SEL0.x
P1SEL1.x
P1IN.x
EN
To modules
Bus
Keeper
D
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
65
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 42. Port P1 (P1.0 to P1.2) Pin Functions
PIN NAME (P1.x)
P1.0/TA0.1/DMAE0/RTCCLK/A0/CD0/VeREF-
P1.1/TA0.2/TA1CLK/CDOUT/A1/CD1/VeREF+
PRODUCT PREVIEW
P1.2/TA1.1/TA0CLK/CDOUT/A2/CD2
(1)
(2)
(3)
66
x
FUNCTION
0 P1.0 (I/O)
CONTROL BITS/SIGNALS
P1DIR.x
P1SEL1.x
P1SEL0.x
I: 0; O: 1
0
0
0
1
1
0
TA0.CCI1A
0
TA0.1
1
DMAE0
0
RTCCLK
1
A0 (1) (2)
CD0 (1) (3)
VeREF- (1) (2)
X
1
1
I: 0; O: 1
0
0
0
1
1
0
1 P1.1 (I/O)
TA0.CCI2A
0
TA0.2
1
TA1CLK
0
CDOUT
1
A1 (1) (2)
CD1 (1) (3)
VeREF+ (1) (2)
X
1
1
I: 0; O: 1
0
0
0
1
1
0
1
1
2 P1.2 (I/O)
TA1.CCI1A
0
TA1.1
1
TA0CLK
0
CDOUT
1
A2 (1) (2)
CD2 (1) (3)
X
Setting P1SEL1.x and P1SEL0.x will disable the output driver as well as the input Schmitt trigger to prevent parasitic cross currents
when applying analog signals.
Not available on all devices and package types.
Setting the CDPD.x bit of the comparator will disable the output driver as well as the input Schmitt trigger to prevent parasitic cross
currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically
disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port P1, P1.3 to P1.5, Input/Output With Schmitt Trigger
Pad Logic
To ADC
From ADC
To Comparator
From Comparator
CDPD.x
P1REN.x
00
01
From module 2
10
Direction
0: Input
1: Output
11
P1OUT.x
00
From module 1
01
From module 2
10
DVSS
11
DVSS
0
DVCC
1
1
P1.3/TA1.2/UCB0STE/A3/CD3
P1.4/TB0.1/UCA0STE/A4/CD4
P1.5/TB0.2/UCA0CLK/A5/CD5
P1SEL0.x
P1SEL1.x
P1IN.x
EN
To modules
Bus
Keeper
D
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
67
PRODUCT PREVIEW
P1DIR.x
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 43. Port P1 (P1.3 to P1.5) Pin Functions
PIN NAME (P1.x)
P1.3/TA1.2/UCB0STE/A3/CD3
x
3
FUNCTION
P1.3 (I/O)
5
PRODUCT PREVIEW
68
0
1
X (1)
1
0
X
1
1
P1.4 (I/O)
I: 0; O: 1
0
0
0
1
X (5)
1
0
A4 (2) (3)
CD4 (2) (4)
X
1
1
P1.5(I/O)
I: 0; O: 1
0
0
0
1
X (5)
1
0
X
1
1
TB0.CCI1A
0
TB0.1
1
TB0.CCI2A
0
TB0.2
1
CD5
(5)
0
A3 (2) (3)
(2) (4)
A5 (2) (3)
(2) (4)
(3)
(4)
0
1
UCA0CLK
(1)
(2)
I: 0; O: 1
TA1.2
UCA0STE
P1.5/TB0.2/UCA0CLK/A5/CD5
P1SEL0.x
0
CD3
4
P1SEL1.x
TA1.CCI2A
UCB0STE
P1.4/TB0.1/UCA0STE/A4/CD4
CONTROL BITS/SIGNALS
P1DIR.x
Direction controlled by eUSCI_B0 module.
Setting P1SEL1.x and P1SEL0.x will disable the output driver as well as the input Schmitt trigger to prevent parasitic cross currents
when applying analog signals.
Not available on all devices and package types.
Setting the CDPD.x bit of the comparator will disable the output driver as well as the input Schmitt trigger to prevent parasitic cross
currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically
disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit
Direction controlled by eUSCI_A0 module.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port P1, P1.6 to P1.7, Input/Output With Schmitt Trigger
Pad Logic
DVSS
P1REN.x
P1DIR.x
00
From module 2
10
01
Direction
0: Input
1: Output
11
P1OUT.x
DVSS
0
DVCC
1
1
00
From module 1
01
From module 2
10
From module 3
11
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0
P1SEL0.x
Bus
Keeper
EN
To modules
D
Table 44. Port P1 (P1.6 to P1.7) Pin Functions
PIN NAME (P1.x)
P1.6/TB1.1/UCB0SIMO/UCB0SDA/TA0.0
x
6
FUNCTION
P1.6 (I/O)
7
P1SEL1.x
P1SEL0.x
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
TB1.1 (1)
1
X (2)
TA0.CCI0A
0
TA0.0
1
P1.7 (I/O)
I: 0; O: 1
TB1.CCI2A (1)
0
TB1.2 (1)
1
UCB0SOMI/UCB0SCL
(1)
(2)
(3)
P1DIR.x
I: 0; O: 1
TB1.CCI1A (1)
UCB0SIMO/UCB0SDA
P1.7/TB1.2/UCB0SOMI/UCB0SCL/TA1.0
CONTROL BITS/SIGNALS
X (3)
TA1.CCI0A
0
TA1.0
1
Not available on all devices and package types.
Direction controlled by eUSCI_B0 module.
Direction controlled by eUSCI_A0 module.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
69
PRODUCT PREVIEW
P1SEL1.x
P1IN.x
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port P2, P2.0 to P2.2, Input/Output With Schmitt Trigger
Pad Logic
DVSS
P2REN.x
P2DIR.x
00
From module 2
10
01
Direction
0: Input
1: Output
11
P2OUT.x
DVSS
0
DVCC
1
1
00
From module 1
01
From module 2
10
From module 3
11
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0
P2.2/TB2.2/UCB0CLK/TB1.0
P2SEL0.x
P2SEL1.x
P2IN.x
Bus
Keeper
EN
PRODUCT PREVIEW
D
To modules
Table 45. Port P2 (P2.0 to P2.2) Pin Functions
PIN NAME (P2.x)
P2.0/TB2.0/UCA0TXD/UCA0SIMO/TB0CLK/ACLK
x
FUNCTION
0 P2.0 (I/O)
TB2.CCI0A
CONTROL BITS/SIGNALS
P2DIR.x
P2SEL1.x
P2SEL0.x
I: 0; O: 1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
(1)
0
TB2.0 (1)
1
UCA0TXD/UCA0SIMO
P2.1/TB2.1/UCA0RXD/UCA0SOMI/TB0.0
TB0CLK
0
ACLK
1
1 P2.1 (I/O)
I: 0; O: 1
TB2.CCI1A (1)
0
TB2.1 (1)
1
UCA0RXD/UCA0SOMI
P2.2/TB2.2/UCB0CLK/TB1.0
0
TB0.0
1
2 P2.2 (I/O)
I: 0; O: 1
TB2.CCI2A (1)
0
TB2.2 (1)
1
TB1.CCI0A
TB1.0 (1)
70
X (2)
TB0.CCI0A
UCB0CLK
(1)
(2)
(3)
X (2)
X
(1)
(3)
0
1
Not available on all devices and package types.
Direction controlled by eUSCI_A0 module.
Direction controlled by eUSCI_B0 module.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port P2, P2.3 to P2.4, Input/Output With Schmitt Trigger
Pad Logic
To ADC
From ADC
To Comparator
From Comparator
CDPD.x
P2REN.x
00
From module 2
10
01
Direction
0: Input
1: Output
11
P2OUT.x
DVSS
0
DVCC
1
1
00
From module 1
01
From module 2
10
DVSS
11
P2.3/TA0.0/UCA1STE/A6/CD10
P2.4/TA1.0/UCA1CLK/A7/CD11
P2SEL0.x
P2SEL1.x
P2IN.x
EN
To modules
Bus
Keeper
D
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
71
PRODUCT PREVIEW
P2DIR.x
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 46. Port P2 (P2.3 to P2.4) Pin Functions
PIN NAME (P2.x)
P2.3/TA0.0/UCA1STE/A6/CD10
x
3
FUNCTION
P2.3 (I/O)
PRODUCT PREVIEW
72
0
0
0
1
1
0
1
X
(1)
A6 (2) (3)
(2) (4)
X
1
1
P2.4 (I/O)
I: 0; O: 1
0
0
0
1
1
0
1
1
TA1.CCI0B
0
TA1.0
1
A7 (2) (3)
CD11 (2) (4)
(3)
(4)
I: 0; O: 1
TA0.0
UCA1CLK
(1)
(2)
P2SEL0.x
0
CD10
4
P2SEL1.x
TA0.CCI0B
UCA1STE
P2.4/TA1.0/UCA1CLK/A7/CD11
CONTROL BITS/SIGNALS
P2DIR.x
X
(1)
X
Direction controlled by eUSCI_A1 module.
Setting P2SEL1.x and P2SEL0.x will disable the output driver as well as the input Schmitt trigger to prevent parasitic cross currents
when applying analog signals.
Not available on all devices and package types.
Setting the CDPD.x bit of the comparator will disable the output driver as well as the input Schmitt trigger to prevent parasitic cross
currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically
disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port P2, P2.5 to P2.6, Input/Output With Schmitt Trigger
Pad Logic
P2REN.x
P2DIR.x
00
From module 2
10
01
Direction
0: Input
1: Output
11
P2OUT.x
DVSS
0
DVCC
1
1
00
From module 1
01
From module 2
10
DVSS
11
P2.5/TB0.0/UCA1TXD/UCA1SIMO
P2.6/TB1.0/UCA1RXD/UCA1SOMI
Bus
Keeper
EN
To modules
D
Table 47. Port P2 (P2.5 to P2.6) Pin Functions
PIN NAME (P2.x)
P2.5/TB0.0/UCA1TXD/UCA1SIMO
x
FUNCTION
5 P2.5(I/O)
(1)
P2SEL0.x
I: 0; O: 1
0
0
0
1
X (2)
1
0
I: 0; O: 1
0
0
0
1
1
0
0
TB0.0 (1)
1
6 P2.6(I/O)
(1)
TB1.CCI0B (1)
0
TB1.0 (1)
1
UCA1RXD/UCA1SOMI (1)
(1)
(2)
P2SEL1.x
TB0.CCI0B (1)
UCA1TXD/UCA1SIMO (1)
P2.6/TB1.0/UCA1RXD/UCA1SOMI
CONTROL BITS/SIGNALS
P2DIR.x
X (2)
Not available on all devices and package types.
Direction controlled by eUSCI_A1 module.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
73
PRODUCT PREVIEW
P2SEL0.x
P2SEL1.x
P2IN.x
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port P2, P2.7, Input/Output With Schmitt Trigger
Pad Logic
P2REN.x
P2DIR.x
00
01
10
Direction
0: Input
1: Output
11
P2OUT.x
DVSS
0
DVCC
1
1
00
DVSS
01
DVSS
10
DVSS
11
P2.7
PRODUCT PREVIEW
P2SEL0.x
P2SEL1.x
P2IN.x
Bus
Keeper
EN
To modules
D
Table 48. Port P2 (P2.7) Pin Functions
PIN NAME (P2.x)
P2.7
(1)
74
x
7 P2.7(I/O)
FUNCTION
(1)
CONTROL BITS/SIGNALS
P2DIR.x
P2SEL1.x
P2SEL0.x
I: 0; O: 1
0
0
Not available on all devices and package types.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port P3, P3.0 to P3.3, Input/Output With Schmitt Trigger
Pad Logic
To ADC
From ADC
To Comparator
From Comparator
CDPD.x
P3REN.x
00
01
10
Direction
0: Input
1: Output
11
P3OUT.x
00
DVSS
01
DVSS
10
DVSS
11
DVSS
0
DVCC
1
P3.0/A12/CD12
P3.1/A13/CD13
P3.2/A14/CD14
P3.3/A15/CD15
P3SEL0.x
P3SEL1.x
P3IN.x
EN
To modules
1
Bus
Keeper
D
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
75
PRODUCT PREVIEW
P3DIR.x
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 49. Port P3 (P3.0 to P3.3) Pin Functions
PIN NAME (P3.x)
P3.0/A12/CD12
x
FUNCTION
0 P3.0 (I/O)
A12 (1) (2)
CD12 (1) (3)
P3.1/A13/CD13
1 P3.1 (I/O)
A13 (1) (2)
(1) (3)
CD13
P3.2/A14/CD14
2 P3.2 (I/O)
A14 (1) (2)
(1) (3)
CD14
P3.3/A15/CD15
3 P3.3 (I/O)
A15 (1) (2)
CD15 (1) (3)
(1)
(2)
(3)
PRODUCT PREVIEW
76
CONTROL BITS/SIGNALS
P3DIR.x
P3SEL1.x
P3SEL0.x
I: 0; O: 1
0
0
X
1
1
I: 0; O: 1
0
0
X
1
1
I: 0; O: 1
0
0
X
1
1
I: 0; O: 1
0
0
X
1
1
Setting P1SEL1.x and P1SEL0.x will disable the output driver as well as the input Schmitt trigger to prevent parasitic cross currents
when applying analog signals.
Not available on all devices and package types.
Setting the CDPD.x bit of the comparator will disable the output driver as well as the input Schmitt trigger to prevent parasitic cross
currents when applying analog signals. Selecting the CDx input pin to the comparator multiplexer with the CDx bits automatically
disables output driver and input buffer for that pin, regardless of the state of the associated CDPD.x bit.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port P3, P3.4 to P3.6, Input/Output With Schmitt Trigger
Pad Logic
DVSS
P3REN.x
00
01
10
Direction
0: Input
1: Output
11
P3OUT.x
DVSS
0
DVCC
1
1
00
From module 1
01
DVSS
10
From module 2
11
P3.4/TB1.1/TB2CLK/SMCLK
P3.5/TB1.2/CDOUT
P3.6/TB2.1/TB1CLK
P3SEL0.x
P3SEL1.x
P3IN.x
Bus
Keeper
EN
To modules
D
Table 50. Port P3 (P3.4 to P3.6) Pin Functions
PIN NAME (P3.x)
P3.4/TB1.1/TB2CLK/SMCLK
x
FUNCTION
4 P3.4 (I/O) (1)
TB1.CCI1B
P3.5/TB1.2/CDOUT
P3.6/TB2.1/TB1CLK
(1)
(1)
CONTROL BITS/SIGNALS
P3DIR.x
P3SEL1.x
P3SEL0.x
I: 0; O: 1
0
0
0
1
1
1
0
0
0
1
0
TB1.1 (1)
1
TB2CLK (1)
0
SMCLK (1)
1
5 P3.5 (I/O) (1)
I: 0; O: 1
TB1.CCI2B (1)
0
TB1.2 (1)
1
CDOUT (1)
1
1
1
6 P3.6 (I/O) (1)
I: 0; O: 1
0
0
0
1
1
1
TB2.CCI1B (1)
0
TB2.1 (1)
1
TB1CLK (1)
0
Not available on all devices and package types.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
77
PRODUCT PREVIEW
P3DIR.x
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port P3, P3.7, Input/Output With Schmitt Trigger
Pad Logic
P3REN.x
P3DIR.x
00
01
10
Direction
0: Input
1: Output
11
PRODUCT PREVIEW
P3OUT.x
00
From module 1
01
DVSS
10
DVSS
11
DVSS
0
DVCC
1
1
P3.7/TB2.2
P3SEL0.x
P3SEL1.x
P3IN.x
Bus
Keeper
EN
To modules
D
Table 51. Port P3 (P3.7) Pin Functions
PIN NAME (P3.x)
P3.7/TB2.2
(1)
78
x
FUNCTION
7 P3.7 (I/O) (1)
CONTROL BITS/SIGNALS
P3DIR.x
P3SEL1.x
P3SEL0.x
I: 0; O: 1
0
0
0
1
TB2.CCI2B (1)
0
TB2.2 (1)
1
Not available on all devices and package types.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port P4, P4.0, Input/Output With Schmitt Trigger
Pad Logic
P4REN.x
00
01
10
Direction
0: Input
1: Output
11
P4OUT.x
00
From module 1
01
DVSS
10
DVSS
11
DVSS
0
DVCC
1
1
P4.0/TB2.0
P4SEL0.x
P4SEL1.x
P4IN.x
Bus
Keeper
EN
To modules
D
Table 52. Port P4 (P4.0) Pin Functions
PIN NAME (P4.x)
P4.0/TB2.0
(1)
x
FUNCTION
0 P4.0 (I/O) (1)
CONTROL BITS/SIGNALS
P4DIR.x
P4SEL1.x
P4SEL0.x
I: 0; O: 1
0
0
0
1
TB2.CCI0B (1)
0
TB2.0 (1)
1
Not available on all devices and package types.
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
79
PRODUCT PREVIEW
P4DIR.x
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port P4, P4.1, Input/Output With Schmitt Trigger
Pad Logic
P4REN.x
P4DIR.x
00
01
10
Direction
0: Input
1: Output
11
P4OUT.x
DVSS
0
DVCC
1
1
00
DVSS
01
DVSS
10
DVSS
11
P4.1
PRODUCT PREVIEW
P4SEL0.x
P4SEL1.x
P4IN.x
Bus
Keeper
EN
To modules
D
Table 53. Port P4 (P4.1) Pin Functions
PIN NAME (P4.x)
P4.1
(1)
80
x
1 P4.1 (I/O)
FUNCTION
(1)
CONTROL BITS/SIGNALS
P4DIR.x
P4SEL1.x
P4SEL0.x
I: 0; O: 1
0
0
Not available on all devices and package types.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port J, J.0 to J.3 JTAG pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or
Output
To Comparator
From Comparator
CDPD.x
Pad Logic
From JTAG
From JTAG
From JTAG
1
PJREN.x
0
00
PJDIR.x
1
01
10
DVSS
0
DVCC
1
0
Direction
0: Input
1: Output
11
1
JTAG enable
00
01
1
DVSS
10
0
DVSS
11
PJ.0/TDO/TB0OUTH/SMCLK/CD6
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7
PJ.2/TMS/TB2OUTH/ACLK/CD8
PJSEL0.x
PRODUCT PREVIEW
PJOUT.x
From module 1
PJSEL1.x
PJIN.x
Bus
Keeper
EN
D
To modules
and JTAG
To Comparator
From Comparator
CDPD.x
Pad Logic
From JTAG
From JTAG
From JTAG
1
PJREN.x
PJDIR.x
0
00
1
01
10
DVSS
0
DVCC
1
0
Direction
0: Input
1: Output
11
1
JTAG enable
PJOUT.x
00
DVSS
01
1
DVSS
10
0
DVSS
11
PJ.3/TCK/CD9
PJSEL0.x
PJSEL1.x
PJIN.x
EN
To modules
and JTAG
Copyright © 2011, Texas Instruments Incorporated
Bus
Keeper
D
Submit Documentation Feedback
81
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 54. Port PJ (PJ.0 to PJ.3) Pin Functions
PIN NAME (PJ.x)
PJ.0/TDO/TB0OUTH/SMCLK/CD6
x
FUNCTION
0 PJ.0 (I/O)
(2)
0
0
X
X
TB0OUTH
0
SMCLK
1
0
1
1
1 PJ.1 (I/O) (2)
0
0
X
X
X
0
1
1
1
0
1
X
2 PJ.2 (I/O)
(2)
(4)
I: 0; O: 1
0
0
X
X
X
0
1
1
TB2OUTH
0
ACLK
1
PRODUCT PREVIEW
3 PJ.3 (I/O) (2)
TCK (3)
CD9
82
1
MCLK
CD8
(4)
(4)
X
I: 0; O: 1
TB1OUTH
TMS (3)
(1)
(2)
(3)
PJSEL0.x
X
CD7
PJ.3/TCK/CD9
PJSEL1.x
I: 0; O: 1
TDI/TCLK (3)
PJ.2/TMS/TB2OUTH/ACLK/CD8
PJDIR.x
TDO (3)
CD6
PJ.1/TDI/TCLK/TB1OUTH/MCLK/CD7
CONTROL BITS/ SIGNALS (1)
(4)
X
1
I: 0; O: 1
0
0
X
X
X
X
1
1
X = Don't care
Default condition
The pin direction is controlled by the JTAG module. JTAG mode selection is made via the SYS module or by the SpyBiWire four wire
entry sequence. PJSEL1.x and PJSEL0.x have no effect in these cases.
In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Port PJ, PJ.4 and PJ.5 Input/Output With Schmitt Trigger
Pad Logic
To XT1 XIN
PJREN.4
00
01
10
Direction
0: Input
1: Output
11
PJOUT.4
DVSS
0
DVCC
1
1
00
DVSS
01
DVSS
10
DVSS
11
PRODUCT PREVIEW
PJDIR.4
PJ.4/XIN
PJSEL0.4
PJSEL1.4
PJIN.4
EN
To modules
Bus
Keeper
D
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
83
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Pad Logic
To XT1 XOUT
PJSEL0.4
XT1BYPASS
PJREN.5
PJDIR.5
00
01
10
Direction
0: Input
1: Output
11
PJOUT.5
00
DVSS
01
DVSS
10
DVSS
11
DVSS
0
DVCC
1
1
PRODUCT PREVIEW
PJ.5/XOUT
PJSEL0.5
PJSEL1.5
PJIN.5
Bus
Keeper
EN
To modules
D
Table 55. Port PJ (PJ.4 and PJ.5) Pin Functions
CONTROL BITS/SIGNALS (1)
PIN NAME (P7.x)
PJ.4/XIN
x
FUNCTION
PJDIR.x
4 PJ.4 (I/O)
XIN crystal mode (2)
XIN bypass mode
PJ.5/XOUT
5 PJ.5 (I/O)
XOUT crystal
mode (3)
PJ.5 (I/O) (4)
(1)
(2)
(3)
(4)
84
(2)
PJSEL1.5 PJSEL0.5 PJSEL1.4 PJSEL0.4
XT1
BYPASS
I: 0; O: 1
X
X
0
0
X
X
X
X
0
1
0
X
X
X
0
1
1
I: 0; O: 1
0
0
0
0
X
X
X
X
0
1
0
I: 0; O: 1
X
X
0
1
1
X = Don't care
Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are
configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass
operation and PJ.5 is configured as general-purpose I/O.
Setting PJSEL1.4 = 0 and PJSEL0.4 = 1 causes the general-purpose I/O to be disabled. When XT1BYPASS = 0, PJ.4 and PJ.5 are
configured for crystal operation and PJSEL1.5 and PJSEL0.5 are do not care. When XT1BYPASS = 1, PJ.4 is configured for bypass
operation and PJ.5 is configured as general-purpose I/O.
When PJ.4 is configured in bypass mode, PJ.5 is configured as general-purpose I/O.
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
DEVICE DESCRIPTORS (TLV)
The following tables list the complete contents of the device descriptor tag-length-value (TLV) structure for each
device type.
Info Block
'FR5736
'FR5735
Value
Value
Value
01A00h
05h
05h
05h
05h
05h
01A01h
05h
05h
05h
05h
05h
01A02h
per unit
per unit
per unit
per unit
per unit
Info length
01A03h
per unit
per unit
per unit
per unit
per unit
Device ID
01A04h
03h
02h
01h
77h
76h
Device ID
01A05h
81h
81h
81h
81h
81h
Hardware revision
01A06h
per unit
per unit
per unit
per unit
per unit
Firmware revision
01A07h
per unit
per unit
per unit
per unit
per unit
Die Record Tag
01A08h
08h
08h
08h
08h
08h
Die Record length
01A09h
0Ah
0Ah
0Ah
0Ah
0Ah
01A0Ah
per unit
per unit
per unit
per unit
per unit
01A0Bh
per unit
per unit
per unit
per unit
per unit
01A0Ch
per unit
per unit
per unit
per unit
per unit
01A0Dh
per unit
per unit
per unit
per unit
per unit
01A0Eh
per unit
per unit
per unit
per unit
per unit
01A0Fh
per unit
per unit
per unit
per unit
per unit
01A10h
per unit
per unit
per unit
per unit
per unit
01A11h
per unit
per unit
per unit
per unit
per unit
01A12h
per unit
per unit
per unit
per unit
per unit
01A13h
per unit
per unit
per unit
per unit
per unit
ADC10 Calibration
Tag
01A14h
13h
13h
13h
05h
13h
ADC10 Calibration
length
01A15h
10h
10h
10h
10h
10h
01A16h
per unit
per unit
NA
NA
per unit
01A17h
per unit
per unit
NA
NA
per unit
01A18h
per unit
per unit
NA
NA
per unit
Die X position
Die Y position
Test results
ADC Gain Factor
ADC Offset
(1)
'FR5737
Value
CRC length
Lot/Wafer ID
ADC10
Calibration
'FR5738
Value
Address
CRC value
Die Record
'FR5739
Description
01A19h
per unit
per unit
NA
NA
per unit
ADC 1.5-V
Reference
Temp. Sensor 30°C
01A1Ah
per unit
per unit
NA
NA
per unit
01A1Bh
per unit
per unit
NA
NA
per unit
ADC 1.5-V
Reference
Temp. Sensor 85°C
01A1Ch
per unit
per unit
NA
NA
per unit
01A1Dh
per unit
per unit
NA
NA
per unit
ADC 2.0-V
Reference
Temp. Sensor 30°C
01A1Eh
per unit
per unit
NA
NA
per unit
01A1Fh
per unit
per unit
NA
NA
per unit
ADC 2.0-V
Reference
Temp. Sensor 85°C
01A20h
per unit
per unit
NA
NA
per unit
01A21h
per unit
per unit
NA
NA
per unit
ADC 2.5-V
Reference
Temp. Sensor 30°C
01A22h
per unit
per unit
NA
NA
per unit
01A23h
per unit
per unit
NA
NA
per unit
PRODUCT PREVIEW
Table 56. Device Descriptor Table (1)
NA = Not applicable
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
85
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 56. Device Descriptor Table(1) (continued)
REF
Calibration
'FR5739
'FR5738
'FR5737
'FR5736
'FR5735
Value
Value
Value
Value
Value
01A24h
per unit
per unit
NA
NA
per unit
01A25h
per unit
per unit
NA
NA
per unit
REF Calibration Tag
01A26h
12h
12h
12h
12h
12h
REF Calibration
length
01A27h
06h
06h
06h
06h
06h
REF 1.5-V
Reference
01A28h
per unit
per unit
per unit
per unit
per unit
01A29h
per unit
per unit
per unit
per unit
per unit
REF 2.0-V
Reference
01A2Ah
per unit
per unit
per unit
per unit
per unit
01A2Bh
per unit
per unit
per unit
per unit
per unit
REF 2.5-V
Reference
01A2Ch
per unit
per unit
per unit
per unit
per unit
01A2Dh
per unit
per unit
per unit
per unit
per unit
Description
Address
ADC 2.5-V
Reference
Temp. Sensor 85°C
Table 57. Device Descriptor Table (1)
PRODUCT PREVIEW
Info Block
'FR5734
'FR5733
'FR5732
'FR5731
'FR5730
Value
Value
Value
Value
Value
05h
05h
05h
05h
05h
01A01h
05h
05h
05h
05h
05h
01A02h
per unit
per unit
per unit
per unit
per unit
01A03h
per unit
per unit
per unit
per unit
per unit
Device ID
01A04h
00h
7Fh
75h
7Eh
7Ch
Description
Address
Info length
01A00h
CRC length
CRC value
Die Record
Device ID
01A05h
81h
80h
81h
80h
80h
Hardware revision
01A06h
per unit
per unit
per unit
per unit
per unit
Firmware revision
01A07h
per unit
per unit
per unit
per unit
per unit
Die Record Tag
01A08h
08h
08h
08h
08h
08h
Die Record length
Lot/Wafer ID
Die X position
Die Y position
Test results
ADC10
Calibration
0Ah
0Ah
0Ah
0Ah
per unit
per unit
per unit
per unit
01A0Bh
per unit
per unit
per unit
per unit
per unit
01A0Ch
per unit
per unit
per unit
per unit
per unit
01A0Dh
per unit
per unit
per unit
per unit
per unit
01A0Eh
per unit
per unit
per unit
per unit
per unit
01A0Fh
per unit
per unit
per unit
per unit
per unit
01A10h
per unit
per unit
per unit
per unit
per unit
01A11h
per unit
per unit
per unit
per unit
per unit
01A12h
per unit
per unit
per unit
per unit
per unit
01A13h
per unit
per unit
per unit
per unit
per unit
01A14h
13h
13h
13h
05h
13h
ADC10 Calibration
length
01A15h
10h
10h
10h
10h
10h
01A16h
per unit
NA
NA
per unit
per unit
01A17h
per unit
NA
NA
per unit
per unit
01A18h
per unit
NA
NA
per unit
per unit
01A19h
per unit
NA
NA
per unit
per unit
01A1Ah
per unit
NA
NA
per unit
per unit
01A1Bh
per unit
NA
NA
per unit
per unit
ADC Offset
ADC 1.5-V
Reference
Temp. Sensor 30°C
86
0Ah
per unit
ADC10 Calibration
Tag
ADC Gain Factor
(1)
01A09h
01A0Ah
NA = Not applicable
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
REF
Calibration
'FR5734
'FR5733
'FR5732
'FR5731
'FR5730
Value
Value
Value
Value
Value
01A1Ch
per unit
NA
NA
per unit
per unit
01A1Dh
per unit
NA
NA
per unit
per unit
ADC 2.0-V
Reference
Temp. Sensor 30°C
01A1Eh
per unit
NA
NA
per unit
per unit
01A1Fh
per unit
NA
NA
per unit
per unit
ADC 2.0-V
Reference
Temp. Sensor 85°C
01A20h
per unit
NA
NA
per unit
per unit
01A21h
per unit
NA
NA
per unit
per unit
ADC 2.5-V
Reference
Temp. Sensor 30°C
01A22h
per unit
NA
NA
per unit
per unit
01A23h
per unit
NA
NA
per unit
per unit
ADC 2.5-V
Reference
Temp. Sensor 85°C
01A24h
per unit
NA
NA
per unit
per unit
01A25h
per unit
NA
NA
per unit
per unit
REF Calibration Tag
01A26h
12h
12h
12h
12h
12h
REF Calibration
length
01A27h
06h
06h
06h
06h
06h
REF 1.5-V
Reference
01A28h
per unit
per unit
per unit
per unit
per unit
01A29h
per unit
per unit
per unit
per unit
per unit
REF 2.0-V
Reference
01A2Ah
per unit
per unit
per unit
per unit
per unit
01A2Bh
per unit
per unit
per unit
per unit
per unit
REF 2.5-V
Reference
01A2Ch
per unit
per unit
per unit
per unit
per unit
01A2Dh
per unit
per unit
per unit
per unit
per unit
Description
Address
ADC 1.5-V
Reference
Temp. Sensor 85°C
PRODUCT PREVIEW
Table 57. Device Descriptor Table(1) (continued)
Table 58. Device Descriptor Table (1)
Info Block
'FR5727
'FR5726
'FR5725
Value
Value
Value
Value
05h
05h
05h
05h
05h
Info length
01A00h
CRC length
01A01h
05h
05h
05h
05h
05h
01A02h
per unit
per unit
per unit
per unit
per unit
01A03h
per unit
per unit
per unit
per unit
per unit
Device ID
01A04h
7Bh
7Ah
79h
74h
78h
Device ID
01A05h
80h
80h
80h
81h
80h
Hardware revision
01A06h
per unit
per unit
per unit
per unit
per unit
Firmware revision
01A07h
per unit
per unit
per unit
per unit
per unit
Die Record Tag
01A08h
08h
08h
08h
08h
08h
Die Record length
01A09h
0Ah
0Ah
0Ah
0Ah
0Ah
01A0Ah
per unit
per unit
per unit
per unit
per unit
Lot/Wafer ID
Die X position
Die Y position
Test results
(1)
'FR5728
Value
Address
CRC value
Die Record
'FR5729
Description
01A0Bh
per unit
per unit
per unit
per unit
per unit
01A0Ch
per unit
per unit
per unit
per unit
per unit
01A0Dh
per unit
per unit
per unit
per unit
per unit
01A0Eh
per unit
per unit
per unit
per unit
per unit
01A0Fh
per unit
per unit
per unit
per unit
per unit
01A10h
per unit
per unit
per unit
per unit
per unit
01A11h
per unit
per unit
per unit
per unit
per unit
01A12h
per unit
per unit
per unit
per unit
per unit
01A13h
per unit
per unit
per unit
per unit
per unit
NA = Not applicable
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
87
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
Table 58. Device Descriptor Table(1) (continued)
ADC10
Calibration
'FR5728
'FR5727
'FR5726
'FR5725
Value
Value
Value
Value
Value
01A14h
13h
13h
13h
05h
13h
01A15h
10h
10h
10h
10h
10h
01A16h
per unit
per unit
NA
NA
per unit
01A17h
per unit
per unit
NA
NA
per unit
01A18h
per unit
per unit
NA
NA
per unit
Address
ADC10 Calibration
Tag
ADC10 Calibration
length
ADC Gain Factor
ADC Offset
PRODUCT PREVIEW
REF
Calibration
'FR5729
Description
01A19h
per unit
per unit
NA
NA
per unit
ADC 1.5-V
Reference
Temp. Sensor 30°C
01A1Ah
per unit
per unit
NA
NA
per unit
01A1Bh
per unit
per unit
NA
NA
per unit
ADC 1.5-V
Reference
Temp. Sensor 85°C
01A1Ch
per unit
per unit
NA
NA
per unit
01A1Dh
per unit
per unit
NA
NA
per unit
ADC 2.0-V
Reference
Temp. Sensor 30°C
01A1Eh
per unit
per unit
NA
NA
per unit
01A1Fh
per unit
per unit
NA
NA
per unit
ADC 2.0-V
Reference
Temp. Sensor 85°C
01A20h
per unit
per unit
NA
NA
per unit
01A21h
per unit
per unit
NA
NA
per unit
ADC 2.5-V
Reference
Temp. Sensor 30°C
01A22h
per unit
per unit
NA
NA
per unit
01A23h
per unit
per unit
NA
NA
per unit
ADC 2.5-V
Reference
Temp. Sensor 85°C
01A24h
per unit
per unit
NA
NA
per unit
01A25h
per unit
per unit
NA
NA
per unit
REF Calibration Tag
01A26h
12h
12h
12h
12h
12h
REF Calibration
length
01A27h
06h
06h
06h
06h
06h
REF 1.5-V
Reference
01A28h
per unit
per unit
per unit
per unit
per unit
01A29h
per unit
per unit
per unit
per unit
per unit
REF 2.0-V
Reference
01A2Ah
per unit
per unit
per unit
per unit
per unit
01A2Bh
per unit
per unit
per unit
per unit
per unit
REF 2.5-V
Reference
01A2Ch
per unit
per unit
per unit
per unit
per unit
01A2Dh
per unit
per unit
per unit
per unit
per unit
Table 59. Device Descriptor Table (1)
Info Block
(1)
88
'FR5723
'FR5722
'FR5721
'FR5720
Value
Value
Value
Value
Value
05h
05h
05h
05h
05h
Address
Info length
01A00h
CRC length
01A01h
05h
05h
05h
05h
05h
01A02h
per unit
per unit
per unit
per unit
per unit
01A03h
per unit
per unit
per unit
per unit
per unit
Device ID
01A04h
73h
72h
71h
77h
70h
Device ID
01A05h
81h
81h
81h
80h
81h
Hardware revision
01A06h
per unit
per unit
per unit
per unit
per unit
Firmware revision
01A07h
per unit
per unit
per unit
per unit
per unit
Die Record Tag
01A08h
08h
08h
08h
08h
08h
Die Record length
01A09h
0Ah
0Ah
0Ah
0Ah
0Ah
CRC value
Die Record
'FR5724
Description
NA = Not applicable
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
'FR5724
'FR5723
'FR5722
'FR5721
'FR5720
Value
Value
Value
Value
Value
01A0Ah
per unit
per unit
per unit
per unit
per unit
01A0Bh
per unit
per unit
per unit
per unit
per unit
01A0Ch
per unit
per unit
per unit
per unit
per unit
01A0Dh
per unit
per unit
per unit
per unit
per unit
01A0Eh
per unit
per unit
per unit
per unit
per unit
01A0Fh
per unit
per unit
per unit
per unit
per unit
01A10h
per unit
per unit
per unit
per unit
per unit
01A11h
per unit
per unit
per unit
per unit
per unit
01A12h
per unit
per unit
per unit
per unit
per unit
01A13h
per unit
per unit
per unit
per unit
per unit
ADC10 Calibration
Tag
01A14h
13h
13h
13h
05h
13h
ADC10 Calibration
length
01A15h
10h
10h
10h
10h
10h
01A16h
per unit
NA
NA
per unit
per unit
01A17h
per unit
NA
NA
per unit
per unit
01A18h
per unit
NA
NA
per unit
per unit
Description
Lot/Wafer ID
Die X position
Die Y position
Test results
ADC10
Calibration
ADC Gain Factor
ADC Offset
REF
Calibration
Address
01A19h
per unit
NA
NA
per unit
per unit
ADC 1.5-V
Reference
Temp. Sensor 30°C
01A1Ah
per unit
NA
NA
per unit
per unit
01A1Bh
per unit
NA
NA
per unit
per unit
ADC 1.5-V
Reference
Temp. Sensor 85°C
01A1Ch
per unit
NA
NA
per unit
per unit
01A1Dh
per unit
NA
NA
per unit
per unit
ADC 2.0-V
Reference
Temp. Sensor 30°C
01A1Eh
per unit
NA
NA
per unit
per unit
01A1Fh
per unit
NA
NA
per unit
per unit
ADC 2.0-V
Reference
Temp. Sensor 85°C
01A20h
per unit
NA
NA
per unit
per unit
01A21h
per unit
NA
NA
per unit
per unit
ADC 2.5-V
Reference
Temp. Sensor 30°C
01A22h
per unit
NA
NA
per unit
per unit
01A23h
per unit
NA
NA
per unit
per unit
ADC 2.5-V
Reference
Temp. Sensor 85°C
01A24h
per unit
NA
NA
per unit
per unit
01A25h
per unit
NA
NA
per unit
per unit
REF Calibration Tag
01A26h
12h
12h
12h
12h
12h
REF Calibration
length
01A27h
06h
06h
06h
06h
06h
REF 1.5-V
Reference
01A28h
per unit
per unit
per unit
per unit
per unit
01A29h
per unit
per unit
per unit
per unit
per unit
REF 2.0-V
Reference
01A2Ah
per unit
per unit
per unit
per unit
per unit
01A2Bh
per unit
per unit
per unit
per unit
per unit
REF 2.5-V
Reference
01A2Ch
per unit
per unit
per unit
per unit
per unit
01A2Dh
per unit
per unit
per unit
per unit
per unit
Copyright © 2011, Texas Instruments Incorporated
Submit Documentation Feedback
PRODUCT PREVIEW
Table 59. Device Descriptor Table(1) (continued)
89
MSP430FR573x
MSP430FR572x
SLAS639A – JULY 2011 – REVISED OCTOBER 2011
www.ti.com
REVISION HISTORY
REVISION
SLAS639
SLAS639A
COMMENTS
Product Preview release
Updated Product Preview release including preliminary electrical specifications
PRODUCT PREVIEW
90
Submit Documentation Feedback
Copyright © 2011, Texas Instruments Incorporated
PACKAGE OPTION ADDENDUM
www.ti.com
23-Jan-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
MSP430FR5720IRGER
ACTIVE
VQFN
RGE
24
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5720IRGET
PREVIEW
VQFN
RGE
24
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5721IDA
PREVIEW
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5721IDAR
PREVIEW
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5721IRHAR
PREVIEW
VQFN
RHA
40
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5721IRHAT
PREVIEW
VQFN
RHA
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5722IRGER
PREVIEW
VQFN
RGE
24
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5722IRGET
PREVIEW
VQFN
RGE
24
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5723IDA
PREVIEW
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5723IDAR
PREVIEW
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5723IRHAR
PREVIEW
VQFN
RHA
40
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5723IRHAT
PREVIEW
VQFN
RHA
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5724IRGER
PREVIEW
VQFN
RGE
24
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5724IRGET
PREVIEW
VQFN
RGE
24
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5725IDA
PREVIEW
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5725IDAR
PREVIEW
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5725IRHAR
ACTIVE
VQFN
RHA
40
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
Addendum-Page 1
Samples
(Requires Login)
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
23-Jan-2012
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
MSP430FR5726IRGER
PREVIEW
VQFN
RGE
24
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5726IRGET
PREVIEW
VQFN
RGE
24
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5727IDA
PREVIEW
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5727IDAR
PREVIEW
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5727IRHAR
PREVIEW
VQFN
RHA
40
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5727IRHAT
PREVIEW
VQFN
RHA
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5728IRGER
ACTIVE
VQFN
RGE
24
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5728IRGET
ACTIVE
VQFN
RGE
24
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5729IDA
PREVIEW
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5729IDAR
ACTIVE
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5729IRHAR
ACTIVE
VQFN
RHA
40
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5730IRGER
ACTIVE
VQFN
RGE
24
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5730IRGET
PREVIEW
VQFN
RGE
24
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5731IDA
PREVIEW
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5731IDAR
PREVIEW
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5731IRHAR
PREVIEW
VQFN
RHA
40
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5731IRHAT
PREVIEW
VQFN
RHA
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5732IRGER
PREVIEW
VQFN
RGE
24
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
Addendum-Page 2
Samples
(Requires Login)
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
23-Jan-2012
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
MSP430FR5732IRGET
PREVIEW
VQFN
RGE
24
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5733IDA
PREVIEW
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5733IDAR
PREVIEW
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5733IRHAR
PREVIEW
VQFN
RHA
40
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5733IRHAT
PREVIEW
VQFN
RHA
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5734IRGER
PREVIEW
VQFN
RGE
24
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5734IRGET
PREVIEW
VQFN
RGE
24
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5735IDA
PREVIEW
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5735IDAR
PREVIEW
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5735IRHAR
ACTIVE
VQFN
RHA
40
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5736IRGER
PREVIEW
VQFN
RGE
24
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5736IRGET
PREVIEW
VQFN
RGE
24
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5737IDA
PREVIEW
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5737IDAR
PREVIEW
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5737IRHAR
PREVIEW
VQFN
RHA
40
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5737IRHAT
PREVIEW
VQFN
RHA
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5738IRGER
PREVIEW
VQFN
RGE
24
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5738IRGET
PREVIEW
VQFN
RGE
24
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
Addendum-Page 3
Samples
(Requires Login)
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
23-Jan-2012
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
MSP430FR5739IDA
PREVIEW
TSSOP
DA
38
40
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5739IDAR
ACTIVE
TSSOP
DA
38
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-2-260C-1 YEAR
MSP430FR5739IRHA
OBSOLETE
VQFN
RHA
40
MSP430FR5739IRHAR
ACTIVE
VQFN
RHA
40
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430FR5739IRHAT
ACTIVE
VQFN
RHA
40
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
XMS430FR5739IRHAR
ACTIVE
VQFN
RHA
40
1
TBD
TBD
Call TI
Call TI
Samples
(Requires Login)
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 4
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated
Similar pages