PD - 96350 IRF4104GPbF Features l l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free Halogen-Free HEXFET® Power MOSFET D VDSS = 40V RDS(on) = 5.5mΩ G Description ID = 75A S This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. TO-220AB IRF4104GPbF Absolute Maximum Ratings ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C Parameter Max. Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V (Package limited) Pulsed Drain Current 120 84 75 470 140 c Power Dissipation VGS EAS (Thermally limited) EAS (Tested ) IAR EAR Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy TJ TSTG Operating Junction and Storage Temperature Range d c g Parameter Junction-to-Case RθCS Case-to-Sink, Flat Greased Surface RθJA Junction-to-Ambient www.irf.com i W 0.95 ± 20 120 220 See Fig.12a, 12b, 15, 16 W/°C V mJ A mJ °C i RθJC A -55 to + 175 Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Thermal Resistance h Units i 300 (1.6mm from case ) 10 lbf in (1.1N m) y y Typ. Max. ––– 1.05 0.50 ––– ––– 62 Units °C/W 1 01/18/11 IRF4104GPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.032 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 4.3 5.5 VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 gfs IDSS Forward Transconductance 63 ––– Drain-to-Source Leakage Current ––– ––– ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 IGSS V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 75A e V VDS = VGS, ID = 250µA ––– V VDS = 10V, ID = 75A 20 µA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Qg Total Gate Charge ––– 68 100 Qgs Gate-to-Source Charge ––– 21 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 27 ––– VGS = 10V td(on) Turn-On Delay Time ––– 16 ––– VDD = 20V tr Rise Time ––– 130 ––– td(off) Turn-Off Delay Time ––– 38 ––– tf Fall Time ––– 77 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Input Capacitance ––– 3000 ––– and center of die contact VGS = 0V Coss Output Capacitance ––– 660 ––– Crss Reverse Transfer Capacitance ––– 380 ––– Coss Output Capacitance ––– 2160 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 560 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 850 ––– VGS = 0V, VDS = 0V to 32V ID = 75A nC VDS = 32V e ID = 75A ns nH RG = 6.8 Ω e VDS = 25V pF ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 75 ISM (Body Diode) Pulsed Source Current ––– ––– 470 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 23 35 ns Qrr Reverse Recovery Charge ––– 6.8 10 nC ton Forward Turn-On Time 2 c Conditions MOSFET symbol A showing the integral reverse p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V TJ = 25°C, IF = 75A, VDD = 20V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF4104GPbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 4.5V 1 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 20µs PULSE WIDTH Tj = 25°C 0.1 4.5V 10 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 20µs PULSE WIDTH Tj = 175°C 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 120 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current ( A) VGS T J = 25°C T J = 175°C 100 10 VDS = 15V 20µs PULSE WIDTH 1 4 6 8 10 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com T J = 25°C 100 80 60 TJ = 175°C 40 20 VDS = 10V 380µs PULSE WIDTH 0 12 0 20 40 60 80 100 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRF4104GPbF 5000 VGS, Gate-to-Source Voltage (V) 4000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Ciss 3000 2000 Coss 1000 Crss ID= 75A VDS= 32V VDS= 20V 16 12 8 4 0 0 1 10 0 100 1000.0 ID, Drain-to-Source Current (A) 10000 100.0 T J = 175°C 10.0 T J = 25°C 1.0 VGS = 0V 0.1 0.2 0.6 1.0 1.4 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 60 80 100 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage ISD, Reverse Drain Current (A) 40 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 4 20 1000 100 100µsec 10 1 1.8 OPERATION IN THIS AREA LIMITED BY R DS(on) 1msec Tc = 25°C Tj = 175°C Single Pulse 0 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF4104GPbF 120 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) LIMITED BY PACKAGE ID , Drain Current (A) 100 80 60 40 20 0 25 50 75 100 125 150 ID = 75A VGS = 10V 1.5 1.0 0.5 175 -60 -40 -20 T C , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.371 0.000272 0.337 0.001375 0.337 0.018713 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF4104GPbF DRIVER L VDS D.U.T RG 20V VGS + V - DD IAS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 500 15V TOP 400 BOTTOM ID 11A 16A 75A 300 200 100 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 10 V ID = 250µA 3.0 2.0 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF4104GPbF Avalanche Current (A) 1000 Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 0.05 10 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth 140 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A EAR , Avalanche Energy (mJ) 120 100 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRF4104GPbF D.U.T Driver Gate Drive + • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF4104GPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information E XAMPLE: T HIS IS AN IRFB4310GPBF Note: "G" s uffix in part number indicates "Halogen - Free" Note: "P" in ass embly line pos ition indicates "Lead - F ree" INTERNAT IONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DATE CODE: Y= LAS T DIGIT OF CALENDAR YEAR WW= WORK WEEK X= F ACT ORY CODE TO-220AB package is not recommended for Surface Mount Application Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/datasheets/data/auirf4104.pdf 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.04mH RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. This is only applied to TO-220AB pakcage. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/2011 www.irf.com 9