PD - 97790 IRFI4510GPbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen-Free VDSS RDS(on) typ. max. ID 100V 10.7m 13.5m 35A D D G G S D S TO-220AB Full-Pak G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS (Thermally limited) TJ TSTG Parameter Max. Units 35 24 180 42 A W 0.28 ±20 206 -55 to + 175 W/°C V mJ °C Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation c Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy d Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw 300 x x 10lb in (1.1N m) Thermal Resistance Parameter RJC RJA www.irf.com f Junction-to-Case Junction-to-Ambient f Typ. ––– ––– Max. 3.6 65 Units °C/W 1 05/15/12 IRFI4510GPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units 100 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.11 10.7 ––– ––– ––– ––– ––– 0.6 ––– ––– 13.5 4.0 20 250 100 -100 ––– Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) 55 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 54 13 16 16 33 54 37 2998 216 103 261 494 Min. Typ. ––– ––– V(BR)DSS V(BR)DSS/TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG(int) V V/°C m V μA nA Conditions VGS = 0V, ID = 250μA Reference to 25°C, ID = 5mA VGS = 10V, ID = 21A VDS = VGS, ID = 100μA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V e e Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Diode Characteristics Symbol IS Parameter VSD trr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM c Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.93mH RG = 50, IAS = 21A, VGS =10V. Part not recommended for use above this value. Pulse width 400μs; duty cycle 2%. R is measured at TJ approximately 90°C. 2 ––– 81 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC ns pF Max. Units Conditions VDS = 50V, ID = 21A ID = 21A VDS = 50V VGS = 10V VDD = 65V ID = 21A RG = 7.5 VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V VGS = 0V, VDS = 0V to 80V e e h, See Fig.11 g Conditions MOSFET symbol showing the G ––– ––– 180 A integral reverse p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 21A, VGS = 0V ––– 39 59 ns TJ = 25°C VR = 85V IF = 21A ––– 47 71 TJ = 125°C di/dt = 100A/μs ––– 63 95 nC TJ = 25°C ––– 90 135 TJ = 125°C ––– 2.9 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 35 A e D S e Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. www.irf.com IRFI4510GPbF 1000 1000 100 BOTTOM VGS 15V 10V 6.0V 5.5V 5.0V 4.75V 4.5V 4.25V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 6.0V 5.5V 5.0V 4.75V 4.5V 4.25V 100 10 4.25V BOTTOM 4.25V 10 60μs PULSE WIDTH 60μs PULSE WIDTH Tj = 175°C Tj = 25°C 1 1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 2. Typical Output Characteristics 1000 100 10 T J = 25°C T J = 175°C 1 VDS = 50V 60μs PULSE WIDTH 0.1 ID = 21A VGS = 10V 2.5 2.0 1.5 1.0 0.5 1 2 3 4 5 6 7 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 21A C oss = C ds + C gd 10000 C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Ciss 1000 Coss Crss 100 12.0 VDS= 80V VDS= 50V 10.0 VDS= 20V 8.0 6.0 4.0 2.0 0.0 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 10 20 30 40 50 60 70 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFI4510GPbF 1000 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY RDS(on) 100 100μsec 10 10msec 1 DC 0.1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1.0 0.01 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.1 VSD, Source-to-Drain Voltage (V) 20 10 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) ID, Drain Current (A) 30 50 100 1000 125 Id = 5mA 120 115 110 105 100 95 90 -60 -40 -20 0 20 40 60 80 100120140160180 T C , Case Temperature (°C) T J , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 1.4 EAS , Single Pulse Avalanche Energy (mJ) 900 1.2 1.0 Energy (μJ) 10 Fig 8. Maximum Safe Operating Area 40 25 1 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 0.8 0.6 0.4 0.2 0.0 ID TOP 6.7A 11A BOTTOM 21A 800 700 600 500 400 300 200 100 0 -20 0 20 40 60 80 100 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 1msec 120 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFI4510GPbF Thermal Response ( Z thJC ) °C/W 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 J R1 R1 J 1 R2 R2 R3 R3 Ri (°C/W) i (sec) R4 R4 C 1 2 3 2 3 4 4 Ci= iRi Ci iRi 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 1.34312 0.470619 1.47895 0.072697 0.62114 0.006558 0.15442 0.000152 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) Duty Cycle = Single Pulse 10 0.01 0.05 0.10 1 0.1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 150°C. 0.01 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 250 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 21A 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFI4510GPbF 25 3.5 IF = 14A V R = 85V 20 TJ = 25°C TJ = 125°C 3.0 2.5 IRRM (A) VGS(th) , Gate threshold Voltage (V) 4.0 ID = 100μA ID = 250μA 2.0 15 10 ID = 1.0mA ID = 1.0A 5 1.5 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 TJ , Temperature ( °C ) 600 800 1000 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 500 25 IF = 21A V R = 85V 20 IF = 14A V R = 85V 400 TJ = 25°C TJ = 125°C 15 QRR (nC) IRRM (A) 400 diF /dt (A/μs) 10 TJ = 25°C TJ = 125°C 300 200 100 5 0 0 0 200 400 600 800 0 1000 200 400 600 800 1000 diF /dt (A/μs) diF /dt (A/μs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 500 IF = 21A V R = 85V QRR (nC) 400 TJ = 25°C TJ = 125°C 300 200 100 0 0 200 400 600 800 1000 diF /dt (A/μs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFI4510GPbF D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V tp A 0.01 I AS Fig 22a. Unclamped Inductive Test Circuit LD Fig 22b. Unclamped Inductive Waveforms VDS VDS + 90% VDD - 10% D.U.T VGS VGS Pulse Width < 1μs Duty Factor < 0.1% td(on) Fig 23a. Switching Time Test Circuit tr td(off) tf Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 1K VCC Vgs(th) Qgs1 Qgs2 Fig 24a. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRFI4510GPbF TO-220AB Full-Pak Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Full-Pak Part Marking Information * , ) 5 , 1 $ , 6 6 , + 7 ( / 3 0 $ ; ( < / % 0 ( 6 ( 6 ' $ 2 & + 7, 72 :/ 5 ( % 0 8 1 7 5 $ 3 : : 1 2 ' ( / % 0 ( 6 6 $ / $ 1 2 , 7 $ 1 5 ( 7 1 , 2 * 2 / ( ' 2 & ( 7 $ ' ' * 3 ,) 5 ( , ) , 7 & ( 5 5 $ ( < . ( ( : ' ( 7, 6 < / % 0 ( 6 6 $ ( ' 2 & 7 2 / U HH H E U) P Q X H Q W J UD R OD S + Q L V [LI HW I D VX FLG * QL < / % 0 ( 6 6 $ Q R LWL V R S H HH Q U LO ) O\ G E DH / P H VV VHW D D QL FL G 3 QL V H W R 1 TO-220AB Full-Pak packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 101N Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 05/2012 8 www.irf.com