on C Mighty Gecko Wireless SoC EFR32MG1X232 Data Sheet The Mighty Gecko family of wireless solutions combines an energy-friendly MCU with a highly integrated radio transceiver supporting Bluetooth Smart®, wireless mesh, and proprietary short range wireless protocols. KEY FEATURES • 32-bit ARM® Cortex®-M4 core with 40 MHz maximum operating frequency • Low energy active and sleep currents fid The IoT System-On-Chip provides industry-leading energy efficiency, ultra-fast wakeup times, a scalable power amplifier, an integrated balun and no-compromise MCU features. • 12-channel Peripheral Reflex System enabling autonomous interaction of MCU peripherals • Autonomous Hardware Crypto Accelerator and True Random Number Generator en Mighty Gecko applications include • Connected Home • Lighting • Sports and Fitness • Metering • Building Automation • Scalable Memory and Radio configuration options available in several footprint compatible QFN packages EFR32 Wireless Gecko Core / Memory Power / Clock Radio tia ARM CortexTM M4, 40 MHz CPU with DSP extensions and FPU DC-DC Regulator Integrated PA, LNA, BALUN Packet and State Trace Flash Program Memory RAM Memory 32-bit bus Peripheral Reflex System Timer 2 x USART 6 x TIMERs Low Energy UARTTM I2C Up to 31 GPIO Low Energy Timer CRYOTIMER Pulse Counter Watchdog RTC l Connectivity Clocks: 2 x Crystal Oscillators 4 x RC Oscillators Digital PLL Analog Security TRUE RNG ADC IDAC 2 x Analog Comparators CRYPTO Hardware Accelerator: AES-128/256 SHA-1/2 RSA-2048 Available energy modes: EM0 – EM1 EM0 – EM4 silabs.com | Smart. Connected. Energy-friendly. This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Silicon Laboratories Confidential. Information contained herein is covered under non-disclosure agreement (NDA). Preliminary Rev. 0.71 EFR32MG1X232 Data Sheet Features 1. Features C • Low Power Wireless System-on-Chip. • High Performance 32-bit 40 MHz ARM Cortex-M4 with DSP instruction and floating-point unit for efficient signal processing • Up to 256 kB flash program memory • Up to 32 kB RAM data memory • 2.4 GHz radio operation • TX power up to 19.5 dBm • Low Energy Consumption • 8.6 mA RX current at 2.4 GHz (1 Mbps GFSK) • 9.1 mA RX current at 2.4 GHz (250 kbps O-QPSK DSSS) • 8.2 mA TX current @ 0 dBm output power at 2.4 GHz • 60 µA/MHz in Energy Mode 0 (EM0) • 1.35 µA EM2 DeepSleep current (full RAM retention and RTCC running from LFXO) • 1 µA EM3 Stop current (State/RAM retention) • Wake on Radio with signal strength detection, preamble pattern detection, frame detection and timeout • High Receiver Performance • -94 dBm sensitivity at 1 Mbps GFSK • -99.4 dBm sensitivity at 250 kbps O-QPSK DSSS • Modulation Format(s) Supported • 2-FSK / 4-FSK with fully configurable shaping • Shaped OQPSK / (G)MSK • Supported Protocol(s) • Bluetooth Smart • ZigBee® • Thread • 2.4 GHz Proprietary Protocols f on • Wide selection of MCU peripherals • 12-bit 1 Msamples/s SAR Analog to Digital Converter • 2× Analog Comparator • Digital to Analog Current Converter (IDAC) • Up to 31 pins connected to analog channels (APORT) shared between Analog Comparators, ADC, and IDAC • 31 General Purpose I/O pins with output state retention and asynchronous interrupts • 8 Channel DMA Controller • 12 Channel Peripheral Reflex System (PRS) • Hardware Crypto Acceleration with public key support • 2×16-bit Timer/Counter • 3 + 4 Compare/Capture/PWM channels • 32-bit Real Time Counter and Calendar • 16-bit Low Energy Timer for waveform generation • 32-bit Ultra Low Energy Timer/Counter for periodic wakeup from any Energy Mode • 16-bit Pulse Counter with asynchronous operation • Watchdog Timer with dedicated RC oscillator @ 50 nA • 2×Universal Synchronous/Asynchronous Receiver/Transmitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S) • Low Energy UART (LEUARTTM) l ia t en id • I2C interface with SMBus support and address recognition in EM3 Stop • Wide Operating Range • 1.62 V to 3.8 V single power supply • -40 °C to 85 °C • QFN48 7x7 mm Package silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 1 EFR32MG1X232 Data Sheet Ordering Information 2. Ordering Information Frequency Band Core Flash (kB) RAM (kB) EFR32MG1P232F256GM48-A0 2.4 GHz M4 256 32 • Bluetooth Full Smart • ZigBee/Thread • ZigBee RC • Proprietary 19.5 EFR32MG1P232F256GM48-B0 2.4 GHz M4 256 32 • Bluetooth Full Smart • ZigBee/Thread • ZigBee RC • Proprietary 19.5 EFR32MG1B232F256GM48-B0 2.4 GHz M4 256 32 • ZigBee/Thread Full • ZigBee RC 19.5 C Ordering Code Protocol Stack Encryption Max TX Power (dBm) f on EFR32 F G 1 P 133 F 256 G M 32 – A0 R Tape and Reel (Optional) Revision id Pin Count Package – M (QFN), J (WLSCP) Temperature Grade – G (-40 to +85 °C), I (-40 to +125 °C) Flash Memory Size in kB Memory Type (Flash) t en Feature Set Code – r2r1r0 r2: Reserved r1: RF Type – 3 (TRX), 2 (RX), 1 (TX) r0: Frequency Band – 3 (dual-band), 2 (2.4 GHz), 1 (sub-GHz) Performance Grade – P (Performance), B (Basic), V (Value) Generation Gecko Family – M (Mighty), B (Blue), Z (Zappy), F (Flex) Wireless Gecko 32-bit l ia Figure 2.1. OPN Decoder silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 2 EFR32MG1X232 Data Sheet System Overview 3. System Overview 3.1 Introduction The EFR32 product family features the world’s most energy friendly System-on-Chip radios. The devices are well suited for any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32 Reference Manual. 3.2 Block Diagram A block diagram of the EFR32MG1X232 is shown in Figure 3.1 Block Diagram on page 3. C Core / Memory ARM CortexTM M4 processor with DSP extensions and FPU High Frequency RC Oscillator High Frequency Crystal Oscillator Memory Protection Unit f on Flash Program Memory Clock Management RAM Memory DMA Controlller Debug Interface Energy Management Other Voltage Regulators Voltage Monitor CRYPTO Power-On Reset CRC Low Frequency RC Oscillator Auxiliary High Frequency RC Oscillator DC/DC Regulator Low Frequency Crystal Oscillator Ultra Low Frequency RC Oscillator Brown-Out Detector 32-bit bus Peripheral Reflex System FRC DEMOD PGA IFADC RF Frontend PA Q AGC Frequency Synthesizer CRC BALUN I MOD Lowest power mode with peripheral operational: EM1—Sleep Timers and Triggers USART External Interrupts Timer/Counter Protocol Timer ADC Low Energy UARTTM General Purpose I/O Low Energy Timer Watchdog Timer Analog Comparator I2C Pin Reset Pulse Counter Real Time Counter and Calendar IDAC Pin Wakeup EM2—Deep Sleep Analog I/F Cryotimer t en EM0—Active I/O Ports id LNA Serial I/F RAC RFSENSE BUFC Radio Transceiver EM3—Stop EM4—Hibernate EM4—Shutoff Figure 3.1. Block Diagram 3.3 System Description 3.3.1 Antenna interface ia The 2.4 GHz antenna interface consists of two pins (2GRF_IOP and 2GRF_ION) that interface directly to the on-chip BALUN. The 2GRF_ION pin should be grounded externally. The external components and power supply connections for the antenna interface in a typical application are shown in Section 5. Application Circuits. l silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 3 EFR32MG1X232 Data Sheet System Overview 3.3.2 Integrated Oscillators C The EFR32MG1X232 supports two crystal oscillators and fully integrates four RC oscillators, listed below. • A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing reference for the radio and MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. Silicon Laboratories reference designs employ a crystal frequency of 38.4 MHz. An external clock source such as a TCXO can also be applied to the HFXO input for improved accuracy over temperature. • An optional 32.768 kHz crystal oscillator (LFXO) can be used as an accurate timing reference in low energy modes. • A 32.768 kHz crystal oscillator (LFXO) should be used as an accurate timing reference in Bluetooth Smart low energy modes. • An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range. • An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial Wire debug port with a wide frequency range. • An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crystal accuracy is not required. • An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy consumption in low energy modes. f on 3.3.3 Fractional-N Frequency Synthesizer The EFR32MG1X232 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly generate the modulated RF carrier. The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz, with low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to optimize system energy consumption. 3.3.4 Receiver Architecture id The EFR32MG1X232 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion mixer, emplying a 38.4 MHz crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital converter (IFADC). The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, providing flexibility with respect to known interferers at the image frequency. t en The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selectivity and blocking performance. Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow receive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS). A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF channel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value with dB resolution is associated with each received frame and the dynamic RSSI measurement can be monitored throughout reception. ia The EFR32MG1X232 features integrated support for antenna diversity to improve link budget, using complementary control outputs to an external switch. Internal configurable hardware controls automatic switching between antennae during RF receive detection operations. In typical applications, the demodulator output is stored in internal buffer memory for access by the MCU. Direct mode supports direct serial output of demodulated data on configured GPIO pins. l silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 4 EFR32MG1X232 Data Sheet System Overview 3.3.5 Transmitter Architecture The EFR32MG1X232 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shaping. Automated PA up and down ramping is applied to each transmitted frame, in order to ensure the Adjacent Channel Power (ACP) meets regulatory requirements. Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by the EFR32MG1X232. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth between devices that otherwise lack synchronized RF channel access. C 3.3.6 Wake on Radio f on The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, using a subsystem of the EFR32MG1X232 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripherals. Wake on Radio implementation may typically include the following functionality: • Periodic trigger to start RF evaluation from the RTCC, GPIO or other low energy peripherals • Received Signal Strength Indicator (RSSI) qualification • Preamble and frame sync qualification • Frame header qualification, including address filtering • Autonomous packet demodulation and buffering • Optional transfer of RSSI values to RAM via DMA • Timeout to disable the receiver through the PRS in case of false alarm 3.3.7 RFSENSE The RFSENSE module generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4. id RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy consumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by enabling normal RF reception. Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using available timer peripherals. l ia t en silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 5 EFR32MG1X232 Data Sheet System Overview 3.3.8 Flexible Frame Handling C EFR32MG1X232 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols. The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/ Demodulator: • Highly adjustable preamble length • Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts • Frame disassembly and address matching (filtering) to accept or reject frames • Automatic ACK frame assembly and transmission • Fully flexible CRC generation and verification: • Multiple CRC values can be embedded in a single frame • 8, 16, 24 or 32-bit CRC value • Configurable CRC bit and byte ordering • Selectable bit-ordering (least significant or most significant bit first) • Optional data whitening • Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding • Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing • Fully configurable block codes for sub-GHz protocols, supporting both linear codes and table based lookup (e.g. Wireless M-bus 3out-of-6 coding) • Optional symbol interleaving, typically used in combination with FEC • Symbol coding, such as Manchester or DSSS, supported in the MODEM, or biphase space encoding using FEC hardware • UART encoding over air, with start and stop bit insertion / removal • Test mode support, such as modulated or unmodulated carrier output • Received frame timestamping f on 3.3.9 Packet and State Trace 3.3.10 Data Buffering t en id The EFR32MG1X232 Frame Controller has a packet and state trace unit that provides valuable information during the development phase. It features: • Non-intrusive trace of transmit data, receive data and state information • Data observability on a single-pin UART data output, or on a two-pin SPI data output • Configurable data output bitrate / baudrate • Multiplexed transmitted data, received data and state / meta information in a single serial data stream The EFR32MG1X232 features an advanced buffer controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64 bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations. 3.3.11 Radio Controller (RAC) The Radio Controller controls the top level state of the radio subsystem in the EFR32MG1X232. It performs the following tasks: • Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry • Run-time calibration of receiver, transmitter and frequency synthesizer • Detailed frame transmission timing, including optional LBT or CSMA-CA ia 3.3.12 Crypto Accelerator (CRYPTO) The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices support various levels of hardware-accelerated encryption, depending on the part. Section 2. Ordering Information specifies whether this part has full or AES-only crypto support. AES-only devices support AES encryption and decryption with 128- or 256-bit keys. Full crypto support adds RSA-2048, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2. l Supported modes of operation for AES includes ECB, CTR, CBC, PCBC, CFB, OFB, CBC-MAC, GMAC, CCM and GCM. Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233. The CRYPTO is tightly linked to the BUFC enabling fast and efficient autonomous cipher operations on data buffer content. It allows fast processing of ECC, RSA and SHA with little CPU intervention. CRYPTO also provides trigger signals for DMA read and write operations. silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 6 EFR32MG1X232 Data Sheet System Overview 3.3.13 True Random Number Generator The Frame Controller (FRC) implements a true random number generator that extracts noise from the RF receive chain. Data can be read from a register 32 bits at a time, or larger blocks of random data can be written directly to RAM. Output from the random number generator can be used either directly or as a seed or entropy source for software based random number generator algorithms such as Fortuna. 3.3.14 System Processor C The ARM Cortex-M processor subsystem integrates the following features and tasks in the system: • 32-bit ARM Cortex-M RISC processor achieving 1.25 Dhrystone MIPS/MHz • Memory Protection Unit (MPU) supporting up to 8 memory segments • Up to 256 kB flash program memory • Up to 32 kB RAM data memory • Advanced and flexible protocol support, in cooperation with the Frame Controller • Configuration and event handling of all modules • 2-pin Serial-Wire debug interface, which can be disabled f on The Cortex-M4 is equipped with DSP instruction support and a floating-point unit (FPU). 3.3.15 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in energy modes EM0 Active/EM1 Sleep. 3.3.16 Linked Direct Memory Access Controller (LDMA) id The Linked Direct Memory Access (LDMA) controller features 8 channels capable of performing memory operations independently of software. This reduces both energy consumption and software workload. 3.3.17 Integrated Voltage Regulators 3.3.18 Reset Management Unit (RMU) t en The EFR32MG1X232 generates internal supply voltages from integrated regulators. This means that only a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator, further detailed in section 3.3.37 Integrated DC-DC Converter (DC-DC), can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capacitor. The RMU is responsible for handling reset of the EFR32MG1X232. A wide range of reset sources are available, including several power supply monitors, pin reset, software controlled reset, core lockup reset and watchdog reset. 3.3.19 Energy Management Unit (EMU) 3.3.20 Clock Management Unit (CMU) ia The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and features are available. The EMU can also be used to turn off the power to unused RAM blocks. The EMU also contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multiple supply voltages. It has 4 channels which can be programmed individually by the user to determine if a sensed supply has fallen below a chosen threshold. l The Clock Management Unit controls oscillators and clocks in the EFR32MG1X232. Individual enabling and disabling of clocks to all peripheral modules is perfomed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and oscillators. silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 7 EFR32MG1X232 Data Sheet System Overview 3.3.21 Watchdog (WDOG) The watchdog timer with window monitoring capabilities can monitor the Peripheral Reflex System and generate a reset in case of a system failure to improve application reliability. 3.3.22 Peripheral Reflex System (PRS) The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement. Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer peripherals which in turn perform actions in response. Edge triggers and other functionality can be applied by the PRS. The PRS allows peripheral to act autonomously without waking the MCU core, saving power. 3.3.23 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) C f on The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices supporting: • ISO7816 SmartCards • IrDA • I2S 3.3.24 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) The unique LEUART provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication possible with a minimum of software intervention and energy consumption. 3.3.25 Inter-Integrated Circuit Interface (I2C) 3.3.26 Protocol Timer (PROTIMER) id The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated transfers. Automatic recognition of slave addresses is provided in active and low energy modes. 3.3.27 Timer/Counter (TIMER) t en The PROTIMER is perfectly suited for radio protocol time-keeping, featuring support for time-slotted and random backoff LBT/CSMA radio access mechanisms. The PROTIMER includes a capture/compare functionality, including several capture registers, configurable to capture counter or RTCC values upon trigger events selected from Peripheral Reflex System events or radio events. The capture register values may be used for received frame timestamping. The compare feature produces output events upon match of captured values to programmed comparison values, which can be used to enable or disable the RF receiver without MCU intervention. TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the PRS system. Please refer to Section 3.4 Configuration Summary for available TIMER units and features in the EFR32MG1X232 3.3.28 Real Time Counter and Calendar (RTCC) ia The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit TIMER_0 only. l The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscillators (Section 3.3.2 Integrated Oscillators) with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy and convenient data storage in all energy modes. silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 8 EFR32MG1X232 Data Sheet System Overview 3.3.29 Low Energy Timer (LETIMERTM) The unique LETIMER, is a 16-bit timer that is available in energy mode EM2 DeepSleep in addition to EM1 Sleep and EM0 Active. This allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter and Calendar (RTCC), and can be configured to start counting on compare matches from the RTCC. 3.3.30 Ultra Low Power Wake-up Timer (CRYOTIMER) C The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO) or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of interrupt periods, facilitating flexible ultra-low energy operation. 3.3.31 Pulse Counter (PCNT) f on The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2 DeepSleep and EM3 Stop. 3.3.32 General Purpose Input/Output (GPIO) EFR32MG1X232 has 31 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripherals. The GPIO subsystem supports asynchronous external pin interrupts. 3.3.33 Analog Port (APORT) id The Analog Port (APORT) is an analog interconnect matrix allowing access to analog modules ADC, ACMP, and IDAC on a flexible selection of pins. Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are grouped by X/Y pairs. See 6.4 Analog Port (APORT) for an illustration of the APORT connections. 3.3.34 Analog Comparator (ACMP) t en The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption is configurable by software. The ACMP can also be used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. 3.3.35 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 MSamples/s. The output sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples. 3.3.36 Digital to Analog Current Converter (IDAC) ia The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of source, including pins configurable as either single-ended or differential. l The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin or routed to the selected ADC input pin for capacitive sensing. The current is programmable between 0.05 µA and 64 µA with several ranges with various step sizes. silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 9 EFR32MG1X232 Data Sheet System Overview 3.3.37 Integrated DC-DC Converter (DC-DC) The DC-DC buck converter covers a wide range of load currents and provides high efficiency in energy modes EM0, EM1, EM2 and EM3. Patent-pending RF noise mitigation allows operation of the DC-DC converter without degrading radio sensitivity. The converter has three modes: low noise (LN), low power (LP), and bypass. Each operating mode transition is initiated by firmware and executed by an integrated hardware state machine, providing well-controlled transitions. Bypass mode may be entered when the input voltage is too low for efficient operation of the DC-DC converter. In Bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance switch. Bypass mode also supports in-rush current limiting to avoid dipping the input supply due to excessive current transients. C Key Features: • Wide load range from sub-µA to 200 mA • High efficiency up to 90% • Low Noise (LN), Low Power (LP) and Bypass operating modes for high performance and low energy applications • Fast wakeup from LP to LN to support quick EM2 to EM0 transition • Low 50 nA quiescent current in LP mode to support micro-ampere range load currents • Optimized for integration with the on-board radio • Switching frequency programmable from 3 MHz to 8 MHz • RF noise mitigation mechanism • Supports wide range of passive part selection • External capacitor range from 1 µF to 10 µF with external 4.7 µH inductor • Protection features • Programmable sourcing and sinking current limits • Output short-circuit protection • Dead-time protection f on DVDD id PFET2 Bypass mode enable VREGVDD LN Controller PWM LP mode enable LP Controller PFET1 SW Logic t en Digital FSM LN mode enable CLim VREGSW 4.7uH pulses ZDet 1.0uF NFET VREGVSS Figure 3.2. Functional Diagram of the DC-DC Converter l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 10 EFR32MG1X232 Data Sheet System Overview 3.3.37.1 DC-DC Converter Powertrain The powertrain consists of low-resistance P-channel (PFET1) and N-channel (NFET) switches, combined with a current limiter and zero-crossing detector. The power switches provide programmable drive strength by selection of a number of slices for each switch. The switching logic takes either a PWM signal from a low-noise controller or pulses from a low-power controller and drives PFET1 and NFET switches using proper dead-time control. The powertrain can switch in both forced Continuous Conduction Mode (CCM) mode and load-adaptive Continuous Conduction/Discontinuous Conduction (CCM/DCM) mode. Load-adaptive CCM/DCM mode has superior efficiency in light load conditions, whereas forced CCM mode provides the best transient response and noise control when the radio is on. The DC-DC converter includes a current limiter to protect PFET1 from large transient currents. Whenever a current overload is detected, the switching logic advances the transition from PFET1 to NFET and optionally sends an interrupt signal to the processor. C A zero-voltage detector is included to prevent reverse current in DCM mode. When NFET is on and zero voltage is detected across NFET, the switching logic will turn NFET off to prevent reverse current. The zero-voltage detector can be disabled to enable forced CCM mode. It can also be configured as a programmable reverse current limiter. 3.3.37.2 DC-DC Converter Low Noise (LN) Controller f on The LN controller consists of an active-RC type-III compensator, a ramp generator and a PWM comparator. The compensator generates an error voltage from on-chip feedback, which is compared against a ramp voltage by the PWM comparator. The resulting PWM signal is duty-cycle limited between 3% and 96%, with circuitry to avoid control-loop lockout. The PWM frequency can be generated from the ramp generator's oscillator or from an external clock from the radio's RF synthesizer. Noise mitigation hardware post-processes the PWM signal to avoid in-band noise coupling into the radio system. 3.3.37.3 DC-DC Converter Low Power (LP) Controller 3.4 Configuration Summary id The LP controller consists of a continuous-time comparator with hysteresis and a constant frequency pulse generator. When the output voltage is lower than the low threshold of the comparator, the pulse generator is enabled to activate the powertrain. The powertrain switches at a constant-frequency with a fixed duty cycle of about 90%. When the DC-DC output exceeds the comparator's high threshold, the pulse generator is disabled until the cycle starts over again on the next low-threshold crossing. The comparator has four programmable response-time settings. The lowest setting consumes only approximately 50nA, providing high-efficiency regulation of current loads down to the micro-ampere range. The features of the EFR32MG1X232 is a subset of the feature set described in the EFR32 Reference Manual. Table 3.1 Configuration Summary on page 11 describes device specific implementation of the features. Remaining modules support full configuration. Module Configuration USART0 IrDA I2S SmartCard USART1 IrDA I2S SmartCard TIMER0 with DTI. TIMER1 t en Table 3.1. Configuration Summary Pin Connections US0_TX, US0_RX, US0_CLK, US0_CS US1_TX, US1_RX, US1_CLK, US1_CS TIM0_CC[2:0], TIM0_CDTI[2:0] TIM1_CC[3:0] l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 11 EFR32MG1X232 Data Sheet System Overview 3.5 Memory Map The EFR32MG1X232 memory map is shown in the figure below. RAM and flash sizes are for the largest memory configuration. C f on t en id Figure 3.3. EFR32MG1X232 Memory Map l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 12 EFR32MG1X232 Data Sheet Electrical Characteristics 4. Electrical Characteristics 4.1 Test Conditions 4.1.1 Typical Values Typical values are based on TAMB=25 °C and VDD=3.3 V, as defined in 4.3.1 General Operating Conditions, by production test and/or technology characterization unless otherwise specified. Radio performance numbers are measured in conducted mode, based on Silicon Labs reference designs using output power-specific external RF impedance-matching networks, further identified in Section 5. Application Circuits, for interfacing to a 50 Ω antenna. C 4.1.2 Minimum and Maximum Values Minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in 4.3.1 General Operating Conditions. f on 4.2 Absolute Maximum Ratings The absolute maximum ratings are stress ratings, and functional operation under such conditions is not guaranteed. Stress beyond the limits specified in may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in 4.3.1 General Operating Conditions. Table 4.1. Absolute Maximum Ratings Parameter Storage temperature range Symbol TSTG External main supply voltage VDDRAMPMAX ramp rate Voltage on any 5V tolerant 1 GPIO pin VDIGPIN Voltage on HFXO pins VHFXOPIN Voltage on RF pins 2G4RF_IOP and 2G4RF_ION VMAX2G4 Total current into VSS ground IVSSMAX lines (sink) IIOMAX Current per I/O pin (source) Current for all I/O pins (sink) IIOALLMAX Voltage difference between AVDD and VREGVDD ΔVDD Unit -50 - 150 °C 0 - 3.8 V - - 1 V / µs -0.3 - Min of 5.25 and IOVDD +2 V -0.3 - IOVDD+0.3 V -0.3 - 1.4 V TBD - TBD V - - TBD mA - - - - - - - - - - 50 mA 50 mA TBD mA TBD mA 0.3 l Current for all I/O pins (source) Max ia Current per I/O pin (sink) Typ t en Voltage on non-5V tolerant GPIO pins Min id External main supply voltage VDDMAX Test Condition V Note: 1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD. silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 13 EFR32MG1X232 Data Sheet Electrical Characteristics 4.3 Operating Conditions When assigning supply sources, the following requirements must be observed: • VREGVDD must be the highet voltage in the system • VREGVDD ≥ AVDD • VREGVDD ≥ DVDD • DVDD ≥ PAVDD • DVDD ≥ DECOUPLE • AVDD ≥ IOVDD 4.3.1 General Operating Conditions C Symbol Ambient temperature range TAMB Test Condition Min Typ Max Unit -40 25 85 °C VREGVDD Operating supply VVREGVDD voltage 1.62 3.3 3.8 V RFVDD Operating supply voltage 1.62 - V(VREGVD D) V V(VREGVD D) - V(VREGVD D) V DVDD Operating supply volt- VDVDD age 1.62 - V(VREGVD D) V PAVDD Operating supply voltage VPAVDD 1.62 - 3.8 V IOVDD Operating supply voltage VIOVDD 1.62 - V(VREGVD D) V DECOUPLE Operating supply voltage VDECOUPLE 1.08 1.2 1.32 V f on Parameter Table 4.2. General Operating Conditions VRFVDD AVDD Operating supply volt- VAVDD age fCORE Note: 1. in MSC_READCTRL register t en HFCLK frequency id Difference between AVDD dVDD and VREGVDD, ABS(AVDDVREGVDD) AVDD must be tied to VREGVDD - - 0.1 V 1 - - 26 MHz 1 wait-states (MODE = WS1) 1 - 38.4 40 MHz 0 wait-states (MODE = WS0) l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 14 EFR32MG1X232 Data Sheet Electrical Characteristics 4.4 DC-DC Converter Test conditions: LDCDC=4.7 µH, CDCDC=1.0 µF, VDCDC_I=3.3 V, VDCDC_O=1.8 V, IDCDC_LOAD=50 mA, Heavy Drive configuration, FDCDC_LN=8 MHz, unless otherwise indicated. Table 4.3. DC-DC Converter Symbol Test Condition Min Typ Max Unit Input voltage range VDCDC_I Bypass mode TBD - 3.8 V Low noise (LN) or low power (LP) mode, 1.8 V output, 200 mA load current 2.4 - 3.8 V 1.8 - - V Output voltage range VDCDC_O 1.8V configuration Steady-state output ripple VR ESR=50 Ω, ESL=2 nH on 1 µF filter cap. Radio disabled - 3 - mVpp f on C Parameter - TBD - mVpp CCM Mode (LNFORCECCM = 1), Load changes between 0 mA and 100 mA - 100 - mV DCM Mode (LNFORCECCM1 = 0), Load changes between 0 mA and 10 mA - 150 - mV 0.1 - % ESR=50 Ω, ESL=2 nH on 1 µF filter cap. Radio enabled Output voltage under/overshoot VOV 1 VREG Input changes between 3.8 V and 2.4 V - DC load regulation IREG Load changes between 0 mA and 100 mA in CCM mode - 0.1 - % Quiescent current IDCDC_Q Low power (LP) mode, lowest bias setting (LPCMPBIAS1 = BIAS0) - 50 - nA ILOAD_MAX t en Max load current id DC line regulation Low noise (LN) mode, DCM configuration (LNFORCECCM1 = 0) - 0.3 - mA Low noise (LN) mode, CCM configuration (LNFORCECCM1 = 1) - 0.8 - mA Low noise (LN) mode - 200 mA Low power (LP) mode - 10 mA Capacitance of DCDC output CDCDC capacitor Resistance in Bypass mode RBYP Peak current limit range IIPK Peak current limit step IPK_STEP Switching frequency FLN silabs.com | Smart. Connected. Energy-friendly. 10 µF - 4.7 - µH - 0.8 - Ω 20 - 640 mA - 20 - mA Medium Drive2 - 40 - Heavy Drive2 - 80 - mA Low noise (LN) mode 3 8 MHz Light drive 2 l LDCDC - ia Inductance of DCDC output inductor 1 mA Preliminary Rev. 0.71 | 15 EFR32MG1X232 Data Sheet Electrical Characteristics Parameter Symbol Test Condition Min Typ Max Unit Note: 1. In MU_DCDCMISCCTRL register 2. Drive levels are defined by configuration of the P/NSLICESEL register. Light Drive: P/NSLICESEL=3; Medium Drive: P/NSLICESEL=7; Heavy Drive: P/NSLICESEL=15. C f on l ia t en id silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 16 EFR32MG1X232 Data Sheet Electrical Characteristics 4.4.1 DC-DC Converter Typical Performance Characteristics Default test conditions: CCM mode, LDCDC=4.7 µH, CDCDC=1.0 µF, VDCDC_I=3.3 V, VDCDC_O=1.8 V, FDCDC_LN=8 MHz Efficiency VS Load Current, LN mode Efficiency VS Load current, LP mode 100 100 90 90 80 80 Eff,% Eff,% C 70 60 60 50 1 10 10 Load,mA 40 -3 10 2 -2 10 -1 10 Load,mA 0 10 _ _ _ _ CMP CMP CMP CMP _ _ _ _ BIAS BIAS BIAS BIAS 3 2 1 0 1 10 Relative output droop VS Load current, LP mode Ron VS supply voltage in bypass mode 2 LP LP LP LP 50 Heavy Drive Medium Drive Light Drive f on 40 0 10 70 10 SW _ PFET _ EN 0 SW _ PFET _ EN 1 5 -5 id Ron,Ohm 1.5 Relative output droop,mV 0 -10 -15 1 -20 -25 2 2.5 VDD,V 3 3.5 LN (CCM) and LP mzode transition(load: 5mA) -30 -3 10 10 -2 -1 10 Load,mA 100mA ILOAD 2V/div offset:1.8V 1mA 10μs/div 100μs/div 1 10 l Figure 4.1. DC-DC Electrical Characteristics silabs.com | Smart. Connected. Energy-friendly. 0 Load Step Response in LN(CCM)mode(Heavy Drive) DVDD 50mV/div offset:1.8V VSW 10 ia DVDD 60mV/div offset:1.8V 4 t en 0.5 LP _ CMP _ BIAS 3 LP _ CMP _ BIAS 2 LP _ CMP _ BIAS 1 LP _ CMP _ BIAS 0 Preliminary Rev. 0.71 | 17 EFR32MG1X232 Data Sheet Electrical Characteristics 4.5 Current Consumption 4.5.1 Current Consumption 1.8 V without DC-DC Converter Unless otherwise indicated VREGVDD = AVDD = DVDD = RFVDD = PAVDD= 1.8 V. EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. See Figure 5.1 EFR32MG1X232 Typical Application Circuit: Direct Supply Configuration without DC-DC converter on page 44. Table 4.4. Current Consumption 1.8V without DC/DC Parameter Symbol C Current consumption in EM0 IACTIVE Active mode with radio disabled, All peripherals disabled Test Condition Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash - TBD - µA/MHz 38 MHz HFRCO, CPU running Prime from flash - TBD - µA/MHz 38 MHz HFRCO, CPU running while loop from flash - TBD - µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash - TBD - µA/MHz 26 MHz HFRCO, CPU running while loop from flash - TBD - µA/MHz 1 MHz HFRCO, CPU running while loop from flash - TBD - µA/MHz 38.4 MHz crystal - TBD - µA/MHz 38 MHz HFRCO - TBD - µA/MHz f on Min id Current consumption in EM1 IIDLE Sleep mode with radio disabled. All peripherals disabled - TBD - µA/MHz 1 MHz HFRCO - TBD - µA/MHz Current consumption in EM2 IEM2 DeepSleep mode. Full RAM retention and RTCC running from LFXO - TBD - µA Current consumption in EM3 IEM3 Stop mode Full RAM retention and CRYOTIMER running from ULFRCO - TBD - µA Current consumption in EM4 IEM4 Hibernate mode 128 byte RAM retention, RTCC running from LFXO - TBD - µA 128 byte RAM retention, CRYOTIMER running from ULFRCO - TBD - µA 128 byte RAM retention, no RTCC - TBD - µA No RAM retention, no RTCC - TBD - µA Current consumption in EM4 IEM4S Shutoff mode l ia t en 26 MHz HFRCO silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 18 EFR32MG1X232 Data Sheet Electrical Characteristics 4.5.2 Current Consumption 3.3 V without DC-DC Converter Unless otherwise indicated VREGVDD = AVDD = DVDD = RFVDD = PAVDD= 3.3 V. EMU_PWRCFG_PWRCG=NODCDC. EMU_DCDCCTRL_DCDCMODE=BYPASS. See Figure 5.1 EFR32MG1X232 Typical Application Circuit: Direct Supply Configuration without DC-DC converter on page 44. Table 4.5. Current Consumption 3.3V without DC/DC Parameter Symbol Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash - 124 - µA/MHz 38 MHz HFRCO, CPU running Prime from flash - 85 - µA/MHz 38 MHz HFRCO, CPU running while loop from flash - 99 - µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash - TBD - µA/MHz 26 MHz HFRCO, CPU running while loop from flash - 100 - µA/MHz 1 MHz HFRCO, CPU running while loop from flash - TBD - µA/MHz 38.4 MHz crystal - 45 - µA/MHz 38 MHz HFRCO - 27 - µA/MHz 26 MHz HFRCO - 28 - µA/MHz 1 MHz HFRCO - TBD - µA/MHz Current consumption in EM2 IEM2 DeepSleep mode. Full RAM retention and RTCC running from LFXO - 2.92 - µA Current consumption in EM3 IEM3 Stop mode Full RAM retention and CRYOTIMER running from ULFRCO - TBD - µA Current consumption in EM4 IEM4 Hibernate mode 128 byte RAM retention, RTCC running from LFXO - TBD - µA 128 byte RAM retention, CRYOTIMER running from ULFRCO - TBD - µA 128 byte RAM retention, no RTCC - TBD - µA no RAM retention, no RTCC - TBD - µA C Current consumption in EM0 IACTIVE Active mode with radio disabled, All peripherals disabled Test Condition f on Current consumption in EM1 IIDLE Sleep mode with radio disabled. All peripherals disabled l ia t en id Current consumption in EM4 IEM4S Shutoff mode silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 19 EFR32MG1X232 Data Sheet Electrical Characteristics 4.5.3 Current Consumption 3.3 V using DC-DC Converter Unless otherwise indicated VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD= 1.8 V DC-DC output. See Figure 5.2 EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 or Figure 5.3 EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDD) on page 45. Table 4.6. Current Consumption 3.3V with DC/DC Parameter Symbol Min Typ Max Unit 38.4 MHz crystal, CPU running while loop from flash. - 94 - µA/MHz 38 MHz HFRCO, CPU running Prime from flash - 60 - µA/MHz 38 MHz HFRCO, CPU running while loop from flash - 69 - µA/MHz 38 MHz HFRCO, CPU running CoreMark from flash - TBD - µA/MHz 26 MHz HFRCO, CPU running while loop from flash - 75 - µA/MHz 1 MHz HFRCO, CPU running while loop from flash - TBD - µA/MHz 38.4 MHz crystal - 39 - µA/MHz 38 MHz HFRCO - 20 - µA/MHz 26 MHz HFRCO - 21 - µA/MHz 1 MHz HFRCO - TBD - µA/MHz Current consumption in EM2 IEM2 DeepSleep mode. Full RAM retention and RTCC 1 running from LFXO - 1.35 - µA Current consumption in EM3 IEM3 Stop mode Full RAM retention and CRYO2 TIMER running from ULFRCO - 1 - µA Current consumption in EM4 IEM4 Hibernate mode 128 byte RAM retention, RTCC running from LFXO - 0.7 - µA 128 byte RAM retention, CRYOTIMER running from ULFRCO - 0.5 - µA 128 byte RAM retention, no RTCC - 0.3 - µA no RAM retention, no RTCC - 0.2 - µA C Current consumption in EM0 IACTIVE Active mode with radio disabled. All peripherals disabled, DCDC in LowNoise mode Test Condition f on Current consumption in EM1 IIDLE Sleep mode with radio disabled. All peripherals disabled, DCDC in LowPower mode. l ia Note: 1. Target for planned revision. Current silicon performance is 2.3 µA 2. Target for planned revision. t en id Current consumption in EM4 IEM4S Shutoff mode silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 20 EFR32MG1X232 Data Sheet Electrical Characteristics 4.5.4 Current Consumption Using Radio Unless otherwise indicated VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. See Figure 5.2 EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44. or Figure 5.3 EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDD) on page 45. Table 4.7. Current Consumption Using Radio 3.3 V with DC-DC Symbol Test Condition Min Typ Max Unit Current consumption in receive mode, active packet reception (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled) IRX 1 Mbit/s, 2GFSK, F = 2.4 GHz - 8.6 - mA 802.15.4 receiving frame, F = 2.4 GHz - 9.1 - mA Current consumption in pol- IRX_POLL led RX mode (radio active for 200 µs every second to check for traffic) 1 Mbit/s, 2GFSK, F = 2.4 GHz - 4 - µA Current consumption in transmit mode (MCU in EM1 @ 38.4 MHz, peripheral clocks disabled) CW, 0 dBm, F = 2.4 GHz - 8.2 - mA CW, 3 dBm, F = 2.4 GHz - 16.4 - mA CW, 8 dBm, F = 2.4 GHz - 25.5 - mA CW, 10.5 dBm, F = 2.4 GHz - 34.5 - mA CW, 16.5 dBm, F = 2.4 GHz, PAVDD connected directly to external 3.3V supply - 88 - mA CW, 19.5 dBm, F = 2.4 GHz, PAVDD connected directly to external 3.3V supply - 133 - mA C Parameter f on ITX l ia t en id silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 21 EFR32MG1X232 Data Sheet Electrical Characteristics 4.6 Wake up times Table 4.8. Wake up times Parameter Symbol Test Condition Wake up from EM2 DeepSleep tEM2_WU Wakeup time from idle, executing from flash tIDLE C Wake up from EM3 Stop tEM3_WU tEM4H_WU Wake up from EM4 Shutoff1 tEM4S_WU Typ Max Unit Code execution from RAM - 2.8 3.4 µs Code execution from FLASH - 7.8 10.4 µs Executing from flash - TBD - AHB Clocks Executing from RAM - TBD - AHB Clocks Executing from flash - 2.8 3.4 µs Executing from RAM - TBD - µs Executing from flash - TBD - µs Executing from RAM - TBD - µs Executing from flash - TBD - µs Executing from RAM - TBD - µs f on Wake up from EM4 Hiber1 nate Min Note: 1. Time from wakeup request till first instruction is executed. Wakeup results in device reset. l ia t en id silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 22 EFR32MG1X232 Data Sheet Electrical Characteristics 4.7 Brown Out Detector Table 4.9. Brown Out Detector Parameter Symbol Test Condition DECOUPLE BOD threshold VDECOUPLEBOD Min Typ Max Unit TBD TBD TBD V - TBD - V - TBD - nS DVDD rising TBD TBD TBD V DVDD falling TBD TBD TBD V - TBD - mV - TBD - nS AVDD rising TBD TBD TBD V AVDD falling TBD TBD TBD V DECOUPLE BOD hysteresis VDECOUPLE_HYST DECOUPLE response time tDECOUPLE_DE- Supply drops at 1V/µs rate C LAY DVDDBOD threshold DVDD BOD hysteresis VDVDDBOD VDVDDBOD_HYST f on DVDD response time tDVDDBOD_DELAY Supply drops at 1V/µs rate AVDD BOD threshold VAVDDBOD VAVDDBOD_HYST - TBD - mV AVDD response time tAVDDBOD_DELAY Supply drops at 1V/µs rate - TBD - nS EM4 BOD threshold VEM4DBOD AVDD rising TBD TBD TBD V AVDD falling TBD TBD TBD V - TBD - mV - TBD - nS EM4 BOD hysteresis VEM4BOD_HYST EM4 response time tEM4BOD_DELAY 4.8 Frequency Synthesizer Characteristics id AVDD BOD hysteresis Supply drops at 1V/µs rate t en Table 4.10. Frequency Synthesizer Characteristics Symbol Test Condition RF Synthesizer Frequency range FRANGE_2400 2.4 GHz frequency range LO tuning frequency resolution with 38.4 MHz crystal FRES_2400 2400 - 2485 MHz Maximum frequency deviation with 38.4 MHz crystal ΔFMAX_2400 4.9 2.4 GHz RF Transceiver Characteristics Min Typ Max Unit 2400 - 2485 MHz - - 73 Hz - - 1677 kHz l ia Parameter silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 23 EFR32MG1X232 Data Sheet Electrical Characteristics 4.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 45. Table 4.11. RF Transmitter General Characteristics for 2.4 GHz Band Parameter Maximum TX power 1 Symbol Test Condition POUTMAX 0 dBm-rated part numbers C Min Typ Max Unit - 0 - dBm -62 - dBm POUTMIN Output power step size POUTSTEP -5 dBm< Output power < 0 dBm - 1 - dB Output power variation vs supply at POUTMAX POUTVAR_V 1.8 V < V(VREGVDD) < 3.3 V without DC-DC converter - 6 - dB 1.8 V < V(VREGVDD < 3.3 V using DC-DC converter - 2 - dB From -40 to +85° C - 2 - dB Over RF tuning frequency range - 1 - dB 2400 - 2483.5 MHz f on Minimum active TX Power Output power variation vs temperature at POUTMAX POUTVAR_T Output power variation vs RF POUTVAR_F frequency at POUTMAX RF tuning frequency range FRANGE id Note: 1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices covered in this datasheet can be found in the Max TX Power column of 2. Ordering Information 4.9.2 RF Receiver General Characteristics for the 2.4 GHz Band t en Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 45. Table 4.12. RF Receiver General Characteristics for 2.4 GHz Band Symbol RF tuning frequency range FRANGE Receive mode maximum spurious emission SPURRX Level above which RFSENSE will trigger RFSENSETRIG Level below which RFSENSE wil not trigger RFSENSETHRES Test Condition Min Typ Max Unit 2400 - 2483.5 MHz - -57 - dBm 1 GHz to 12 GHz - -47 - dBm CW at 2.45 GHz - -17 - dBm - -50 - dBm 30 MHz to 1 GHz l ia Parameter silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 24 EFR32MG1X232 Data Sheet Electrical Characteristics 4.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 45. Table 4.13. RF Transmitter Characteristics for Bluetooth Smart in the 2.4GHz Band Parameter Symbol Transmit 6dB bandwidth TXBW Typ Max Unit - TBD - kHz Per FCC part 15.247 - TBD - dBm/ kHz Per ETSI 300.328 - TBD - dBm/ MHz Occupied channel bandwidth OCPETSI328 per ETSI EN300.328 99% BW at highest and lowest channels in band - TBD - MHz In-band spurious emissions, 1 with allowed exceptions SPURINB At ±2 MHz - -35 - dBm At ±3 MHz - -36 - dBm Emissions of harmonics outof-band, per FCC part 15.247 SPURHRM_FCC 2nd,3rd, 5, 6, 8, 9,10 harmonics; continuous transmission of modulated carrier - TBD - dBm Spurious emissions out-ofband, per FCC part 15.247, excluding harmonics captured in SPURHARM,FCC SPUROOB_FCC Above 2.483 GHz or below 2.4 GHz; continuous transmission of modulated carrier - TBD - dBc Spurious emissions out-ofband; per ETSI 300.328 SPURETSI328 [2400-BW to 2400] MHz, [2483.5 to 2483.5+BW] MHz - TBD - dBm [2400-2BW to 2400-BW] MHz, [2483.5+BW to 2483.5+2BW] MHz per ETSI 300.328 - TBD - dBm C Min Power spectral density limit PSDLIMIT Test Condition f on t en id Spurious emissions per ETSI SPURETSI440 EN300.440 47-74 MHz,87.5-108 MHz, 174-230 MHz, 470-862 MHz - TBD - nW 25-1000 MHz - TBD - nW - TBD - nW 1-24 GHz Note: 1. Per Bluetooth Core_4.2, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less. l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 25 EFR32MG1X232 Data Sheet Electrical Characteristics 4.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.440 GHz. Test circuit according to Figure 5.2 EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 45. Table 4.14. RF Receiver Characteristics for Bluetooth Smart in the 2.4GHz Band Symbol Test Condition Max usable receiver input level, 0.1% BER SAT Sensitivity, 0.1% BER SENS C Parameter Min Typ Max Unit Signal is reference signal . Packet length is 20 bytes. - 10 - dBm Signal is reference signal. Using 2 DC-DC converter - -94 - dBm With dirty transmitter as defined in Core_4.1 - -91.4 - dBm 1 f on Desired signal 3 dB above reference sensitivity - 9 - dB N+1 adjacent channel (1 C/I1+ MHz) selectivity, 0.1% BER, 3 with allowable exceptions . Desired is reference signal at 3 dB above reference sensitivity level Interferer is reference signal at +1 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz - -2 - dB N-1 adjacent channel (1 C/I1MHz) selectivity, 0.1% BER, with allowable exceptions3. Desired is reference signal at 3 dB above reference sensitivity level Interferer is reference signal at -1 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz - 0 - dB Alternate (2 MHz) selectivity, C/I2 0.1% BER, with allowable exceptions3. Desired is reference signal at 3 dB above reference sensitivity level Interferer is reference signal at ± 2 MHz offset. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz - -43 - dB Alternate (3 MHz) selectivity, C/I3 0.1% BER, with allowable exceptions3. Desired is reference signal at 3 dB above reference sensitivity level Interferer is reference signal at ±3 MHz offset. Desired frequency 2404 MHz ≤ Fc ≤ 2480 MHz - -48 - dB Selectivity to image frequen- C/IIM cy, 0.1% BER. Desired is reference signal at 3 dB above reference sensitivity level Interferer is reference signal at image frequency with 1 MHz precision - -40 - dB Selectivity to image frequen- C/IIM+1 4 cy +1 MHz, 0.1% BER. Desired is reference signal at 3 dB above reference sensitivity level Interferer is reference signal at image frequency +1 MHz with 1 MHz precision - -48 ia t en id Signal to co-channel interfer- C/ICC er, 0.1% BER - dB l silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 26 EFR32MG1X232 Data Sheet Electrical Characteristics Parameter Symbol Min Typ Max Unit Interferer frequency 30 MHz ≤ f ≤ 2000 MHz - -30 - dBm Interferer frequency 2003 MHz ≤ f ≤ 2399 MHz - -35 - dBm Interferer frequency 2484 MHz ≤ f ≤ 2997 MHz - -35 - dBm Interferer frequency 3 GHz ≤ f ≤ 12.75 GHz - -30 - dBm Desired is reference signal at 6dB above reference sensitivity level. Interferer 1 is CW at level IMBLE. Interferer 2 is reference signal at IMBLE. - -33 - dBm Upper limit of input power RSSIMAX range over which RSSI resolution is maintained TBD - - dBm Lower limit of input power RSSIMIN range over which RSSI resolution is maintained - - TBD dBm - - TBD dB Blocking, 0.1% BER, Desired BLOCKOOB is reference signal at 3 dB above reference sensitivity level. Interferer is CW in OOB range. C Intermodulation performance IM per Core_4.1, Vol 6 Section 4.4 (n = 3 alternative), 0.1% BER. Test Condition f on RSSI resolution RSSIRES Over RSSIMIN to RSSIMAX l ia t en id Note: 1. Reference signal is defined in Core_4.2, Vol 6, Section 4.6. 2GFSK, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9; interferer data = PRBS15; frequency accuracy better than 1 ppm 2. Target for planned revision. Current silicon performance is -92.1 dBm 3. Allowable exceptions for spurious response RF channels, as specified in Core_4.2, Vol 6, Section 4.2 "Interference Performance". Where there is conflict of specifications regarding interference at image frequencies, the less stringent specification applies. 4. Selectivity to image frequency -1 MHz corresponds to C/I1+ N+1 adjacent hannel selectivity silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 27 EFR32MG1X232 Data Sheet Electrical Characteristics 4.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.445 GHz. Test circuit according to Figure 5.2 EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 45. Table 4.15. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4GHz Band Parameter Symbol Min Typ Max Unit - 5 - % rms -40 - 40 ppm Relative, at carrier ±3.5 MHz - TBD - dBc Absolute, at carrier ±3.5 MHz - TBD - dBm Per FCC part 15.247 - TBD - dBm/kH z Per ETSI 300.328 - TBD - dBm/M Hz Occupied channel bandwidth OCPETSI328 per ETSI EN300.328 99% BW at highest and lowest channels in band - TBD - MHz Emissions of harmonics outof-band, per FCC part 15.247 SPURHRM_FCC 2nd,3rd, 5, 6,8,9,10 harmonics; continuous transmission of modulated carrier - TBD - dBm Spurious emissions out-ofband, per FCC part 15.247, excluding harmonics SPUROOB_FCC Above 2.483 GHz or below 2.4 GHz; continuous transmission of modulated carrier - TBD - dBc Spurious emissions out-ofband; per ETSI 300.328 SPURETSI328 [2400-BW to 2400], [2483.5 to 2483.5+BW]; - TBD - dBm C Error vector magnitude (off- EVM set EVM), per 802.15.4-2011 Transmit center frequency 2 error FERR Power spectral density limit PSDLIMIT Test Condition Signal is DSSS-OQPSK reference 1 packet f on t en id Spurious emissions per ETSI SPURETSI440 EN300.440 [2400-2BW to 2400-BW], [2483.5+BW to 2483.5+2BW]; per ETSI 300.328 - TBD - dBm 47-74 MHz,87.5-108 MHz, 174-230 MHz, 470-862 MHz - TBD - nW 25-1000 MHz, - TBD - nW - TBD - nW 1G-24G l ia Note: 1. Reference packet is defined as TBD of packet length TBD, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz band, with pseudo-random packet data content 2. Frequency error measurements are referred to the high-frequency crystal reference of the device silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 28 EFR32MG1X232 Data Sheet Electrical Characteristics 4.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band Unless otherwise indicated T=25C,VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD. RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.445 GHz. Test circuit according to Figure 5.2 EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) on page 44 and Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 45. Table 4.16. RF Receiver Characteristics for 801.15.4 DSSS-OQPSK in the 2.4 GHz Band Symbol Test Condition Max usable receiver input level, 1% PER SAT Sensitivity, 1% PER SENS C Parameter Min Typ Max Unit Signal is reference signal . Packet length is 20 octets. - 10 - dBm Signal is reference signal. Packet length is 20 octets. Using DC-DC converter. - -99.1 - dBm Signal is reference signal. Packet length is 20 octets. Without DCDC converter. - -99.4 - dBm 1 f on CCR Desired signal 10 dB above sensitivity limit - -2.2 - dB High-side adjacent channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity 2 level ACR+1 Interferer is reference signal at +1 channel-spacing. - 34.1 - dB Interferer is filtered reference sig3 nal at +1 channel-spacing. - 51 - dB Interferer is CW at +1 channelspacing.4 - 58.7 - dB Interferer is reference signal at -1 channel-spacing. - 35.5 - dB Interferer is filtered reference signal3 at -1 channel-spacing. - 54 - dB Interferer is CW at -1 channelspacing. - 60.6 - dB Interferer is reference signal at ±2 channel-spacing - 45.6 - dB Interferer is filtered reference signal3 at ±2 channel-spacing - 59.5 - dB Interferer is CW at ±2 channelspacing - 66 - dB - 50.2 - dB Low-side adjacent channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level2 ACR2 t en Alternate channel rejection, 1% PER. Desired is reference signal at 3dB above reference sensitivity level2 ACR-1 id Co-channel interferer rejection, 1% PER Interferer is CW in image band Blocking rejection of all other BLOCK channels. 1% PER, Desired is reference signal at 3dB above reference sensitivity level2. Interferer is reference signal. Interferer frequency < Desired frequency - 3 channel-spacing - 58.8 - dB Interferer frequency > Desired frequency + 3 channel-spacing - 57.7 - dB Blocking rejection of 802.11g BLOCK80211G signal centered at +12MHz or -13MHz Desired is reference signal at 6dB above reference sensitivity level2 - 50.6 - l silabs.com | Smart. Connected. Energy-friendly. 4 ia Image rejection , 1% PER, IR Desired is reference signal at 3dB above reference sensitivity level2 dB Preliminary Rev. 0.71 | 29 EFR32MG1X232 Data Sheet Electrical Characteristics Parameter Symbol Min Typ Max Unit Upper limit of input power RSSIMAX range over which RSSI resolution is maintained 5 - - dBm Lower limit of input power RSSIMIN range over which RSSI resolution is maintained - - -98 dBm - 0.25 - dB - TBD - dB RSSI resolution RSSIRES RSSI linearity as defined by 802.15.4-2003 RSSILIN Test Condition over RSSIMIN to RSSIMAX C f on Note: 1. Reference signal is defined as TBD 2. Reference sensitivity level is -85 dBm 3. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stopband rejection better than 26 dB beyond 3.15MHz from the adjacent carrier. 4. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker tests place the Interferer center frequency at the Desired frequency ±5 MHz on the channel raster, whereas the image rejection test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster. 4.10 RFSENSE Table 4.17. RFSENSE Parameter Symbol 4.11 Modem Features Min id RFSENSE current consump- IRFSENSE tion Test Condition - Typ Max Unit TBD TBD nA t en Table 4.18. Modem Features Parameter Symbol Test Condition Typ Max Unit Receive Bandwidth RXBandwidth Configurable range with 38.4 MHz crystal 0.1 - 2530 kHz IF Frequency IFFreq Configurable range with 38.4 MHz crystal. Selected steps available. 150 - 1371 kHz DSSS symbol length DSSSRange Configurable in steps of 1 chip 2 - 32 chips DSSS Bits per symbol DSSSBitPerSym Configurable 1 - 4 bits/ symbol l ia Min silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 30 EFR32MG1X232 Data Sheet Electrical Characteristics 4.12 Oscillators 4.12.1 LFXO Table 4.19. LFXO Parameter Symbol Crystal frequency Typ Max Unit fLFXO - 32.768 - kHz Supported crystal equivalent series resistance (ESR) ESRLFXO - - 70 kΩ Supported range of crystal 1 load capacitance CLFXO_CL 6 - 18 pF 8 - 40 pF - 0.25 - pF C Min On-chip tuning cap range 2 CLFXO_T Test Condition On each of LFXTAL_N and LFXTAL_P pins f on On-chip tuning cap step size SSLFXO LFXO current consumption 3 on AVDD after startup ILFXO_ANA ESR = 30 kΩ, CL=12.5 pF, GAIN = 3, AGC4 = 1 4 - TBD - nA LFXO current consumption on DVDD after startup ILFXO_DIG ESR = 30 kΩ, CL=12.5 pF, GAIN4 =1 - TBD - nA Start- up time tLFXO ESR=30 kΩ, CL=12.5 pF, GAIN4 =2 - 200 - ms l ia t en id Note: 1. Total load capacitance as seen by the crystal 2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 3. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register 4. In CMU_LFXOCTRL register silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 31 EFR32MG1X232 Data Sheet Electrical Characteristics 4.12.2 HFXO Table 4.20. HFXO Symbol Crystal Frequency fHFXO Supported crystal equivalent series resistance (ESR) ESRHFXO Supported range of crystal 1 load capacitance CHFXO_CL C Parameter On-chip tuning cap range 2 On-chip tuning capacitance step CHFXO_T Test Condition Crystal frequency 38.4 MHz On each of HFXTAL_N and HFXTAL_P pins SSHFXO Min Typ Max Unit 38 38.4 40 MHz - - 60 Ω 6 - 12 pF 0 20 25 pF - 0.04 - pF f on Current consumption on IHFXODIG DVDD for HFXO after startup 38.4 MHz: ESR = 50 Ω, CL = 10 pF, BOOST3 = 2 - TBD - µA Current consumption on IHFXOANA AVDD for HFXO after startup 38.4 MHz: ESR = 50 Ω, CL = 10 - TBD - µA Startup time tHFXO 38.4 MHz: ESR=50 Ω, CL = 10 pF, BOOST3 = 2 - 300 - µs FTHFXO 38.4 MHz, ESR = 50 Ω, CL = 10 pF -40 - 40 ppm Frequency Tolerance for the crystal 3 pF, BOOST = 2 4.12.3 LFRCO t en id Note: 1. Total load capacitance as seen by the crystal 2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the two caps will be seen in series by the crystal. 3. In CMU_HFXOCTRL register Table 4.21. LFRCO Symbol Oscillation frequency fLFRCO Startup time tLFRCO Current consumption on DVDD ILFRCODIG Current consumption on 1 AVDD ILFRCOANA Test Condition silabs.com | Smart. Connected. Energy-friendly. Typ Max Unit TBD 32.768 TBD kHz - 500 - µs - TBD - nA - TBD - nA l Note: 1. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register Min ia Parameter Preliminary Rev. 0.71 | 32 EFR32MG1X232 Data Sheet Electrical Characteristics 4.12.4 HFRCO and AUXHFRCO Table 4.22. HFRCO and AUXHFRCO Symbol Test Condition Min Typ Max Unit Oscillation frequency fHFRCO 38 MHz frequency band TBD 38 TBD MHz 32 MHz frequency band TBD 32 TBD MHz 26 MHz frequency band TBD 26 TBD MHz 19 MHz frequency band TBD 19 TBD MHz 16 MHz frequency band TBD 16 TBD MHz 13 MHz frequency band TBD 13 TBD MHz 7 MHz frequency band TBD 7 TBD MHz 4 MHz frequency band TBD 4 TBD MHz 2 MHz frequency band TBD 2 TBD MHz 1 MHz frequency band TBD 1 TBD MHz fHFRCO ≥ 19 MHz - 300 - ns 4 < fHFRCO < 19 MHz - 1 - µs fHFRCO ≤ 4 MHz - 2.5 - µs fHFRCO = 38 MHz - TBD - µA fHFRCO = 32 MHz - TBD - µA fHFRCO = 26 MHz - TBD - µA fHFRCO = 19 MHz - TBD TBD µA fHFRCO = 16 MHz - TBD - µA fHFRCO = 13 MHz - TBD - µA - TBD - µA - TBD - µA - TBD - µA - TBD - µA - TBD - µA - TBD - µA - TBD - µA fHFRCO = 19 MHz - TBD TBD µA fHFRCO = 16 MHz - TBD - µA fHFRCO = 13 MHz - TBD - µA fHFRCO = 7 MHz - TBD - fHFRCO = 4 MHz - TBD - fHFRCO = 2 MHz - TBD - µA fHFRCO = 1 MHz - TBD - µA C Parameter f on Start-up time Current consumption on DVDD tHFRCO IHFRCODIG fHFRCO = 4 MHz fHFRCO = 2 MHz fHFRCO = 1 MHz Current consumption on 1 AVDD IHFRCOANA fHFRCO = 38 MHz fHFRCO = 32 MHz l silabs.com | Smart. Connected. Energy-friendly. ia fHFRCO = 26 MHz t en id fHFRCO = 7 MHz µA µA Preliminary Rev. 0.71 | 33 EFR32MG1X232 Data Sheet Electrical Characteristics Parameter Symbol Test Condition Min Typ Max Unit Step size SSHFRCO Coarse (% of period) - 0.8 - % Fine (% of period) - 0.1 - % Duty cycle DCHFRCO 47.5 - 52.5 % Period Jitter PJHFRCO - 0.2 - % RMS Min Typ Max Unit TBD 1 TBD kHz Note: 1. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register C 4.12.5 ULFRCO Symbol Test Condition f on Parameter Table 4.23. ULFRCO Oscillation frequency fULFRCO l ia t en id silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 34 EFR32MG1X232 Data Sheet Electrical Characteristics 4.13 GPIO Table 4.24. GPIO Parameter Symbol Input low voltage Test Condition Min Typ Max Unit VIOIL - - IOVDD*0.3 V Input high voltage VIOIH IOVDD*0.7 - - V Output high voltage relative to IOVDD VIOOH IOVDD*0.8 - - V IOVDD*0.6 - - V Sourcing 20 mA, VDD ≥ 3 V, DRIV- IOVDD*0.8 ESTRENGTH1 = STRONG - - V Sourcing 8 mA, VDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG IOVDD*0.6 - - V Sinking 3 mA, VDD ≥ 3 V, DRIVESTRENGTH1 = WEAK - - IOVDD*0.2 V Sinking 1.2 mA, VDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK - - IOVDD*0.4 V Sinking 20 mA, VDD ≥ 3 V, DRIVESTRENGTH1 = STRONG - - IOVDD*0.2 V Sinking 8 mA, VDD ≥ 1.62 V, DRIVESTRENGTH1 = STRONG - - IOVDD*0.4 V Sourcing 3 mA, VDD ≥ 3 V, DRIV1 ESTRENGTH = WEAK C Sourcing 1.2 mA, VDD ≥ 1.62 V, DRIVESTRENGTH1 = WEAK f on Output low voltage relative to VIOOL IOVDD id IIOLEAK GPIO ≤ IOVDD - 0.1 TBD nA Input leakage current on 5VTOL pads above IOVDD I5VTOLLEAK IOVDD < GPIO ≤ IOVDD + 2 V - 3.3 15 µA I/O pin pull-up resistor RPU TBD 40 TBD kΩ I/O pin pull-down resistor RPD TBD 40 TBD kΩ TBD 25 TBD ns CL = 50pF, DRIVESTRENGTH1 = STRONG, SLEWRATE1 = 0x6 - TBD - ns CL = 50pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 - TBD - ns CL = 50pF, DRIVESTRENGTH1 = STRONG, SLEWRATE = 0x61 - TBD - ns CL = 50pF, DRIVESTRENGTH1 = WEAK, SLEWRATE1 = 0x6 - TBD - ns Pulse width of pulses retIOGLITCH moved by the glitch suppression filter Output fall time, From 70% to 30% of VIO tIOOR silabs.com | Smart. Connected. Energy-friendly. l Note: 1. In GPIO_Pn_CTRL register ia Output rise time, From 30% to 70% of VIO tIOOF t en Input leakage current Preliminary Rev. 0.71 | 35 EFR32MG1X232 Data Sheet Electrical Characteristics 4.14 VMON Table 4.25. VMON Parameter Symbol Test Condition VMON Supply Current in EM0 or EM1 IVMON C Threshold range VVMON_RANGE Threshold step size NVMON_STESP Response time Hysteresis Typ Max Unit In EM0 or EM1, 1 supply monitored - 5.8 - µA In EM0 or EM1, 4 supplies monitored - 11.8 - µA In EM2, EM3 or EM4, 1 supplies monitored - 68 - nA In EM2, EM3 or EM4, 4 supplies monitored - 115 - nA In EM0 or EM1 - 2 - µA In EM2, EM3 or EM4 - 2 - nA TBD - TBD V Coarse - 200 - mV Fine - 20 - mV Supply drops at 1V/µs rate - 500 - ns - TBD - mV f on VMON Loading of Monitored ISENSE Supply Min tVMON_RES VVMON_HYST l ia t en id silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 36 EFR32MG1X232 Data Sheet Electrical Characteristics 4.15 ADC Table 4.26. ADC Parameter Symbol Resolution VRESOLUTION Input voltage range VADCIN Test Condition Single ended Differential C Input range of external refer- VADCREFIN_P ence voltage, single ended and differential Min Typ Max Unit 6 - 12 Bits 0 - 2*VREF V -VREF - VREF V 1 - VAVDD V PSRRADC At DC - 80 - dB Analog input common mode rejection ratio CMRRADC At DC - 80 - dB Current on DVDD, using internal reference buffer. Continous operation. WARMUP1 MODE = KEEPADCWARM IADCDIG_CONTI- - TBD - µA 250 ksps / 4 MHz ADCCLK, BIASPROG2 = 6 - TBD - µA 62.5 Msps / 1 MHz ADCCLK, - TBD - µA - TBD - µA - TBD - µA - TBD - µA f on Power supply rejection NOUS 1 Msps / 16 MHz ADCCLK, 2 BIASPROG = 0 BIASPROG2 = 15 id Current on DVDD, using in- IADCDIG_NORMAL 50 ksps / 16 MHz ADCCLK, ternal reference buffer. DutyBIASPROG2 = 0 cycled operation. WARMUPMODE1 = NORMAL 5 ksps / 16 MHz ADCCLK BIASPROG2 = 0 3 Current on AVDD , using internal reference buffer. Continous operation. WARMUPMODE1 = KEEPADCWARM 125 ksps / 16 MHz ADCCLK, BIASPROG2 = 0 t en Current on DVDD, using in- IADCDIG_STANDternal reference buffer. Duty- BY cycled operation. AWARMUPMODE1 = KEEPINSTANDBY or KEEPINSLOWACC 5 ksps / 16 MHz ADCCLK, TBD - µA - TBD - µA 250 ksps / 4 MHz ADCCLK, BIASPROG2 = 6 - TBD - µA 62.5 Msps / 1 MHz ADCCLK, - TBD - µA - TBD - µA - TBD - BIASPROG2 = 0 IADCANA_CONTI- 1 Msps / 16 MHz ADCCLK, NOUS BIASPROG2 = 0 BIASPROG2 = 15 BIASPROG2 = 0 silabs.com | Smart. Connected. Energy-friendly. l Current on AVDD3 , using in- IADCANA_NORMAL 50 Ksps / 16 MHz ADCCLK, ternal reference buffer. DutyBIASPROG2 = 0 cycled operation. WARMUPMODE1 = NORMAL 5 Ksps / 16 MHz ADCCLK, ia - µA Preliminary Rev. 0.71 | 37 EFR32MG1X232 Data Sheet Electrical Characteristics Parameter Symbol Current on AVDD3, using in- IADCANA_STANDternal reference buffer. Duty- BY cycled operation. WARMUPMODE1 = KEEPINSTANDBY or KEEPINSLOWACC Test Condition 125 Ksps / 16 MHz ADCCLK, Min Typ Max Unit - TBD - µA - TBD - µA BIASPROG2 = 0 5 Ksps / 16 MHz ADCCLK, BIASPROG2 = 0 fADCCLK - - 16 MHz Throughput rate fADCRATE - - 1 Msps Conversion time tADCCONV 6 bit - 7 - ADCCL K Cycles 10 bit - 11 - ADCCL K Cycles 12 bit - 13 - ADCCL K Cycles WARMUPMODE1 = NORMAL - - 5 µs WARMUPMODE1 = KEEPINSTANDBY or KEEPINSLOWACC - - 1 µs Internal reference, 2.5 V full-scale, differential (-1.25, 1.25) TBD 67 - dB C ADC Clock Frequency f on Startup time of reference generator and ADC core in NORMAL mode tADCSTART From standby mode SNDR at 1Msps and fin = 10kHz SNDRADC id vrefp_in = 1.25 V direct mode with 2.5 V full-scale, differential - 68 - dB SFDRADC 1 MSamples/s, 10 kHz full-scale sine wave - 75 - dB Input referred ADC noise, rms VREF_NOISE Including quantization noise and distortion - 380 - µV Offset Error VADCOFFSETERR Gain error in ADC VADC_GAIN t en Spurious-Free Dynamic Range (SFDR) TBD 1 TBD LSB Using internal reference - ±0.1 TBD % Using external reference - TBD - % -1 - TBD LSB TBD - TBD LSB Differential non-linearity (DNL) DNLADC 12 bit resolution Integral non-linearity (INL), End point method INLADC 12 bit resolution l ia Note: 1. In ADCn_CNTL register 2. In ADCn_BIASPROG register 3. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 38 EFR32MG1X232 Data Sheet Electrical Characteristics 4.16 IDAC Table 4.27. IDAC Parameter Symbol Number of Ranges NIDAC_RANGES Output Current IIDAC_OUT Typ Max Unit - 4 - - RANGSEL = RANGE0 0.05 - 1.6 µA RANGSEL1 = RANGE1 1.6 - 4.7 µA RANGSEL1 = RANGE2 0.5 - 16 µA RANGSEL1 = RANGE3 2 - 64 µA - 32 - RANGSEL1 = RANGE0 - 50 - nA RANGSEL1 = RANGE1 - 100 - nA RANGSEL1 = RANGE2 - 500 - nA RANGSEL1 = RANGE3 - 2 - µA Continuous mode, AVDD=3.3V, T = 25°C TBD - TBD % Continuous mode, AVDD=3.8V, across all temperature TBD - TBD % EM2 or EM3 TBD - TBD % Output within 1% of steady state value - 5 TBD µs Settling time, (output settled tIDAC_SETTLE within 1% of steady state value) Range setting is changed - 5 - µs Step value is changed - 1 - µs Current consumption on 2 AVDD in continuous mode Source mode, excluding output current - 9.2 - µA Sink mode, excluding output current - 12.3 - µA RANGESEL1=0, output voltage = 3 max(V(IOVDD), V(AVDD) -100 m v) - TBD - % RANGESEL1=1, output voltage = max(V(IOVDD), V(AVDD)3-100 m V) - TBD - % RANGESEL1=2, output voltage = max(V(IOVDD), V(AVDD)3-150 m V) - TBD - % RANGESEL1=3, output voltage = max(V(IOVDD), V(AVDD)3-250 m V) - TBD - % C Min NIDAC_STEPS Step size SSIDAC 1 f on Linear steps within each range Test Condition Total Accuracy, STEPSEL1 = ACCIDAC 0x10 tIDAC_SU Output voltage compliance in ICOMP_SRC source mode, source current change relative to current sourced at 0 V l ia silabs.com | Smart. Connected. Energy-friendly. t en IIDAC id Start up time Preliminary Rev. 0.71 | 39 EFR32MG1X232 Data Sheet Electrical Characteristics Parameter Symbol Output voltage compliance in ICOMP_SINK source mode, sink current change relative to current sunk at IOVDD Test Condition Min Typ Max Unit RANGESEL1=0, output voltage = 100 mV - TBD - % RANGESEL1=1, output voltage = 100 mV - TBD - % RANGESEL1=2, output voltage = 150 mV - TBD - % RANGESEL1=3, output voltage = 250 mV - TBD - % C Note: 1. In IDAC_CURPROG register 2. Current consumption on DVDD instead if ANASW=1 in EMU_PWRCTRL register 3. Voltage reference AVDD switches to DVDD when ANASW=1 in EMU_PWRCTRL f on l ia t en id silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 40 EFR32MG1X232 Data Sheet Electrical Characteristics 4.17 Analog Comparator (ACMP) Table 4.28. ACMP Parameter Symbol Test Condition Input voltage range VACMPIN CMPVDD = 1 ACMPn_CTRL_PWRSEL Active current not including voltage reference IACMP C Current consumption of inter- IACMPREF nal voltage reference, Typ Max Unit 0 - CMPVDD V BIASPROG = 1, FULLBIAS2 = 0 - 50 - nA BIASPROG2 = 0x10, FULLBIAS2 =0 - 370 TBD nA BIASPROG2 = 0x20, FULLBIAS2 =1 - 65 TBD µA VLP selected as input using 2.5V Reference / 4 (0.625V) - 50 - nA VLP selected as input using VDD - 20 - nA VBDIV selected as input using 1.25 V reference / 1 - 3 - µA VADIV selected as input using VDD/1 - 2 - µA HYSTSEL = HYST0 3 - 0 TBD mV HYSTSEL3 = HYST1 - 14 - mV HYSTSEL3 = HYST2 - 25 - mV HYSTSEL3 = HYST3 - 30 - mV HYSTSEL3 = HYST4 - 35 - mV HYSTSEL3 = HYST5 - 39 - mV HYSTSEL3 = HYST6 - 42 - mV HYSTSEL3 = HYST7 - 45 - mV BIASPROG2 = 1, FULLBIAS2 = 0 - 30 - µs BIASPROG2 = 0x10, FULLBIAS2 =04 - 3.7 - µs BIASPROG2 = 0x20, FULLBIAS2 =14 - 35 - ns BIASPROG2 =0x07, FULLBIAS2 =14 - TBD - - 2 f on Hysteresis Min VACMPHYST tACMPDELAY 4 tACMPREF Offset voltage VACMPOFFSET µs ia Startup time of reference generator t en id Comparator delay TBD mV l silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 41 EFR32MG1X232 Data Sheet Electrical Characteristics Parameter Symbol Test Condition Min Typ Max Unit Reference Voltage VACMPREF Single ended, internal 1.25 V reference TBD 1.25 TBD V Single ended, internal 2.5 V reference TBD 2.5 TBD V Differential, internal 1.25 V reference TBD 1.25 TBD V Differential, internal 2.5 V reference TBD 2.5 TBD V CSRESSEL = 0 - inf - kΩ CSRESSEL5 = 1 - 12 - kΩ CSRESSEL5 = 2 - 24 - kΩ CSRESSEL5 = 3 - 36 - kΩ CSRESSEL5 = 4 - 48 - kΩ CSRESSEL5 = 5 - 92 - kΩ CSRESSEL5 = 6 - 148 - kΩ CSRESSEL5 = 7 - 215 - kΩ RCSRES C Capacitive Sense Internal Resistance 5 f on id Note: 1. CMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD 2. In ACMPn_CTRL register 3. In ACMPn_HYSTERESIS register 4. ± 100 mV differential 5. In ACMPn_INPUTSEL register The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given as: IACMPREF is zero if an external voltage reference is used. l ia t en IACMPTOTAL = IACMP + IACMPREF silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 42 EFR32MG1X232 Data Sheet Application Circuits 5. Application Circuits C f on l ia t en id silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 43 EFR32MG1X232 Data Sheet Application Circuits 5.1 Power Supplies Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure. VDD C0 C6 C7 C8 DVDD AVDD RFVDD C1 VREGSW C5 VREGVDD C4 DECOUPLE C3 IOVDD C2 C9 C10 C C9 PAVDD X0 HFXTAL_N LFXTAL_P HFXTAL_P LFXTAL_N X1 f on Figure 5.1. EFR32MG1X232 Typical Application Circuit: Direct Supply Configuration without DC-DC converter Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter supply. For low RF transmit power applications less than 13dBm, the RF PA may be supplied by the DC-DC converter. For OPNs supporting high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm. VDD id C0 C1 HFXTAL_N HFXTAL_P C8 L0 C9 VREGSW C7 AVDD FB2 C10 C11 t en C9 X0 RFVDD C6 VREGVDD FB1 C5 DVDD C4 IOVDD C3 DECOUPLE C2 LFXTAL_P PAVDD X1 LFXTAL_N Figure 5.2. EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDCDC) l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 44 EFR32MG1X232 Data Sheet Application Circuits VDD C0 C1 RFVDD C7 L0 C8 C9 VREGSW C6 VREGVDD FB1 C5 DVDD C4 DECOUPLE C3 IOVDD C2 AVDD C10 C11 C9 PAVDD X0 HFXTAL_N LFXTAL_P HFXTAL_P LFXTAL_N X1 C Figure 5.3. EFR32MG1X232 Typical Application Circuit: Configuration with DC-DC Coverter (PAVDD from VDD) f on 5.2 RF Matching Networks Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on page 45 for applications in the 2.4GHz band. Application-specific component values can be found in the EFR32 Reference Manual. For low RF transmit power applications less than 13dBm, the two-element match is recommended. For OPNs supporting high power RF transmission, the four-element match is recommended for high RF transmit power (> 13dBm). id 4-Element Match for 2.4GHz Band 2-Element Match for 2.4GHz Band PAVDD L0 2G4RF_IOP 2G4RF_ION PAVDD 50Ω C0 L0 L1 t en PAVDD PAVDD 50Ω 2G4RF_IOP 2G4RF_ION C0 C1 Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 45 EFR32MG1X232 Data Sheet Pinout and Package 6. Pinout and Package 6.1 Pinout The EFR32MG1X232 pinout, including selected functionality, is shown in Figure 6.1 EFR32MG1X232 Pinout (top view, not to scale) on page 46. Figure 6.1. EFR32MG1X232 Pinout (top view, not to scale) C QFN48 Pin# and Name Pin Name 0 VSSIO_0_0 PF0 Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #24 TIM0_CC1 #23 TIM0_CC2 #22 TIM0_CDTI0 #21 TIM0_CDTI1 #20 TIM0_CDTI2 #19 TIM1_CC0 #24 TIM1_CC1 #23 TIM1_CC2 #22 TIM1_CC3 #21 LETIM0_OUT0 #24 LETIM0_OUT1 #23 PCNT0_S0IN #24 PCNT0_S1IN #23 US0_TX #24 US0_RX #23 US0_CLK #22 US0_CS #21 US0_CTS #20 US0_RTS #19 US1_TX #24 US1_RX #23 US1_CLK #22 US1_CS #21 US1_CTS #20 US1_RTS #19 LEU0_TX #24 LEU0_RX #23 I2C0_SDA #24 I2C0_SCL #23 FRC_DCLK #24 FRC_DOUT #23 FRC_DFRAME #22 MODEM_DCLK #24 MODEM_DIN #23 MODEM_DOUT #22 MODEM_ANT0 #21 MODEM_ANT1 #20 PRS_CH0 #0 PRS_CH1 #7 PRS_CH2 #6 PRS_CH3 #5 ACMP0_O #24 ACMP1_O #24 DBG_SWCLKTCK #0 BOOT_TX BUSAY BUSBX TIM0_CC0 #25 TIM0_CC1 #24 TIM0_CC2 #23 TIM0_CDTI0 #22 TIM0_CDTI1 #21 TIM0_CDTI2 #20 TIM1_CC0 #25 TIM1_CC1 #24 TIM1_CC2 #23 TIM1_CC3 #22 LETIM0_OUT0 #25 LETIM0_OUT1 #24 PCNT0_S0IN #25 PCNT0_S1IN #24 US0_TX #25 US0_RX #24 US0_CLK #23 US0_CS #22 US0_CTS #21 US0_RTS #20 US1_TX #25 US1_RX #24 US1_CLK #23 US1_CS #22 US1_CTS #21 US1_RTS #20 LEU0_TX #25 LEU0_RX #24 I2C0_SDA #25 I2C0_SCL #24 FRC_DCLK #25 FRC_DOUT #24 FRC_DFRAME #23 MODEM_DCLK #25 MODEM_DIN #24 MODEM_DOUT #23 MODEM_ANT0 #22 MODEM_ANT1 #21 GroundIO_0_0 t en PF1 Analog id 2 Pin Alternate Functionality / Description f on Pin # 1 Table 6.1. Device Pinout l ia PRS_CH0 #1 PRS_CH1 #0 PRS_CH2 #7 PRS_CH3 #6 ACMP0_O #25 ACMP1_O #25 DBG_SWDIOTMS #0 BOOT_RX silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 46 EFR32MG1X232 Data Sheet Pinout and Package QFN48 Pin# and Name Pin # PF2 Analog Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #26 TIM0_CC1 #25 TIM0_CC2 #24 TIM0_CDTI0 #23 TIM0_CDTI1 #22 TIM0_CDTI2 #21 TIM1_CC0 #26 TIM1_CC1 #25 TIM1_CC2 #24 TIM1_CC3 #23 LETIM0_OUT0 #26 LETIM0_OUT1 #25 PCNT0_S0IN #26 PCNT0_S1IN #25 US0_TX #26 US0_RX #25 US0_CLK #24 US0_CS #23 US0_CTS #22 US0_RTS #21 US1_TX #26 US1_RX #25 US1_CLK #24 US1_CS #23 US1_CTS #22 US1_RTS #21 LEU0_TX #26 LEU0_RX #25 I2C0_SDA #26 I2C0_SCL #25 FRC_DCLK #26 FRC_DOUT #25 FRC_DFRAME #24 MODEM_DCLK #26 MODEM_DIN #25 MODEM_DOUT #24 MODEM_ANT0 #23 MODEM_ANT1 #22 CMU_CLK0 #6 PRS_CH0 #2 PRS_CH1 #1 PRS_CH2 #0 PRS_CH3 #7 ACMP0_O #26 ACMP1_O #26 DBG_TDO #0 DBG_SWO #0 GPIO_EM4WU0 BUSAY BUSBX TIM0_CC0 #27 TIM0_CC1 #26 TIM0_CC2 #25 TIM0_CDTI0 #24 TIM0_CDTI1 #23 TIM0_CDTI2 #22 TIM1_CC0 #27 TIM1_CC1 #26 TIM1_CC2 #25 TIM1_CC3 #24 LETIM0_OUT0 #27 LETIM0_OUT1 #26 PCNT0_S0IN #27 PCNT0_S1IN #26 US0_TX #27 US0_RX #26 US0_CLK #25 US0_CS #24 US0_CTS #23 US0_RTS #22 US1_TX #27 US1_RX #26 US1_CLK #25 US1_CS #24 US1_CTS #23 US1_RTS #22 LEU0_TX #27 LEU0_RX #26 I2C0_SDA #27 I2C0_SCL #26 FRC_DCLK #27 FRC_DOUT #26 FRC_DFRAME #25 MODEM_DCLK #27 MODEM_DIN #26 MODEM_DOUT #25 MODEM_ANT0 #24 MODEM_ANT1 #23 CMU_CLK1 #6 PRS_CH0 #3 PRS_CH1 #2 PRS_CH2 #1 PRS_CH3 #0 ACMP0_O #27 ACMP1_O #27 DBG_TDI #0 BUSBY BUSAX TIM0_CC0 #28 TIM0_CC1 #27 TIM0_CC2 #26 TIM0_CDTI0 #25 TIM0_CDTI1 #24 TIM0_CDTI2 #23 TIM1_CC0 #28 TIM1_CC1 #27 TIM1_CC2 #26 TIM1_CC3 #25 LETIM0_OUT0 #28 LETIM0_OUT1 #27 PCNT0_S0IN #28 PCNT0_S1IN #27 US0_TX #28 US0_RX #27 US0_CLK #26 US0_CS #25 US0_CTS #24 US0_RTS #23 US1_TX #28 US1_RX #27 US1_CLK #26 US1_CS #25 US1_CTS #24 US1_RTS #23 LEU0_TX #28 LEU0_RX #27 I2C0_SDA #28 I2C0_SCL #27 FRC_DCLK #28 FRC_DOUT #27 FRC_DFRAME #26 MODEM_DCLK #28 MODEM_DIN #27 MODEM_DOUT #26 MODEM_ANT0 #25 MODEM_ANT1 #24 C 3 Pin Name Pin Alternate Functionality / Description f on 4 PF3 PF4 t en id 5 PRS_CH0 #4 PRS_CH1 #3 PRS_CH2 #2 PRS_CH3 #1 ACMP0_O #28 ACMP1_O #28 l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 47 EFR32MG1X232 Data Sheet Pinout and Package QFN48 Pin# and Name Pin # PF5 Analog Timers Communication Radio Other BUSAY BUSBX TIM0_CC0 #29 TIM0_CC1 #28 TIM0_CC2 #27 TIM0_CDTI0 #26 TIM0_CDTI1 #25 TIM0_CDTI2 #24 TIM1_CC0 #29 TIM1_CC1 #28 TIM1_CC2 #27 TIM1_CC3 #26 LETIM0_OUT0 #29 LETIM0_OUT1 #28 PCNT0_S0IN #29 PCNT0_S1IN #28 US0_TX #29 US0_RX #28 US0_CLK #27 US0_CS #26 US0_CTS #25 US0_RTS #24 US1_TX #29 US1_RX #28 US1_CLK #27 US1_CS #26 US1_CTS #25 US1_RTS #24 LEU0_TX #29 LEU0_RX #28 I2C0_SDA #29 I2C0_SCL #28 FRC_DCLK #29 FRC_DOUT #28 FRC_DFRAME #27 MODEM_DCLK #29 MODEM_DIN #28 MODEM_DOUT #27 MODEM_ANT0 #26 MODEM_ANT1 #25 PRS_CH0 #5 PRS_CH1 #4 PRS_CH2 #3 PRS_CH3 #2 ACMP0_O #29 ACMP1_O #29 BUSBY BUSAX TIM0_CC0 #30 TIM0_CC1 #29 TIM0_CC2 #28 TIM0_CDTI0 #27 TIM0_CDTI1 #26 TIM0_CDTI2 #25 TIM1_CC0 #30 TIM1_CC1 #29 TIM1_CC2 #28 TIM1_CC3 #27 LETIM0_OUT0 #30 LETIM0_OUT1 #29 PCNT0_S0IN #30 PCNT0_S1IN #29 US0_TX #30 US0_RX #29 US0_CLK #28 US0_CS #27 US0_CTS #26 US0_RTS #25 US1_TX #30 US1_RX #29 US1_CLK #28 US1_CS #27 US1_CTS #26 US1_RTS #25 LEU0_TX #30 LEU0_RX #29 I2C0_SDA #30 I2C0_SCL #29 FRC_DCLK #30 FRC_DOUT #29 FRC_DFRAME #28 MODEM_DCLK #30 MODEM_DIN #29 MODEM_DOUT #28 MODEM_ANT0 #27 MODEM_ANT1 #26 CMU_CLK1 #7 PRS_CH0 #6 PRS_CH1 #5 PRS_CH2 #4 PRS_CH3 #3 ACMP0_O #30 ACMP1_O #30 TIM0_CC0 #31 TIM0_CC1 #30 TIM0_CC2 #29 TIM0_CDTI0 #28 TIM0_CDTI1 #27 TIM0_CDTI2 #26 TIM1_CC0 #31 TIM1_CC1 #30 TIM1_CC2 #29 TIM1_CC3 #28 LETIM0_OUT0 #31 LETIM0_OUT1 #30 PCNT0_S0IN #31 PCNT0_S1IN #30 US0_TX #31 US0_RX #30 US0_CLK #29 US0_CS #28 US0_CTS #27 US0_RTS #26 US1_TX #31 US1_RX #30 US1_CLK #29 US1_CS #28 US1_CTS #27 US1_RTS #26 LEU0_TX #31 LEU0_RX #30 I2C0_SDA #31 I2C0_SCL #30 FRC_DCLK #31 FRC_DOUT #30 FRC_DFRAME #29 MODEM_DCLK #31 MODEM_DIN #30 MODEM_DOUT #29 MODEM_ANT0 #28 MODEM_ANT1 #27 C 6 Pin Name Pin Alternate Functionality / Description f on 7 PF6 9 RFVDD Radio power supply 10 HFXTAL_N High Frequency Crystal input pin. 11 HFXTAL_P High Frequency Crystal output pin. 12 RESETn 13 NC l BUSAY BUSBX ia PF7 t en id 8 CMU_CLK0 #7 PRS_CH0 #7 PRS_CH1 #6 PRS_CH2 #5 PRS_CH3 #4 ACMP0_O #31 ACMP1_O #31 GPIO_EM4WU1 Reset input, active low.To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. No Connect. silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 48 EFR32MG1X232 Data Sheet Pinout and Package QFN48 Pin# and Name Pin Alternate Functionality / Description Pin # Pin Name 14 RFVSS Radio Ground 15 PAVSS Power Amplifier (PA) voltage regulator VSS 16 2G4RF_ION 2.4 GHz Differential RF input/output, negative path. 17 2G4RF_IOP 2.4 GHz Differential RF input/output, positive path. 18 PAVDD Power Amplifier (PA) voltage regulator VDD input Analog C PD11 CMU_CLK1 #4 PRS_CH3 #9 PRS_CH4 #1 PRS_CH5 #0 PRS_CH6 #12 ACMP0_O #18 ACMP1_O #18 BUSDY BUSCX TIM0_CC0 #18 TIM0_CC1 #17 TIM0_CC2 #16 TIM0_CDTI0 #15 TIM0_CDTI1 #14 TIM0_CDTI2 #13 TIM1_CC0 #18 TIM1_CC1 #17 TIM1_CC2 #16 TIM1_CC3 #15 LETIM0_OUT0 #18 LETIM0_OUT1 #17 PCNT0_S0IN #18 PCNT0_S1IN #17 US0_TX #18 US0_RX #17 US0_CLK #16 US0_CS #15 US0_CTS #14 US0_RTS #13 US1_TX #18 US1_RX #17 US1_CLK #16 US1_CS #15 US1_CTS #14 US1_RTS #13 LEU0_TX #18 LEU0_RX #17 I2C0_SDA #18 I2C0_SCL #17 FRC_DCLK #18 FRC_DOUT #17 FRC_DFRAME #16 MODEM_DCLK #18 MODEM_DIN #17 MODEM_DOUT #16 MODEM_ANT0 #15 MODEM_ANT1 #14 BUSCY BUSDX TIM0_CC0 #19 TIM0_CC1 #18 TIM0_CC2 #17 TIM0_CDTI0 #16 TIM0_CDTI1 #15 TIM0_CDTI2 #14 TIM1_CC0 #19 TIM1_CC1 #18 TIM1_CC2 #17 TIM1_CC3 #16 LETIM0_OUT0 #19 LETIM0_OUT1 #18 PCNT0_S0IN #19 PCNT0_S1IN #18 US0_TX #19 US0_RX #18 US0_CLK #17 US0_CS #16 US0_CTS #15 US0_RTS #14 US1_TX #19 US1_RX #18 US1_CLK #17 US1_CS #16 US1_CTS #15 US1_RTS #14 LEU0_TX #19 LEU0_RX #18 I2C0_SDA #19 I2C0_SCL #18 FRC_DCLK #19 FRC_DOUT #18 FRC_DFRAME #17 MODEM_DCLK #19 MODEM_DIN #18 MODEM_DOUT #17 MODEM_ANT0 #16 MODEM_ANT1 #15 PRS_CH3 #10 PRS_CH4 #2 PRS_CH5 #1 PRS_CH6 #13 ACMP0_O #19 ACMP1_O #19 BUSDY BUSCX TIM0_CC0 #20 TIM0_CC1 #19 TIM0_CC2 #18 TIM0_CDTI0 #17 TIM0_CDTI1 #16 TIM0_CDTI2 #15 TIM1_CC0 #20 TIM1_CC1 #19 TIM1_CC2 #18 TIM1_CC3 #17 LETIM0_OUT0 #20 LETIM0_OUT1 #19 PCNT0_S0IN #20 PCNT0_S1IN #19 US0_TX #20 US0_RX #19 US0_CLK #18 US0_CS #17 US0_CTS #16 US0_RTS #15 US1_TX #20 US1_RX #19 US1_CLK #18 US1_CS #17 US1_CTS #16 US1_RTS #15 LEU0_TX #20 LEU0_RX #19 I2C0_SDA #20 I2C0_SCL #19 FRC_DCLK #20 FRC_DOUT #19 FRC_DFRAME #18 MODEM_DCLK #20 MODEM_DIN #19 MODEM_DOUT #18 MODEM_ANT0 #17 MODEM_ANT1 #16 PRS_CH3 #11 PRS_CH4 #3 PRS_CH5 #2 PRS_CH6 #14 ACMP0_O #20 ACMP1_O #20 l silabs.com | Smart. Connected. Energy-friendly. ia PD12 Other t en 21 PD10 Radio id 20 Communication f on 19 Timers Preliminary Rev. 0.71 | 49 EFR32MG1X232 Data Sheet Pinout and Package QFN48 Pin# and Name Pin # PD13 Analog Timers Communication Radio Other BUSCY BUSDX TIM0_CC0 #21 TIM0_CC1 #20 TIM0_CC2 #19 TIM0_CDTI0 #18 TIM0_CDTI1 #17 TIM0_CDTI2 #16 TIM1_CC0 #21 TIM1_CC1 #20 TIM1_CC2 #19 TIM1_CC3 #18 LETIM0_OUT0 #21 LETIM0_OUT1 #20 PCNT0_S0IN #21 PCNT0_S1IN #20 US0_TX #21 US0_RX #20 US0_CLK #19 US0_CS #18 US0_CTS #17 US0_RTS #16 US1_TX #21 US1_RX #20 US1_CLK #19 US1_CS #18 US1_CTS #17 US1_RTS #16 LEU0_TX #21 LEU0_RX #20 I2C0_SDA #21 I2C0_SCL #20 FRC_DCLK #21 FRC_DOUT #20 FRC_DFRAME #19 MODEM_DCLK #21 MODEM_DIN #20 MODEM_DOUT #19 MODEM_ANT0 #18 MODEM_ANT1 #17 PRS_CH3 #12 PRS_CH4 #4 PRS_CH5 #3 PRS_CH6 #15 ACMP0_O #21 ACMP1_O #21 BUSDY BUSCX TIM0_CC0 #22 TIM0_CC1 #21 TIM0_CC2 #20 TIM0_CDTI0 #19 TIM0_CDTI1 #18 TIM0_CDTI2 #17 TIM1_CC0 #22 TIM1_CC1 #21 TIM1_CC2 #20 TIM1_CC3 #19 LETIM0_OUT0 #22 LETIM0_OUT1 #21 PCNT0_S0IN #22 PCNT0_S1IN #21 US0_TX #22 US0_RX #21 US0_CLK #20 US0_CS #19 US0_CTS #18 US0_RTS #17 US1_TX #22 US1_RX #21 US1_CLK #20 US1_CS #19 US1_CTS #18 US1_RTS #17 LEU0_TX #22 LEU0_RX #21 I2C0_SDA #22 I2C0_SCL #21 FRC_DCLK #22 FRC_DOUT #21 FRC_DFRAME #20 MODEM_DCLK #22 MODEM_DIN #21 MODEM_DOUT #20 MODEM_ANT0 #19 MODEM_ANT1 #18 CMU_CLK0 #5 PRS_CH3 #13 PRS_CH4 #5 PRS_CH5 #4 PRS_CH6 #16 ACMP0_O #22 ACMP1_O #22 GPIO_EM4WU4 BUSCY BUSDX TIM0_CC0 #23 TIM0_CC1 #22 TIM0_CC2 #21 TIM0_CDTI0 #20 TIM0_CDTI1 #19 TIM0_CDTI2 #18 TIM1_CC0 #23 TIM1_CC1 #22 TIM1_CC2 #21 TIM1_CC3 #20 LETIM0_OUT0 #23 LETIM0_OUT1 #22 PCNT0_S0IN #23 PCNT0_S1IN #22 US0_TX #23 US0_RX #22 US0_CLK #21 US0_CS #20 US0_CTS #19 US0_RTS #18 US1_TX #23 US1_RX #22 US1_CLK #21 US1_CS #20 US1_CTS #19 US1_RTS #18 LEU0_TX #23 LEU0_RX #22 I2C0_SDA #23 I2C0_SCL #22 FRC_DCLK #23 FRC_DOUT #22 FRC_DFRAME #21 MODEM_DCLK #23 MODEM_DIN #22 MODEM_DOUT #21 MODEM_ANT0 #20 MODEM_ANT1 #19 C 22 Pin Name Pin Alternate Functionality / Description f on 23 PD14 PD15 t en id 24 CMU_CLK1 #5 PRS_CH3 #14 PRS_CH4 #6 PRS_CH5 #5 PRS_CH6 #17 ACMP0_O #23 ACMP1_O #23 DBG_SWO #2 l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 50 EFR32MG1X232 Data Sheet Pinout and Package QFN48 Pin# and Name Pin # PA0 Analog Timers Communication Radio Other BUSDY BUSCX ADC0_EXTN TIM0_CC0 #0 TIM0_CC1 #31 TIM0_CC2 #30 TIM0_CDTI0 #29 TIM0_CDTI1 #28 TIM0_CDTI2 #27 TIM1_CC0 #0 TIM1_CC1 #31 TIM1_CC2 #30 TIM1_CC3 #29 LETIM0_OUT0 #0 LETIM0_OUT1 #31 PCNT0_S0IN #0 PCNT0_S1IN #31 US0_TX #0 US0_RX #31 US0_CLK #30 US0_CS #29 US0_CTS #28 US0_RTS #27 US1_TX #0 US1_RX #31 US1_CLK #30 US1_CS #29 US1_CTS #28 US1_RTS #27 LEU0_TX #0 LEU0_RX #31 I2C0_SDA #0 I2C0_SCL #31 FRC_DCLK #0 FRC_DOUT #31 FRC_DFRAME #30 MODEM_DCLK #0 MODEM_DIN #31 MODEM_DOUT #30 MODEM_ANT0 #29 MODEM_ANT1 #28 CMU_CLK1 #0 PRS_CH6 #0 PRS_CH7 #10 PRS_CH8 #9 PRS_CH9 #8 ACMP0_O #0 ACMP1_O #0 BUSCY BUSDX ADC0_EXTP TIM0_CC0 #1 TIM0_CC1 #0 TIM0_CC2 #31 TIM0_CDTI0 #30 TIM0_CDTI1 #29 TIM0_CDTI2 #28 TIM1_CC0 #1 TIM1_CC1 #0 TIM1_CC2 #31 TIM1_CC3 #30 LETIM0_OUT0 #1 LETIM0_OUT1 #0 PCNT0_S0IN #1 PCNT0_S1IN #0 US0_TX #1 US0_RX #0 US0_CLK #31 US0_CS #30 US0_CTS #29 US0_RTS #28 US1_TX #1 US1_RX #0 US1_CLK #31 US1_CS #30 US1_CTS #29 US1_RTS #28 LEU0_TX #1 LEU0_RX #0 I2C0_SDA #1 I2C0_SCL #0 FRC_DCLK #1 FRC_DOUT #0 FRC_DFRAME #31 MODEM_DCLK #1 MODEM_DIN #0 MODEM_DOUT #31 MODEM_ANT0 #30 MODEM_ANT1 #29 CMU_CLK0 #0 PRS_CH6 #1 PRS_CH7 #0 PRS_CH8 #10 PRS_CH9 #9 ACMP0_O #1 ACMP1_O #1 BUSDY BUSCX TIM0_CC0 #2 TIM0_CC1 #1 TIM0_CC2 #0 TIM0_CDTI0 #31 TIM0_CDTI1 #30 TIM0_CDTI2 #29 TIM1_CC0 #2 TIM1_CC1 #1 TIM1_CC2 #0 TIM1_CC3 #31 LETIM0_OUT0 #2 LETIM0_OUT1 #1 PCNT0_S0IN #2 PCNT0_S1IN #1 US0_TX #2 US0_RX #1 US0_CLK #0 US0_CS #31 US0_CTS #30 US0_RTS #29 US1_TX #2 US1_RX #1 US1_CLK #0 US1_CS #31 US1_CTS #30 US1_RTS #29 LEU0_TX #2 LEU0_RX #1 I2C0_SDA #2 I2C0_SCL #1 FRC_DCLK #2 FRC_DOUT #1 FRC_DFRAME #0 MODEM_DCLK #2 MODEM_DIN #1 MODEM_DOUT #0 MODEM_ANT0 #31 MODEM_ANT1 #30 C 25 Pin Name Pin Alternate Functionality / Description f on 26 PA1 PA2 t en id 27 PRS_CH6 #2 PRS_CH7 #1 PRS_CH8 #0 PRS_CH9 #10 ACMP0_O #2 ACMP1_O #2 l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 51 EFR32MG1X232 Data Sheet Pinout and Package QFN48 Pin# and Name Pin # PA3 Analog Timers Communication Radio Other BUSCY BUSDX TIM0_CC0 #3 TIM0_CC1 #2 TIM0_CC2 #1 TIM0_CDTI0 #0 TIM0_CDTI1 #31 TIM0_CDTI2 #30 TIM1_CC0 #3 TIM1_CC1 #2 TIM1_CC2 #1 TIM1_CC3 #0 LETIM0_OUT0 #3 LETIM0_OUT1 #2 PCNT0_S0IN #3 PCNT0_S1IN #2 US0_TX #3 US0_RX #2 US0_CLK #1 US0_CS #0 US0_CTS #31 US0_RTS #30 US1_TX #3 US1_RX #2 US1_CLK #1 US1_CS #0 US1_CTS #31 US1_RTS #30 LEU0_TX #3 LEU0_RX #2 I2C0_SDA #3 I2C0_SCL #2 FRC_DCLK #3 FRC_DOUT #2 FRC_DFRAME #1 MODEM_DCLK #3 MODEM_DIN #2 MODEM_DOUT #1 MODEM_ANT0 #0 MODEM_ANT1 #31 PRS_CH6 #3 PRS_CH7 #2 PRS_CH8 #1 PRS_CH9 #0 ACMP0_O #3 ACMP1_O #3 GPIO_EM4WU8 BUSDY BUSCX TIM0_CC0 #4 TIM0_CC1 #3 TIM0_CC2 #2 TIM0_CDTI0 #1 TIM0_CDTI1 #0 TIM0_CDTI2 #31 TIM1_CC0 #4 TIM1_CC1 #3 TIM1_CC2 #2 TIM1_CC3 #1 LETIM0_OUT0 #4 LETIM0_OUT1 #3 PCNT0_S0IN #4 PCNT0_S1IN #3 US0_TX #4 US0_RX #3 US0_CLK #2 US0_CS #1 US0_CTS #0 US0_RTS #31 US1_TX #4 US1_RX #3 US1_CLK #2 US1_CS #1 US1_CTS #0 US1_RTS #31 LEU0_TX #4 LEU0_RX #3 I2C0_SDA #4 I2C0_SCL #3 FRC_DCLK #4 FRC_DOUT #3 FRC_DFRAME #2 MODEM_DCLK #4 MODEM_DIN #3 MODEM_DOUT #2 MODEM_ANT0 #1 MODEM_ANT1 #0 PRS_CH6 #4 PRS_CH7 #3 PRS_CH8 #2 PRS_CH9 #1 ACMP0_O #4 ACMP1_O #4 BUSCY BUSDX TIM0_CC0 #5 TIM0_CC1 #4 TIM0_CC2 #3 TIM0_CDTI0 #2 TIM0_CDTI1 #1 TIM0_CDTI2 #0 TIM1_CC0 #5 TIM1_CC1 #4 TIM1_CC2 #3 TIM1_CC3 #2 LETIM0_OUT0 #5 LETIM0_OUT1 #4 PCNT0_S0IN #5 PCNT0_S1IN #4 US0_TX #5 US0_RX #4 US0_CLK #3 US0_CS #2 US0_CTS #1 US0_RTS #0 US1_TX #5 US1_RX #4 US1_CLK #3 US1_CS #2 US1_CTS #1 US1_RTS #0 LEU0_TX #5 LEU0_RX #4 I2C0_SDA #5 I2C0_SCL #4 FRC_DCLK #5 FRC_DOUT #4 FRC_DFRAME #3 MODEM_DCLK #5 MODEM_DIN #4 MODEM_DOUT #3 MODEM_ANT0 #2 MODEM_ANT1 #1 C 28 Pin Name Pin Alternate Functionality / Description f on 29 PA4 PA5 t en id 30 PRS_CH6 #5 PRS_CH7 #4 PRS_CH8 #3 PRS_CH9 #2 ACMP0_O #5 ACMP1_O #5 l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 52 EFR32MG1X232 Data Sheet Pinout and Package QFN48 Pin# and Name Pin # PB11 Analog Timers Communication Radio Other BUSCY BUSDX TIM0_CC0 #6 TIM0_CC1 #5 TIM0_CC2 #4 TIM0_CDTI0 #3 TIM0_CDTI1 #2 TIM0_CDTI2 #1 TIM1_CC0 #6 TIM1_CC1 #5 TIM1_CC2 #4 TIM1_CC3 #3 LETIM0_OUT0 #6 LETIM0_OUT1 #5 PCNT0_S0IN #6 PCNT0_S1IN #5 US0_TX #6 US0_RX #5 US0_CLK #4 US0_CS #3 US0_CTS #2 US0_RTS #1 US1_TX #6 US1_RX #5 US1_CLK #4 US1_CS #3 US1_CTS #2 US1_RTS #1 LEU0_TX #6 LEU0_RX #5 I2C0_SDA #6 I2C0_SCL #5 FRC_DCLK #6 FRC_DOUT #5 FRC_DFRAME #4 MODEM_DCLK #6 MODEM_DIN #5 MODEM_DOUT #4 MODEM_ANT0 #3 MODEM_ANT1 #2 PRS_CH6 #6 PRS_CH7 #5 PRS_CH8 #4 PRS_CH9 #3 ACMP0_O #6 ACMP1_O #6 BUSDY BUSCX TIM0_CC0 #7 TIM0_CC1 #6 TIM0_CC2 #5 TIM0_CDTI0 #4 TIM0_CDTI1 #3 TIM0_CDTI2 #2 TIM1_CC0 #7 TIM1_CC1 #6 TIM1_CC2 #5 TIM1_CC3 #4 LETIM0_OUT0 #7 LETIM0_OUT1 #6 PCNT0_S0IN #7 PCNT0_S1IN #6 US0_TX #7 US0_RX #6 US0_CLK #5 US0_CS #4 US0_CTS #3 US0_RTS #2 US1_TX #7 US1_RX #6 US1_CLK #5 US1_CS #4 US1_CTS #3 US1_RTS #2 LEU0_TX #7 LEU0_RX #6 I2C0_SDA #7 I2C0_SCL #6 FRC_DCLK #7 FRC_DOUT #6 FRC_DFRAME #5 MODEM_DCLK #7 MODEM_DIN #6 MODEM_DOUT #5 MODEM_ANT0 #4 MODEM_ANT1 #3 PRS_CH6 #7 PRS_CH7 #6 PRS_CH8 #5 PRS_CH9 #4 ACMP0_O #7 ACMP1_O #7 TIM0_CC0 #8 TIM0_CC1 #7 TIM0_CC2 #6 TIM0_CDTI0 #5 TIM0_CDTI1 #4 TIM0_CDTI2 #3 TIM1_CC0 #8 TIM1_CC1 #7 TIM1_CC2 #6 TIM1_CC3 #5 LETIM0_OUT0 #8 LETIM0_OUT1 #7 PCNT0_S0IN #8 PCNT0_S1IN #7 US0_TX #8 US0_RX #7 US0_CLK #6 US0_CS #5 US0_CTS #4 US0_RTS #3 US1_TX #8 US1_RX #7 US1_CLK #6 US1_CS #5 US1_CTS #4 US1_RTS #3 LEU0_TX #8 LEU0_RX #7 I2C0_SDA #8 I2C0_SCL #7 FRC_DCLK #8 FRC_DOUT #7 FRC_DFRAME #6 MODEM_DCLK #8 MODEM_DIN #7 MODEM_DOUT #6 MODEM_ANT0 #5 MODEM_ANT1 #4 C 31 Pin Name Pin Alternate Functionality / Description f on 32 PB12 BUSCY BUSDX 34 AVDD Analog power supply. l ia PB13 t en id 33 PRS_CH6 #8 PRS_CH7 #7 PRS_CH8 #6 PRS_CH9 #5 ACMP0_O #8 ACMP1_O #8 DBG_SWO #1 GPIO_EM4WU9 silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 53 EFR32MG1X232 Data Sheet Pinout and Package QFN48 Pin# and Name Pin # PB14 Analog Timers Communication Radio Other BUSDY BUSCX LFXTAL_N TIM0_CC0 #9 TIM0_CC1 #8 TIM0_CC2 #7 TIM0_CDTI0 #6 TIM0_CDTI1 #5 TIM0_CDTI2 #4 TIM1_CC0 #9 TIM1_CC1 #8 TIM1_CC2 #7 TIM1_CC3 #6 LETIM0_OUT0 #9 LETIM0_OUT1 #8 PCNT0_S0IN #9 PCNT0_S1IN #8 US0_TX #9 US0_RX #8 US0_CLK #7 US0_CS #6 US0_CTS #5 US0_RTS #4 US1_TX #9 US1_RX #8 US1_CLK #7 US1_CS #6 US1_CTS #5 US1_RTS #4 LEU0_TX #9 LEU0_RX #8 I2C0_SDA #9 I2C0_SCL #8 FRC_DCLK #9 FRC_DOUT #8 FRC_DFRAME #7 MODEM_DCLK #9 MODEM_DIN #8 MODEM_DOUT #7 MODEM_ANT0 #6 MODEM_ANT1 #5 CMU_CLK1 #1 PRS_CH6 #9 PRS_CH7 #8 PRS_CH8 #7 PRS_CH9 #6 ACMP0_O #9 ACMP1_O #9 TIM0_CC0 #10 TIM0_CC1 #9 TIM0_CC2 #8 TIM0_CDTI0 #7 TIM0_CDTI1 #6 TIM0_CDTI2 #5 TIM1_CC0 #10 TIM1_CC1 #9 TIM1_CC2 #8 TIM1_CC3 #7 LETIM0_OUT0 #10 LETIM0_OUT1 #9 PCNT0_S0IN #10 PCNT0_S1IN #9 US0_TX #10 US0_RX #9 US0_CLK #8 US0_CS #7 US0_CTS #6 US0_RTS #5 US1_TX #10 US1_RX #9 US1_CLK #8 US1_CS #7 US1_CTS #6 US1_RTS #5 LEU0_TX #10 LEU0_RX #9 I2C0_SDA #10 I2C0_SCL #9 FRC_DCLK #10 FRC_DOUT #9 FRC_DFRAME #8 MODEM_DCLK #10 MODEM_DIN #9 MODEM_DOUT #8 MODEM_ANT0 #7 MODEM_ANT1 #6 CMU_CLK0 #1 PRS_CH6 #10 PRS_CH7 #9 PRS_CH8 #8 PRS_CH9 #7 ACMP0_O #10 ACMP1_O #10 C 35 Pin Name Pin Alternate Functionality / Description f on PB15 BUSCY BUSDX LFXTAL_P 37 VREGVSS Voltage regulator VSS 38 VREGSW DCDC regulator switching node 39 VREGVDD Voltage regulator VDD input 40 DVDD 41 DECOUPLE 42 IOVDD t en Digital power supply. id 36 Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin. Digital IO power supply. l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 54 EFR32MG1X232 Data Sheet Pinout and Package QFN48 Pin# and Name Pin # PC6 Analog Timers Communication Radio Other BUSBY BUSAX TIM0_CC0 #11 TIM0_CC1 #10 TIM0_CC2 #9 TIM0_CDTI0 #8 TIM0_CDTI1 #7 TIM0_CDTI2 #6 TIM1_CC0 #11 TIM1_CC1 #10 TIM1_CC2 #9 TIM1_CC3 #8 LETIM0_OUT0 #11 LETIM0_OUT1 #10 PCNT0_S0IN #11 PCNT0_S1IN #10 US0_TX #11 US0_RX #10 US0_CLK #9 US0_CS #8 US0_CTS #7 US0_RTS #6 US1_TX #11 US1_RX #10 US1_CLK #9 US1_CS #8 US1_CTS #7 US1_RTS #6 LEU0_TX #11 LEU0_RX #10 I2C0_SDA #11 I2C0_SCL #10 FRC_DCLK #11 FRC_DOUT #10 FRC_DFRAME #9 MODEM_DCLK #11 MODEM_DIN #10 MODEM_DOUT #9 MODEM_ANT0 #8 MODEM_ANT1 #7 CMU_CLK0 #2 PRS_CH0 #8 PRS_CH9 #11 PRS_CH10 #0 PRS_CH11 #5 ACMP0_O #11 ACMP1_O #11 BUSAY BUSBX TIM0_CC0 #12 TIM0_CC1 #11 TIM0_CC2 #10 TIM0_CDTI0 #9 TIM0_CDTI1 #8 TIM0_CDTI2 #7 TIM1_CC0 #12 TIM1_CC1 #11 TIM1_CC2 #10 TIM1_CC3 #9 LETIM0_OUT0 #12 LETIM0_OUT1 #11 PCNT0_S0IN #12 PCNT0_S1IN #11 US0_TX #12 US0_RX #11 US0_CLK #10 US0_CS #9 US0_CTS #8 US0_RTS #7 US1_TX #12 US1_RX #11 US1_CLK #10 US1_CS #9 US1_CTS #8 US1_RTS #7 LEU0_TX #12 LEU0_RX #11 I2C0_SDA #12 I2C0_SCL #11 FRC_DCLK #12 FRC_DOUT #11 FRC_DFRAME #10 MODEM_DCLK #12 MODEM_DIN #11 MODEM_DOUT #10 MODEM_ANT0 #9 MODEM_ANT1 #8 CMU_CLK1 #2 PRS_CH0 #9 PRS_CH9 #12 PRS_CH10 #1 PRS_CH11 #0 ACMP0_O #12 ACMP1_O #12 BUSBY BUSAX TIM0_CC0 #13 TIM0_CC1 #12 TIM0_CC2 #11 TIM0_CDTI0 #10 TIM0_CDTI1 #9 TIM0_CDTI2 #8 TIM1_CC0 #13 TIM1_CC1 #12 TIM1_CC2 #11 TIM1_CC3 #10 LETIM0_OUT0 #13 LETIM0_OUT1 #12 PCNT0_S0IN #13 PCNT0_S1IN #12 US0_TX #13 US0_RX #12 US0_CLK #11 US0_CS #10 US0_CTS #9 US0_RTS #8 US1_TX #13 US1_RX #12 US1_CLK #11 US1_CS #10 US1_CTS #9 US1_RTS #8 LEU0_TX #13 LEU0_RX #12 I2C0_SDA #13 I2C0_SCL #12 FRC_DCLK #13 FRC_DOUT #12 FRC_DFRAME #11 MODEM_DCLK #13 MODEM_DIN #12 MODEM_DOUT #11 MODEM_ANT0 #10 MODEM_ANT1 #9 C 43 Pin Name Pin Alternate Functionality / Description f on 44 PC7 PC8 t en id 45 PRS_CH0 #10 PRS_CH9 #13 PRS_CH10 #2 PRS_CH11 #1 ACMP0_O #13 ACMP1_O #13 l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 55 EFR32MG1X232 Data Sheet Pinout and Package QFN48 Pin# and Name Pin # PC9 Analog Timers Communication Radio Other BUSAY BUSBX TIM0_CC0 #14 TIM0_CC1 #13 TIM0_CC2 #12 TIM0_CDTI0 #11 TIM0_CDTI1 #10 TIM0_CDTI2 #9 TIM1_CC0 #14 TIM1_CC1 #13 TIM1_CC2 #12 TIM1_CC3 #11 LETIM0_OUT0 #14 LETIM0_OUT1 #13 PCNT0_S0IN #14 PCNT0_S1IN #13 US0_TX #14 US0_RX #13 US0_CLK #12 US0_CS #11 US0_CTS #10 US0_RTS #9 US1_TX #14 US1_RX #13 US1_CLK #12 US1_CS #11 US1_CTS #10 US1_RTS #9 LEU0_TX #14 LEU0_RX #13 I2C0_SDA #14 I2C0_SCL #13 FRC_DCLK #14 FRC_DOUT #13 FRC_DFRAME #12 MODEM_DCLK #14 MODEM_DIN #13 MODEM_DOUT #12 MODEM_ANT0 #11 MODEM_ANT1 #10 PRS_CH0 #11 PRS_CH9 #14 PRS_CH10 #3 PRS_CH11 #2 ACMP0_O #14 ACMP1_O #14 BUSBY BUSAX TIM0_CC0 #15 TIM0_CC1 #14 TIM0_CC2 #13 TIM0_CDTI0 #12 TIM0_CDTI1 #11 TIM0_CDTI2 #10 TIM1_CC0 #15 TIM1_CC1 #14 TIM1_CC2 #13 TIM1_CC3 #12 LETIM0_OUT0 #15 LETIM0_OUT1 #14 PCNT0_S0IN #15 PCNT0_S1IN #14 US0_TX #15 US0_RX #14 US0_CLK #13 US0_CS #12 US0_CTS #11 US0_RTS #10 US1_TX #15 US1_RX #14 US1_CLK #13 US1_CS #12 US1_CTS #11 US1_RTS #10 LEU0_TX #15 LEU0_RX #14 I2C0_SDA #15 I2C0_SCL #14 FRC_DCLK #15 FRC_DOUT #14 FRC_DFRAME #13 MODEM_DCLK #15 MODEM_DIN #14 MODEM_DOUT #13 MODEM_ANT0 #12 MODEM_ANT1 #11 CMU_CLK1 #3 PRS_CH0 #12 PRS_CH9 #15 PRS_CH10 #4 PRS_CH11 #3 ACMP0_O #15 ACMP1_O #15 GPIO_EM4WU12 BUSAY BUSBX TIM0_CC0 #16 TIM0_CC1 #15 TIM0_CC2 #14 TIM0_CDTI0 #13 TIM0_CDTI1 #12 TIM0_CDTI2 #11 TIM1_CC0 #16 TIM1_CC1 #15 TIM1_CC2 #14 TIM1_CC3 #13 LETIM0_OUT0 #16 LETIM0_OUT1 #15 PCNT0_S0IN #16 PCNT0_S1IN #15 US0_TX #16 US0_RX #15 US0_CLK #14 US0_CS #13 US0_CTS #12 US0_RTS #11 US1_TX #16 US1_RX #15 US1_CLK #14 US1_CS #13 US1_CTS #12 US1_RTS #11 LEU0_TX #16 LEU0_RX #15 I2C0_SDA #16 I2C0_SCL #15 FRC_DCLK #16 FRC_DOUT #15 FRC_DFRAME #14 MODEM_DCLK #16 MODEM_DIN #15 MODEM_DOUT #14 MODEM_ANT0 #13 MODEM_ANT1 #12 C 46 Pin Name Pin Alternate Functionality / Description f on 47 PC10 PC11 t en id 48 CMU_CLK0 #3 PRS_CH0 #13 PRS_CH9 #16 PRS_CH10 #5 PRS_CH11 #4 ACMP0_O #16 ACMP1_O #16 DBG_SWO #3 l ia silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 56 EFR32MG1X232 Data Sheet Pinout and Package 6.2 Alternate Functionality Pinout A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 6.2. Alternate functionality overview Alternate LOCATION C Functionality 0-3 0: PA0 1: PA1 2: PA2 3: PA3 ACMP0_O ADC0_EXTN 12 - 15 16 - 19 20 - 23 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 20: PD12 21: PD13 22: PD14 23: PD15 18: PD10 19: PD11 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24 - 27 28 - 31 Description 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Analog comparator ACMP0, digital output. 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Analog comparator ACMP1, digital output. 0: PA0 Analog to digital converter ADC0 external reference input negative pin 0: PA1 Analog to digital converter ADC0 external reference input positive pin 0: PF1 BOOT_RX 0: PF0 BOOT_TX Bootloader RX t en id ADC0_EXTP 4: PA4 5: PA5 6: PB11 7: PB12 8 - 11 f on ACMP1_O 4-7 Bootloader TX 5: PD14 6: PF2 7: PF7 CMU_CLK1 0: PA0 1: PB14 2: PC7 3: PC10 4: PD10 5: PD15 6: PF3 7: PF6 0: PF0 DBG_SWCLKTCK Clock Management Unit, clock output number 0. Clock Management Unit, clock output number 1. ia CMU_CLK0 0: PA1 1: PB15 2: PC6 3: PC11 Debug-interface Serial Wire clock input and JTAG Test Clock. l Note that this function is enabled to pin out of reset, and has a built-in pull down. silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 57 EFR32MG1X232 Data Sheet Pinout and Package Alternate LOCATION Functionality 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 Debug-interface Serial Wire data input / output and JTAG Test Mode Select. 0: PF1 DBG_SWDIOTMS Note that this function is enabled to pin out of reset, and has a built-in pull up. C Debug-interface Serial Wire viewer Output. 0: PF2 1: PB13 2: PD15 3: PC11 Note that this function is not enabled after reset, and must be enabled by software to be used. f on DBG_SWO Debug-interface JTAG Test Data In. 0: PF3 DBG_TDI Description id Note that this function is enabled to pin out of reset, and has a built-in pull up. 0: PF2 DBG_TDO 12: PC7 13: PC8 14: PC9 15: PC10 FRC_DFRAME 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 FRC_DOUT 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 GPIO_EM4WU1 silabs.com | Smart. Connected. Energy-friendly. 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Frame Controller, Data Sniffer Clock. 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Frame Controller, Data Sniffer Frame active 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Frame Controller, Data Sniffer Output. Pin can be used to wake the system up from EM4 l 0: PF7 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 ia 8: PB13 9: PB14 10: PB15 11: PC6 GPIO_EM4WU0 Note that this function is enabled to pin out of reset. t en 4: PA4 5: PA5 6: PB11 7: PB12 16: PC11 FRC_DCLK 0: PA0 1: PA1 2: PA2 3: PA3 0: PF2 Debug-interface JTAG Test Data Out. Pin can be used to wake the system up from EM4 Preliminary Rev. 0.71 | 58 EFR32MG1X232 Data Sheet Pinout and Package Alternate LOCATION Functionality 0-3 4-7 8 - 11 12 - 15 16 - 19 20 - 23 24 - 27 28 - 31 0: PD14 Pin can be used to wake the system up from EM4 GPIO_EM4WU4 0: PA3 Pin can be used to wake the system up from EM4 GPIO_EM4WU8 0: PB13 C Pin can be used to wake the system up from EM4 GPIO_EM4WU9 0: PC10 Pin can be used to wake the system up from EM4 f on GPIO_EM4WU12 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 LETIM0_OUT0 0: PA0 1: PA1 2: PA2 3: PA3 LETIM0_OUT1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 LEU0_RX 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 LEU0_TX 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 I2C0_SCL I2C0_SDA Description silabs.com | Smart. Connected. Energy-friendly. 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 I2C0 Serial Data input / output. 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Low Energy Timer LETIM0, output channel 0. 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Low Energy Timer LETIM0, output channel 1. 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 LEUART0 Receive input. 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 LEUART0 Transmit output. Also used as receive input in half duplex communication. 18: PD10 19: PD11 16: PC11 18: PD10 19: PD11 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. l LFXTAL_P I2C0 Serial Clock Line input / output. ia 0: PB15 28: PF5 29: PF6 30: PF7 31: PA0 t en LFXTAL_N 24: PF1 25: PF2 26: PF3 27: PF4 id 0: PB14 20: PD13 21: PD14 22: PD15 23: PF0 17: PD10 18: PD11 19: PD12 Low Frequency Crystal (typically 32.768 kHz) positive pin. Preliminary Rev. 0.71 | 59 EFR32MG1X232 Data Sheet Pinout and Package Alternate LOCATION Functionality 12 - 15 16 - 19 20 - 23 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 MODEM antenna control output 0, used for antenna diversity. 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 MODEM antenna control output 1, used for antenna diversity. 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 MODEM_DCLK 0: PA0 1: PA1 2: PA2 3: PA3 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 MODEM data clock out. MODEM_DIN 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 MODEM data in. MODEM_DOUT 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 MODEM data out. 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 PCNT0_S0IN 0: PA0 1: PA1 2: PA2 3: PA3 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Pulse Counter PCNT0 input number 0. PCNT0_S1IN 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Pulse Counter PCNT0 input number 1. PRS_CH0 0: PF0 1: PF1 2: PF2 3: PF3 4: PF4 5: PF5 6: PF6 7: PF7 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 PRS_CH1 0: PF1 1: PF2 2: PF3 3: PF4 4: PF5 5: PF6 6: PF7 7: PF0 PRS_CH2 0: PF2 1: PF3 2: PF4 3: PF5 4: PF6 5: PF7 6: PF0 7: PF1 PRS_CH3 0: PF3 1: PF4 2: PF5 3: PF6 4: PF7 5: PF0 6: PF1 7: PF2 MODEM_ANT0 MODEM_ANT1 0-3 4-7 8 - 11 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 0: PA4 1: PA5 2: PB11 3: PB12 C silabs.com | Smart. Connected. Energy-friendly. Peripheral Reflex System PRS, channel 0. Peripheral Reflex System PRS, channel 1. Peripheral Reflex System PRS, channel 2. 9: PD10 10: PD11 11: PD12 12: PD13 13: PD14 14: PD15 Peripheral Reflex System PRS, channel 3. Peripheral Reflex System PRS, channel 4. l 4: PD14 5: PD15 Description ia 0: PD10 1: PD11 2: PD12 3: PD13 4: PD13 5: PD14 6: PD15 17: PD10 18: PD11 19: PD12 28 - 31 t en 1: PD10 2: PD11 3: PD12 18: PD10 19: PD11 id PRS_CH5 14: PD10 15: PD11 f on PRS_CH4 15: PD10 24 - 27 Peripheral Reflex System PRS, channel 5. Preliminary Rev. 0.71 | 60 EFR32MG1X232 Data Sheet Pinout and Package Alternate Functionality LOCATION 0-3 4-7 8 - 11 12 - 15 16 - 19 12: PD10 13: PD11 14: PD12 15: PD13 16: PD14 17: PD15 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 PRS_CH7 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PA0 PRS_CH8 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PA0 10: PA1 PRS_CH9 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PA0 9: PA1 10: PA2 11: PC6 0: PC6 1: PC7 2: PC8 3: PC9 4: PC10 5: PC11 0: PC7 1: PC8 2: PC9 3: PC10 4: PC11 5: PC6 TIM0_CC0 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 TIM0_CC1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 TIM0_CC2 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 TIM0_CDTI0 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 TIM0_CDTI1 0: PA4 1: PA5 2: PB11 3: PB12 C PRS_CH6 0: PA0 1: PA1 2: PA2 3: PA3 PRS_CH11 24 - 27 28 - 31 Description Peripheral Reflex System PRS, channel 6. Peripheral Reflex System PRS, channel 7. Peripheral Reflex System PRS, channel 8. 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 f on PRS_CH10 20 - 23 Peripheral Reflex System PRS, channel 10. Peripheral Reflex System PRS, channel 11. 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Timer 0 Capture Compare input / output channel 0. 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Timer 0 Capture Compare input / output channel 1. 12: PC9 13: PC10 14: PC11 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Timer 0 Capture Compare input / output channel 2. 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 Timer 0 Complimentary Deat Time Insertion channel 0. 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 Timer 0 Complimentary Deat Time Insertion channel 1. TIM0_CDTI2 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 Timer 0 Complimentary Deat Time Insertion channel 2. 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 TIM1_CC0 0: PA0 1: PA1 2: PA2 3: PA3 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Timer 1 Capture Compare input / output channel 0. 15: PD10 l 18: PD10 19: PD11 ia t en id 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 silabs.com | Smart. Connected. Energy-friendly. 16: PC11 Peripheral Reflex System PRS, channel 9. Preliminary Rev. 0.71 | 61 EFR32MG1X232 Data Sheet Pinout and Package Alternate Functionality LOCATION 0-3 4-7 8 - 11 16 - 19 20 - 23 TIM1_CC1 0: PA1 1: PA2 2: PA3 3: PA4 4: PA5 5: PB11 6: PB12 7: PB13 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 20: PD13 21: PD14 22: PD15 23: PF0 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 Timer 1 Capture Compare input / output channel 2. 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 Timer 1 Capture Compare input / output channel 3. 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 12: PC9 13: PC10 14: PC11 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 USART0 clock input / output. 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 12: PC10 13: PC11 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 USART0 chip select input / output. 0: PA4 1: PA5 2: PB11 3: PB12 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 USART0 clear to send hardware flow control input. 0: PA5 1: PB11 2: PB12 3: PB13 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 USART0 request to send hardware flow control output. C 12 - 15 TIM1_CC3 US0_CS US0_CTS 4: PA5 5: PB11 6: PB12 7: PB13 14: PD10 15: PD11 8: PB14 9: PB15 10: PC6 11: PC7 13: PD10 14: PD11 15: PD12 12: PC8 13: PC9 14: PC10 15: PC11 17: PD10 18: PD11 19: PD12 28: PF5 29: PF6 30: PF7 31: PA0 USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO). 8: PB13 9: PB14 10: PB15 11: PC6 12: PC7 13: PC8 14: PC9 15: PC10 16: PC11 US1_CLK 0: PA2 1: PA3 2: PA4 3: PA5 4: PB11 5: PB12 6: PB13 7: PB14 8: PB15 9: PC6 10: PC7 11: PC8 US1_CS 0: PA3 1: PA4 2: PA5 3: PB11 4: PB12 5: PB13 6: PB14 7: PB15 8: PC6 9: PC7 10: PC8 11: PC9 USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. 18: PD10 19: PD11 20: PD12 21: PD13 22: PD14 23: PD15 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 12: PC9 13: PC10 14: PC11 16: PD10 17: PD11 18: PD12 19: PD13 20: PD14 21: PD15 22: PF0 23: PF1 24: PF2 25: PF3 26: PF4 27: PF5 28: PF6 29: PF7 30: PA0 31: PA1 USART1 clock input / output. 12: PC10 13: PC11 16: PD11 17: PD12 18: PD13 19: PD14 20: PD15 21: PF0 22: PF1 23: PF2 24: PF3 25: PF4 26: PF5 27: PF6 28: PF7 29: PA0 30: PA1 31: PA2 USART1 chip select input / output. 15: PD10 USART0 Synchronous mode Master Output / Slave Input (MOSI). l 4: PA4 5: PA5 6: PB11 7: PB12 silabs.com | Smart. Connected. Energy-friendly. 24: PF1 25: PF2 26: PF3 27: PF4 Description ia 0: PA0 1: PA1 2: PA2 3: PA3 US0_TX 20: PD13 21: PD14 22: PD15 23: PF0 28 - 31 t en US0_RX 0: PA1 1: PA2 2: PA3 3: PA4 15: PD10 id US0_RTS f on US0_CLK 15: PD10 24 - 27 Preliminary Rev. 0.71 | 62 EFR32MG1X232 Data Sheet Pinout and Package Alternate LOCATION Functionality 0-3 4-7 8 - 11 12 - 15 16 - 19 US1_CTS 0: PA4 1: PA5 2: PB11 3: PB12 US1_RTS 0: PA5 1: PB11 2: PB12 3: PB13 4: PB13 5: PB14 6: PB15 7: PC6 8: PC7 9: PC8 10: PC9 11: PC10 12: PC11 14: PD10 15: PD11 16: PD12 17: PD13 18: PD14 19: PD15 20: PF0 21: PF1 22: PF2 23: PF3 24: PF4 25: PF5 26: PF6 27: PF7 28: PA0 29: PA1 30: PA2 31: PA3 USART1 clear to send hardware flow control input. 4: PB14 5: PB15 6: PC6 7: PC7 8: PC8 9: PC9 10: PC10 11: PC11 13: PD10 14: PD11 15: PD12 16: PD13 17: PD14 18: PD15 19: PF0 20: PF1 21: PF2 22: PF3 23: PF4 24: PF5 25: PF6 26: PF7 27: PA0 28: PA1 29: PA2 30: PA3 31: PA4 USART1 request to send hardware flow control output. C 0: PA1 1: PA2 2: PA3 3: PA4 US1_RX 8: PB14 9: PB15 10: PC6 11: PC7 12: PC8 13: PC9 14: PC10 15: PC11 20: PD13 21: PD14 22: PD15 23: PF0 17: PD10 18: PD11 19: PD12 f on US1_TX 4: PA5 5: PB11 6: PB12 7: PB13 20 - 23 0: PA0 1: PA1 2: PA2 3: PA3 4: PA4 5: PA5 6: PB11 7: PB12 8: PB13 9: PB14 10: PB15 11: PC6 16: PC11 20: PD12 21: PD13 22: PD14 23: PD15 18: PD10 19: PD11 28 - 31 24: PF1 25: PF2 26: PF3 27: PF4 28: PF5 29: PF6 30: PF7 31: PA0 24: PF0 25: PF1 26: PF2 27: PF3 28: PF4 29: PF5 30: PF6 31: PF7 Description USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI). id 6.3 GPIO Pinout Overview 12: PC7 13: PC8 14: PC9 15: PC10 24 - 27 The GPIO pins are organized as 16-bit ports indicated by letters A through F, and the individual pins on each port is indicated by a number from 15 down to 0. Table 6.3. GPIO Pinout Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Port A - - - - - - - - - Port B Port C - - PB13 PB12 PB11 (5V) (5V) (5V) - - PC11 PC10 (5V) (5V) PD15 PD14 PD13 PD12 PD11 PD10 (5V) (5V) (5V) (5V) (5V) (5V) Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 - - - PA5 (5V) PA4 (5V) PA3 (5V) PA2 (5V) PA1 PA0 - - - - - - - - - PC9 (5V) PC8 (5V) PC7 (5V) PC6 (5V) - - - - - - - - - - - - - - - - - - - - PF3 (5V) PF2 (5V) PF1 (5V) PF0 (5V) Port E - - - - - - - - - - - - Port F - - - - - - - - PF7 (5V) PF6 (5V) PF5 (5V) PF4 (5V) l ia Port D PB15 PB14 t en Port silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 63 EFR32MG1X232 Data Sheet Pinout and Package 6.4 Analog Port (APORT) The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs, and DACs. The APORT consists of wires, switches, and control needed to configurably implement the routes. Please see EFR32 Reference Manual for complete description. PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSAX C BUSBY f on PC7 PC9 PC11 PF1 PF3 PF5 PF7 BUSAY BUSBX id PD10 PD12 PD14 PA0 PA2 PA4 PB12 PB14 BUSCX t en BUSDY BUSCY ia PD11 PD13 PD15 PA1 PA3 PA5 PB11 PB13 PB15 BUSDX l 1X1Y2X2Y3X3Y4X4Y ACMP0 1X1Y2X2Y3X3Y4X4Y ACMP1 1X1Y2X2Y3X3Y4X4Y ADC0 1X1Y IDAC0 Figure 6.2. EFR32MG1X232 APORT silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 64 EFR32MG1X232 Data Sheet Pinout and Package Table 6.4. APORT Client Map Analog Module ACMP0 Analog Module Channel APORT1XCH6 Shared Bus BUSAX Pin PC6 APORT1XCH8 PC8 APORT1XCH10 PC10 APORT1XCH16 PF0 APORT1XCH18 PF2 C APORT1XCH20 PF4 APORT1XCH22 PF6 APORT1YCH7 BUSAY PC7 PC9 APORT1YCH11 PC11 APORT1YCH17 PF1 APORT1YCH19 PF3 APORT1YCH21 PF5 APORT1YCH23 PF7 f on APORT1YCH9 APORT2XCH7 BUSBX APORT2XCH9 APORT2XCH17 APORT2XCH19 APORT2XCH21 APORT2YCH6 APORT2YCH8 APORT2YCH10 APORT2YCH16 APORT2YCH18 APORT2YCH20 APORT3XCH2 PC11 PF1 PF3 PF5 PF7 BUSBY PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSCX ia APORT2YCH22 PC9 t en APORT2XCH23 id APORT2XCH11 PC7 PD10 PD12 APORT3XCH6 PD14 APORT3XCH8 PA0 APORT3XCH10 PA2 APORT3XCH12 PA4 APORT3XCH28 PB12 APORT3XCH30 PB14 APORT3YCH3 silabs.com | Smart. Connected. Energy-friendly. APORT3YCH5 BUSCY PD11 PD13 l APORT3XCH4 Preliminary Rev. 0.71 | 65 EFR32MG1X232 Data Sheet Pinout and Package Analog Module ACMP1 Analog Module Channel APORT1XCH6 Shared Bus BUSAX Pin PC6 APORT1XCH8 PC8 APORT1XCH10 PC10 APORT1XCH16 PF0 APORT1XCH18 PF2 APORT1XCH20 PF4 APORT1XCH22 PF6 C APORT1YCH7 BUSAY PC7 APORT1YCH9 PC9 APORT1YCH11 PC11 APORT1YCH17 PF1 f on APORT1YCH19 PF3 APORT1YCH21 PF5 APORT1YCH23 PF7 APORT2XCH7 BUSBX PC7 APORT2XCH9 PC9 APORT2XCH11 PC11 APORT2XCH17 PF1 APORT2XCH21 APORT2XCH23 APORT2YCH6 APORT2YCH10 APORT2YCH16 APORT2YCH18 APORT2YCH20 APORT2YCH22 APORT3XCH2 PF5 PF7 PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSCX PD10 PD12 APORT3XCH6 PD14 APORT3XCH8 PA0 APORT3XCH10 PA2 APORT3XCH12 PA4 APORT3XCH28 PB12 APORT3XCH30 PB14 APORT3YCH3 BUSCY PD11 APORT3YCH5 PD13 APORT3YCH7 PD15 APORT3YCH9 PA1 silabs.com | Smart. Connected. Energy-friendly. l ia APORT3XCH4 BUSBY PF3 t en APORT2YCH8 id APORT2XCH19 Preliminary Rev. 0.71 | 66 EFR32MG1X232 Data Sheet Pinout and Package Analog Module ADC0 Analog Module Channel APORT1XCH6 Shared Bus BUSAX Pin PC6 APORT1XCH8 PC8 APORT1XCH10 PC10 APORT1XCH16 PF0 APORT1XCH18 PF2 APORT1XCH20 PF4 APORT1XCH22 PF6 C APORT1YCH7 BUSAY PC7 APORT1YCH9 PC9 APORT1YCH11 PC11 APORT1YCH17 PF1 f on APORT1YCH19 PF3 APORT1YCH21 PF5 APORT1YCH23 PF7 APORT2XCH7 BUSBX PC7 APORT2XCH9 PC9 APORT2XCH11 PC11 APORT2XCH17 PF1 APORT2XCH21 APORT2XCH23 APORT2YCH6 APORT2YCH10 APORT2YCH16 APORT2YCH18 APORT2YCH20 APORT2YCH22 APORT3XCH2 PF5 PF7 PC6 PC8 PC10 PF0 PF2 PF4 PF6 BUSCX PD10 PD12 APORT3XCH6 PD14 APORT3XCH8 PA0 APORT3XCH10 PA2 APORT3XCH12 PA4 APORT3XCH28 PB12 APORT3XCH30 PB14 APORT3YCH3 BUSCY PD11 APORT3YCH5 PD13 APORT3YCH7 PD15 APORT3YCH9 PA1 silabs.com | Smart. Connected. Energy-friendly. l ia APORT3XCH4 BUSBY PF3 t en APORT2YCH8 id APORT2XCH19 Preliminary Rev. 0.71 | 67 EFR32MG1X232 Data Sheet Pinout and Package Analog Module IDAC0 Analog Module Channel APORT1XCH2 Shared Bus BUSCX Pin PD10 APORT1XCH4 PD12 APORT1XCH6 PD14 APORT1XCH8 PA0 APORT1XCH10 PA2 APORT1XCH12 PA4 APORT1XCH28 PB12 C APORT1XCH30 APORT1YCH3 PB14 BUSCY PD11 APORT1YCH5 PD13 APORT1YCH7 PD15 f on APORT1YCH9 PA1 APORT1YCH11 PA3 APORT1YCH13 PA5 APORT1YCH27 PB11 APORT1YCH29 PB13 APORT1YCH31 PB15 l ia t en id silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 68 EFR32MG1X232 Data Sheet Pinout and Package 6.5 QFN48 Package Dimensions C f on t en id Figure 6.3. QFN48 Package Drawing Min Typ A 0.80 0.85 A1 0.00 0.02 A3 Max 0.90 0.05 0.20 REF b 0.18 0.25 0.30 D 6.90 7.00 7.10 silabs.com | Smart. Connected. Energy-friendly. l Dimension ia Table 6.5. QFN48 Package Dimensions Preliminary Rev. 0.71 | 69 EFR32MG1X232 Data Sheet Pinout and Package Dimension Min Typ Max E 6.90 7.00 7.10 D2 4.60 4.70 4.80 E2 4.60 4.70 4.80 e 0.50 BSC L 0.30 0.40 0.50 K 0.20 — — R 0.09 — 0.14 C aaa 0.15 bbb 0.10 ccc 0.10 ddd 0.05 fff f on eee 0.08 0.10 Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. l ia t en id silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 70 EFR32MG1X232 Data Sheet Pinout and Package 6.6 QFN48 PCB Land Pattern C f on t en id Figure 6.4. QFN48 PCB Land Pattern Drawing Table 6.6. QFN48 PCB Land Pattern Dimensions S1 6.01 S 6.01 L1 4.70 W1 4.70 e 0.50 W 0.26 silabs.com | Smart. Connected. Energy-friendly. l Typ ia Dimension Preliminary Rev. 0.71 | 71 EFR32MG1X232 Data Sheet Pinout and Package Dimension Typ L 0.86 C Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad. 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 5. The stencil thickness should be 0.125 mm (5 mils). 6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads. 7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad. 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. f on 6.7 QFN48 Package Marking t en id EFR32 PPPPPPPPP YYWWTTTTTT# Figure 6.5. QFN48 Package Marking l ia The package marking consists of: • PPPPPPPPP – The part number designation. • TTTTTT – A trace or manufacturing code. The first letter is the device revision. • YY – The last 2 digits of the assembly year. • WW – The 2-digit workweek when the device was assembled. • # - The firmware revision. silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 72 EFR32MG1X232 Data Sheet Revision History 7. Revision History 7.1 Revision 0.71 2015-09-08 C Revisions specific to Mighty Gecko • Front Page: Key Features • Section 1. Features. Modulation Formats Supported, 2.4GHz-only devices • Section 3.3.4 Receiver Architecture • Section 3.3.8 Flexible Frame Handling • Section 3.3.17 Integrated Voltage Regulators • Section 4. Electrical Characteristics. Table column ordering. • Section 4.10 RFSENSE. Correct unit. 7.2 Revision 0.7 f on 2015-08-31 7.3 Revision 0.63 2015-07-07 Section 1. Features. correct Ultra Low Energy Timer/Counter bit width. Section 2. Ordering information : revisions of Max TX power according to part number. ia t en id Outcome of comprehensive review cycle of EFR32BG Datasheets. Major changes span the following sections • Section 2: Ordering Information • Section 3.3.4: Receiver Architecture • Section 3.3.5: Transmitter Architecture • Section 4: Electrical Characteristics • Section 4.3.1: General Operating Conditions • Section 4.4: DC-DC Converter • Section 4.5: Current Consumption • Section 4.9.1: RF Transmitter Characteristics for 2.4 GHz Band • Section 4.9.2: RF Receiver General Characteristics for 2.4 GHz Band • Section 4.9.3: RF Transmitter Characteristics for Bluetooth Smart in 2.4 GHz Band • Section 4.9.4: RF Receiver Characteristics for Bluetooth Smart in 2.4 GHz Band • Section 4.11.1: LFXO • Section 4.11.2: HFXO • Section 4.12: GPIO • Section 4.13: VMON • Section 4.14: ADC • Section 4.15: IDAC • Section 4.16: Analog Comparator • Section 5: Application Circuits • Section 6.5: QFNxx Package • Section 6.7: QFNxx Package Marking Section 3. System Summary: clarify Crypto options. Revise text desribing Transmitter Architecture and Flexible Frame Handling. l Section 4. Electrical Characteristics: revise RF performance specification tables. 7.4 Revision 0.62 2015-06-18 Revise current consumption table format. silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 73 EFR32MG1X232 Data Sheet Abbreviations 8. Abbreviations Table 8.1 Abbreviations on page 74 lists abbreviations used in this document. Table 8.1. Abbreviations Abbreviation Description ACP Adjacent Channel Power ACS Adjacent Channel Selectivity ADC Analog to Digital Converter C AGC Automatic Gain Control ASK Amplitude-Shift Keying BALUN BALanced UNbalanced (differential to single ended conversion) BPSK Binary Phase-Shift Keying CMU CRC CSP CSMA-CA DAC DMA f on BT Bandwidth Time Clock Management Unit Cyclic Redundancy Check Channel Separation Carrier Sense Multiple Access - Collision Avoidance Digital to Analog Converter Direct Memory Access Elliptic Curve Cryptography EFR Energy Friendly Radio EMU Energy Management Unit EM Energy Mode ESD Electrostatic Discharge ESR Equivalent Series Resistance FEC Forward Error Correction FPU Floating Point Unit FRC Frame Controller FSK Frequency-Shift Keying GCM Galois Counter Mode GFSK Gaussian Frequency-Shift Keying IF Intermediate Frequency LBT Listen Before Talk LNA Low Noise Amplifier LO Local Oscillator MSC Memory System Controller MSK Minimum-Shift Keying silabs.com | Smart. Connected. Energy-friendly. l ECC ia Direct Sequence Spread Spectrum t en id DSSS Preliminary Rev. 0.71 | 74 EFR32MG1X232 Data Sheet Abbreviations Abbreviation Description OOK On-Off Keying O-QPSK Offset Quadrature Phase-Shift Keying PA Power Amplifier PRS Peripheral Reflex System PSK Phase-Shift Keying PWM Pulse-Width Modulation RF Radio Frequency C RMU Reset Management Unit RSSI Received Signal Strength Indicator RTCC Real Time Counter and Calendar SPI Serial Peripheral Interface TCXO f on SRI Simplified Radio Interface Temperature Compensated Crystal Oscillator l ia t en id silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.71 | 75 Table of Contents 1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.3 System Description . . . . . . . . . . . . . . . . . . . 3.3.1 Antenna interface . . . . . . . . . . . . . . . . . . . 3.3.2 Integrated Oscillators . . . . . . . . . . . . . . . . . . 3.3.3 Fractional-N Frequency Synthesizer. . . . . . . . . . . . . 3.3.4 Receiver Architecture. . . . . . . . . . . . . . . . . . 3.3.5 Transmitter Architecture . . . . . . . . . . . . . . . . . 3.3.6 Wake on Radio . . . . . . . . . . . . . . . . . . . . 3.3.7 RFSENSE . . . . . . . . . . . . . . . . . . . . . 3.3.8 Flexible Frame Handling. . . . . . . . . . . . . . . . . 3.3.9 Packet and State Trace . . . . . . . . . . . . . . . . . 3.3.10 Data Buffering. . . . . . . . . . . . . . . . . . . . 3.3.11 Radio Controller (RAC) . . . . . . . . . . . . . . . . . 3.3.12 Crypto Accelerator (CRYPTO) . . . . . . . . . . . . . . 3.3.13 True Random Number Generator . . . . . . . . . . . . . 3.3.14 System Processor . . . . . . . . . . . . . . . . . . 3.3.15 Memory System Controller (MSC) . . . . . . . . . . . . . 3.3.16 Linked Direct Memory Access Controller (LDMA) . . . . . . . . 3.3.17 Integrated Voltage Regulators . . . . . . . . . . . . . . 3.3.18 Reset Management Unit (RMU) . . . . . . . . . . . . . . 3.3.19 Energy Management Unit (EMU) . . . . . . . . . . . . . 3.3.20 Clock Management Unit (CMU) . . . . . . . . . . . . . . 3.3.21 Watchdog (WDOG) . . . . . . . . . . . . . . . . . . 3.3.22 Peripheral Reflex System (PRS) . . . . . . . . . . . . . 3.3.23 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . 3.3.24 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . 3.3.25 Inter-Integrated Circuit Interface (I2C) . . . . . . . . . . . . 3.3.26 Protocol Timer (PROTIMER) . . . . . . . . . . . . . . . 3.3.27 Timer/Counter (TIMER) . . . . . . . . . . . . . . . . 3.3.28 Real Time Counter and Calendar (RTCC) . . . . . . . . . . 3.3.29 Low Energy Timer (LETIMERTM) . . . . . . . . . . . . . 3.3.30 Ultra Low Power Wake-up Timer (CRYOTIMER) . . . . . . . . 3.3.31 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . 3.3.32 General Purpose Input/Output (GPIO) . . . . . . . . . . . 3.3.33 Analog Port (APORT) . . . . . . . . . . . . . . . . . 3.3.34 Analog Comparator (ACMP) . . . . . . . . . . . . . . . 3.3.35 Analog to Digital Converter (ADC) . . . . . . . . . . . . . 3.3.36 Digital to Analog Current Converter (IDAC) . . . . . . . . . . 3.3.37 Integrated DC-DC Converter (DC-DC) . . . . . . . . . . . 3.3.37.1 DC-DC Converter Powertrain . . . . . . . . . . . . . . 3.3.37.2 DC-DC Converter Low Noise (LN) Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 3 . 4 . 4 . 4 . 5 . 5 . 5 . 6 . 6 . 6 . 6 . 6 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 .10 .11 .11 Table of Contents 76 3.3.37.3 DC-DC Converter Low Power (LP) Controller . . . . . . . . . . . . . . . . .11 3.4 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .11 3.5 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . .12 4. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 13 . . . 4.1 Test Conditions . . . . . . . 4.1.1 Typical Values . . . . . . . 4.1.2 Minimum and Maximum Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 .13 .13 4.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . .13 4.3 Operating Conditions . . . . 4.3.1 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 .14 4.4 DC-DC Converter . . . . . . . . . . . . . . 4.4.1 DC-DC Converter Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 .17 4.5 Current Consumption . . . . . . . . . . . . 4.5.1 Current Consumption 1.8 V without DC-DC Converter. 4.5.2 Current Consumption 3.3 V without DC-DC Converter. 4.5.3 Current Consumption 3.3 V using DC-DC Converter . 4.5.4 Current Consumption Using Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 .18 .19 .20 .21 4.6 Wake up times . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 4.7 Brown Out Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 4.8 Frequency Synthesizer Characteristics . . . . . . . . . . . . . . . . . . . . .23 4.9 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . . 4.9.1 RF Transmitter General Characteristics for the 2.4 GHz Band . . . . . . . 4.9.2 RF Receiver General Characteristics for the 2.4 GHz Band . . . . . . . . 4.9.3 RF Transmitter Characteristics for Bluetooth Smart in the 2.4 GHz Band . . . 4.9.4 RF Receiver Characteristics for Bluetooth Smart in the 2.4 GHz Band . . . . 4.9.5 RF Transmitter Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band 4.9.6 RF Receiver Characteristics for 802.15.4 O-QPSK DSSS in the 2.4 GHz Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 .24 .24 .25 .26 .28 .29 4.10 RFSENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 4.11 Modem Features . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 4.12 Oscillators. . . . . . . 4.12.1 LFXO . . . . . . . 4.12.2 HFXO . . . . . . . 4.12.3 LFRCO . . . . . . . 4.12.4 HFRCO and AUXHFRCO . 4.12.5 ULFRCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 .31 .32 .32 .33 .34 4.13 GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 4.14 VMON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 4.15 ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 4.16 IDAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 4.17 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . . .41 5. Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1 Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Table of Contents 77 5.2 RF Matching Networks . . .45 6. Pinout and Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 6.2 Alternate Functionality Pinout . . . . . . . . . . . . . . . . . . . . . . . .57 6.3 GPIO Pinout Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.4 Analog Port (APORT) . . . . . . . . . . . . . . . . . . . . . . . . . . .64 6.5 QFN48 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . .69 6.6 QFN48 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . .71 6.7 QFN48 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . .72 7. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.1 Revision 0.71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 7.2 Revision 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 7.3 Revision 0.63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 7.4 Revision 0.62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 8. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Table of Contents 78 Simplicity Studio One-click access to MCU tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! www.silabs.com/simplicity MCU Portfolio www.silabs.com/mcu SW/HW www.silabs.com/simplicity Quality www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com