OCX160 Crosspoint Switch Preliminary Data Sheet Features • • • • 667 Mb/s port data bandwidth, >50Gb/s aggregate bandwidth Low power CMOS, 2.5V and 3.3V power supply SRAM-based, in-system programmable 160 configurable I/O ports – 80 dedicated differential input ports – 80 dedicated differential output ports – Supports LVDS and LVPECL I/O – LVTTL control interface – Output Enable control for all outputs • Non-blocking switch matrix – Patented ActiveArray™ matrix for superior performance – Double-buffered configuration RAM cells for simultaneous global updates – ImpliedDisconnect™ function for single cycle disconnect/ connect • Full Broadcast and multicast capability – One-to-One and One-to-Many connections – Special broadcast mode routes one input to all outputs at maximum data rate • Registered and flow-through data modes – 333 MHz synchronous mode – 667 Mb/s asynchronous mode – Low jitter and signal skew – Low duty cycle distortion • RapidConfigure™ parallel interface for configuration and readback • JTAG serial interface for configuration and Boundary Scan testing • 420 BGA package with 1.27mm ball spacing Description The OCX™ family of SRAM-based devices are non-blocking n X n digital crosspoint switches capable of data rates of 667 Megabits per second per port. The I/O ports are fixed as either input or output ports. The input ports support flow-through mode only. The output ports are individually programmable to operate in either flowthrough (asynchronous) or registered (synchronous) mode. Each output register may be clocked by a global clock or a next neighbor clock source. The patented ActiveArray provides greater density, superior performance, and greater flexibility compared to a traditional n:1 multiplexer architecture. The OCX devices support various operating modes covering one input to one output at a time as well as one input to many outputs, plus a special broadcast mode to program one input to all outputs while maintaining maximum data rates. In all modes data integrity and connections are maintained on all unchanged data paths. The RapidConfigure parallel interface allows fast configuration of both the Output Buffers and the switch matrix. Readback is supported for device test and verification purposes. The OCX160 also supports the industry standard JTAG (IEEE 1149.1) interface for boundary scan testing. The JTAG interface can also be used to download configuration data to the device and readback data. A functional block diagram of the OCX160 is shown in Figure 1. Applications • SONET/SDH and DWDM • Digital Cross-Connects • System Backplanes and Interconnects • High Speed Test Equipment 160 160 OUT[79:0] IN[79:0] Input Buffers RapidConfigure Signals RCA[6:0] 7 RCB[6:0] 7 RCI[3:0] 4 RCO[4:0] 5 RC_CLK# RC_EN# • ATM Switch Cores • Video Switching 80 x 80 Crosspoint Switch Matrix Output Buffers Configuration and Programming Logic 2 CLK OE# TCK TMS TDI TRST# TDO JTAG Signals HW_RST# UPDATE# Figure 1 OCX160 Functional Block Diagram I-Cube, Inc. [Rev. 1.6] 2/20/01 1 OCX160 Crosspoint Switch—Preliminary Data Sheet (This page intentionally left blank) 2 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet Contents 1. Introduction ........................................................................................................................... 7 1.1 Input and Output Buffers...................................................................................................... 8 1.1.1 Input and Output Port Function Mode ........................................................................... 8 1.1.2 Broadcast Mode ............................................................................................................. 9 1.2 Output Buffer Configuration ................................................................................................ 9 1.2.1 Output Control Signals................................................................................................... 9 1.2.2 Neighboring Output Port as a Clock Source .................................................................. 9 1.3 RapidConfigure Interface ....................................................................................................11 1.3.1 RapidConfigure Programming Instructions.................................................................. 11 1.3.2 ImpliedDisconnect ....................................................................................................... 13 1.4 JTAG Configuration Controller.......................................................................................... 14 1.4.1 JTAG Interface............................................................................................................. 14 1.4.2 Output Port Configuration ........................................................................................... 14 1.4.3 Switch Matrix Configuration ....................................................................................... 14 1.4.4 Mode Control Register Configuration.......................................................................... 14 1.4.5 JTAG Architecture and Shift Registers ........................................................................ 15 1.4.6 JTAG State Machine .................................................................................................... 16 1.4.7 JTAG Input Format ...................................................................................................... 16 1.4.8 JTAG Instructions ........................................................................................................ 17 1.5 Device Reset Options ......................................................................................................... 20 2. Pin Description .....................................................................................................................21 3. Differential I/O Standards ...................................................................................................22 3.1 LVDS ................................................................................................................................. 22 3.2 LVPECL ............................................................................................................................. 23 3.3 Termination Resistor Packs ................................................................................................ 24 3.4 Mixed I/O Systems............................................................................................................. 24 4. Electrical Specifications .......................................................................................................25 4.1 Absolute Maximum Ratings .............................................................................................. 25 4.2 Recommended Operating Conditions ................................................................................ 25 I-Cube, Inc. [Rev. 1.6] 2/20/01 3 OCX160 Crosspoint Switch—Preliminary Data Sheet 4.3 Pin Capacitance ................................................................................................................. 25 4.4 DC Electrical Specifications............................................................................................... 26 4.5 AC Electrical Specifications............................................................................................... 27 4.6 Timing Diagrams................................................................................................................ 28 5. Package and Pinout ............................................................................................................. 32 5.1 Package Pinout ................................................................................................................... 32 5.2 Pinout by Ball Sequence..................................................................................................... 33 5.3 Pinout by Ball Name .......................................................................................................... 36 5.4 Package Dimensions........................................................................................................... 38 5.5 Package Thermal Characteristics........................................................................................ 39 6. 4 Power Consumption ............................................................................................................ 40 6.1 Power for LVDS I/O .......................................................................................................... 40 6.2 Power for LVPECL I/O ..................................................................................................... 41 7. Component Availability and Ordering Information ......................................................... 42 8. Glossary ................................................................................................................................ 42 9. Product Status Definition .................................................................................................... 44 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet Figures Figure 1 OCX160 Functional Block Diagram .................................................................................................... 1 Figure 2 OCX160 Switch Matrix ........................................................................................................................ 7 Figure 3 Input and Output Buffer Configuration ................................................................................................ 8 Figure 4 Next Neighbor Clock Block Diagram ................................................................................................ 10 Figure 5 OCX160 JTAG Architecture .............................................................................................................. 15 Figure 6 OCX160 JTAG State Machine ........................................................................................................... 16 Figure 7 Transmitting LVDS Signal Circuit ..................................................................................................... 22 Figure 8 Receiving LVDS Signal Circuit ......................................................................................................... 22 Figure 9 Transmitting LVPECL Signal Circuit ................................................................................................ 23 Figure 10 Receiving LVPECL Signal Circuit..................................................................................................... 23 Figure 11 Registered Output Mode Timing ........................................................................................................ 28 Figure 12 Flow-Through Mode Timing .............................................................................................................. 28 Figure 13 Output Enable Timing ........................................................................................................................ 28 Figure 14 Duty Cycle Distortion ......................................................................................................................... 29 Figure 15 RapidConfigure Write Cycle .............................................................................................................. 29 Figure 16 RapidConfigure Read Cycle ............................................................................................................... 30 Figure 17 JTAG Timing ...................................................................................................................................... 30 Figure 18 Typical Performance LVDS mode ..................................................................................................... 31 Figure 19 Typical Performance LVPECL mode................................................................................................. 31 Figure 20 OCX160 Package Pinout .................................................................................................................... 32 Figure 21 OCX160 Package—Bottom, Top and Side Views ............................................................................. 38 Figure 22 Power Consumption Diagram for the OCX160 using LVDS............................................................. 40 Figure 23 Power Consumption Diagram for the OCX160 using LVPECL........................................................ 41 I-Cube, Inc. [Rev. 1.6] 2/20/01 5 OCX160 Crosspoint Switch—Preliminary Data Sheet Tables 6 Table 1 Summary for Programmable I/O Attributes for OCX160 ................................................................. 8 Table 2 Next Neighbor Outputs.................................................................................................................... 10 Table 3 RapidConfigure Programming Instructions .................................................................................... 11 Table 4 RCO[4:0] Readback Pin Assignment.............................................................................................. 13 Table 5 Programming an Output Buffer using RapidConfigure .................................................................. 13 Table 6 Mode Control Register .................................................................................................................... 14 Table 7 JTAG Input Format ......................................................................................................................... 16 Table 8 JTAG Instructions ........................................................................................................................... 17 Table 9 Programming an Output using JTAG.............................................................................................. 19 Table 10 Number of JTAG Cycles and Configuration Time ......................................................................... 19 Table 11 Device Reset Options ...................................................................................................................... 20 Table 12 OCX160 Pin Description................................................................................................................. 21 Table 13 Termination Resistor Packs............................................................................................................. 24 Table 14 Supply Voltages and Terminating Resistors ................................................................................... 24 Table 15 Absolute Maximum Ratings............................................................................................................ 25 Table 16 Recommended Operating Conditions.............................................................................................. 25 Table 17 Pin Capacitance ............................................................................................................................... 25 Table 18 LVTTL DC Electrical Specifications.............................................................................................. 26 Table 19 LVDS DC Electrical Specifications ................................................................................................ 26 Table 20 LVPECL DC Electrical Specifications ........................................................................................... 26 Table 21 AC Electrical Specifications............................................................................................................ 27 Table 22 OCX160 Pinout By Ball Sequence.................................................................................................. 33 Table 23 OCX160 Pinout By Ball Name ....................................................................................................... 36 Table 24 Package Thermal Coefficients......................................................................................................... 39 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet 1. Introduction The OCX160 is a differential crosspoint-switching device. The main functional block of the device is a Switch Matrix as shown in Figure 1. The Switch Matrix is a x-y structure supporting an input-to-output data flow. Figure 2 shows a conceptual view of the switch matrix with inputs connected to the horizontal trace and outputs to the vertical trace. Connections between vertical and horizontal lines are implemented with a proprietary highperformance buffering circuit. Signal path delays through the Switch Matrix are very well balanced, resulting in predictable and uniform pin-to-pin delays. Note – For the purpose of clarity, the logic diagrams within this data sheet are conceptual representations only and do not show actual circuit implementation. Data Loading SRAM Cell Active SRAM Cell UPDATE# Proprietary High-performance Buffering Circuit Figure 2 OCX160 Switch Matrix The Active SRAM cells are responsible for establishing connections in the switch matrix by turning on the interconnect circuit, while the Loading SRAM cell can be used to store a second configuration that can be transferred to the Active SRAM cell at a later time. The two SRAM cells are arranged so that a double buffered scheme can be employed. Through the use of an internal signal (generated automatically during a programming cycle) it is possible to store a second configuration map in the Loading SRAM while the Active SRAM maintains its present connection status. When the UPDATE# signal is asserted low, the contents of the Loading SRAM cell are transferred to the Active SRAM cell and the switch matrix connection is either made or broken. The UPDATE# signal can be used to control when the switch matrix is reconfigured. For instance, as long as the UPDATE# signal is asserted high, the Loading SRAM cells for the entire switch matrix could be changed without affecting the current configuration of the switch. When the UPDATE# signal is asserted low, the entire switch matrix would be reconfigured simultaneously. If the UPDATE# signal is asserted continuously, all crosspoint programming commands (generated by RapidConfigure or JTAG programming cycles) will take effect immediately, since the Loading SRAM cell’s contents will be transferred directly to the Active SRAM cell. I-Cube, Inc. [Rev. 1.6] 2/20/01 7 OCX160 Crosspoint Switch—Preliminary Data Sheet 1.1 Input and Output Buffers All of the input buffers are differential inputs with flow-through mode. The output buffers are programmable for either flow-through or registered mode. Figure 3 shows the basic block diagram of the input and output blocks with the sources for the output control signals (OE# and CLK). The control signals are explained in more details in the following sections. Output Mode Select Input Switch Matrix Output D Q OE# CLK Next Neighbor Clock Select Figure 3 Input and Output Buffer Configuration 1.1.1 Input and Output Port Function Mode The following legend describes the various modes of the Input and Output Ports and the specification used by the OCXPro™ Software. Legend: Ax–Switch Matrix Signal Px–Port Signal OE#–Output Enable (# means “Active Low”) CLK–Clock Table 1 Summary for Programmable I/O Attributes for OCX160 Symbol Px Ax Px Ax I/O Port Function Mnemonic Input – The external signal is buffered from the Input Port pin to the corresponding Switch Matrix line. IN Output – The internal signal is buffered from the corresponding Switch Matrix line to the Output Port pin. In this mode an optional output enable (OE#) can be selected. The default state is logic high with enable set to ON. OP Registered Output – The internal signal on the Switch Matrix line is registered by an edge-triggered register within the Output Port. A clock source is required in this mode. An output enable (OE#) is available but not required. RO No Connect – In this mode, the output Port pin is isolated from the Switch Matrix. NC OE# Ax D Px Q CLK OE# Ax 8 Px [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet 1.1.2 Broadcast Mode The OCX160 has a special Broadcast Mode which connects any input to all outputs without performance degradation. The input is selected using RapidConfigure or JTAG and disconnects all other inputs. The Global Update pin (UPDATE#) must be held high during Broadcast Mode. Asserting the UPDATE# pin returns the array to the previous program condition. 1.2 Output Buffer Configuration Every output port of the OCX160 can be configured as either a flow-through or registered output. In registered mode there are two clock sources that are available: • • Global Clock Next Neighbor Additionally, there are output control signals. 1.2.1 Output Control Signals Every output port of the OCX has a global Output Enable signal (OE#). All output buffers have output enables that have programmable polarity and are individually configurable. Additionally each output can be permanently enabled (always ON) or disabled (always OFF) which is useful for applications which need to tri-state outputs (for example when using multiple chips in expansion mode) or for power saving in designs that do not need to use all the outputs available. Two control bits are used to control the function of the output enable function as described in Table 5. 1.2.2 Neighboring Output Port as a Clock Source A physically adjacent port can be used as a clock source for an output port configured in registered mode. These outputs are grouped in pairs such that the signal being switched through OUT0 can be used to clock the signal being switched through OUT1, and vice versa. Any single clock or data input signal can be used to clock any other input signal provided they are switched to an appropriate output pair (see Table 2). Figure 4 shows the implementation of next neighbor output port clocking in the OCX160 switch. For example, INx is used for data input while INy is used for the corresponding clock. INx is connected to OUT0 via the crosspoint array while INy is connected to OUT1 via the crosspoint array. OUT0 is configured in registered output (RO) mode with OUT1 as its next neighbor clock selection. OUT1 will output the clock signal as well as clock the data in OUT0. Adjacent port selection is required for next neighbor clocking in the registered output mode. This feature is useful in many applications where different types of data switching through the crosspoint array have various associated clocks. To match the delays in the data and corresponding clocks, it is common practice to pass the clocks through the switch along with the data. I-Cube, Inc. [Rev. 1.6] 2/20/01 9 OCX160 Crosspoint Switch—Preliminary Data Sheet Crosspoint Array Output Mode Select Any Input Port (INx) OUT0 D Q CLK Next Neighbor OE# Clock Select Output Mode Select Any Input Port (INy) OUT1 D Q CLK Next Neighbor OE# Clock Select Figure 4 Next Neighbor Clock Block Diagram The advantages of next neighbor clocking are: 1. Using next neighbor clocking in the registered output (RO) mode helps reduce the skew in outgoing data. 2. For a design with a large number of outputs switching simultaneously, next neighbor clocking mode is useful to stagger outputs for reduced board noise caused by simultaneous switching outputs. Note – Selecting the next neighbor clock for both outputs at the same time is not recommended. Only one output in the pair at a time can be clocked by its next neighbor. Table 2 Next Neighbor Outputs Pairing Sequence for Neighboring Outputs Output Next Neighbor Pairs 0,1 2,3 4,5 6,7 8,9 ◗ ◗ ◗ ◗ 76,77 78,79 Only OUT1 can neighbor with OUT0, OUT3 with OUT2, etc. OUT2 cannot neighbor with OUT1, or OUT4 with OUT3, etc. 10 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet 1.3 RapidConfigure Interface RapidConfigure (RC) is a 25 signal parallel interface that is used to program the OCX160 device. The 25 pins are allocated as follows: RCA[6:0] = RapidConfigure Address A. RCA are input pins. RCB[6:0] = RapidConfigure Address B. RCB are input pins. RCI[3:0] = RapidConfigure Instruction Bits RCO[4:0] = RapidConfigure Readback. RCO are output pins. RC_CLK# = RapidConfigure Clock (negative edge clock) RC_EN# = RapidConfigure Cycle Enable (active low) 1.3.1 RapidConfigure Programming Instructions The RC interface supports both write and read types of operations: 1. Write Operations (reset crosspoint and Input or Output Buffer (IOB), configure an Output Buffer, connect/disconnect crosspoint) 2. Read Operations (Output Buffer and crosspoint configuration read). Table 3 RCI[3:0] RCA[6:0] RapidConfigure Programming Instructions RCB[6:0] RCO[4:0] Instruction 0000 Reserved 0001 Reserved Description 0010 X X Reset Crosspoint Array Reset the entire crosspoint array to no connect. All Output Buffers remain unchanged by this operation. 0011 X Input Port Address Set Array to Broadcast mode Connects the input selected by RCB[6:0] to all output ports and disconnects all other inputs. The Global Update (UPDATE#) pin must be held high during Broadcast mode. Activating the Global Update pin returns the array to the previous program condition. 0100 Output Port Address Data Configure an Output Buffer Program an Output Buffer specified by RCA[6:0]. See Table 5 for RCB[6:0] bit assignment and buffer functionality. 0101 Cycle 1 I-Cube, Inc. Readback Crosspoint, Output Buffer status Output Port Address Intput Port Address X [Rev. 1.6] 2/20/01 This is a two-cycle instruction. Specify the crosspoint connect status at input location specified by RCA[6:0] to the output location specified by RCB[6:0]. 11 OCX160 Crosspoint Switch—Preliminary Data Sheet Table 3 RapidConfigure Programming Instructions (Continued) RCI[3:0] RCA[6:0] RCB[6:0] RCO[4:0] Cycle 2 X X Output Data Instruction Description Readback (using RCO[4:0]) the status of the input buffer specified in Cycle 1 by RCA[6:0], the output buffer specified in Cycle 1 by RCO[4:0] and the crosspoint connect status. See Table 4 for RCO[4:0] readback pin assignment. 0110 X X Update Program the Global Update function without the use of the UPDATE# pin. 0111 X Input Port Address Disconnect Input Disconnect the crosspoint cells of the input row location specified by RCA[6:0]. 1000 Output Port Address Input Port Address Disconnect Input and Output Disconnect the crosspoint cell at the input location specified by RCA[6:0] to the output location specified by RCB[6:0]. All other connections from the source input address or to the same output address remain the same as before. 1001 Output Port Address Input Port Address Connect, with ImpliedDisconnect Connect the crosspoint cell at the input location specified by RCA[6:0] to the output location specified by RCB[6:0]. All other connections from the same input address or to the same output address are set to no connect (NC). 1010 Output Port Address Input Port Address Connect, without ImpliedDisconnect Connect the crosspoint cell at the input location specified by RCA[6:0] to the output location specified by RCB[6:0]. All other connections from the same input address remain the same as before. 1011 Reserved 1100 Reserved 1101 X X Reset All 1110 Reserved 1111 Reserved Reset the switch matrix to no connects (NC). Output Buffers default to flowthrough mode (OP) with output enable set to always enabled (ON). Output Buffer defaults to select Global Clock (CLK) source even though mode is OP. Note – X = Don’t care. 12 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet Table 4 RCO[4:0] Readback Pin Assignment RCO[4:0] Readback Location O4 Crosspoint O3 Output Buffer Clock Select: 0 = Global Clock — (default state at reset) 1 = Next Neighbor O2 Output Buffer Output Mode: 0 = Flow-through (OP) — (default state at reset) 1 = Registered (RO) O1, O0 0,0 0,1 1,0 1,1 Output Buffer Output Enable: Output enabled (ON) – this is the default state at reset Output disabled (OFF) Output controlled by OE (active high) Output controlled by OE# (active low) Table 5 Signal/Function Connection Status: 0 = No connection (NC) — (default state at reset) 1 = Connected Programming an Output Buffer using RapidConfigure RCB[6:0] B6, B5, B4 B3 Clock Select: 0 = Global Clock 1 = Next Neighbor B2 Output Mode: 0 = Flow-through (OP) 1 = Registered (RO) B1, B0 0,0 0,1 1,0 1,1 1.3.2 Signal/Function Don’t care Output Enable: Output enabled (ON) – this is the default state at reset Output disabled (OFF) Output controlled by OE (active high) Output controlled by OE# (active low) ImpliedDisconnect ImpliedDisconnect is a feature that provides the ability to make fast switch connection changes. When using the RC instruction “Connect, with ImpliedDisconnect” to establish a new connection, any existing connection to that output port is automatically broken. Thus, a connection change, i.e. breaking an existing connection and then making a new one, can be accomplished in one RapidConfigure cycle. I-Cube, Inc. [Rev. 1.6] 2/20/01 13 OCX160 Crosspoint Switch—Preliminary Data Sheet 1.4 JTAG Configuration Controller The Output port attributes and the Switch Matrix connections can be programmed using the JTAG serial bus. The RapidConfigure Interface can be enabled or disabled using the JTAG serial bus. The JTAG–based serial mode is always available for configuration regardless of whether the RapidConfigure mode is enabled or disabled. However, proper care must be taken when switching between JTAG and RapidConfigure for configuring the devices. Before attempting to change Switch Matrix connections or output port configuration through JTAG, the user must first ensure that the RapidConfigure mode is disabled by using JTAG serial mode to set the RCE bit to zero in the Mode Control Register. 1.4.1 JTAG Interface The dedicated JTAG TAP interface is designed in compliance with the IEEE-1149.1. The standard interface has five pins: Test Data Out (TDO), Test Mode Select (TMS), Test Data In (TDI), Test Reset (TRST#), and Test Clock (TCK), which allow Boundary Scan Testing as well as device configuration and verification. The I-Cube supplied software will automatically generate the necessary bitstream from a higher-level textual description of the required configuration. Data on the TDI and TMS pins are clocked into the device on the rising edge of the TCK signal, while the valid data appears on the TDO pin after the falling edge of TCK. For more detailed information on JTAG programming, refer to the OCX160 Register Programming Manual. 1.4.2 Output Port Configuration Output port configuration is accomplished by loading the appropriate bitstream into the programming registers present at each Output port. The JTAG serial bus is used to load configuration data into the Output port programming registers, one Output port at a time. 1.4.3 Switch Matrix Configuration The contents of the SRAM cells controlling Switch Matrix connection can be modified using the JTAG. This is accomplished by loading the configuration data, one word at a time, into the SRAM cells in the Switch Matrix. 1.4.4 Mode Control Register Configuration The OCX160 contains a single bit Mode Control Register used to store user flags for RapidConfigure Enable (RCE). These are required for proper functioning of the device. The contents of this register can be changed using the JTAG interface and a special JTAG instruction. Table 6 Mode Control Register RCE 14 Mode 0 RapidConfigure interface disabled (OFF) 1 RapidConfigure interface enabled (ON) [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet 1.4.5 JTAG Architecture and Shift Registers Boundary Scan Register (189 x 2 = 378 Bits) JTAG Data Register - 1 Bit Device Identification Register - 32 Bits MUX BUF TDO TDI Mode Control Register - 1 Bits JTAG Address Register - 7 Bits Bypass Register - 1 Bit Instruction Register - 16 Bits TAP Controller TMS TCK Figure 5 I-Cube, Inc. TRST# OCX160 JTAG Architecture [Rev. 1.6] 2/20/01 15 OCX160 Crosspoint Switch—Preliminary Data Sheet 1.4.6 JTAG State Machine 1 Test Logic Reset 0 1 0 Run Test/ 1 Idle Select DR Scan 1 Select IR Scan 0 0 Capture DR 1 0 0 0 1 Capture IR Shift DR Shift IR 0 1 1 Exit 1 DR Exit 1 IR 1 1 0 0 0 Pause DR Pause IR 0 1 1 0 0 Exit 2 DR Exit 2 IR 1 1 Update DR 1 Figure 6 1.4.7 1 0 0 OCX160 JTAG State Machine JTAG Input Format Table 7 JTAG Input Format Instruction 16 Update IR Data Bit Number 15 14 13 12 11 10 Bit Name I3 I2 I1 I0 BB BA Address A 9 8 7 6 5 4 3 2 1 0 B9 B8 B7 A6 A5 A4 A3 A2 A1 A0 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet 1.4.8 JTAG Instructions Table 8 JTAG Instructions I [3:0] BB BA B9 B8 B7 A6-A0 0 0 0 0 X X X X X X Sample/EXTEST Places the device in scan mode. 0 0 0 1 X X X X X X Sample/EXTEST Places the device in scan mode. 0 0 1 0 X X X X X X Reset the Crosspoint Resets the entire Crosspoint Array to no-connect. All Array other Output Buffer configurations are unchanged by this operation. 0 0 1 1 X X X X X X Set Array for Broadcast mode Use the JTAG Address Register as the Input address to be the broadcast input Connects the selected Input to all Output cells and disconnects all other Inputs. Activating the Global Update JTAG instruction returns the Crosspoint array from the Broadcast mode to the previous programed state. 0 1 0 0 X OE OE Output Buffer Address Program a Buffer Programs the Output Buffer address specified in the JTAG instruction (A6-A0). The configuration data is also specified in the JTAG instruction bits BA-B7. See Table 9 for bit assignment of the Buffer functionality. 0 1 0 1 X X X Clock Data Select Mode X X Instruction Output Address/ Configuration Buffer readback Description Readback the connectivity of the Crosspoint cell with the Input location specified in the JTAG Address Register and the Output location specified JTAG instruction (A0-A6). It also returns the configuration of the Output Buffer addressed in the JTAG instruction (A0-A6). The readback data is shifted out of TDO in the following sequence: 1. Crosspoint Connect (1=connected, 0=no connection) 2. Output Enable—B7 (see Table 9) 3. Output Enable—B8 (see Table 9) 4. Output Data Source—B9 (0=Flow-through, 1=registered) 5. Output Clock Select—BA (0=Global Clock, 1=Next Neighbor) 6. State of Broadcast bit 7. State of the RCE bit NOTE: This instruction does not increment the JTAG Address Register. This instruction also requires two DR cycles 0 1 1 0 X X X X X X Update the Crosspoint Array Update the programmed connection from the Loading SRAM to the Active SRAM. 0 1 1 1 X X X X X X Disconnect Input cell Disconnect the Crosspoint connections from the Input address specified in the JTAG Address Register. I-Cube, Inc. [Rev. 1.6] 2/20/01 17 OCX160 Crosspoint Switch—Preliminary Data Sheet Table 8 JTAG Instructions (Continued) I [3:0] BB BA B9 B8 B7 1 0 0 0 X X X X X Output Address Disconnect Input and Output Disconnect the Crosspoint cell at the Input location specified at the JTAG Address Register and the Output location specified in the Disconnect JTAG instruction (A6-A0). All other connections from the same input address or to the same output address remain the same. 1 0 0 1 X X X X X Output Address Connect with ImpliedDisconnect Connects the Crosspoint cell at the Input location specified on the JTAG Address Register and the output location specified in the Connect JTAG instruction (A6-A0). All other connections from the same Input address or the same Output address are set to no-connects. NOTE: This instruction increments the JTAG Address Register (Input address). 1 0 1 0 X X X X X Output Address Connect—no ImpliedDisconnect Connects the Crosspoint cell at the Input address specified in the JTAG Address Register and the Output address specified in the Connect JTAG instruction (A6-A0). All other connections from the same input remain the same as before. 1 0 1 1 X X X X X Input Address 1 1 0 0 X X X X X 1 1 0 1 X X X X 1 1 1 0 X X X 1 1 1 1 X X X 18 A6-A0 Instruction Description Set the JTAG Address Register Sets the 7-bit JTAG Address Register with the 7-bit address (A6-A0) of the JTAG Instruction Register. The 7-bit address of the JTAG Address Register becomes the Input port address for Crosspoint Access. X Device ID out Serialize the device ID and revision history out to TDO. ID for the OCX160 is 0x0000B89F X X Reset Output Buffer Resets the Crosspoint Array to no-connects. Sets the and Crosspoint Output buffer to Flow-through mode with Output Array Enabled. The device ID is serialized to TDO. X X X Set RCE Bit Sets the RCE bit of the Mode Control Register with the JTAG instruction bit A0. To turn ON the RCE bit, encode bit A0 to 1. To turn OFF the RCE bit, encode bit A0 to 0. X X X Bypass Places device in a mode to pass TDI data to TDO with one clock delay. Used for programming and testing devices through serial connected JTAG controls. [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet Table 9 Programming an Output using JTAG BA, B9, B8, B7 Signal/Function BA Clock Select: 0 = Global Clock 1 = Next Neighbor B9 Output Mode: 0 = Flow-through (OP) 1 = Registered (RO) B8, B7 0,0 0,1 1,0 1,1 Table 10 Output Enable: Output enabled (ON) – this is the default state at reset Output disabled (OFF) Output controlled by OE (active high) Output controlled by OE# (active low) Number of JTAG Cycles and Configuration Time OCX160 Operation I-Cube, Inc. JTAG Cycles JTAG Reset Sequence (TMS = “11111”) 7 Enable or Disable RapidConfigure 28 Change attributes of ONE Output Port 28 Change attributes of ALL Output Ports 2,240 Reset JTAG Controller + Reset ALL Output Ports + Clear ALL SRAM cells 35 Connect or disconnect two Ports 56 Configure Entire Switch Matrix 181,440 Completely Configure the Device (All Output Ports and All Switch Matrix Connections) 183,680 [Rev. 1.6] 2/20/01 19 OCX160 Crosspoint Switch—Preliminary Data Sheet 1.5 Device Reset Options The power-on reset, RapidConfigure reset, hardware reset, and JTAG reset functions will program the output buffers to flow-through mode (with Global Clock selected), and Output Enabled (ON). JTAG can be reset via the TRST# pin or by clocking five consecutive one to the TMS pin. The hardware reset pin can be done accomplished through the HW_RST# pin (active low). RC reset can be accomplished by applying the RC instruction 1101 to the RCI[3:0] pins. Table 11 Programming Interface Hardware Reset JTAG Reset Output Ports Switch Matrix RCE Mode Control Power-on Reset OP NC 1 (RC Enabled) TLR1 HW_RST# (low pulse) OP NC 1 (RC Enabled) TLR 1. Low Pulse on TRST# Unchanged Unchanged Unchanged TLR 2. TMS high for 5 TCLK cycles Unchanged Unchanged Unchanged TLR 3. Device Reset (instruction 1101) OP NC 1 (RC Enabled) TLR Unchanged NC Unchanged Unchanged OP NC 1 (RC Enabled) Unchanged Unchanged NC Unchanged Unchanged Reset Method 4. Reset Crosspoint Array (instruction 0010) RapidConfigure Reset Device Reset Options 1. Device reset (instruction 1101) 2. Reset Crosspoint Array (instruction 0010) JTAG TAP 1. TLR = Test Logic Reset state. 20 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet 2. Pin Description Table 12 Pin Name OCX160 Pin Description # of Pins Type Description INP[79:0] 80 Input Non-inverting differential input signals INN[79:0] 80 Input Inverting differential input signals OUTP[79:0] 80 Output Non-inverting differential input signals OUTN[79:0] 80 Output Inverting differential input signals CLKP 1 Input Non-inverting differential Global Clock CLKN 1 Input Inverting differential Global Clock OE# 1 Input Global Output Enable HW_RST# 1 Input Hardware Reset UPDATE# 1 Input Global Update RC Pins RCA[6:0] 7 Input RapidConfigure Address A RCB[6:0] 7 Input RapidConfigure Address B RCO[4:0] 5 Output RapidConfigure Readback RCI[3:0] 4 Input RapidConfigure Instruction Bits RC_CLK# 1 Input RapidConfigure Clock RC_EN# 1 Input RapidConfigure Cycle Enable JTAG Pins TCK 1 Input JTAG Test Clock TMS 1 Input JTAG Test Mode Select TDI 1 Input JTAG Test Data In JTAG Test Reset TRST# 1 Input TDO 1 Output JTAG Test Data Out Power and Ground Pins VDD.CORE VDD.PAD VDD.IN (2, 3) (1, 4) VSS 12 8 2.5V Power Core Voltage 2.5V or 3.3V Power Differential Output Buffer Voltage 8 3.3V Power 36 Ground LVTTL Control pins Voltage and Differential Input Buffer Voltage Ground NOTES: 1. Dedicated differential input buffers can receive both LVDS and LVPECL voltage levels using 3.3V supply. 2. VDD.PAD is 2.5V for LVDS outputs or 3.3V for LVPECL outputs. 3. Dedicated differential output buffers can be biased using different supplies for VDD.PAD and external resistors to support both LVDS and LVPECL output voltage levels. 4. The LVTTL control, JTAG pins, and differential input ports are 3.3V—they are not 5V tolerant. 5. The differential output pins powered from 2.5V are 3.3V tolerant. I-Cube, Inc. [Rev. 1.6] 2/20/01 21 OCX160 Crosspoint Switch—Preliminary Data Sheet 3. Differential I/O Standards The OCX160 support the two most popular differential signaling standards: Low Voltage Differential Signaling (LVDS) and Low Voltage Positive Emitter Coupled Logic (LVPECL). LVDS is typically used in communication systems as high speed, low noise point-to-point links. The OCX160 conforms to the ANSI/TIA/EIA-644 standard covering electrical specifications for output drivers and receiver inputs. LVPECL is commonly used in video switching applications or those designs requiring transmission of highspeed clock signals. 3.1 LVDS LVDS is a differential signaling standard. It requires that one data bit is carried through two signal lines. As with all differential signaling standards, LVDS has an inherent noise immunity over single-ended standards. The voltage swing between two signal lines is approximately 350mV. The use of a reference voltage or a board termination voltage is not required. LVDS requires the use of two pins per input or output. LVDS requires external resistor termination. Transmitting and receiving circuits for LVDS are shown in Figures 7 and 8. OCX Device OUTP 2.5V Z0=50Ω RS to LVDS Receiver 165 RDIV 140 Data Transmit Z0=50Ω RS VDD.PAD=2.5V LVDS Output to LVDS Receiver OUTN 165 Figure 7 Transmitting LVDS Signal Circuit Z0=50Ω INP RT 100 from LVDS Driver OCX Device + – Data Recieve Z0=50Ω INN Figure 8 22 Receiving LVDS Signal Circuit [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet 3.2 LVPECL LVPECL is another differential signaling standard that specifies two pins per input or output. The voltage swing between these two signal lines is approximately 850 mV. The use of a reference voltage or a board termination voltage is not required. The LVPECL standard requires external resistor termination. Transmitting and receiving circuits for LVPECL are shown in Figures 9 and 10. OCX Device OUTP 3.3V Z0=50Ω RS to LVPECL Receiver 100 RDIV 187 Data Transmit Z0=50Ω RS VDD.PAD=3.3V LVPECL Output Figure 9 Transmitting LVPECL Signal Circuit Z0=50Ω from LVPECL Driver to LVPECL Receiver OUTN 100 INP RT 100 OCX Device + – Data Recieve Z0=50Ω INN Figure 10 Receiving LVPECL Signal Circuit I-Cube, Inc. [Rev. 1.6] 2/20/01 23 OCX160 Crosspoint Switch—Preliminary Data Sheet 3.3 Termination Resistor Packs Resistor packs are available with the values and the configuration required for LVDS and LVPECL termination from Bourns, Inc. The part numbers are listed in Table 13. For pricing and availability questions, please contact them directly at www.bourns.com. Table 13 Termination Resistor Packs Bournes Part Number Differential I/O Standard Termination for: Pairs per Pack No. of Pins CAT16-LV2F6 LVDS Driver 2 8 CAT16-LV4F12 LVDS Driver 4 16 CAT16-PC2F6 LVPECL Driver 2 8 CAT16-PC4F12 LVPECL Driver 4 16 CAT16-PT2F2 LVDS/LVPECL Receiver 2 8 CAT16-PT4F4 LVDS/LVPECL Receiver 4 16 3.4 Mixed I/O Systems The use of different supply voltages and terminating resistors allows the OCX160 to support LVDS / LVPECL translation as well as switching as outlined in Table 14. Table 14 Supply Voltages and Terminating Resistors Input Output VDD.PAD RT RS RDIV LVDS LVDS 2.5V 100Ω 165Ω 140Ω LVPECL LVDS 2.5V 100Ω 165Ω 140Ω LVDS LVPECL 3.3V 100Ω 100Ω 187Ω LVPECL LVPECL 3.3V 100Ω 100Ω 187Ω NOTES: 1. VDD.IN = 3.3V ±10%, VDD.CORE = 2.5V ±5% 2. It is not possible to mix LVDS and LVPECL outputs on a device 24 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet 4. Electrical Specifications 4.1 Absolute Maximum Ratings Table 15 Symbol Absolute Maximum Ratings1 Parameter VDD.CORE VDD.IN VDD.PAD VIN2 Limits Units Supply Voltage (core) -0.3 to +3.0 V Supply Voltage (inputs) -0.3 to +3.6 V Supply Voltage (differential outputs) -0.3 to +3.6 V Input Voltage -0.3 to +3.63 V TJ Junction Temperature +150 °C TSTG Storage Temperature -65 to +150 °C PMAX Maximum Power Dissipation 6 W ESD6 Electrostatic Discharge 2000 V 4.2 Recommended Operating Conditions Table 16 Symbol Recommended Operating Conditions Parameter VDD.CORE Supply Voltage (core) VDD.PAD4 Supply Voltage (differential output buffers) VDD.IN Supply Voltage (inputs) Units +2.375 to +2.625 V 3.3V ±10% to 2.5V ±5% V +3.0 to +3.6 V 0 to +70 -40 to +85 °C Operating Temperature: Commercial Operating Temperature: Industrial TA Limits 4.3 Pin Capacitance Table 17 Symbol CPIN Pin Capacitance5 Parameter Signal Pin Capacitance Max Units 10 pF 1. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. 2. A maximum undershoot of 2V for a maximum duration of 20 ns is acceptable. Overshoot to 3.6V is acceptable. 3. All inputs are 3.3V tolerant with the VDD pin at 2.5V or 3.3V. 4. Note that min and max values for VDD for differential outputs are I/O Standard dependent. 5. Capacitance measured at 25°C. Sample tested only. 6. Measured using Human Body Model. I-Cube, Inc. [Rev. 1.6] 2/20/01 25 OCX160 Crosspoint Switch—Preliminary Data Sheet 4.4 DC Electrical Specifications (TA = -40°C to 85°C, VDD.IN = 3.3V ±10%, VDD.CORE = 2.5V ±5%) Table 18 Symbol LVTTL DC Electrical Specifications Parameter Conditions Min Max Units VIH High-level Input Ports are 3.3V tolerant 2.0 3.6 V VIL Low-level Input Ports are 3.3V tolerant -0.3 0.8 V VOH High-level Output VDD.PAD = Min IOH = -4mA 2.4 VDD.PAD+ 0.3 V VOL Low-level Output VDD.PAD = Min IOL = 8mA 0.4 V Input Pin Leakage Current VDD.IN= Max 0.0 < In < VDD.PAD +5 -50 µΑ Tristate Leakage Output OFF State VDD.PAD = Max 0.0 < In < VDD.PAD +5 -5 µΑ Quiescent Power All VDD = Max 0.5 W ILIH, ILIL (1) ILOZ Power PDDQ (2) Table 19 LVDS DC Electrical Specifications DC Parameter Min Output High Voltage for OUTP and OUTN Output Low Voltage for OUTP and OUTN Differential Output Voltage Typ (3) (5) 350 100 350 0.25 1.25 All LVTTL input pins have pull-up resistors. See section 6 for dynamic power consumption calcualtion. 3. Refer to Figures 7 and 8 for termination resistor. 4. Refer to Figures 9 and 10 for termination resistor. 5. Maximum capacitive load is 12 pF. Table 20 V 450 1.125 1.25 1.375 Input Common-Mode Voltage 2. 1.6 V Differential Input Voltage 1. Units 0.90 250 Output Common-Mode Voltage Max V mV 2.25 V LVPECL DC Electrical Specifications DC Parameters (4) Min Max VDD.PAD - 1.165 VDD.PAD - 0.880 VIL VDD.PAD - 1.810 VDD.PAD - 1.475 VOH 1.80 2.40 VOL 0.95 1.55 VIH mV These values in Table 20 are valid at the output of the source termination pack, as shown in sections 3.2 and 3.3, with a 100Ω differential load only. The VOH levels are 200mV below LVPECL levels and are compatible with devices tolerant of lower common-mode ranges. The above table summarizes the DC output specifications of LVPECL. 26 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet 4.5 AC Electrical Specifications (VDD.IN = 3.3V ±10%, VDD.CORE = 2.5V ±5%) Table 21 AC Electrical Specifications 0°C to 70°C Symbol Parameter NRZ Data Rate RDATA Registered Output Clock Frequency FRO Min (1) (1) tW_RO Registered Clock Pulse Width, High or Low (1) Max -40°C to +85°C Max Units 667 667 Mb/s 333 333 MHz 2 Min 2 ns tS_RO Registered Output Setup Time to Clock 4 4 ns tH_RO Registered Output Clock to Hold Data 0 0 ns tCO_RO Registered Output Clock to Data Out Valid 2.5 2.5 ns One Way Signal Propagation Delay, Fanout = 1 5.5 6.5 ns tPHL, tPLH tW+ Input Flow-through Positive Pulse Width 1.5 1.5 ns tW- Input Flow-through Negative Pulse Width 1.5 1.5 ns tDCD+, tDCD- Duty Cycle Distortion 0.5 Output Jitter tJITTER TBD (1) TBD TBD 0.6 ns TBD ps tSK Skew between Output Ports 0.5 0.6 ns tPHZ_OT, tPLZ_OT Output Enable to Valid Data 3 3 ns tPZH_OT, tPZL_OT Output Enable to High Z State 3 3 ns tRC RapidConfigure Clock Period 12 12 ns RapidConfigure Clock Pulse Width 5 5 ns tS_RC RapidConfigure Address Setup to RC_CLK# 3 4 ns tH_RC RapidConfigure Address and Enable Hold Time to RC_CLK# 3 tP_UD Update of Crosspoint to Data Out 10 10 ns fJTAG JTAG Clock Frequency (TCK) 20 20 MHz 30 ns tW+_RC tW-_RC tW_JTAG JTAG Clock Pulse Width (TCK) @ 20MHz cycle 20 4 30 20 ns tS_JTAG JTAG Setup Time 4 4 ns tH_JTAG JTAG Hold Time 0 0 ns tP_JTAG JTAG Clock to Output Data Valid (TDO) 20 20 ns NOTES: 1. I-Cube, Inc. These parameters are guaranteed but not tested in production. [Rev. 1.6] 2/20/01 27 OCX160 Crosspoint Switch—Preliminary Data Sheet 4.6 Timing Diagrams Note – For the purpose of clarity, the timing diagrams within this data sheet are conceptual representations only and do not show actual circuit implementation. tW_RO tW_RO CLK tS_RO tH_RO IN RO Switch Matrix InPort D InPort Dn Dn+1 OutPort Q OutPort CLK Dn-1 Dn Dn+1 tCO_RO Figure 11 Registered Output Mode Timing InPort 1 InPort 2 IN OP InPort 1 tW+ tPLH tPHL tSK tSK OutPort 1 OutPort 1 Switch Matrix InPort 2 OutPort 2 OutPort 2 Figure 12 Flow-Through Mode Timing OE# tPZH_OT InPort IN InPort Switch Matrix OP tPZL_OT OutPort tPHZ_OT tPLZ_OT OutPort OE# Figure 13 Output Enable Timing 28 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet IN InPort Switch Matrix InPort OP tIN+ tIN- tOUT+ tOUT- OutPort OutPort tDCD+ = tIN+ - tOUT+ tDCD- = tIN- - tOUT- Figure 14 Duty Cycle Distortion tRC tW+_RC tRC tW-_RC RC_CLK# tS_RC tH_RC RCA/RCB Address, Instruction tS_RC tH_RC RC_EN# Figure 15 RapidConfigure Write Cycle I-Cube, Inc. [Rev. 1.6] 2/20/01 29 OCX160 Crosspoint Switch—Preliminary Data Sheet tRC tW+_RC tRC tW-_RC RC_CLK# tS_RC tH_RC RCA/RCB Address, Instruction tS_RC tH_RC RC_EN# Data Valid RCO High Impedance Figure 16 RapidConfigure Read Cycle tW_JTAG tW_JTAG TCK tS_JTAG tH_JTAG TDI, TMS tP_JTAG TDO Figure 17 JTAG Timing 30 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet Typical Performance at 667 Mb/s with PRBS Data (Currently not available for this document) Figure 18 Typical Performance LVDS mode Typical Performance at 667 Mb/s with PRBS Data (Currently not available for this document) Figure 19 Typical Performance LVPECL mode I-Cube, Inc. [Rev. 1.6] 2/20/01 31 OCX160 Crosspoint Switch—Preliminary Data Sheet 5. Package and Pinout 5.1 Package Pinout 1 2 A B C D E F G H J K L VSS IN40N IN40P RC_CLK# OUT78P VSS OUT79N OUT75P OUT75N OUT74N R T OUT71N VDD.CORE OUT69N OUT70N OUT68N OUT63P OUT68P VDD.PAD OUT62N OUT62P OUT60P OUT63N OUT61P OUT60N OUT59N OUT64N OUT61N VSS VSS OUT54N OUT11N OUT03P OUT02N OUT11P OUT05P OUT16N OUT04P OUT16P OUT05N VDD.PAD OUT17N OUT04N OCX160 in 420 BGA package 40-79 Outputs OUT17P OUT06N VDD.CORE OUT18P OUT06P OUT18N OUT10P VDD.CORE OUT13P OUT08P OUT08N 0-39 Outputs Top View OUT13N OUT10N OUT15N OUT12N VDD.PAD OUT19P OUT14P OUT21P OUT14N VSS OUT21N VSS OUT19N OUT24N OUT23N OUT45N OUT45P VDD.PAD OUT30P OUT27N VDD.CORE OUT31N OUT32P OUT44N OUT43P OUT41P OUT20N OUT41N VSS RCB2 OUT40P RCA2 IN39P IN39N IN38N IN36P IN34P IN28N IN29P IN30P IN33N IN37N IN34N VSS IN28P 3 4 5 6 7 IN27P IN26P IN15N IN22P IN12N IN15P IN22N IN19N IN10P IN17P IN17N IN11N IN01N IN02P IN04N IN09N IN07N RCO3 RCA1 RCA0 IN07P IN11P IN16P RCO2 VSS VSS CLKP IN00P IN01P IN02N OUT33P VSS OE# IN04P IN09P OUT33N RCO1 VSS IN03P IN06P IN10N IN16N IN18N IN03N OUT35P OUT38P VSS VDD.IN IN00N VSS 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [Rev. 1.6] 2/20/01 K L M N P R T U V W Y AA AB AC AD AE CLKN Figure 20 OCX160 Package Pinout 32 J OUT36P OUT38N RCO0 IN05N IN08P IN13N IN19P VDD.CORE IN06N IN13P IN18P IN24N IN24P IN08N IN14N IN20N IN25N IN12P IN05P G H OUT34N OUT36N OUT39N VDD.CORE IN14P IN20P IN25P IN26N IN32P IN32N IN21P OUT30N OUT32N OUT37P OUT34P VDD.PAD OUT39P OUT35N VSS VSS IN23N IN27N IN33P IN38P IN23P OUT26N OUT27P OUT37N VDD.IN VSS IN21N VSS IN29N IN30N IN31P IN37P RCA4 IN36N VDD.IN IN35P VSS VDD.IN VDD.CORE IN31N RCA3 VSS RCB1 IN35N E F OUT25P OUT29P OUT31P 0-39 Inputs OUT24P OUT22N OUT29N RCB3 OUT40N OUT28P OUT22P OUT43N OUT42P VSS D OUT15P OUT12P OUT47P VDD.CORE OUT42N 1 2 OUT09P OUT03N TMS OUT47N OUT50N RCA5 40-79 Inputs OUT07P UPDATE# OUT09N OUT02P OUT28N OUT25N VDD.PAD OUT23P OUT26P OUT50P VSS VSS OUT49P VDD.CORE OUT44P RCA6 IN72N OUT01N A B C OUT07N TRST# OUT52N OUT56P RCB0 TDO TCK NC OUT00N OUT01P OUT20P OUT46P OUT48N VSS OUT53N OUT49N OUT52P OUT51P VDD.CORE VDD.IN VSS IN79N IN72P VDD.IN HW_RST# OUT00P OUT58P OUT58N OUT46N VSS IN77N TDI IN75N VSS VSS OUT54P VDD.PAD OUT55N OUT57P VSS VSS IN71N IN69N IN62N IN76N IN75P IN74P IN69P RCO4 IN77P IN79P IN73P IN71P IN68N IN63N VSS VSS VDD.IN IN67P IN62P IN78N IN74N IN70N IN68P IN63P IN61P IN55N VDD.CORE IN65P IN61N IN60P IN54P IN66N IN76P IN78P IN73N OUT53P OUT59P OUT55P OUT48P AE AF OUT69P OUT65P OUT51N AD OUT76P OUT71P OUT66P OUT65N OUT56N AB AC OUT70P OUT67P OUT66N IN52N VDD.CORE IN46P RCI0 OUT77N VDD.PAD OUT72P OUT67N IN46N VDD.IN IN55P IN70P IN67N IN59N IN60N IN54N IN66P IN65N IN64P IN57P IN50N IN52P IN59P IN64N IN58N IN53N RCB6 OUT76N OUT73P OUT72N W Y AA RCB5 OUT74P OUT57N U V VSS OUT77P OUT73N IN43N VSS IN50P IN47P IN58P IN57N IN53P IN47N IN45P RCI1 RCB4 IN49P IN45N IN43P RCI2 RC_EN# IN56N IN51P IN48P RCI3 IN56P IN51N IN49N IN44P IN41P OUT78N OUT79P IN44N IN42P VSS 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 IN48N IN42N IN41N VSS OUT64P M N P 3 4 5 6 7 I-Cube, Inc. AF OCX160 Crosspoint Switch—Preliminary Data Sheet 5.2 Pinout by Ball Sequence Table 22 Ball # Ball Name Ball # Ball Name OCX160 Pinout By Ball Sequence Ball # Ball Name Ball # Ball Name Ball # Ball Name A1 VSS B1 RC_CLK# C1 OUT78P D1 OUT79P E1 OUT75P A2 VSS B2 VSS C2 OUT78N D2 OUT79N E2 OUT75N A3 IN40N B3 IN40P C3 VSS D3 RC_EN# E3 RCB4 RCB5 A4 IN41N B4 IN41P C4 RCI2 D4 VSS E4 A5 IN42N B5 IN42P C5 RCI3 D5 RCI1 E5 VSS A6 IN44N B6 IN44P C6 IN43P D6 IN43N E6 RCI0 A7 IN48N B7 IN48P C7 IN45N D7 IN45P E7 VDD.IN A8 IN49N B8 IN49P C8 IN47P D8 IN46N E8 IN46P A9 IN51N B9 IN51P C9 IN47N D9 IN52P E9 VDD.CORE A10 IN56N B10 IN50P C10 IN50N D10 IN52N E10 VDD.CORE A11 IN56P B11 IN53P C11 IN53N D11 IN54N E11 IN54P A12 IN57N B12 IN57P C12 IN55P D12 IN55N E12 VDD.IN A13 IN58P B13 IN58N C13 IN60N D13 IN60P E13 VSS A14 IN64N B14 IN64P C14 IN61P D14 VSS E14 VSS A15 IN59P B15 IN59N C15 IN61N D15 IN62P E15 IN62N A16 IN65N B16 IN65P C16 IN63P D16 IN63N E16 VDD.IN A17 IN66P B17 IN66N C17 IN68P D17 IN68N E17 VSS A18 IN67N B18 IN67P C18 IN69P D18 IN69N E18 VDD.CORE A19 IN70P B19 IN70N C19 IN71P D19 IN71N E19 VDD.IN A20 IN73N B20 IN73P C20 IN74P D20 IN72P E20 IN72N A21 IN78P B21 IN74N C21 IN75P D21 IN75N E21 NC A22 IN78N B22 IN79P C22 IN79N D22 TCK E22 VSS A23 IN76P B23 IN76N C23 TDI D23 VSS E23 TRST# A24 IN77P B24 IN77N C24 VSS D24 TDO E24 UPDATE# A25 RCO4 B25 VSS C25 OUT00P D25 OUT01P E25 OUT07N A26 VSS B26 HW_RST# C26 OUT00N D26 OUT01N E26 OUT07P I-Cube, Inc. [Rev. 1.6] 2/20/01 33 OCX160 Crosspoint Switch—Preliminary Data Sheet Table 22 Ball # Ball Name Ball # Ball Name OCX160 Pinout By Ball Sequence (Continued) Ball # Ball Name Ball # Ball Name Ball # Ball Name F1 OUT74N G1 OUT73N H1 OUT72N J1 OUT67N K1 OUT66N F2 OUT74P G2 OUT73P H2 OUT72P J2 OUT67P K2 OUT66P F3 OUT77P G3 OUT76N H3 OUT70P J3 OUT69P K3 OUT69N F4 OUT77N G4 OUT76P H4 OUT71N J4 OUT70N K4 OUT68P F5 RCB6 G5 VDD.PAD H5 OUT71P J5 VDD.CORE K5 OUT68N VDD.CORE F22 TMS G22 OUT02N H22 VDD.PAD J22 VDD.CORE K22 F23 OUT02P G23 OUT03P H23 OUT04P J23 OUT04N K23 OUT06P F24 OUT03N G24 OUT05P H24 OUT05N J24 OUT06N K24 OUT10P F25 OUT09N G25 OUT11N H25 OUT16N J25 OUT17N K25 OUT18P F26 OUT09P G26 OUT11P H26 OUT16P J26 OUT17P K26 OUT18N L1 OUT65N M1 OUT64P N1 OUT61P P1 OUT61N R1 OUT55P L2 OUT65P M2 OUT63N N2 OUT64N P2 OUT59P R2 OUT55N L3 OUT63P M3 OUT62N N3 OUT59N P3 OUT54N R3 OUT53P L4 OUT62P M4 OUT60N N4 VSS P4 OUT54P R4 OUT53N VDD.PAD L5 VDD.PAD M5 OUT60P N5 VSS P5 VSS R5 L22 OUT08N M22 VDD.PAD N22 VSS P22 VSS R22 OUT20P L23 OUT08P M23 OUT12P N23 OUT14P P23 VSS R23 OUT20N L24 OUT10N M24 OUT12N N24 OUT14N P24 OUT19N R24 OUT22N L25 OUT13P M25 OUT15P N25 OUT19P P25 OUT21N R25 OUT28P L26 OUT13N M26 OUT15N N26 OUT21P P26 OUT24N R26 OUT24P T1 OUT57P U1 OUT57N V1 OUT46N W1 OUT56N Y1 OUT51N T2 OUT58N U2 OUT52P V2 OUT46P W2 OUT56P Y2 OUT44P T3 OUT58P U3 OUT52N V3 OUT47N W3 OUT45N Y3 OUT44N T4 OUT49P U4 OUT47P V4 OUT45P W4 OUT43P Y4 OUT43N T5 OUT49N U5 VDD.CORE V5 VDD.CORE W5 VDD.PAD Y5 OUT41P T22 VDD.PAD U22 OUT23N V22 VDD.CORE W22 OUT31P Y22 VDD.PAD T23 OUT22P U23 OUT23P V23 OUT29N W23 OUT31N Y23 OUT37N T24 OUT28N U24 OUT29P V24 OUT27N W24 OUT32N Y24 OUT37P T25 OUT25P U25 OUT26P V25 OUT27P W25 OUT32P Y25 OUT34N T26 OUT25N U26 OUT26N V26 OUT30P W26 OUT30N Y26 OUT34P AA1 OUT51P AA2 OUT50N AA3 OUT50P AA4 OUT41N AA5 RCB3 AA22 OUT39N AA23 OUT39P AA24 OUT36N AA25 OUT35N AA26 OUT35P 34 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet Table 22 Ball # Ball Name Ball # Ball Name OCX160 Pinout By Ball Sequence (Continued) Ball # Ball Name Ball # Ball Name Ball # Ball Name AB1 OUT48P AC1 OUT48N AD1 RCB0 AE1 RCA6 AF1 VSS AB2 OUT42P AC2 OUT40P AD2 RCB1 AE2 VSS AF2 RCA5 AB3 OUT42N AC3 OUT40N AD3 VSS AE3 IN36N AF3 IN36P AB4 RCB2 AC4 VSS AD4 RCA4 AE4 IN34N AF4 IN34P IN38N AB5 VSS AC5 RCA3 AD5 IN39P AE5 IN39N AF5 AB6 RCA2 AC6 IN35P AD6 IN37P AE6 IN37N AF6 IN38P AB7 IN35N AC7 IN31N AD7 IN31P AE7 IN33N AF7 IN33P AB8 VDD.IN AC8 IN30N AD8 IN30P AE8 IN32P AF8 IN32N AB9 VDD.CORE AC9 IN29N AD9 IN29P AE9 IN27N AF9 IN27P AB10 VSS AC10 IN28N AD10 IN28P AE10 IN26N AF10 IN26P IN25N AB11 VDD.IN AC11 IN23P AD11 IN23N AE11 IN25P AF11 AB12 IN21N AC12 IN21P AD12 IN22P AE12 IN22N AF12 IN24P AB13 VSS AC13 VSS AD13 IN20P AE13 IN20N AF13 IN24N AB14 VSS AC14 IN15N AD14 IN15P AE14 IN19P AF14 IN19N AB15 VDD.IN AC15 IN14P AD15 IN14N AE15 IN18P AF15 IN18N AB16 IN12P AC16 IN12N AD16 IN13N AE16 IN17P AF16 IN17N AB17 VDD.CORE AC17 IN08N AD17 IN13P AE17 IN16N AF17 IN16P AB18 VDD.CORE AC18 IN08P AD18 IN10N AE18 IN11P AF18 IN11N AB19 IN05P AC19 IN06N AD19 IN10P AE19 IN09P AF19 IN09N AB20 VDD.IN AC20 IN05N AD20 IN06P AE20 IN07P AF20 IN07N AB21 RCO0 AC21 IN03N AD21 IN03P AE21 IN04P AF21 IN04N AB22 VSS AC22 OE# AD22 RCA0 AE22 IN02P AF22 IN02N AB23 OUT38N AC23 VSS AD23 RCA1 AE23 IN01N AF23 IN01P AB24 OUT38P AC24 VSS AD24 VSS AE24 IN00P AF24 IN00N AB25 OUT36P AC25 RCO1 AD25 RCO3 AE25 VSS AF25 CLKN AB26 OUT33N AC26 OUT33P AD26 RCO2 AE26 CLKP AF26 VSS I-Cube, Inc. [Rev. 1.6] 2/20/01 35 OCX160 Crosspoint Switch—Preliminary Data Sheet 5.3 Pinout by Ball Name Table 23 Ball Name 36 Ball # Ball Name OCX160 Pinout By Ball Name Ball # Ball Name Ball # Ball Name Ball # Ball Name Ball # CLKN AF25 IN20N AE13 IN42N A5 IN64N A14 OUT05P G24 CLKP AE26 IN20P AD13 IN42P B5 IN64P B14 OUT06N J24 OE# AC22 IN21N AB12 IN43N D6 IN65N A16 OUT06P K23 HW_RST# B26 IN21P AC12 IN43P C6 IN65P B16 OUT07N E25 IN00N AF24 IN22N AE12 IN44N A6 IN66N B17 OUT07P E26 IN00P AE24 IN22P AD12 IN44P B6 IN66P A17 OUT08N L22 IN01N AE23 IN23N AD11 IN45N C7 IN67N A18 OUT08P L23 IN01P AF23 IN23P AC11 IN45P D7 IN67P B18 OUT09N F25 IN02N AF22 IN24N AF13 IN46N D8 IN68N D17 OUT09P F26 IN02P AE22 IN24P AF12 IN46P E8 IN68P C17 OUT10N L24 IN03N AC21 IN25N AF11 IN47N C9 IN69N D18 OUT10P K24 G25 IN03P AD21 IN25P AE11 IN47P C8 IN69P C18 OUT11N IN04N AF21 IN26N AE10 IN48N A7 IN70N B19 OUT11P G26 IN04P AE21 IN26P AF10 IN48P B7 IN70P A19 OUT12N M24 IN05N AC20 IN27N AE9 IN49N A8 IN71N D19 OUT12P M23 IN05P AB19 IN27P AF9 IN49P B8 IN71P C19 OUT13N L26 IN06N AC19 IN28N AC10 IN50N C10 IN72N E20 OUT13P L25 IN06P AD20 IN28P AD10 IN50P B10 IN72P D20 OUT14N N24 IN07N AF20 IN29N AC9 IN51N A9 IN73N A20 OUT14P N23 IN07P AE20 IN29P AD9 IN51P B9 IN73P B20 OUT15N M26 IN08N AC17 IN30N AC8 IN52N D10 IN74N B21 OUT15P M25 IN08P AC18 IN30P AD8 IN52P D9 IN74P C20 OUT16N H25 IN09N AF19 IN31N AC7 IN53N C11 IN75N D21 OUT16P H26 J25 IN09P AE19 IN31P AD7 IN53P B11 IN75P C21 OUT17N IN10N AD18 IN32N AF8 IN54N D11 IN76N B23 OUT17P J26 IN10P AD19 IN32P AE8 IN54P E11 IN76P A23 OUT18N K26 IN11N AF18 IN33N AE7 IN55N D12 IN77N B24 OUT18P K25 IN11P AE18 IN33P AF7 IN55P C12 IN77P A24 OUT19N P24 IN12N AC16 IN34N AE4 IN56N A10 IN78N A22 OUT19P N25 IN12P AB16 IN34P AF4 IN56P A11 IN78P A21 OUT20N R23 IN13N AD16 IN35N AB7 IN57N A12 IN79N C22 OUT20P R22 IN13P AD17 IN35P AC6 IN57P B12 IN79P B22 OUT21N P25 IN14N AD15 IN36N AE3 IN58N B13 NC E21 OUT21P N26 IN14P AC15 IN36P AF3 IN58P A13 OUT00N C26 OUT22N R24 IN15N AC14 IN37N AE6 IN59N B15 OUT00P C25 OUT22P T23 IN15P AD14 IN37P AD6 IN59P A15 OUT01N D26 OUT23N U22 IN16N AE17 IN38N AF5 IN60N C13 OUT01P D25 OUT23P U23 IN16P AF17 IN38P AF6 IN60P D13 OUT02N G22 OUT24N P26 IN17N AF16 IN39N AE5 IN61N C15 OUT02P F23 OUT24P R26 IN17P AE16 IN39P AD5 IN61P C14 OUT03N F24 OUT25N T26 IN18N AF15 IN40N A3 IN62N E15 OUT03P G23 OUT25P T25 IN18P AE15 IN40P B3 IN62P D15 OUT04N J23 OUT26N U26 IN19N AF14 IN41N A4 IN63N D16 OUT04P H23 OUT26P U25 IN19P AE14 IN41P B4 IN63P C16 OUT05N H24 OUT27N V24 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet Table 23 Ball Name OUT27P Ball # Ball Name V25 OCX160 Pinout By Ball Name (Continued) Ball # Ball Name Ball # Ball Name Ball # Ball Name Ball # OUT51N Y1 OUT74P F2 VDD.CORE K22 VSS AB14 AB22 OUT28N T24 OUT51P AA1 OUT75N E2 VDD.CORE U5 VSS OUT28P R25 OUT52N U3 OUT75P E1 VDD.CORE V5 VSS AC4 OUT29N V23 OUT52P U2 OUT76N G3 VDD.CORE V22 VSS AC13 OUT29P U24 OUT53N R4 OUT76P G4 VDD.CORE AB9 VSS AC23 OUT30N W26 OUT53P R3 OUT77N F4 VDD.CORE AB17 VSS AC24 OUT30P V26 OUT54N P3 OUT77P F3 VDD.CORE AB18 VSS AD3 OUT31N W23 OUT54P P4 OUT78N C2 VDD.IN E7 VSS AD24 OUT31P W22 OUT55N R2 OUT78P C1 VDD.IN E12 VSS AE2 OUT32N W24 OUT55P R1 OUT79N D2 VDD.IN E16 VSS AE25 OUT32P W25 OUT56N W1 OUT79P D1 VDD.IN E19 VSS AF1 OUT33N AB26 OUT56P W2 RCI2 C4 VDD.IN AB8 VSS AF26 OUT33P AC26 OUT57N U1 RCI3 C5 VDD.IN AB11 OUT34N Y25 OUT57P T1 RCA0 AD22 VDD.IN AB15 AB20 OUT34P Y26 OUT58N T2 RCA1 AD23 VDD.IN OUT35N AA25 OUT58P T3 RCA2 AB6 VDD.PAD G5 OUT35P AA26 OUT59N N3 RCA3 AC5 VDD.PAD H22 OUT36N AA24 OUT59P P2 RCA4 AD4 VDD.PAD L5 M22 OUT36P AB25 OUT60N M4 RCA5 AF2 VDD.PAD OUT37N Y23 OUT60P M5 RCA6 AE1 VDD.PAD R5 OUT37P Y24 OUT61N P1 RCB0 AD1 VDD.PAD T22 OUT38N AB23 OUT61P N1 RCB1 AD2 VDD.PAD W5 OUT38P AB24 OUT62N M3 RCB2 AB4 VDD.PAD Y22 OUT39N AA22 OUT62P L4 RCB3 AA5 VSS A1 OUT39P AA23 OUT63N M2 RCB4 E3 VSS A2 OUT40N AC3 OUT63P L3 RCB5 E4 VSS A26 OUT40P AC2 OUT64N N2 RCB6 F5 VSS B2 OUT41N AA4 OUT64P M1 RC_CLK# B1 VSS B25 OUT41P Y5 OUT65N L1 RC_EN# D3 VSS C3 OUT42N AB3 OUT65P L2 RCI0 E6 VSS C24 OUT42P AB2 OUT66N K1 RCI1 D5 VSS D4 OUT43N Y4 OUT66P K2 RCO4 A25 VSS D14 OUT43P W4 OUT67N J1 RCO0 AB21 VSS D23 OUT44N Y3 OUT67P J2 RCO1 AC25 VSS E5 OUT44P Y2 OUT68N K5 RCO2 AD26 VSS E13 OUT45N W3 OUT68P K4 RCO3 AD25 VSS E14 OUT45P V4 OUT69N K3 TCK D22 VSS E17 OUT46N V1 OUT69P J3 TDI C23 VSS E22 OUT46P V2 OUT70N J4 TDO D24 VSS N4 OUT47N V3 OUT70P H3 TMS F22 VSS N5 OUT47P U4 OUT71N H4 TRST# E23 VSS N22 OUT48N AC1 OUT71P H5 UPDATE# E24 VSS P5 OUT48P AB1 OUT72N H1 VDD.CORE E9 VSS P22 OUT49N T5 OUT72P H2 VDD.CORE E10 VSS P23 OUT49P T4 OUT73N G1 VDD.CORE E18 VSS AB5 OUT50N AA2 OUT73P G2 VDD.CORE J5 VSS AB10 OUT50P AA3 OUT74N F1 VDD.CORE J22 VSS AB13 I-Cube, Inc. [Rev. 1.6] 2/20/01 37 OCX160 Crosspoint Switch—Preliminary Data Sheet 5.4 Package Dimensions (BOTTOM VIEW) (TOP VIEW) (SIDE VIEW) Figure 21 OCX160 Package—Bottom, Top and Side Views 38 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet 5.5 Package Thermal Characteristics Table 24 Package Thermal Coefficients Package Pin Count ΘJC(C/W) ΘJA(°C/W) Still Air PBGA 420 1.7°C/W 12°C/W NOTE: 1. I-Cube, Inc. Thermal performance values are based on simulation data. [Rev. 1.6] 2/20/01 39 OCX160 Crosspoint Switch—Preliminary Data Sheet 6. Power Consumption There are two main factors to consider when calculating power consumption for the OCX160: • Power consumed by the chip • Power dissipated by the terminating resistors at the switch differential outputs The first component, chip power, consists of three integral elements (refer to Figure 22): 1. Input Power—This element is fixed (always ON) due to the DC current for differential outputs. 2. Core Power—This element is the same for LVDS or LVPECL outputs. Core power is a function of data rate (Mb/s) and the number of connection paths through the switch matrix. 3. Ouput Power—This element is a fixed amount for each differential output. The value is zero if the Output Enable (OE#) is disabled or set to OFF. The second component, termination power, is the power dissipated by the terminating resistors at the switch differential outputs. The value is zero if the Output Enable (OE#) is disabled or set to OFF. The following diagram shows the chip power elements (as described above), the formulas used for determining chip power, and the total power consumption as determined by the formula [Chip Power + Termination Power]. 6.1 Power for LVDS I/O Chip Power Core Power Input Power + Termination Power Output Power Termination Power (always ON) RS Switch Matrix Output Buffer RDIV RS CLK 4mW/Input + 0.015mW/Mbs/Connection + Chip Power + 800mW 16mW/Output (Load) Termination Power Example: Worst Case = (4mW x 80) + (0.015 mW x 667 x 80) + (4mW x 80) 320mW + 4mW/Output + (16mW x 80) + 320mW + 1280mW = 1440mW + 1280mW = 2.72 watts (total power consumption) Figure 22 Power Consumption Diagram for the OCX160 using LVDS 40 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet 6.2 Power for LVPECL I/O Chip Power Core Power Input Power + Termination Power Output Power Termination Power (always ON) RS Switch Matrix Output Buffer RDIV RS CLK 4mW/Input + 0.015mW /Mbs/Connection + Chip Power + 800mW 28mW/Output (Load) Termination Power Example: Worst Case = (4mW x 80) + (0.015 mW x 667 x 80) + (4mW x 80) 320mW + 4mW/Output + (28mW x 80) + 320mW + 2240mW = 1440mW + 2240mW = 3.68 watts (total power consumption) Figure 23 Power Consumption Diagram for the OCX160 using LVPECL I-Cube, Inc. [Rev. 1.6] 2/20/01 41 OCX160 Crosspoint Switch—Preliminary Data Sheet 7. Component Availability and Ordering Information OCXxxx - PPT Family # I/O Ports Package Code PB = Ball Grid Array Temperature Range Blank - Commercial (0°C to 70°C) I - Industrial (-40°C to +85°C) 8. Glossary CLOCK: A single differential input used to gate data into registers in the Output Buffer. The input serves all outputs of the OCX. The neighbor input can also be used as a register clock. CROSSPOINT: A single cell controlled by two RAM bits. The RAM bits are connected in a master-slave configuration to provide an update for programming and changing program information all at once. CROSSPOINT ARRAY: An array of Crosspoint cells used to connect any input port to any output port. INPUT OR OUTPUT PATH: The signal flow from pin to array and array to pin. Each path has a register with selectable clocks, drivers for the loaded outputs with selectable enables, and sense circuits to detect changes on either side of the IO Buffer. NEXT NEIGHBOR: A physically adjacent port can be used as a clock source for an output configured in registered mode. These outputs are grouped in pairs such that the signal being switched through Output 0 can be used to clock the signal being switched through Output 1, or vice-versa. Any single clock or data input signal can be used to clock any other input signal provided they are switched to an appropriate output pair. PORT: A name followed by a number to identify a pin on the device. RAPIDCONFIGURE: A parallel programming method for the OCX devices. The RC mode uses 25 dedicated pins to program the Crosspoint Array and the IO Buffers. The 25 pins consist of an enable, a clock, four instruction bits, two seven-bit address fields, and a five-bit data field. 42 [Rev. 1.6] 2/20/01 I-Cube, Inc. OCX160 Crosspoint Switch—Preliminary Data Sheet Revision History Date/ Version No. 6/16/2000 Revision 1.0 Initial release of “Advanced” data sheet 9/25/00 Revision 1.1 Additions include RCO output pin information, pinout drawing, pinout tables, package dimensions and illustration, duty-cycle diagram, thermal characteristics table, device reset options table, a section on configuring multiple devices, bitstream generation and downloading, JTAG information, and Power Consumption information/illustrations. 10/20/00 Revision 1.2 Corrections to RC Programming table. Additions/corrections to multiple tables and timing diagrams. 11/16/00 Revision 1.3 Updated RapidConfigure Read Cycle timing diagram so that RCO is relative to RC_CLK#; RCO was previously relative to RC_EN#. Replaced “+” on signal names to “P” and “-” to “N”. Corrected RCO[4:0] pin locations. Changed product status definition from Advanced to Preliminary. 11/21/00 Revision 1.4 Corrected Pinout drawing and Pinout tables to reflect that “P” and “N” are reversed on OUT40 to OUT79. 12/14/00 Revision 1.5 Corrections to Table 22 “Pinout By Ball Sequence” to match Pinout drawing—changed ball name on T4 and T5 from OUT49N and OUT49P to OUT49P and OUT49N resepctively; ball # for IN07P corrected from AD20 to AE20. Corrections to Table 23 “Pinout By Ball Name” to match Pinout drawing—corrected IN07P ball # from AD20 to AE20; corrected OUT49P (T5) and OUT49N (T4) to be OUT49N (T5) and OUT49P (T4); corrected OUT50P (AA2) and OUT50N (AA3) to be OUT50N (AA2) and OUT50P (AA3). 1/20/2001 Revision 1.6 Changed the VIH, VIL, VOH, and VOL minimum and maximum values for LVPECL DC specifications in Table 20; added a note below table explaining the current values; changed Pass Transistor to proprietary high-performance buffering circuit. I-Cube, Inc. Description [Rev. 1.6] 2/20/01 43 OCX160 Crosspoint Switch—Preliminary Data Sheet 9. Product Status Definition Data Sheet Identification Advanced Product Status Definition Formative or In Design This data sheet contains the design specifications for product development. Specification may change in any manner without notice. Preproduction Product This data sheet contains the preliminary data, and supplementary data will be published at a later date. I-Cube reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Preliminary No Identification Full Production Obsolete No longer in Production This data sheet contains final specifications. I-Cube reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. This data sheet contains specifications for a product that has been discontinued by I-Cube. The data sheet is provided for reference information only. I-Cube® is a registered trademark and RapidConnect, RapidConfigure, ActiveArray, ImpliedDisconnect, IQ, IQX, MSX, MSXPro, OCX, OCXPro, and PSX are trademarks of I-Cube, Inc. All other trademarks or registered trademarks are the property of their respective holders. I-Cube, Inc., does not assume any liability arising out of the applications or use of the product described herein; nor does it convey any license under its patents, copyright rights or any rights of others. The information contained in this document is believed to be current and accurate as of the publication date. I-Cube reserves the right to make changes, at any time, in order to improve reliability, function, performance or design in order to supply the best product possible. I-Cube assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction if such be made. This product is protected under the U.S. patents: 5202593, 5282271, 5426738, 5428750, 5428800, 5465056, 5530814, 5559971, 5625780, 5710550, 5717871, 5734334, 5781717, 5790048. Additional patents pending. OCX160 Crosspoint Switch Data Sheet— Rev 1.6, February 2001 Copyright © 1992-2001 I-Cube, Inc. All rights reserved. Unpublished—rights reserved under the copyright laws of the United States. Use of copyright notices is precautionary and does not imply publication or disclosure. I-Cube®, Inc. 2605 S. Winchester Blvd. Campbell, CA 95008 USA Phone: Fax: Email: Internet: 44 +(408) 341-1888 +(408) 341-1899 [email protected] http://www.icube.com OCX160 Crosspoint Switch Data Sheet Revision 1.6, February 2001 Document#: MKT-OCX-DS_Rev+1+dot+6 [Rev. 1.6] 2/20/01 I-Cube, Inc.