Cypress MB9AF342NBPMC-G-JNE2 32-bit armâ® cortexâ®-m3 fm3 microcontroller Datasheet

MB9A340NB Series
32-bit ARM® Cortex®-M3
FM3 Microcontroller
The MB9A340NB Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers with low-power
consumption mode and competitive cost.
These series are based on the ARM® Cortex®-M3 Processor with on-chip Flash memory and SRAM, and have peripheral functions
such as various timers, ADCs, and Communication Interfaces (USB, UART, CSIO, I2C).
The products which are described in this data sheet are placed into TYPE6 product categories in FM3 Family Peripheral Manual.
Features
32-bit ARM® Cortex®-M3 Core
External Bus Interface*
 Processor version: r2p1
 Supports SRAM, NOR Flash memory device
 Up to 40 MHz Frequency Operation
 Up to 8 chip selects
 Integrated Nested Vectored Interrupt Controller (NVIC): 1
 8-/16-bit Data width
NMI (non-maskable interrupt) and 48 peripheral interrupts
and 16 priority levels
 24-bit System timer (Sys Tick): System timer for OS task
 Up to 25-bit Address bit
 Maximum area size: Up to 256 Mbytes
 Supports Address/Data multiplex
management
 Supports external RDY function
On-chip Memories
*: MB9AF341LB, F342LB and F344LB do not support
External Bus Interface.
[Flash memory]
 Dual operation Flash memory
 Dual
Operation Flash memory has the upper bank and the
lower bank.
So, this series could implement erase, write and read
operations
for each bank simultaneously.
 Main area: Up to 256 Kbytes (Up to 240 Kbytes upper bank
+ 16 Kbytes lower bank)
 Work area: 32 Kbytes (lower bank)
 Read cycle: 0 wait-cycle
USB Interface
The USB interface is composed of Device and Host.
PLL for USB is built-in, USB clock can be generated by
multiplication of Main clock.
[USB device]
 USB2.0 Full-Speed supported
 Max 6 EndPoint supported
 EndPoint
0 is control transfer
1, 2 can select Bulk-transfer, Interrupt-transfer or
Isochronous-transfer
 EndPoint 3 to 5 can select Bulk-transfer or
Interrupt-transfer
 EndPoint 1 to 5 is comprised of Double Buffers.
 The size of each endpoint is according to the follows.
- Endpoint 0, 2 to 5: 64 bytes
- Endpoint 1: 256 bytes
 Security function for code protection
 EndPoint
[SRAM]
This Series on-chip SRAM is composed of two independent
SRAM (SRAM0, SRAM1). SRAM0 is connected to I-code bus
and D-code bus of Cortex-M3 core. SRAM1 is connected to
System bus.
 SRAM0: Up to 16 Kbytes
[USB host]
 SRAM1: Up to 16 Kbytes
 USB2.0 Full/Low-speed supported
 Bulk-transfer, interrupt-transfer and Isochronous-transfer
support
 Automatic detection of connected/disconnected USB Device
 Automatic processing of the IN/OUT token handshake
packet
 Max 256-byte packet-length supported
 Wake-up function supported
Cypress Semiconductor Corporation
Document Number: 002-05635 Rev.*B
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised July 26, 2017
MB9A340NB Series
Multi-function Serial Interface (Max 8 channels)
 4 channels with 16steps×9-bit FIFO (ch.4 to ch.7), 4
channels without FIFO (ch.0 to ch.3)
 Operation mode is selectable from the followings for each
channel.
 UART
 CSIO
 I2 C
[UART]
 Full-duplex double buffer
A/D Converter (Max 24 channels)
[12-bit A/D Converter]
 Successive Approximation type
 Built-in 2 units
 Conversion time: 2.0 μs @ 2.7 V to 3.6 V
 Priority conversion available (priority at 2 levels)
 Scanning conversion mode
 Built-in FIFO for conversion data storage (for SCAN
conversion: 16steps, for Priority conversion: 4steps)
 Selection with or without parity supported
 Built-in dedicated baud rate generator
Base Timer (Max 8 channels)
 External clock available as a serial clock
Operation mode is selectable from the followings for each
channel.
 Hardware Flow control* : Automatically control the
 16-bit PWM timer
transmission by CTS/RTS (only ch.4)
 Various error detection functions available (parity errors,
framing errors, and overrun errors)
*: MB9AF341LB, F342LB and F344LB do not support
Hardware Flow control.
 16-bit PPG timer
 16-/32-bit reload timer
 16-/32-bit PWC timer
General-Purpose I/O Port
 Built-in dedicated baud rate generator
This series can use its pins as general-purpose I/O ports when
they are not used for external bus or peripherals. Moreover, the
port relocate function is built in. It can set which I/O port the
peripheral function can be allocated to.
 Overrun error detection function available
 Capable of pull-up control per pin
[CSIO]
 Full-duplex double buffer
[I2C]
Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps)
supported
DMA Controller (8 channels)
The DMA Controller has an independent bus from the CPU, so
CPU and DMA Controller can process simultaneously.
 8 independently configured and operated channels
 Transfer can be started by software or request from the
built-in peripherals
 Transfer address area: 32-bit (4 Gbytes)
 Transfer mode: Block transfer/Burst transfer/Demand
transfer
 Transfer data type: byte/half-word/word
 Capable of reading pin level directly
 Built-in the port relocate function
 Up to 83 fast general-purpose I/O Ports@100 pin Package
 Some ports are 5V tolerant I/O.
See Pin Description to confirm the corresponding pins.
Dual Timer (32-/16-bit Down Counter)
The Dual Timer consists of two programmable 32-/16-bit down
counters.
Operation mode is selectable from the followings for each
channel.
 Free-running
 Periodic (=Reload)
 One-shot
 Transfer block count: 1 to 16
 Number of transfers: 1 to 65536
Document Number: 002-05635 Rev.*B
Page 2 of 126
MB9A340NB Series
HDMI-CEC/Remote Control Receiver (Up to 2
channels)
 HDMI-CEC transmitter
 Header
block automatic transmission by judging Signal
free
 Generating status interrupt by detecting Arbitration lost
 Generating START, EOM, ACK automatically to output
CEC transmission by setting 1 byte data
 Generating transmission status interrupt when transmitting
1 block (1 byte data and EOM/ACK)
 HDMI-CEC receiver
 Automatic
ACK reply function available
 Line error detection function available
 Remote control receiver
4
bytes reception buffer
 Repeat code detection function available
CRC (Cyclic Redundancy Check) Accelerator
The CRC accelerator calculates the CRC which has a heavy
software processing load, and achieves a reduction of the
integrity check processing load for reception data and storage.
CCITT CRC16 and IEEE-802.3 CRC32 are supported.
 CCITT CRC16 Generator Polynomial: 0x1021
 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7
Clock and Reset
[Clocks]
Selectable from five clock sources (2 external oscillators, 2
built-in CR oscillators, and Main PLL).
 Main Clock:
4 MHz to 48 MHz
 Sub Clock:
32.768 kHz
 Built-in high-speed CR Clock: 4 MHz
Real-time clock (RTC)
The Real-time clock can count
Year/Month/Day/Hour/Minute/Second/A day of the week from
00 to 99.
 The interrupt function with specifying date and time
(Year/Month/Day/Hour/Minute) is available. This function is
also available by specifying only Year, Month, Day, Hour or
Minute.
 Built-in low-speed CR Clock: 100 kHz
 Main PLL Clock
[Resets]
 Reset requests from INITX pin
 Power-on reset
 Timer interrupt function after set time or each set time.
 Software reset
 Capable of rewriting the time with continuing the time count.
 Watchdog timers reset
 Leap year automatic count is available.
 Low-voltage detection reset
Watch Counter
The Watch counter is used for wake up from sleep and timer
mode.
Interval timer: up to 64 s (Max) @ Sub Clock: 32.768 kHz
External Interrupt Controller Unit
 Up to 16 external interrupt input pins
 Include one non-maskable interrupt (NMI) input pin
 Clock Super Visor reset
Clock Super Visor (CSV)
Clocks generated by built-in CR oscillators are used to
supervise abnormality of the external clocks.
 External clock failure (clock stop) is detected, reset is
asserted.
 External frequency anomaly is detected, interrupt or reset is
asserted.
Watchdog Timer (2 channels)
Low-Voltage Detector (LVD)
A watchdog timer can generate interrupts or a reset when a
time-out value is reached.
This Series includes 2-stage monitoring of voltage on the VCC
pins. When the voltage falls below the voltage that has been
set, Low-Voltage Detector generates an interrupt or reset.
This series consists of two different watchdogs, a Hardware
watchdog and a Software watchdog.
The Hardware watchdog timer is clocked by the built-in
low-speed CR oscillator. Therefore, the Hardware watchdog is
active in any low-power consumption modes except RTC, Stop,
Deep Standby RTC, Deep Standby Stop modes.
Document Number: 002-05635 Rev.*B
 LVD1: error reporting via interrupt
 LVD2: auto-reset operation
Page 3 of 126
MB9A340NB Series
Low-Power Consumption Mode
Debug
Six low-power consumption modes supported.
 Serial Wire JTAG Debug Port (SWJ-DP)
 Sleep
 Timer
 RTC
 Stop
 Deep Standby RTC (selectable between keeping the value of
 Embedded Trace Macrocells (ETM).*
*: MB9AF341LB/MB, F342LB/MB and F344LB/MB support
only SWJ-DP.
Unique ID
Unique value of the device (41-bit) is set.
RAM and not)
 Deep Standby Stop (selectable between keeping the value of
RAM and not)
Document Number: 002-05635 Rev.*B
Power Supply
Wide range voltage: VCC = 1.65 V to 3.6 V
VCC = 3.0 V to 3.6 V (when USB is used)
Page 4 of 126
MB9A340NB Series
Contents
1. Product Lineup .................................................................................................................................................................. 7
2. Packages ........................................................................................................................................................................... 8
3. Pin Assignment ................................................................................................................................................................. 9
4. List of Pin Functions....................................................................................................................................................... 16
5. I/O Circuit Type................................................................................................................................................................ 40
6. Handling Precautions ..................................................................................................................................................... 44
7. Handling Devices ............................................................................................................................................................ 47
8. Block Diagram ................................................................................................................................................................. 49
9. Memory Size .................................................................................................................................................................... 50
10. Memory Map .................................................................................................................................................................... 50
11. Pin Status in Each CPU State ........................................................................................................................................ 53
12. Electrical Characteristics ............................................................................................................................................... 61
12.1 Absolute Maximum Ratings ......................................................................................................................................... 61
12.2 Recommended Operating Conditions.......................................................................................................................... 62
12.3 DC Characteristics....................................................................................................................................................... 63
12.3.1 Current rating ............................................................................................................................................................... 63
12.3.2 Pin Characteristics ....................................................................................................................................................... 66
12.4 AC Characteristics ....................................................................................................................................................... 67
12.4.1 Main Clock Input Characteristics .................................................................................................................................. 67
12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 68
12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 68
12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL) ................................... 69
12.4.5 Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input clock
of the Main PLL) ........................................................................................................................................................... 69
12.4.6 Reset Input Characteristics .......................................................................................................................................... 71
12.4.7 Power-on Reset Timing................................................................................................................................................ 71
12.4.8 External Bus Timing ..................................................................................................................................................... 72
12.4.9 Base Timer Input Timing .............................................................................................................................................. 79
12.4.10 CSIO/UART Timing .................................................................................................................................................. 80
12.4.11 External Input Timing ................................................................................................................................................ 89
12.4.12 I2C Timing ................................................................................................................................................................. 90
12.4.13 ETM Timing .............................................................................................................................................................. 91
12.4.14 JTAG Timing ............................................................................................................................................................. 92
12.5 12-bit A/D Converter .................................................................................................................................................... 93
12.6 USB Characteristics .................................................................................................................................................... 96
12.7 Low-Voltage Detection Characteristics ...................................................................................................................... 100
12.7.1 Low-Voltage Detection Reset ..................................................................................................................................... 100
12.7.2 Interrupt of Low-Voltage Detection ............................................................................................................................. 101
12.8 Flash Memory Write/Erase Characteristics ............................................................................................................... 102
12.8.1 Write / Erase time....................................................................................................................................................... 102
12.8.2 Write cycles and data hold time ................................................................................................................................. 102
12.9 Return Time from Low-Power Consumption Mode .................................................................................................... 103
12.9.1 Return Factor: Interrupt/WKUP .................................................................................................................................. 103
12.9.2 Return Factor: Reset .................................................................................................................................................. 105
13. Ordering Information .................................................................................................................................................... 107
14. Package Dimensions .................................................................................................................................................... 109
15. Errata.............................................................................................................................................................................. 118
Document Number: 002-05635 Rev.*B
Page 5 of 126
MB9A340NB Series
16. Major Changes .............................................................................................................................................................. 122
Document History ............................................................................................................................................................... 125
Sales, Solutions, and Legal Information ........................................................................................................................... 126
Document Number: 002-05635 Rev.*B
Page 6 of 126
MB9A340NB Series
1. Product Lineup
Memory size
Product name
On-chip
Flash
memory
On-chip
SRAM
MB9AF341LB/MB/NB
MB9AF342LB/MB/NB
MB9AF344LB/MB/NB
Main area
64 Kbytes
128 Kbytes
256 Kbytes
Work area
32 Kbytes
32 Kbytes
32 Kbytes
SRAM0
8 Kbytes
8 Kbytes
16 Kbytes
SRAM1
Total
8 Kbytes
16 Kbytes
8 Kbytes
16 Kbytes
16 Kbytes
32 Kbytes
Function
Product name
Pin count
MB9AF341LB
MB9AF342LB
MB9AF344LB
64
CPU
Freq.
Power supply voltage range
USB2.0 (Device/Host)
DMAC
External Bus Interface
Multi-function Serial Interface
(UART/CSIO/I2C)
Base Timer
(PWC/Reload timer/PWM/PPG)
Dual Timer
HDMI-CEC/ Remote Control
Receiver
Real-Time Clock
Watch Counter
CRC Accelerator
Watchdog timer
External Interrupts
-
MB9AF341MB
MB9AF341NB
MB9AF342MB
MB9AF342NB
MB9AF344MB
MB9AF344NB
80/96
100/112
Cortex-M3
40 MHz
1.65 V to 3.6 V
1 ch.
8 ch.
Addr: 21-bit (Max)
Addr: 25-bit (Max)
R/W Data: 8-bit (Max) R/W Data: 8-/16-bit (Max)
CS: 4 (Max)
CS: 8 (Max)
Support: SRAM, NOR
Support: SRAM,
Flash memory
NOR Flash memory
8 ch. (Max)
ch.4 to ch.7: FIFO (16steps × 9-bit)
ch.0 to ch.3: No FIFO
8 ch. (Max)
1 unit
2 ch. (Max)
1 unit
1 unit
Yes
1ch. (SW) + 1ch. (HW)
8 pins (Max) +
11 pins (Max) +
NMI × 1
NMI × 1
51 pins (Max)
66 pins (Max)
12 ch. (2 units)
17 ch. (2 units)
Yes
2 ch.
4 MHz
100 kHz
SWJ-DP
Yes
16 pins (Max) +
NMI × 1
83 pins (Max)
24 ch. (2 units)
I/O ports
12-bit A/D converter
CSV (Clock Super Visor)
LVD (Low-Voltage Detector)
High-speed
Built-in CR
Low-speed
Debug Function
SWJ-DP/ETM
Unique ID
Note:
−
All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
It is necessary to use the port relocate function of the I/O port according to your function use.
See Electrical Characteristics 12.4 AC Characteristics (12.4.3)Built-in CR Oscillation Characteristics for accuracy of built-in
CR.
Document Number: 002-05635 Rev.*B
Page 7 of 126
MB9A340NB Series
2. Packages
Product name
Package
MB9AF341LB
MB9AF342LB
MB9AF344LB

MB9AF341MB
MB9AF342MB
MB9AF344MB
-
MB9AF341NB
MB9AF342NB
MB9AF344NB
-
-
-
LQFP:
LQD064 (0.5 mm pitch)
LQFP:
LQG064 (0.65 mm pitch)

QFN:
VNC064 (0.5 mm pitch)

-
LQFP:
LQH080 (0.5 mm pitch)
-

-
LQFP:
LQJ080 (0.65 mm pitch)
-

-
BGA:
FDG096 (0.5 mm pitch)
-

-
LQFP:
LQI100 (0.5 mm pitch)
-
-

QFP:
PQH100 (0.65 mm pitch)
-
-

BGA:
LBC112 (0.8 mm pitch)
-
-

: Supported
Note:
−
See Package Dimensions for detailed information on each package.
Document Number: 002-05635 Rev.*B
Page 8 of 126
MB9A340NB Series
3. Pin Assignment
LQI100
P01/TCK/SWCLK
P00/TRSTX/MCSX7_1
VCC
78
77
76
P03/TMS/SWDIO
P02/TDI/MCSX6_1
80
79
P05/AN20/TRACED0/TIOA5_2/SIN4_2/INT00_1/MCSX5_1
P04/TDO/SWO
82
81
P07/AN22/TRACED2/ADTG_0/SCK4_2/MCLKOUT_1
P06/AN21/TRACED1/TIOB5_2/SOT4_2/INT01_1/MCSX4_1
85
84
83
P0A/SIN4_0/INT00_2/MCSX1_1
P09/TRACECLK/TIOB0_2/RTS4_2/MCSX2_1
P08/AN23/TRACED3/TIOA0_2/CTS4_2/MCSX3_1
87
86
P0C/SCK4_0/TIOA6_1/MALE_1
P0B/SOT4_0/TIOB6_1/MCSX0_1
89
88
P0E/CTS4_0/TIOB3_2/MDQM1_1
P0D/RTS4_0/TIOA3_2/MDQM0_1
91
90
P63/INT03_0/MWEX_1
P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0
93
92
P61/SOT5_0/TIOB2_2/UHCONX
P62/SCK5_0/ADTG_3/MOEX_1
95
94
P80/UDM0
VCC
P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1/MRDY_1
98
97
99
96
VSS
P81/UDP0
100
(TOP VIEW)
VCC
1
75
VSS
P50/INT00_0/SIN3_1/MADATA00_1
2
74
P20/AN19/INT05_0/CROUT_0/MAD24_1
P51/INT01_0/SOT3_1/MADATA01_1
3
73
P21/AN18/SIN0_0/INT06_1/WKUP2
P52/INT02_0/SCK3_1/MADATA02_1
4
72
P22/AN17/SOT0_0/TIOB7_1
P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1
5
71
P23/AN16/SCK0_0/TIOA7_1
P54/SOT6_0/TIOB1_2/MADATA04_1
6
70
P1F/AN15/ADTG_5/MAD23_1
P55/SCK6_0/ADTG_1/MADATA05_1
7
69
P1E/AN14/RTS4_1/MAD22_1
P56/INT08_2/MADATA06_1
8
68
P1D/AN13/CTS4_1/MAD21_1
P30/TIOB0_1/INT03_2/MADATA07_1
9
67
P1C/AN12/SCK4_1/MAD20_1
P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1
10
66
P1B/AN11/SOT4_1/MAD19_1
P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1
11
65
P1A/AN10/SIN4_1/INT05_1/MAD18_1
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1
12
64
P19/AN09/SCK2_2/MAD17_1
P34/TIOB4_1/MADATA11_1
13
63
P18/AN08/SOT2_2/MAD16_1
P35/TIOB5_1/INT08_1/MADATA12_1
14
62
AVSS
P36/SIN5_2/INT09_1/MADATA13_1
15
61
AVRH
P37/SOT5_2/INT10_1/MADATA14_1
16
60
AVCC
P38/SCK5_2/INT11_1/MADATA15_1
17
59
P17/AN07/SIN2_2/INT04_1/MAD15_1
P39/ADTG_2
18
58
P16/AN06/SCK0_1/MAD14_1
P3A/TIOA0_1/RTCCO_2/SUBOUT_2
19
57
P15/AN05/SOT0_1/MAD13_1
P3B/TIOA1_1
20
56
P14/AN04/SIN0_1/INT03_1/MAD12_1
P3C/TIOA2_1
21
55
P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1
P3D/TIOA3_1
22
54
P12/AN02/SOT1_1/MAD10_1
P3E/TIOA4_1
23
53
P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1
P3F/TIOA5_1
24
52
P10/AN00
VSS
25
51
VCC
48
49
50
PE2/X0
VSS
MD0
PE3/X1
46
47
PE0/MD1
44
45
P4D/TIOB4_0/SOT7_1/MAD07_1
P4E/TIOB5_0/INT06_2/SIN7_1/MAD08_1
41
42
43
P4B/TIOB2_0/MAD05_1
P4C/TIOB3_0/SCK7_1/CEC0/MAD06_1
39
40
P48/INT14_1/SIN3_2/MAD02_1
INITX
P49/TIOB0_0/SOT3_2/MAD03_1
37
38
P47/X1A
P4A/TIOB1_0/SCK3_2/MAD04_1
35
36
VCC
P46/X0A
33
34
C
VSS
31
32
P44/TIOA4_0/MAD00_1
P45/TIOA5_0/MAD01_1
28
29
30
P42/TIOA2_0
P41/TIOA1_0/INT13_1
P43/TIOA3_0/ADTG_7
26
27
VCC
P40/TIOA0_0/INT12_1
LQFP - 100
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05635 Rev.*B
Page 9 of 126
MB9A340NB Series
PQH100
P50/INT00_0/SIN3_1/MADATA00_1
VCC
VSS
P81/UDP0
P80/UDM0
VCC
P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1/MRDY_1
P61/SOT5_0/TIOB2_2/UHCONX
P62/SCK5_0/ADTG_3/MOEX_1
P63/INT03_0/MWEX_1
P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0
P0E/CTS4_0/TIOB3_2/MDQM1_1
P0D/RTS4_0/TIOA3_2/MDQM0_1
P0C/SCK4_0/TIOA6_1/MALE_1
P0B/SOT4_0/TIOB6_1/MCSX0_1
P0A/SIN4_0/INT00_2/MCSX1_1
P09/TRACECLK/TIOB0_2/RTS4_2/MCSX2_1
P08/AN23/TRACED3/TIOA0_2/CTS4_2/MCSX3_1
P07/AN22/TRACED2/ADTG_0/SCK4_2/MCLKOUT_1
P06/AN21/TRACED1/TIOB5_2/SOT4_2/INT01_1/MCSX4_1
P05/AN20/TRACED0/TIOA5_2/SIN4_2/INT00_1/MCSX5_1
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI/MCSX6_1
P01/TCK/SWCLK
P00/TRSTX/MCSX7_1
VCC
VSS
P20/AN19/INT05_0/CROUT_0/MAD24_1
P21/AN18/SIN0_0/INT06_1/WKUP2
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
(TOP VIEW)
P51/INT01_0/SOT3_1/MADATA01_1
81
50
P22/AN17/SOT0_0/TIOB7_1
P52/INT02_0/SCK3_1/MADATA02_1
82
49
P23/AN16/SCK0_0/TIOA7_1
P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1
83
48
P1F/AN15/ADTG_5/MAD23_1
P54/SOT6_0/TIOB1_2/MADATA04_1
84
47
P1E/AN14/RTS4_1/MAD22_1
P55/SCK6_0/ADTG_1/MADATA05_1
85
46
P1D/AN13/CTS4_1/MAD21_1
P56/INT08_2/MADATA06_1
86
45
P1C/AN12/SCK4_1/MAD20_1
P30/TIOB0_1/INT03_2/MADATA07_1
87
44
P1B/AN11/SOT4_1/MAD19_1
P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1
88
43
P1A/AN10/SIN4_1/INT05_1/MAD18_1
P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1
89
42
P19/AN09/SCK2_2/MAD17_1
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1
90
41
P18/AN08/SOT2_2/MAD16_1
QFP - 100
16
17
18
19
20
21
22
23
24
25
26
27
28
INITX
P48/INT14_1/SIN3_2/MAD02_1
P49/TIOB0_0/SOT3_2/MAD03_1
P4A/TIOB1_0/SCK3_2/MAD04_1
P4B/TIOB2_0/MAD05_1
P4C/TIOB3_0/SCK7_1/CEC0/MAD06_1
P4D/TIOB4_0/SOT7_1/MAD07_1
P4E/TIOB5_0/INT06_2/SIN7_1/MAD08_1
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
30
15
P47/X1A
29
14
P46/X0A
VCC
13
P10/AN00
12
P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1
VSS
31
VCC
100
11
P12/AN02/SOT1_1/MAD10_1
P3D/TIOA3_1
C
P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1
32
9
33
99
10
98
P3C/TIOA2_1
P45/TIOA5_0/MAD01_1
P14/AN04/SIN0_1/INT03_1/MAD12_1
P3B/TIOA1_1
8
34
P43/TIOA3_0/ADTG_7
97
P44/TIOA4_0/MAD00_1
P15/AN05/SOT0_1/MAD13_1
P3A/TIOA0_1/RTCCO_2/SUBOUT_2
7
35
P42/TIOA2_0
96
6
P16/AN06/SCK0_1/MAD14_1
P39/ADTG_2
5
P17/AN07/SIN2_2/INT04_1/MAD15_1
36
P41/TIOA1_0/INT13_1
37
95
P40/TIOA0_0/INT12_1
94
P38/SCK5_2/INT11_1/MADATA15_1
4
AVCC
P37/SOT5_2/INT10_1/MADATA14_1
VCC
38
3
93
2
AVRH
P36/SIN5_2/INT09_1/MADATA13_1
1
AVSS
39
VSS
40
92
P3F/TIOA5_1
91
P3E/TIOA4_1
P34/TIOB4_1/MADATA11_1
P35/TIOB5_1/INT08_1/MADATA12_1
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05635 Rev.*B
Page 10 of 126
MB9A340NB Series
LQH080/ LQJ080
VSS
P81/UDP0
P80/UDM0
VCC
P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1/MRDY_1
P61/SOT5_0/TIOB2_2/UHCONX
P62/SCK5_0/ADTG_3/MOEX_1
P63/INT03_0/MWEX_1
P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0
P0E/CTS4_0/TIOB3_2/MDQM1_1
P0D/RTS4_0/TIOA3_2/MDQM0_1
P0C/SCK4_0/TIOA6_1/MALE_1
P0B/SOT4_0/TIOB6_1/MCSX0_1
P0A/SIN4_0/INT00_2/MCSX1_1
P07/AN22/ADTG_0/MCLKOUT_1
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI/MCSX6_1
P01/TCK/SWCLK
P00/TRSTX/MCSX7_1
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
(TOP VIEW)
VCC
1
60
P20/AN19/INT05_0/CROUT_0/MAD24_1
P50/INT00_0/SIN3_1/MADATA00_1
2
59
P21/AN18/SIN0_0/INT06_1/WKUP2
P51/INT01_0/SOT3_1/MADATA01_1
3
58
P22/AN17/SOT0_0/TIOB7_1
P52/INT02_0/SCK3_1/MADATA02_1
4
57
P23/AN16/SCK0_0/TIOA7_1
P53/SIN6_0/TIOA1_2/INT07_2/MADATA03_1
5
56
P1B/AN11/SOT4_1/MAD19_1
P54/SOT6_0/TIOB1_2/MADATA04_1
6
55
P1A/AN10/SIN4_1/INT05_1/MAD18_1
P55/SCK6_0/ADTG_1/MADATA05_1
7
54
P19/AN09/SCK2_2/MAD17_1
P56/INT08_2/MADATA06_1
8
53
P18/AN08/SOT2_2/MAD16_1
P30/TIOB0_1/INT03_2/MADATA07_1
9
52
AVSS
P31/TIOB1_1/SCK6_1/INT04_2/MADATA08_1
10
51
AVRH
P32/TIOB2_1/SOT6_1/INT05_2/MADATA09_1
11
50
AVCC
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6/MADATA10_1
12
49
P17/AN07/SIN2_2/INT04_1/MAD15_1
P39/ADTG_2
13
48
P16/AN06/SCK0_1/MAD14_1
P3A/TIOA0_1/RTCCO_2/SUBOUT_2
14
47
P15/AN05/SOT0_1/MAD13_1
P3B/TIOA1_1
15
46
P14/AN04/SIN0_1/INT03_1/MAD12_1
P3C/TIOA2_1
16
45
P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1/MAD11_1
P3D/TIOA3_1
17
44
P12/AN02/SOT1_1/MAD10_1
P3E/TIOA4_1
18
43
P11/AN01/SIN1_1/INT02_1/WKUP1/MAD09_1
P3F/TIOA5_1
19
42
P10/AN00
VSS
20
41
VCC
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
P44/TIOA4_0/MAD00_1
P45/TIOA5_0/MAD01_1
C
VSS
VCC
P46/X0A
P47/X1A
INITX
P48/INT14_1/SIN3_2/MAD02_1
P49/TIOB0_0/SOT3_2/MAD03_1
P4A/TIOB1_0/SCK3_2/MAD04_1
P4B/TIOB2_0/MAD05_1
P4C/TIOB3_0/SCK7_1/CEC0/MAD06_1
P4D/TIOB4_0/SOT7_1/MAD07_1
P4E/TIOB5_0/INT06_2/SIN7_1/MAD08_1
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
LQFP - 80
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05635 Rev.*B
Page 11 of 126
MB9A340NB Series
LQD064/ LQG064
VSS
P81/UDP0
P80/UDM0
VCC
P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1
P61/SOT5_0/TIOB2_2/UHCONX
P62/SCK5_0/ADTG_3
P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0
P0C/SCK4_0/TIOA6_1
P0B/SOT4_0/TIOB6_1
P0A/SIN4_0/INT00_2
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI
P01/TCK/SWCLK
P00/TRSTX
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
(TOP VIEW)
VCC
1
48
P21/AN18/SIN0_0/INT06_1/WKUP2
P50/INT00_0/SIN3_1
2
47
P22/AN17/SOT0_0/TIOB7_1
P51/INT01_0/SOT3_1
3
46
P23/AN16/SCK0_0/TIOA7_1
P52/INT02_0/SCK3_1
4
45
P19/AN09/SCK2_2
P30/TIOB0_1/INT03_2
5
44
P18/AN08/SOT2_2
P31/TIOB1_1/SCK6_1/INT04_2
6
43
AVSS
P32/TIOB2_1/SOT6_1/INT05_2
7
42
AVRH
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6
8
41
AVCC
P39/ADTG_2
9
40
P17/AN07/SIN2_2/INT04_1
P3A/TIOA0_1/RTCCO_2/SUBOUT_2
10
39
P15/AN05
P3B/TIOA1_1
11
38
P14/AN04/INT03_1
P3C/TIOA2_1
12
37
P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1
P3D/TIOA3_1
13
36
P12/AN02/SOT1_1
P3E/TIOA4_1
14
35
P11/AN01/SIN1_1/INT02_1/WKUP1
P3F/TIOA5_1
15
34
P10/AN00
VSS
16
33
VCC
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
C
VCC
P46/X0A
P47/X1A
INITX
P49/TIOB0_0
P4A/TIOB1_0
P4B/TIOB2_0
P4C/TIOB3_0/SCK7_1/CEC0
P4D/TIOB4_0/SOT7_1
P4E/TIOB5_0/INT06_2/SIN7_1
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
LQFP - 64
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05635 Rev.*B
Page 12 of 126
MB9A340NB Series
VNC064
P03/TMS/SWDIO
P02/TDI
P01/TCK/SWCLK
P00/TRSTX
52
51
50
49
P0A/SIN4_0/INT00_2
P04/TDO/SWO
54
53
P0C/SCK4_0/TIOA6_1
P0B/SOT4_0/TIOB6_1
56
55
P62/SCK5_0/ADTG_3
P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0
58
57
P60/SIN5_0/TIOA2_2/INT15_1/WKUP3/CEC1
P61/SOT5_0/TIOB2_2/UHCONX
60
59
P80/UDM0
VCC
62
61
VSS
P81/UDP0
64
63
(TOP VIEW)
VCC
1
48
P21/AN18/SIN0_0/INT06_1/WKUP2
P50/INT00_0/SIN3_1
2
47
P22/AN17/SOT0_0/TIOB7_1
P51/INT01_0/SOT3_1
3
46
P23/AN16/SCK0_0/TIOA7_1
P52/INT02_0/SCK3_1
4
45
P19/AN09/SCK2_2
P30/TIOB0_1/INT03_2
5
44
P18/AN08/SOT2_2
P31/TIOB1_1/SCK6_1/INT04_2
6
43
AVSS
P32/TIOB2_1/SOT6_1/INT05_2
7
42
AVRH
P33/INT04_0/TIOB3_1/SIN6_1/ADTG_6
8
41
AVCC
P39/ADTG_2
9
40
P17/AN07/SIN2_2/INT04_1
P3A/TIOA0_1/RTCCO_2/SUBOUT_2
10
39
P15/AN05
P3B/TIOA1_1
11
38
P14/AN04/INT03_1
P3C/TIOA2_1
12
37
P13/AN03/SCK1_1/RTCCO_1/SUBOUT_1
P3D/TIOA3_1
13
36
P12/AN02/SOT1_1
P3E/TIOA4_1
14
35
P11/AN01/SIN1_1/INT02_1/WKUP1
P3F/TIOA5_1
15
34
P10/AN00
VSS
16
33
VCC
29
31
32
PE3/X1
VSS
PE0/MD1
30
P4E/TIOB5_0/INT06_2/SIN7_1
MD0
27
28
P4D/TIOB4_0/SOT7_1
PE2/X0
25
26
P4C/TIOB3_0/SCK7_1/CEC0
23
24
P4A/TIOB1_0
P4B/TIOB2_0
21
22
INITX
19
20
P46/X0A
P47/X1A
P49/TIOB0_0
17
18
C
VCC
QFN - 64
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05635 Rev.*B
Page 13 of 126
MB9A340NB Series
LBC112
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
A
VSS
UDP0
UDM0
VCC
P0E
P0B
AN22
TMS/
SWDIO
TRSTX
VCC
VSS
B
VCC
VSS
P52
P61
P0F
P0C
AN23
TDO/
SWO
TCK/
SWCLK
VSS
TDI
C
P50
P51
VSS
P60
P62
P0D
P09
AN20
VSS
AN19
AN18
D
P53
P54
P55
VSS
P56
P63
P0A
VSS
AN21
AN16
AN15
E
P30
P31
P32
P33
Index
AN17
AN14
AN12
AN11
F
P34
P35
P36
P39
AN13
AN10
AN09
AVRH
G
P37
P38
P3A
P3D
AN08
AN07
AN06
AVSS
H
P3B
P3C
P3E
VSS
P44
P4C
AN05
VSS
AN04
AN03
AVCC
J
VCC
P3F
VSS
P40
P43
P49
P4D
AN02
VSS
AN01
AN00
K
VCC
VSS
X1A
INITX
P42
P48
P4B
P4E
MD1
VSS
VCC
L
VSS
C
X0A
VSS
P41
P45
P4A
MD0
X0
X1
VSS
PFBGA - 112
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05635 Rev.*B
Page 14 of 126
MB9A340NB Series
FDG096
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
A
VSS
UDP0
UDM0
VCC
VSS
P0F
VSS
AN22
TMS/
SWDIO
TRSTX
VSS
B
VCC
VSS
P52
P61
P63
P0D
P0C
TDO/
SWO
TCK/
SWCLK
VSS
TDI
C
P50
P51
VSS
P60
P62
P0E
P0B
P0A
VSS
AN19
AN18
D
P53
P54
P55
Index
AN17
AN16
VSS
E
P56
P30
P31
AN11
AN10
AN09
F
VSS
VSS
VSS
AN08
AN07
AVRH
G
P32
P33
P39
AN06
AN05
AVSS
H
P3A
P3B
P3C
AN04
AN03
AVCC
J
P3D
P3E
VSS
P3F
P48
P4A
P4D
AN02
VSS
AN01
AN00
K
VCC
VSS
X1A
INITX
P45
P49
P4C
P4E
MD1
VSS
VCC
L
VSS
C
X0A
VSS
P44
VSS
P4B
MD0
X0
X1
VSS
PFBGA - 96
Note:
−
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register
(EPFR) to select the pin.
Document Number: 002-05635 Rev.*B
Page 15 of 126
MB9A340NB Series
4. List of Pin Functions
List of Pin Numbers
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
Pin No
LQFP-100
QFP-100
BGA-112
LQFP-80
BGA-96
1
79
B1
1
B1
LQFP-64
QFN-64
1
I/O
Circuit
Type
Pin Name
VCC
Pin State
Type
-
P50
2
80
C1
2
C1
2
INT00_0
SIN3_1
-
E
L
E
L
E
L
E
L
E
K
MADATA00_1
P51
3
81
C2
3
C2
3
INT01_0
SOT3_1
(SDA3_1)
-
MADATA01_1
P52
4
82
B3
4
B3
4
INT02_0
SCK3_1
(SCL3_1)
-
MADATA02_1
P53
SIN6_0
5
83
D1
5
D1
-
TIOA1_2
INT07_2
MADATA03_1
P54
6
84
D2
6
D2
-
SOT6_0
(SDA6_0)
TIOB1_2
MADATA04_1
Document Number: 002-05635 Rev.*B
Page 16 of 126
MB9A340NB Series
Pin No
LQFP-100
QFP-100
BGA-112
LQFP-80
LQFP-64
QFN-64
BGA-96
Pin Name
I/O
Circuit
Type
Pin State
Type
P55
7
85
D3
7
D3
-
SCK6_0
(SCL6_0)
E
K
E
L
E
L
E
L
E
L
E
L
E
K
E
L
ADTG_1
MADATA05_1
P56
8
86
D5
8
E1
-
INT08_2
MADATA06_1
P30
9
87
E1
9
E2
5
TIOB0_1
INT03_2
-
MADATA07_1
P31
TIOB1_1
10
88
E2
10
E3
6
SCK6_1
(SCL6_1)
INT04_2
-
MADATA08_1
P32
TIOB2_1
11
89
E3
11
G1
7
SOT6_1
(SDA6_1)
INT05_2
-
MADATA09_1
P33
INT04_0
12
90
E4
12
G2
8
TIOB3_1
SIN6_1
ADTG_6
-
MADATA10_1
P34
13
91
F1
-
-
-
TIOB4_1
MADATA11_1
P35
14
92
F2
-
-
-
TIOB5_1
INT08_1
MADATA12_1
Document Number: 002-05635 Rev.*B
Page 17 of 126
MB9A340NB Series
Pin No
LQFP-100
QFP-100
BGA-112
LQFP-80
BGA-96
LQFP-64
QFN-64
I/O Circuit
Type
Pin Name
Pin State
Type
P36
SIN5_2
15
93
F3
-
-
-
-
-
-
-
F1
-
VSS
-
-
-
-
-
F2
-
VSS
-
-
-
-
-
F3
-
VSS
-
INT09_1
E
L
MADATA13_1
P37
16
94
G1
-
-
-
SOT5_2
(SDA5_2)
E
L
E
L
E
K
E
K
E
K
E
K
E
K
INT10_1
MADATA14_1
P38
17
95
G2
-
-
-
SCK5_2
(SCL5_2)
INT11_1
MADATA15_1
18
96
F4
13
G3
9
P39
ADTG_2
P3A
19
97
G3
14
H1
10
TIOA0_1
RTCCO_2
SUBOUT_2
20
98
H1
15
H2
11
21
99
H2
16
H3
12
22
100
G4
17
J1
13
-
-
B2
-
B2
-
P3B
TIOA1_1
P3C
TIOA2_1
P3D
TIOA3_1
VSS
P3E
-
23
1
H3
18
J2
14
24
2
J2
19
J4
15
25
3
L1
20
L1
16
VSS
-
26
4
J1
-
-
-
VCC
-
Document Number: 002-05635 Rev.*B
TIOA4_1
P3F
TIOA5_1
E
K
E
K
Page 18 of 126
MB9A340NB Series
Pin No
LQFP-100
QFP-100
BGA-112
LQFP-80
27
5
J4
-
BGA-96
LQFP-64
QFN-64
I/O Circuit
Type
Pin Name
Pin State
Type
P40
-
-
TIOA0_0
E
L
E
L
E
K
E
K
E
K
E
K
INT12_1
P41
28
6
L5
-
-
-
TIOA1_0
INT13_1
29
7
K5
-
-
-
P42
TIOA2_0
P43
30
8
J5
-
-
-
TIOA3_0
ADTG_7
P44
TIOA4_0
MAD00_1
P45
TIOA5_0
MAD01_1
31
9
H5
21
L5
-
32
10
L6
22
K5
-
-
-
K2
-
K2
-
VSS
-
-
-
J3
-
J3
-
VSS
-
-
-
H4
-
-
-
VSS
-
-
-
-
-
L6
-
VSS
-
33
11
L2
23
L2
17
C
-
34
12
L4
24
L4
-
VSS
-
35
13
K1
25
K1
18
VCC
-
36
14
L3
26
L3
19
37
15
K3
27
K3
20
38
16
K4
28
K4
21
P46
X0A
P47
X1A
INITX
D
F
D
G
B
C
E
L
E
K
P48
39
17
K6
29
J5
-
INT14_1
SIN3_2
MAD02_1
22
40
18
J6
30
K6
-
P49
TIOB0_0
SOT3_2
(SDA3_2)
MAD03_1
Document Number: 002-05635 Rev.*B
Page 19 of 126
MB9A340NB Series
Pin No
LQFP-100
QFP-100
BGA-112
LQFP-80
BGA-96
LQFP-64
QFN-64
23
41
19
L7
31
J6
-
I/O Circuit
Type
Pin Name
Pin State
Type
P4A
TIOB1_0
SCK3_2
(SCL3_2)
E
K
E
K
I
S
I
K
I
L
C
E
G
D
A
A
A
B
MAD04_1
42
20
K7
32
L7
24
-
P4B
TIOB2_0
MAD05_1
P4C
TIOB3_0
43
21
H6
33
K7
25
SCK7_1
(SCL7_1)
CEC0
-
MAD06_1
P4D
44
22
J7
34
J7
26
TIOB4_0
SOT7_1
(SDA7_1)
-
MAD07_1
P4E
45
23
K8
35
K8
27
TIOB5_0
INT06_2
SIN7_1
-
MAD08_1
MD1
46
24
K9
36
K9
28
47
25
L8
37
L8
29
48
26
L9
38
L9
30
49
27
L10
39
L10
31
50
28
L11
40
L11
32
VSS
-
51
29
K11
41
K11
33
VCC
-
52
30
J11
42
J11
34
PE0
MD0
X0
PE2
X1
PE3
P10
AN00
F
M
F
R
P11
AN01
53
31
J10
43
J10
35
SIN1_1
INT02_1
WKUP1
-
Document Number: 002-05635 Rev.*B
MAD09_1
Page 20 of 126
MB9A340NB Series
Pin No
LQFP-100
QFP-100
BGA-112
LQFP-80
BGA-96
LQFP-64
QFN-64
I/O Circuit
Type
Pin Name
Pin State
Type
P12
36
AN02
54
32
J8
44
J8
-
MAD10_1
-
-
K10
-
K10
-
VSS
-
-
-
J9
-
J9
-
VSS
-
SOT1_1
(SDA1_1)
F
M
P13
AN03
55
33
H10
45
H10
37
SCK1_1
(SCL1_1)
F
M
F
N
F
M
F
M
F
N
RTCCO_1
SUBOUT_1
-
MAD11_1
P14
38
56
34
H9
46
H9
INT03_1
39
57
35
H7
47
AN04
G10
-
SIN0_1
MAD12_1
P15
AN05
SOT0_1
(SDA0_1)
MAD13_1
P16
AN06
58
36
G10
48
G9
-
SCK0_1
(SCL0_1)
MAD14_1
P17
59
37
G9
49
F10
40
AN07
SIN2_2
INT04_1
-
MAD15_1
60
38
H11
50
H11
41
AVCC
-
61
39
F11
51
F11
42
AVRH
-
62
40
G11
52
G11
43
AVSS
-
Document Number: 002-05635 Rev.*B
Page 21 of 126
MB9A340NB Series
Pin No
LQFP-100
QFP-100
BGA-112
LQFP-80
BGA-96
LQFP-64
QFN-64
I/O Circuit
Type
Pin Name
Pin State
Type
P18
63
41
G8
53
F9
44
AN08
SOT2_2
(SDA2_2)
-
F
M
F
M
MAD16_1
P19
64
-
42
-
F10
H8
54
-
E11
-
45
AN09
SCK2_2
(SCL2_2)
-
MAD17_1
-
VSS
-
P1A
AN10
65
43
F9
55
E10
-
SIN4_1
F
N
F
M
F
M
F
M
F
M
F
M
INT05_1
MAD18_1
P1B
AN11
66
44
E11
56
E9
-
SOT4_1
(SDA4_1)
MAD19_1
P1C
AN12
67
45
E10
-
-
-
SCK4_1
(SCL4_1)
MAD20_1
P1D
68
46
F8
-
-
-
AN13
CTS4_1
MAD21_1
P1E
69
47
E9
-
-
-
AN14
RTS4_1
MAD22_1
P1F
70
48
D11
-
-
-
AN15
ADTG_5
MAD23_1
Document Number: 002-05635 Rev.*B
Page 22 of 126
MB9A340NB Series
Pin No
LQFP-100
QFP-100
BGA-112
LQFP-80
-
-
B10
-
-
-
C9
-
-
-
-
-
I/O Circuit
Type
Pin Name
B10
LQFP-64
QFN-64
-
VSS
-
C9
-
VSS
-
D11
-
VSS
-
BGA-96
Pin State
Type
P23
AN16
71
49
D10
57
D10
46
SCK0_0
(SCL0_0)
F
M
F
M
F
R
F
N
TIOA7_1
P22
AN17
72
50
E8
58
D9
47
SOT0_0
(SDA0_0)
TIOB7_1
P21
AN18
73
51
C11
59
C11
48
SIN0_0
INT06_1
WKUP2
P20
AN19
74
52
C10
60
C10
-
INT05_0
CROUT_0
MAD24_1
75
53
A11
-
A11
-
VSS
-
76
54
A10
-
-
-
VCC
-
77
55
A9
61
A10
49
-
P00
TRSTX
E
J
E
J
E
J
E
J
E
J
MCSX7_1
P01
78
56
B9
62
B9
50
TCK
SWCLK
79
57
B11
63
B11
51
-
P02
TDI
MCSX6_1
P03
80
58
A8
64
A9
52
TMS
SWDIO
P04
81
59
B8
65
B8
53
TDO
SWO
Document Number: 002-05635 Rev.*B
Page 23 of 126
MB9A340NB Series
Pin No
LQFP-100
QFP-100
BGA-112
LQFP-80
BGA-96
LQFP-64
QFN-64
I/O Circuit
Type
Pin Name
Pin State
Type
P05
AN20
TRACED0
82
60
C8
-
-
-
TIOA5_2
F
Q
SIN4_2
INT00_1
MCSX5_1
-
-
D8
-
-
-
VSS
-
P06
AN21
TRACED1
83
61
D9
-
-
-
TIOB5_2
F
Q
F
P
SOT4_2
(SDA4_2)
INT01_1
MCSX4_1
P07
AN22
66
84
62
A8
A7
ADTG_0
-
MCLKOUT_
1
TRACED2
-
-
-
-
-
-
A7
SCK4_2
(SCL4_2)
-
VSS
-
P08
AN23
85
63
B7
-
-
-
TRACED3
TIOA0_2
F
P
E
O
I
L
CTS4_2
MCSX3_1
P09
TRACECLK
86
64
C7
-
-
-
TIOB0_2
RTS4_2
MCSX2_1
P0A
87
65
D7
67
C8
54
INT00_2
-
Document Number: 002-05635 Rev.*B
SIN4_0
MCSX1_1
Page 24 of 126
MB9A340NB Series
Pin No
LQFP-100
QFP-100
BGA-112
LQFP-80
BGA-96
LQFP-64
QFN-64
Pin Name
I/O Circuit
Type
Pin State
Type
I
K
I
K
P0B
88
66
A6
68
C7
55
SOT4_0
(SDA4_0)
TIOB6_1
-
MCSX0_1
P0C
89
67
B6
69
B7
56
SCK4_0
(SCL4_0)
TIOA6_1
-
MALE_1
-
-
D4
-
-
-
VSS
-
-
-
C3
-
C3
-
VSS
-
P0D
90
68
C6
70
B6
-
RTS4_0
TIOA3_2
E
K
E
K
MDQM0_1
P0E
91
69
A5
71
C6
-
CTS4_0
TIOB3_2
MDQM1_1
-
-
-
-
A5
-
VSS
-
P0F
NMIX
92
70
B5
72
A6
57
CROUT_1
RTCCO_0
E
I
E
L
E
K
E
K
SUBOUT_0
WKUP0
P63
93
71
D6
73
B5
-
INT03_0
MWEX_1
P62
94
72
C5
74
C5
58
SCK5_0
(SCL5_0)
ADTG_3
-
MOEX_1
P61
95
73
B4
75
B4
59
SOT5_0
(SDA5_0)
TIOB2_2
UHCONX
Document Number: 002-05635 Rev.*B
Page 25 of 126
MB9A340NB Series
Pin No
LQFP-100
QFP-100
BGA-112
LQFP-80
BGA-96
LQFP-64
QFN-64
Pin Name
I/O Circuit
Type
Pin State
Type
P60
SIN5_0
96
74
C4
76
C4
60
TIOA2_2
INT15_1
I
T
WKUP3
CEC1
-
MRDY_1
97
75
A4
77
A4
61
VCC
98
76
A3
78
A3
62
99
77
A2
79
A2
63
100
78
A1
80
A1
64
Document Number: 002-05635 Rev.*B
P80
UDM0
P81
UDP0
VSS
H
H
H
H
-
Page 26 of 126
MB9A340NB Series
List of pin functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins,
there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to
select the pin.
Pin No
Pin
Function
ADC
Pin Name
Function Description
LQFP100
QFP100
BGA112
LQFP80
LQFP/
QFN64
BGA96
ADTG_0
84
62
A7
66
A8
-
ADTG_1
7
85
D3
7
D3
-
ADTG_2
18
96
F4
13
G3
9
94
72
C5
74
C5
58
-
-
-
-
-
-
ADTG_5
70
48
D11
-
-
-
ADTG_6
12
90
E4
12
G2
8
ADTG_7
30
8
J5
-
-
-
ADTG_8
-
-
-
-
-
-
AN00
52
30
J11
42
J11
34
AN01
53
31
J10
43
J10
35
AN02
54
32
J8
44
J8
36
AN03
55
33
H10
45
H10
37
AN04
56
34
H9
46
H9
38
AN05
57
35
H7
47
G10
39
AN06
58
36
G10
48
G9
-
AN07
59
37
G9
49
F10
40
AN08
63
41
G8
53
F9
44
AN09
64
42
F10
54
E11
45
AN10
65
43
F9
55
E10
-
66
44
E11
56
E9
-
67
45
E10
-
-
-
AN13
68
46
F8
-
-
-
AN14
69
47
E9
-
-
-
AN15
70
48
D11
-
-
-
AN16
71
49
D10
57
D10
46
AN17
72
50
E8
58
D9
47
AN18
73
51
C11
59
C11
48
AN19
74
52
C10
60
C10
-
AN20
82
60
C8
-
-
-
AN21
83
61
D9
-
-
-
AN22
84
62
A7
66
A8
-
AN23
85
63
B7
-
-
-
ADTG_3
ADTG_4
AN11
AN12
A/D converter external trigger
input pin
A/D converter analog input pin.
ANxx describes ADC ch.xx.
Document Number: 002-05635 Rev.*B
Page 27 of 126
MB9A340NB Series
Pin No
Pin
Function
Base
Timer
0
Pin Name
Function Description
TIOA0_0
J4
-
-
-
G3
14
H1
10
TIOA0_2
85
63
B7
-
-
-
TIOB0_0
40
18
J6
30
K6
22
9
87
E1
9
E2
5
86
64
C7
-
-
-
28
6
L5
-
-
-
20
98
H1
15
H2
11
TIOA1_2
5
83
D1
5
D1
-
TIOB1_0
41
19
L7
31
J6
23
10
88
E2
10
E3
6
6
84
D2
6
D2
-
29
7
K5
-
-
-
21
99
H2
16
H3
12
TIOA2_2
96
74
C4
76
C4
60
TIOB2_0
42
20
K7
32
L7
24
11
89
E3
11
G1
7
95
73
B4
75
B4
59
30
8
J5
-
-
-
22
100
G4
17
J1
13
TIOA3_2
90
68
C6
70
B6
-
TIOB3_0
43
21
H6
33
K7
25
12
90
E4
12
G2
8
91
69
A5
71
C6
-
31
9
H5
21
L5
-
23
1
H3
18
J2
14
TIOA4_2
-
-
-
-
-
-
TIOB4_0
44
22
J7
34
J7
26
13
91
F1
-
-
-
TIOB4_2
-
-
-
-
-
-
TIOA5_0
32
10
L6
22
K5
-
24
2
J2
19
J4
15
82
60
C8
-
-
-
Base timer ch.0 TIOB pin
TIOA1_0
TIOA1_1
Base timer ch.1 TIOA pin
Base timer ch.1 TIOB pin
TIOA2_0
TIOA2_1
TIOB2_1
Base timer ch.2 TIOA pin
Base timer ch.2 TIOB pin
TIOB2_2
TIOA3_0
TIOA3_1
TIOB3_1
Base timer ch.3 TIOA pin
Base timer ch.3 TIOB pin
TIOB3_2
TIOA4_0
TIOA4_1
TIOB4_1
Base
Timer
5
TIOA5_1
Base timer ch.4 TIOA pin
Base timer ch.4 TIOB pin
Base timer ch.5 TIOA pin
TIOA5_2
TIOB5_0
Base
Timer
6
Base
Timer
7
LQFP/
QFN64
BGA96
97
TIOB1_2
Base
Timer
4
LQFP80
5
TIOB1_1
Base
Timer
3
BGA112
19
Base timer ch.0 TIOA pin
TIOB0_2
Base
Timer
2
QFP100
27
TIOA0_1
TIOB0_1
Base
Timer
1
LQFP100
45
23
K8
35
K8
27
TIOB5_1
Base timer ch.5 TIOB pin
14
92
F2
-
-
-
TIOB5_2
TIOA6_1
Base timer ch.6 TIOA pin
83
89
61
67
D9
B6
69
B7
56
TIOB6_1
Base timer ch.6 TIOB pin
88
66
A6
68
C7
55
71
72
-
49
50
-
D10
E8
-
57
58
-
D10
D9
-
46
47
-
TIOA7_0
TIOA7_1
TIOA7_2
TIOB7_0
TIOB7_1
TIOB7_2
Base timer ch.7 TIOA pin
Base timer ch.7 TIOB pin
Document Number: 002-05635 Rev.*B
Page 28 of 126
MB9A340NB Series
Pin No
Pin
Function
Debugger
Pin Name
Function Description
QFP100
BGA112
LQFP80
LQFP/
QFN64
BGA96
SWCLK
Serial wire debug interface
clock input pin
78
56
B9
62
B9
50
SWDIO
Serial wire debug interface
data input / output pin
80
58
A8
64
A9
52
SWO
Serial wire viewer output pin
81
59
B8
65
B8
53
TCK
JTAG test clock input pin
78
56
B9
62
B9
50
TDI
JTAG test data input pin
79
57
B11
63
B11
51
TDO
JTAG debug data output pin
81
59
B8
65
B8
53
TMS
JTAG test mode state
input/output pin
80
58
A8
64
A9
52
TRACECLK
Trace CLK output pin of ETM
86
64
C7
-
-
-
TRACED0
82
60
C8
-
-
-
TRACED1
83
61
D9
-
-
-
84
62
A7
-
-
-
85
63
B7
-
-
-
TRACED2
Trace data output pins of ETM
TRACED3
TRSTX
External
Bus
LQFP100
77
55
A9
61
A10
49
MAD00_1
JTAG test reset input pin
31
9
H5
21
L5
-
MAD01_1
32
10
L6
22
K5
-
MAD02_1
39
17
K6
29
J5
-
MAD03_1
40
18
J6
30
K6
-
MAD04_1
41
19
L7
31
J6
-
MAD05_1
42
20
K7
32
L7
-
MAD06_1
43
21
H6
33
K7
-
MAD07_1
44
22
J7
34
J7
-
MAD08_1
45
23
K8
35
K8
-
MAD09_1
53
31
J10
43
J10
-
MAD10_1
54
32
J8
44
J8
-
55
33
H10
45
H10
-
56
34
H9
46
H9
-
MAD13_1
57
35
H7
47
G10
-
MAD14_1
58
36
G10
48
G9
-
MAD15_1
59
37
G9
49
F10
-
MAD16_1
63
41
G8
53
F9
-
MAD17_1
64
42
F10
54
E11
-
MAD18_1
65
43
F9
55
E10
-
MAD19_1
66
44
E11
56
E9
-
MAD20_1
67
45
E10
-
-
-
MAD21_1
68
46
F8
-
-
-
MAD22_1
69
47
E9
-
-
-
MAD23_1
70
48
D11
-
-
-
MAD24_1
74
52
C10
60
C10
-
MAD11_1
MAD12_1
External bus interface address
bus
Document Number: 002-05635 Rev.*B
Page 29 of 126
MB9A340NB Series
Pin No
Pin
Function
External
Bus
Pin Name
Function Description
LQFP100
QFP100
BGA112
LQFP80
LQFP/
QFN64
BGA96
MCSX0_1
88
66
A6
68
C7
-
MCSX1_1
87
65
D7
67
C8
-
MCSX2_1
86
64
C7
-
-
-
MCSX3_1
85
63
B7
-
-
-
MCSX4_1
External bus interface chip
select output pin
83
61
D9
-
-
-
MCSX5_1
82
60
C8
-
-
-
MCSX6_1
79
57
B11
63
B11
-
MCSX7_1
77
55
A9
61
A10
-
90
68
C6
70
B6
-
91
69
A5
71
C6
-
MDQM0_1
MDQM1_1
External bus interface byte
mask signal output pin
MOEX_1
External bus interface read
enable signal for SRAM
94
72
C5
74
C5
-
MWEX_1
External bus interface write
enable signal for SRAM
93
71
D6
73
B5
-
MADATA00_1
2
80
C1
2
C1
-
MADATA01_1
3
81
C2
3
C2
-
MADATA02_1
4
82
B3
4
B3
-
MADATA03_1
5
83
D1
5
D1
-
MADATA04_1
6
84
D2
6
D2
-
MADATA05_1
7
85
D3
7
D3
-
MADATA06_1
8
86
D5
8
E1
-
9
87
E1
9
E2
-
10
88
E2
10
E3
-
MADATA09_1
11
89
E3
11
G1
-
MADATA10_1
12
90
E4
12
G2
-
MADATA11_1
13
91
F1
-
-
-
MADATA12_1
14
92
F2
-
-
-
MADATA13_1
15
93
F3
-
-
-
MADATA14_1
16
94
G1
-
-
-
MADATA07_1
MADATA08_1
External bus interface data
bus
MADATA15_1
17
95
G2
-
-
-
MALE_1
Address Latch enable
signal for multiplex
89
67
B6
69
B7
-
MRDY_1
External RDY input signal
96
74
C4
76
C4
-
MCLKOUT_1
External bus clock output
pin
84
62
A7
66
A8
-
Document Number: 002-05635 Rev.*B
Page 30 of 126
MB9A340NB Series
Pin No
Pin
Function
External
Interrupt
Pin Name
Function Description
INT00_0
LQFP100
QFP100
BGA112
LQFP80
LQFP/
QFN64
BGA96
2
80
C1
2
C1
2
82
60
C8
-
-
-
INT00_2
87
65
D7
67
C8
54
INT01_0
External interrupt request 01
input pin
3
81
C2
3
C2
3
83
61
D9
-
-
-
External interrupt request 02
input pin
4
82
B3
4
B3
4
53
31
J10
43
J10
35
93
71
D6
73
B5
-
56
34
H9
46
H9
38
9
87
E1
9
E2
5
12
90
E4
12
G2
8
59
37
G9
49
F10
40
INT04_2
10
88
E2
10
E3
6
INT05_0
74
52
C10
60
C10
-
65
43
F9
55
E10
-
11
89
E3
11
G1
7
73
51
C11
59
C11
48
45
23
K8
35
K8
27
5
83
D1
5
D1
-
14
92
F2
-
-
-
8
86
D5
8
E1
-
INT00_1
INT01_1
INT02_0
INT02_1
External interrupt request 00
input pin
INT03_0
INT03_1
External interrupt request 03
input pin
INT03_2
INT04_0
INT04_1
INT05_1
External interrupt request 04
input pin
External interrupt request 05
input pin
INT05_2
INT06_1
INT06_2
INT07_2
INT08_1
INT08_2
External interrupt request 06
input pin
External interrupt request 07
input pin
External interrupt request 08
input pin
INT09_1
External interrupt request 09
input pin
15
93
F3
-
-
-
INT10_1
External interrupt request 10
input pin
16
94
G1
-
-
-
INT11_1
External interrupt request 11
input pin
17
95
G2
-
-
-
INT12_1
External interrupt request 12
input pin
27
5
J4
-
-
-
INT13_1
External interrupt request 13
input pin
28
6
L5
-
-
-
INT14_1
External interrupt request 14
input pin
39
17
K6
29
J5
-
INT15_1
External interrupt request 15
input pin
96
74
C4
76
C4
60
NMIX
Non-Maskable Interrupt input
pin
92
70
B5
72
A6
57
Document Number: 002-05635 Rev.*B
Page 31 of 126
MB9A340NB Series
Pin No
Pin
Function
GPIO
Pin Name
P00
P01
P02
P03
P04
P05
P06
P07
P08
P09
P0A
P0B
P0C
P0D
P0E
P0F
P10
P11
P12
P13
P14
P15
P16
P17
P18
P19
P1A
P1B
P1C
P1D
P1E
P1F
P20
P21
P22
P23
Function Description
General-purpose I/O port 0
General-purpose I/O port 1
General-purpose I/O port 2
Document Number: 002-05635 Rev.*B
LQFP100
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
52
53
54
55
56
57
58
59
63
64
65
66
67
68
69
70
74
73
72
71
QFP100
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
30
31
32
33
34
35
36
37
41
42
43
44
45
46
47
48
52
51
50
49
BGA112
A9
B9
B11
A8
B8
C8
D9
A7
B7
C7
D7
A6
B6
C6
A5
B5
J11
J10
J8
H10
H9
H7
G10
G9
G8
F10
F9
E11
E10
F8
E9
D11
C10
C11
E8
D10
LQFP80
61
62
63
64
65
66
67
68
69
70
71
72
42
43
44
45
46
47
48
49
53
54
55
56
60
59
58
57
BGA96
A10
B9
B11
A9
B8
A8
C8
C7
B7
B6
C6
A6
J11
J10
J8
H10
H9
G10
G9
F10
F9
E11
E10
E9
C10
C11
D9
D10
LQFP/
QFN64
49
50
51
52
53
54
55
56
57
34
35
36
37
38
39
40
44
45
48
47
46
Page 32 of 126
MB9A340NB Series
Pin No
Pin
Function
GPIO
Pin Name
P30
P31
P32
P33
P34
P35
P36
P37
P38
P39
P3A
P3B
P3C
P3D
P3E
P3F
P40
P41
P42
P43
P44
P45
P46
P47
P48
P49
P4A
P4B
P4C
P4D
P4E
P50
P51
P52
P53
P54
P55
P56
P60
P61
P62
P63
P80
P81
PE0
PE2
PE3
Function Description
General-purpose I/O port 3
General-purpose I/O port 4
General-purpose I/O port 5
General-purpose I/O port 6
General-purpose I/O port 8
General-purpose I/O port E
Document Number: 002-05635 Rev.*B
LQFP100
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
27
28
29
30
31
32
36
37
39
40
41
42
43
44
45
2
3
4
5
6
7
8
96
95
94
93
98
99
46
48
49
QFP100
87
88
89
90
91
92
93
94
95
96
97
98
99
100
1
2
5
6
7
8
9
10
14
15
17
18
19
20
21
22
23
80
81
82
83
84
85
86
74
73
72
71
76
77
24
26
27
BGA112
E1
E2
E3
E4
F1
F2
F3
G1
G2
F4
G3
H1
H2
G4
H3
J2
J4
L5
K5
J5
H5
L6
L3
K3
K6
J6
L7
K7
H6
J7
K8
C1
C2
B3
D1
D2
D3
D5
C4
B4
C5
D6
A3
A2
K9
L9
L10
LQFP80
9
10
11
12
13
14
15
16
17
18
19
21
22
26
27
29
30
31
32
33
34
35
2
3
4
5
6
7
8
76
75
74
73
78
79
36
38
39
BGA96
E2
E3
G1
G2
G3
H1
H2
H3
J1
J2
J4
L5
K5
L3
K3
J5
K6
J6
L7
K7
J7
K8
C1
C2
B3
D1
D2
D3
E1
C4
B4
C5
B5
A3
A2
K9
L9
L10
LQFP/
QFN64
5
6
7
8
9
10
11
12
13
14
15
19
20
22
23
24
25
26
27
2
3
4
60
59
58
62
63
28
30
31
Page 33 of 126
MB9A340NB Series
Pin No
Pin
Function
Multifunction
Serial
0
Pin Name
SIN0_0
SIN0_1
SOT0_0
(SDA0_0)
SOT0_1
(SDA0_1)
SCK0_0
(SCL0_0)
SCK0_1
(SCL0_1)
Multifunction
Serial
1
Function Description
Multi-function serial interface
ch.0 input pin
Multi-function serial interface
ch.0 output pin.
This pin operates as SOT0
when it is used in a
UART/CSIO (operation modes
0 to 2) and as SDA0 when it is
used in an I2C (operation mode
4).
Multi-function serial interface
ch.0 clock I/O pin.
This pin operates as SCK0
when it is used in a
UART/CSIO (operation modes
0 to 2) and as SCL0 when it is
used in an I2C (operation mode
4).
73
51
C11
59
C11
LQFP/
QFN64
48
56
34
H9
46
H9
-
72
50
E8
58
D9
47
57
35
H7
47
G10
-
71
49
D10
57
D10
46
58
36
G10
48
G9
-
LQFP100
QFP100
BGA112
LQFP80
BGA96
SIN1_1
Multi-function serial interface
ch.1 input pin
53
31
J10
43
J10
35
SOT1_1
(SDA1_1)
Multi-function serial interface
ch.1 output pin.
This pin operates as SOT1
when it is used in a
UART/CSIO (operation modes
0 to 2) and as SDA1 when it is
used in an I2C (operation mode
4).
54
32
J8
44
J8
36
SCK1_1
(SCL1_1)
Multi-function serial interface
ch.1 clock I/O pin.
This pin operates as SCK1
when it is used in a UART/
CSIO (operation modes 0 to 2)
and as SCL1 when it is used in
an I2C (operation mode 4).
55
33
H10
45
H10
37
Document Number: 002-05635 Rev.*B
Page 34 of 126
MB9A340NB Series
Pin No
Pin
Function
Multifunction
Serial
2
Pin Name
SIN2_2
SOT2_2
(SDA2_2)
SCK2_2
(SCL2_2)
Multifunction
Serial
3
SIN3_1
SIN3_2
SOT3_1
(SDA3_1)
SOT3_2
(SDA3_2)
SCK3_1
(SCL3_1)
SCK3_2
(SCL3_2)
Function Description
Multi-function serial interface
ch.2 input pin
Multi-function serial interface
ch.2 output pin.
This pin operates as SOT2
when it is used in a
UART/CSIO (operation modes
0 to 2) and as SDA2 when it is
used in an I2C (operation mode
4).
Multi-function serial interface
ch.2 clock I/O pin.
This pin operates as SCK2
when it is used in a UART/
CSIO (operation modes 0 to 2)
and as SCL2 when it is used in
an I2C (operation mode 4).
Multi-function serial interface
ch.3 input pin
Multi-function serial interface
ch.3 output pin.
This pin operates as SOT3
when it is used in a
UART/CSIO (operation modes
0 to 2) and as SDA3 when it is
used in an I2C (operation mode
4).
Multi-function serial interface
ch.3 clock I/O pin.
This pin operates as SCK3
when it is used in a UART/
CSIO (operation modes 0 to 2)
and as SCL3 when it is used in
an I2C (operation mode 4).
Document Number: 002-05635 Rev.*B
LQFP100
QFP100
BGA112
LQFP80
LQFP/
QFN64
BGA96
59
37
G9
49
F10
40
63
41
G8
53
F9
44
64
42
F10
54
E11
45
2
80
C1
2
C1
2
39
17
K6
29
J5
-
3
81
C2
3
C2
3
40
18
J6
30
K6
-
4
82
B3
4
B3
4
41
19
L7
31
J6
-
Page 35 of 126
MB9A340NB Series
Pin No
Pin
Function
Multifunction
Serial
4
87
65
D7
67
C8
LQFP/
QFN64
54
65
43
F9
55
E10
-
82
60
C8
-
-
-
Multi-function serial interface
ch.4 output pin.
This pin operates as SOT4
when it is used in a
UART/CSIO (operation modes
0 to 2) and as SDA4 when it is
used in an I2C (operation mode
4).
88
66
A6
68
C7
55
66
44
E11
56
E9
-
83
61
D9
-
-
-
Multi-function serial interface
ch.4 clock I/O pin.
This pin operates as SCK4
when it is used in a UART/
CSIO (operation modes 0 to 2)
and as SCL4 when it is used in
an I2C (operation mode 4).
89
67
B6
69
B7
56
67
45
E10
-
-
-
84
62
A7
-
-
-
90
68
C6
70
B6
-
69
47
E9
-
-
-
86
64
C7
-
-
-
91
69
A5
71
C6
-
68
46
F8
-
-
-
CTS4_2
85
63
B7
-
-
-
SIN5_0
96
74
C4
76
C4
60
15
93
F3
-
-
-
95
73
B4
75
B4
59
16
94
G1
-
-
-
94
72
C5
74
C5
58
17
95
G2
-
-
-
Pin Name
Function Description
SIN4_0
SIN4_1
Multi-function serial interface
ch.4 input pin
SIN4_2
SOT4_0
(SDA4_0)
SOT4_1
(SDA4_1)
SOT4_2
(SDA4_2)
SCK4_0
(SCL4_0)
SCK4_1
(SCL4_1)
SCK4_2
(SCL4_2)
RTS4_0
RTS4_1
Multi-function serial interface
ch.4 RTS output pin
RTS4_2
CTS4_0
CTS4_1
Multifunction
Serial
5
SIN5_2
SOT5_0
(SDA5_0)
SOT5_2
(SDA5_2)
SCK5_0
(SCL5_0)
SCK5_2
(SCL5_2)
Multi-function serial interface
ch.4 CTS input pin
Multi-function serial interface
ch.5 input pin
Multi-function serial interface
ch.5 output pin.
This pin operates as SOT5
when it is used in a
UART/CSIO (operation modes
0 to 2) and as SDA5 when it is
used in an I2C (operation mode
4).
Multi-function serial interface
ch.5 clock I/O pin.
This pin operates as SCK5
when it is used in a UART/
CSIO (operation modes 0 to 2)
and as SCL5 when it is used in
an I2C (operation mode 4).
Document Number: 002-05635 Rev.*B
LQFP100
QFP100
BGA112
LQFP80
BGA96
Page 36 of 126
MB9A340NB Series
Pin No
Pin
Function
Multifunction
Serial
6
Pin Name
SIN6_0
SIN6_1
SOT6_0
(SDA6_0)
SOT6_1
(SDA6_1)
SCK6_0
(SCL6_0)
SCK6_1
(SCL6_1)
Multifunction
Serial
7
SIN7_1
SOT7_1
(SDA7_1)
SCK7_1
(SCL7_1)
Function Description
Multi-function serial interface
ch.6 input pin
Multi-function serial interface
ch.6 output pin.
This pin operates as SOT6
when it is used in a
UART/CSIO (operation modes
0 to 2) and as SDA6 when it is
used in an I2C (operation mode
4).
Multi-function serial interface
ch.6 clock I/O pin.
This pin operates as SCK6
when it is used in a UART/
CSIO (operation modes 0 to 2)
and as SCL6 when it is used in
an I2C (operation mode 4).
Multi-function serial interface
ch.7 input pin
Multi-function serial interface
ch.7 output pin.
This pin operates as SOT7
when it is used in a
UART/CSIO (operation modes
0 to 2) and as SDA7 when it is
used in an I2C (operation mode
4).
Multi-function serial interface
ch.7 clock I/O pin.
This pin operates as SCK7
when it is used in a UART/
CSIO (operation modes 0 to 2)
and as SCL7 when it is used in
an I2C (operation mode 4).
Document Number: 002-05635 Rev.*B
LQFP100
QFP100
BGA112
LQFP80
LQFP/
QFN64
BGA96
5
83
D1
5
D1
-
12
90
E4
12
G2
8
6
84
D2
6
D2
-
11
89
E3
11
G1
7
7
85
D3
7
D3
-
10
88
E2
10
E3
6
45
23
K8
35
K8
27
44
22
J7
34
J7
26
43
21
H6
33
K7
25
Page 37 of 126
MB9A340NB Series
Pin No
Pin
Function
USB
Pin Name
UDM0
UDP0
UHCONX
Real-time
clock
Function Description
USB device/host D – pin
USB device/host D + pin
USB external pull-up control
pin
RTCCO_0
RTCCO_1
0.5 seconds pulse output pin of
Real-time clock
RTCCO_2
SUBOUT_0
SUBOUT_1
Sub clock output pin
SUBOUT_2
Low-Power
WKUP0
Consumption
Mode
WKUP1
WKUP2
WKUP3
HDMICEC/
Remote
Control
Reception
Reset
CEC0
CEC1
INITX
Mode
MD0
MD1
Deep standby mode return
signal input pin 0
Deep standby mode return
signal input pin 1
Deep standby mode return
signal input pin 2
Deep standby mode return
signal input pin 3
HDMI-CEC/Remote Control
Reception ch.0 input/output pin
HDMI-CEC/Remote Control
Reception ch.1 input/output pin
External Reset Input pin.
A reset is valid when INITX=L.
Mode 0 pin.
During normal operation,
MD0=L must be input. During
serial programming to Flash
memory, MD0=H must be
input.
Mode 1 pin.
During serial programming to
Flash memory, MD1=L must
be input.
Power
VCC
Power supply Pin
Document Number: 002-05635 Rev.*B
98
99
76
77
A3
A2
78
79
A3
A2
LQFP/
QFN64
62
63
95
73
B4
75
B4
59
92
70
B5
72
A6
57
55
33
H10
45
H10
37
19
97
G3
14
H1
10
92
70
B5
72
A6
57
55
33
H10
45
H10
37
19
97
G3
14
H1
10
92
70
B5
72
A6
57
53
31
J10
43
J10
35
73
51
C11
59
C11
48
96
74
C4
76
C4
60
43
21
H6
33
K7
25
96
74
C4
76
C4
60
38
16
K4
28
K4
21
47
25
L8
37
L8
29
46
24
K9
36
K9
28
1
26
35
51
76
97
79
4
13
29
54
75
B1
J1
K1
K11
A10
A4
1
25
41
77
B1
K1
K11
A4
1
18
33
61
LQFP100
QFP100
BGA112
LQFP80
BGA96
Page 38 of 126
MB9A340NB Series
Pin No
Pin
Function
Pin Name
Function Description
GND
VSS
Clock
X0
X0A
X1
X1A
CROUT_0
CROUT_1
ADC
power
AVCC
AVRH
ADC
GND
C pin
GND Pin
Main clock (oscillation) input
pin
Sub clock (oscillation) input pin
Main clock (oscillation) I/O pin
Sub clock (oscillation) I/O pin
Built-in high-speed CR-osc
clock output port
A/D converter analog power
supply pin
A/D converter analog
reference voltage input pin
LQFP100
QFP100
BGA112
LQFP80
BGA96
LQFP/
QFN64
25
34
50
75
100
3
12
28
53
78
B2
L1
K2
J3
H4
L4
L11
K10
J9
H8
B10
C9
A11
D8
D4
C3
A1
20
24
40
80
F1
F2
F3
B2
L1
K2
J3
L6
L4
L11
K10
J9
B10
C9
D11
A11
A7
C3
A5
A1
16
32
64
48
26
L9
38
L9
30
36
49
37
74
14
27
15
52
L3
L10
K3
C10
26
39
27
60
L3
L10
K3
C10
19
31
20
-
92
70
B5
72
A6
57
60
38
H11
50
H11
41
61
39
F11
51
F11
42
AVSS
A/D converter GND pin
62
40
G11
52
G11
43
C
Power supply stabilization
capacity pin
33
11
L2
23
L2
17
Note:
−
While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to
all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other
devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP
controller.
Document Number: 002-05635 Rev.*B
Page 39 of 126
MB9A340NB Series
5. I/O Circuit Type
Type
Circuit
Remarks
It is possible to select the main
oscillation / GPIO function
A
Pull-up
resistor
When the main oscillation is selected.
P-ch
P-ch
Digital output
−
X1
Oscillation feedback resistor
: Approximately 1MΩ
N-ch
Digital output
R
Pull-up resistor control
−
With Standby mode control
−
When the GPIO is selected.
−
CMOS level output.
−
CMOS level hysteresis input
−
With pull-up resistor control
−
With standby mode control
−
Pull-up resistor
Digital input
Standby mode control
: Approximately 33 kΩ
−
IOH= -4 mA, IOL= 4 mA
−
CMOS level hysteresis input
−
Pull-up resistor
Clock input
Feedback
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0
Pull-up resistor control
B
: Approximately 33 kΩ
Pull-up resistor
Digital input
Document Number: 002-05635 Rev.*B
Page 40 of 126
MB9A340NB Series
Type
Circuit
Remarks
C
Digital input
−
Open drain output
−
CMOS level hysteresis input
Digital output
N-ch
It is possible to select the sub oscillation
/ GPIO function
D
Pull-up
When the sub oscillation is selected.
resistor
−
P-ch
P-ch
Digital output
X1A
N-ch
Digital output
R
Pull-up resistor control
Oscillation feedback resistor
: Approximately 5 MΩ
−
With Standby mode control
−
When the GPIO is selected.
−
CMOS level output.
−
CMOS level hysteresis input
−
With pull-up resistor control
−
With Standby mode control
−
Pull-up resistor
: Approximately 33 kΩ
Digital input
−
IOH= -4 mA, IOL= 4 mA
Standby mode control
Clock input
Feedback
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
R
P-ch
P-ch
Digital output
N-ch
Digital output
X0A
Pull-up resistor control
Document Number: 002-05635 Rev.*B
Page 41 of 126
MB9A340NB Series
Type
Circuit
Remarks
E
P-ch
P-ch
−
CMOS level output
−
CMOS level hysteresis input
−
With pull-up resistor control
−
With Standby mode control
−
Pull-up resistor
Digital output
: Approximately 33 kΩ
−
IOH= -4 mA, IOL= 4 mA
−
When this pin is used as an I2C pin, the
digital output P-ch transistor is always off
N-ch
Digital output
R
Pull-up resistor control
Digital input
Standby mode control
F
P-ch
P-ch
Digital output
−
CMOS level output
−
CMOS level hysteresis input
−
With input control
−
Analog input
−
With pull-up resistor control
−
With Standby mode control
−
Pull-up resistor
: Approximately 33 kΩ
N-ch
Digital output
−
IOH= -4 mA, IOL= 4 mA
−
When this pin is used as an I2C pin, the
digital output P-ch transistor is always off
R
Pull-up resistor control
Digital input
Standby mode control
Analog input
Input control
Document Number: 002-05635 Rev.*B
Page 42 of 126
MB9A340NB Series
Type
Circuit
Remarks
CMOS level hysteresis input
G
Mode input
It is possible to select the USB I/O /
GPIO function.
H
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
GPIO Digital input circuit control
UDP output
UDP0/P81
USB Full-speed/Low-speed control
UDP input
Differential
When the USB I/O is selected.
−
Full-speed, Low-speed control
When the GPIO is selected.
−
CMOS level output
−
CMOS level hysteresis input
−
With Standby mode control
−
CMOS level output
−
CMOS level hysteresis input
−
5 V tolerant
−
With pull-up resistor control
−
With Standby mode control
−
Pull-up resistor
Differential input
USB/GPIO select
UDM0/P80
UDM input
UDM output
USB Digital input/output direction
GPIO Digital output
GPIO Digital input/output direction
GPIO Digital input
GPIO Digital input circuit control
I
P-ch
P-ch
Digital output
: Approximately 33 kΩ
N-ch
Digital output
−
IOH= -4 mA, IOL= 4 mA
−
Available to control PZR registers.
−
When this pin is used as an I2C pin, the
digital output P-ch transistor is always off
R
Pull-up resistor control
Digital input
Standby mode control
Document Number: 002-05635 Rev.*B
Page 43 of 126
MB9A340NB Series
6. Handling Precautions
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in
which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to
minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.
6.1
Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
certain established limits, called absolute maximum ratings. Do not exceed these ratings.
Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical
characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely
affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users
considering application outside the listed conditions are advised to contact their sales representative beforehand.
Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output
functions.
1. Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device,
and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at
the design stage.
2. Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows.
Such conditions if present for extended periods of time can damage the device.
Therefore, avoid this type of connection.
3. Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be
connected through an appropriate resistance to a power supply pin or ground pin.
Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally
high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of
several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.
CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or
damage from high heat, smoke or flame. To prevent this from happening, do the following:
1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal
noise, surge levels, etc.
2. Be sure that abnormal current flows do not occur during the power-on sequence.
Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.
Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.
Document Number: 002-05635 Rev.*B
Page 44 of 126
MB9A340NB Series
Precautions Related to Usage of Devices
Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.)
are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from
such use without prior approval.
6.2
Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you
should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales
representative.
Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or
mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected
to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress
recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be
verified before mounting.
Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed
or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections
caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Cypress Inc. recommends the solder reflow method, and has established a ranking
of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of
recommended conditions.
Lead-Free Packaging
CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength
may be reduced under some conditions of use.
Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of
moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing
moisture resistance and causing packages to crack. To prevent, do the following:
1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in
locations where temperature changes are slight.
2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C
and 30°C.
When you open Dry Package that recommends humidity 40% to 70% relative humidity.
3. When necessary, Cypress Inc. packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a
silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended
conditions for baking.
Condition: 125°C/24 h
Document Number: 002-05635 Rev.*B
Page 45 of 126
MB9A340NB Series
Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:
1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be
needed to remove electricity.
2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1
MΩ).
Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is
recommended.
4. Ground all fixtures and instruments, or protect with anti-static measures.
5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.
6.3
Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
1. Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are
anticipated, consider anti-humidity processing.
2. Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases,
use anti-static measures or processing to prevent discharges.
3. Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If
you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
4. Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide
shielding as appropriate.
5. Smoke, Flame
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices
begin to smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of Cypress products in other special environmental conditions should consult with sales
representatives.
Document Number: 002-05635 Rev.*B
Page 46 of 126
MB9A340NB Series
7. Handling Devices
Power supply pins
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to
prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground
lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the
ground level, and to conform to the total output current rating.
Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also
advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and
GND pin, between AVCC pin and AVSS pin near this device.
Stabilizing supply voltage
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended
operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that
the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC
value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a
momentary fluctuation on switching the power supply.
Crystal oscillator circuit
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1,
X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by
ground plane as this is expected to produce stable operation.
Evaluate oscillation of your using crystal oscillator by your mount board.
Sub crystal oscillator
This series sub oscillator circuit is low gain to keep the low current consumption.
The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.
 Surface mount type
Size:
Load capacitance:
More than 3.2 mm × 1.5 mm
Approximately 6 pF to 7 pF
 Lead type
Load capacitance:
Approximately 6 pF to 7 pF
Using an external clock
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3)
can be used as a general-purpose I/O port.
Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to
X0A. X1A (P47) can be used as a general-purpose I/O port.
Example of Using an External Clock
Device
X0(X0A)
Can be used as
general-purpose
I/O ports.
Document Number: 002-05635 Rev.*B
X1(PE3),
X1A (P47)
Set as
External clock
input
Page 47 of 126
MB9A340NB Series
Handling when using Multi-function serial pin as I2C pin
If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled. However, I2C pins need to
keep the electrical characteristic like other pins and not to connect to the external I2C bus system with power OFF.
C Pin
This series contains the regulator. Be sure to connect a smoothing capacitor (C S) for the regulator between the C pin and the GND
pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F
characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use
by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7μF would be recommended for this
series.
C
Device
CS
VSS
GND
Mode pins (MD0)
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays
low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection
impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is
because of preventing the device erroneously switching to test mode due to noise.
Notes on power-on
Turn power on/off in the following order or at the same time.
If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.
Turning on : VCC →AVCC → AVRH
Turning off : AVRH → AVCC → VCC
Serial Communication
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end.
If an error is detected, retransmit the data.
Differences in features among the products with different memory sizes and between Flash memory
products and MASK products
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among
the products with different memory sizes and between Flash memory products and MASK products are different because chip
layout and memory structures are different.
If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.
Pull-Up function of 5 V tolerant I/O
Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O.
Document Number: 002-05635 Rev.*B
Page 48 of 126
MB9A340NB Series
8. Block Diagram
TRSTX,TCK,
TDI,TMS
TDO
SWJ-DP
ETM*1
TRACEDx,
TRACECLK
TPIU*1
ROM
Table
SRAM0
8/16 Kbyte
Multi-layer AHB (Max 40 MHz)
Cortex-M3 Core I
@40 MHz(Max)
D
NVIC
Sys
AHB-APB Bridge:
APB0(Max 40 MHz)
Dual-Timer
WatchDog Timer
(Software)
Clock Reset
Generator
INITX
WatchDog Timer
(Hardware)
SRAM1
8/16 Kbyte
On-Chip Flash
64+32 Kbyte/
128+32 Kbyte/
256+32 Kbyte
Flash I/F
Security
USB2.0
PHY
(Host/
Device)
UDP0/UDM0
UHCONX
DMAC
8ch.
CSV
X0
X1
X0A
X1A
CROUT
Main
Osc
Sub
Osc
PLL
CR
4 MHz
AHB-AHB
Bridge
CLK
Source Clock
CR
100 kHz
MADx
External Bus I/F*2
ADTGx
TIOAx
TIOBx
Unit 0
Unit 1
Base Timer
16-bit 8ch./
32-bit 4ch.
USB Clock Ctrl
LVD Ctrl
RTCCO,
SUBOUT
WKUPx
C
IRQ-Monitor
CRC
Accelerator
Watch Counter
External Interrupt
Controller
16-pin + NMI
INTx
NMIX
MODE-Ctrl
MD0,
MD1
P0x,
P1x,
PIN-Function-Ctrl
HDMI-CEC/
Remote Reciver Control
Real-Time Clock
MCSXx,
MOEX,
MWEX,
MALE,
MRDY,
MCLKOUT,
MDQMx
LVD
Regulator
GPIO
CEC0,CEC1
PLL
Power-On
Reset
AHB-APB Bridge : APB2 (Max 40 MHz)
ANxx
MADATAx
12-bit A/D Converter
AHB-APB Bridge : APB1 (Max 40 MHz)
AVCC,
AVSS,
AVRH
.
.
.
PEx
Multi-Function Serial I/F
8ch.
(with FIFO ch.4 to ch.7)
HW flow control(ch.4)*2
Deep Standby Ctrl
SCKx
SINx
SOTx
CTS4
RTS4
*1: For the MB9AF341LB/MB, MB9AF342LB/MB, and MB9AF344LB/MB, ETM is not available.
*2: For the MB9AF341LB, MB9AF342LB and MB9AF344LB, the External Bus Interface is not available. And
the Multi-function Serial Interface does not support hardware flow control in these products.
Document Number: 002-05635 Rev.*B
Page 49 of 126
MB9A340NB Series
9. Memory Size
See Memory size in Product Lineup to confirm the memory size.
10. Memory Map
Memory Map (1)
Peripherals Area
0x41FF_FFFF
Reserved
0xFFFF_FFFF
Reserved
0xE010_0000
0xE000_0000
Cortex-M3 Private
Peripherals
0x4006_1000
0x4006_0000
0x4005_0000
0x4004_0000
0x4003_F000
Reserved
0x4003_C000
0x4003_B000
0x4003_A000
0x7000_0000
0x6000_0000
External Device
Area
0x4003_9000
0x4003_8000
0x4003_7000
0x4003_6000
Reserved
0x4003_5000
32Mbytes
Bit band alias
0x4003_4000
0x4400_0000
0x4200_0000
0x4000_0000
Peripherals
Reserved
0x2400_0000
0x2200_0000
0x1FFF_0000
0x0020_8000
0x0020_0000
See the next page
"lMemory Map (2)"
for the memory size
details.
0x0010_4000
0x0010_0000
0x4003_2000
0x4003_1000
0x4003_0000
0x4002_F000
0x4002_E000
32Mbytes
Bit band alias
Reserved
0x2008_0000
0x2000_0000
0x4003_3000
0x4002_8000
Reserved
0x4002_7000
A/DC
0x4002_6000
Reserved
0x4002_5000
Base Timer
SRAM1
SRAM0
Reserved
Flash(Work area)
Reserved
Security/CR Trim
Reserved
0x4001_6000
0x4001_5000
Flash(Main area)
0x0000_0000
0x4001_3000
0x4001_2000
0x4001_1000
0x4001_0000
0x4000_1000
0x4000_0000
Document Number: 002-05635 Rev.*B
DMAC
Reserved
USB ch.0
EXT-bus I/F
Reserved
RTC
Watch Counter
CRC
MFS
Reserved
USB Clock Ctrl
LVD/DS mode
HDMI-CEC/
Remote Control Receiver
GPIO
Reserved
Int-Req.Read
EXTI
Reserved
CR Trim
Dual Timer
Reserved
SW WDT
HW WDT
Clock/Reset
Reserved
Flash I/F
Page 50 of 126
MB9A340NB Series
Memory Map (2)
MB9AF344LB/MB/NB
MB9AF342LB/MB/NB
0x2008_0000
MB9AF341LB/MB/NB
0x2008_0000
Reserved
0x2008_0000
Reserved
Reserved
0x2000_4000
0x2000_2000
SRAM1
16Kbytes
0x2000_0000
0x2000_0000
SRAM0
16Kbytes
0x1FFF_E000
0x2000_2000
SRAM1
8Kbytes
SRAM0
8Kbytes
0x2000_0000
0x1FFF_E000
SRAM1
8Kbytes
SRAM0
8Kbytes
0x1FFF_C000
Reserved
0x0010_4000
0x0010_2000
0x0010_0000
0x0020_8000
0x0020_0000
SA4-7 (8 KBx4)
Reserved
0x0010_4000
CR trimming
Security
0x0010_2000
0x0010_0000
0x0020_8000
0x0020_0000
SA4-7 (8 KBx4)
Reserved
Flash(Work area)
32 Kbytes
0x0020_0000
SA4-7 (8 KBx4)
Reserved
Flash(Work area)
32 Kbytes
0x0020_8000
Reserved
Flash(Work area)
32 Kbytes
Reserved
0x0010_4000
CR trimming
Security
0x0010_2000
0x0010_0000
CR trimming
Security
Reserved
Reserved
Reserved
0x0000_0000
SA2-3 (8 KBx2)
SA9 (64 KB)
SA8 (48 KB)
0x0000_0000
SA2-3 (8 KBx2)
0x0001_0000
SA8 (48 KB)
0x0000_0000
Flash(Main area)
64 Kbytes
SA8 (48 KB)
0x0002_0000
Flash(Main area)
128 Kbytes
SA9-11 (64 KBx3)
Flash(Main area)
256 Kbytes
0x0004_0000
SA2-3 (8 KBx2)
Refer to the programming manual for the detail of Flash main area.
MB9AB40N/A40N/340N/140N/150R,MB9B520M/320M/120M Series Flash Programming Manual
Document Number: 002-05635 Rev.*B
Page 51 of 126
MB9A340NB Series
Peripheral Address Map
Start address
End address
Bus
Peripherals
0x4000_0000
0x4000_0FFF
0x4000_1000
0x4000_FFFF
0x4001_0000
0x4001_0FFF
Clock/Reset Control
0x4001_1000
0x4001_1FFF
Hardware Watchdog timer
0x4001_2000
0x4001_2FFF
0x4001_3000
0x4001_4FFF
0x4001_5000
0x4001_5FFF
Dual Timer
0x4001_6000
0x4001_FFFF
Reserved
0x4002_0000
0x4002_4FFF
Reserved
0x4002_5000
0x4002_5FFF
Base Timer
0x4002_6000
0x4002_6FFF
Reserved
0x4002_7000
0x4002_7FFF
0x4002_8000
0x4002_DFFF
Reserved
0x4002_E000
0x4002_EFFF
Built-in CR trimming
0x4002_F000
0x4002_FFFF
Reserved
0x4003_0000
0x4003_0FFF
External Interrupt
0x4003_1000
0x4003_1FFF
Interrupt Source Check Register
0x4003_2000
0x4003_2FFF
Reserved
0x4003_3000
0x4003_3FFF
GPIO
0x4003_4000
0x4003_4FFF
HDMI-CEC/Remote control Receiver
0x4003_5000
0x4003_57FF
Low-Voltage Detector
0x4003_5800
0x4003_5FFF
Deep standby mode Controller
0x4003_6000
0x4003_6FFF
0x4003_7000
0x4003_7FFF
Reserved
0x4003_8000
0x4003_8FFF
Multi-function serial
0x4003_9000
0x4003_9FFF
CRC
0x4003_A000
0x4003_AFFF
Watch Counter
0x4003_B000
0x4003_BFFF
Real-time clock
0x4003_C000
0x4003_EFFF
Reserved
0x4003_F000
0x4003_FFFF
External Bus interface
0x4004_0000
0x4004_FFFF
USB ch.0
0x4005_0000
0x4005_FFFF
0x4006_0000
0x4006_0FFF
0x4006_1000
0x41FF_FFFF
Document Number: 002-05635 Rev.*B
AHB
APB0
APB1
APB2
AHB
Flash memory I/F register
Reserved
Software Watchdog timer
Reserved
A/D Converter
USB clock generator
Reserved
DMAC register
Reserved
Page 52 of 126
MB9A340NB Series
11. Pin Status in Each CPU State
The terms used for pin status have the following meanings.
 INITX=0
This is the period when the INITX pin is the L level.
 INITX=1
This is the period when the INITX pin is the H level.
 SPL=0
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.
 SPL=1
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.
 Input enabled
Indicates that the input function can be used.
 Internal input fixed at 0
This is the status that the input function cannot be used. Internal input is fixed at L.
 Hi-Z
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.
 Setting disabled
Indicates that the setting is disabled.
 Maintain previous state
Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.
 Analog input is enabled
Indicates that the analog input is enabled.
 Trace output
Indicates that the trace function can be used.
 GPIO selected
In Deep standby mode, pins switch to the general-purpose I/O port.
Document Number: 002-05635 Rev.*B
Page 53 of 126
MB9A340NB Series
Pin status type
List of Pin Status
A
Function group
Power-on
reset or
low-volta
ge
detection
state
Power
supply
unstable
-
INITX
input
state
Device internal
reset state
Power supply stable
INITX = 0
-
INITX = 1
-
Run
mode or
Sleep
mode
state
Power
supply
stable
INITX = 1
-
Timer mode,
RTC mode, or
Stop mode state
Deep standby
RTC mode or Deep
standby Stop mode
state
Power supply stable
Power supply stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
GPIO
Hi-Z /
selected
Internal
Internal
input
input
fixed at 0
fixed at 0
Return
from
Deep
standby
mode
state
Power
supply
stable
INITX = 1
-
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Main crystal
oscillator input pin/
External main
clock input
selected
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
GPIO
selected
External main
clock input
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state
Hi-Z /
Internal
input
fixed at 0
Maintain
previous
state
Maintain
previous
state/Whe
n
oscillation
stops*1,
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state/When
oscillation
stops*1,
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state/Wh
en
oscillatio
n stops*1,
Hi-Z /
Internal
input
fixed at 0
Maintain
previous
state/Wh
en
oscillatio
n stops*1,
Hi-Z /
Internal
input
fixed at 0
Maintain
previous
state/Wh
en
oscillatio
n stops*1,
Hi-Z /
Internal
input
fixed at 0
B
GPIO
selected
Main crystal
oscillator output
pin
Hi-Z /
Internal
input fixed
at 0/
or Input
enabled
Hi-Z /
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state/Wh
en
oscillatio
n stops*1,
Hi-Z /
Internal
input
fixed at 0
C
INITX
input pin
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
Pull-up /
Input
enabled
D
Mode
input pin
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Mode
input pin
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Input
enabled
GPIO
selected
Hi-Z /
Input
enabled
GPIO
selected
E
Document Number: 002-05635 Rev.*B
Page 54 of 126
Pin status type
MB9A340NB Series
Function group
Power-on
reset or
low-volta
ge
detection
state
Power
supply
unstable
-
INITX
input
state
Device internal
reset state
Power supply stable
INITX = 0
-
INITX = 1
-
Run
mode or
Sleep
mode
state
Power
supply
stable
INITX = 1
-
Timer mode,
RTC mode, or
Stop mode state
Deep standby
RTC mode or Deep
standby Stop mode
state
Power supply stable
Power supply stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
GPIO
Hi-Z /
selected
Internal
Internal
input
input
fixed at 0
fixed at 0
Return
from
Deep
standby
mode
state
Power
supply
stable
INITX = 1
-
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Sub crystal
oscillator input pin /
External sub clock
input selected
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Input
enabled
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
GPIO
selected
GPIO
selected
F
GPIO
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
External sub clock
input selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state
Hi-Z/
Internal
input
fixed at 0
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state/Whe
n
oscillation
stops*2,
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state/When
oscillation
stops*2,
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state/Wh
en
oscillatio
n stops*2,
Hi-Z/
Internal
input
fixed at 0
Maintain
previous
state/Wh
en
oscillatio
n stops*2,
Hi-Z/
Internal
input
fixed at 0
Maintain
previous
state/Wh
en
oscillatio
n stops*2,
Hi-Z/
Internal
input
fixed at 0
G
Sub crystal
oscillator output
pin
Hi-Z /
Internal
input fixed
at 0/
or Input
enable
Document Number: 002-05635 Rev.*B
Hi-Z /
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0
Page 55 of 126
Pin status type
MB9A340NB Series
Function group
Power-on
reset or
low-volta
ge
detection
state
Power
supply
unstable
-
GPIO
selected
Hi-Z
INITX
input
state
Device internal
reset state
Run
mode or
Sleep
mode
state
I
INITX = 1
SPL = 0
SPL = 1
Hi-Z /
Input
enabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
GPIO
selected
Maintain
previous
state
Hi-Z at
transmission/
Input
enabled/
Internal
input fixed
at 0 at
reception
Hi-Z at
transmission/
Input
enabled/
Internal
input fixed
at 0 at
reception
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
WKUP
input
enabled
Hi-Z /
WKUP
input
enabled
GPIO
selected
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
GPIO
selected
Setting
disabled
NMIX selected
Setting
disabled
Setting
disabled
Setting
disabled
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Hi-Z
Pull-up /
Input
enabled
Pull-up /
Input
enabled
J
Setting
disabled
INITX = 1
SPL = 0
SPL = 1
Hi-Z /
Input
enabled
Setting
disabled
GPIO
selected
Power supply stable
INITX = 1
-
Setting
disabled
JTAG
selected
Power supply stable
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Power
supply
stable
INITX = 1
-
GPIO
selected
Resource selected
K
Return
from
Deep
standby
mode
state
INITX = 0
-
USB I/O pin
GPIO
selected
Deep standby
RTC mode or Deep
standby Stop mode
state
Power
supply
stable
INITX = 1
-
Power supply stable
H
Resource other
than above
selected
Timer mode,
RTC mode, or
Stop mode state
Hi-Z
GPIO
selected
Document Number: 002-05635 Rev.*B
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
Page 56 of 126
Pin status type
MB9A340NB Series
Function group
Power
supply
unstable
External interrupt
enabled selected
L
Power-on
reset or
low-volta
ge
detection
state
Resource other
than above
selected
Setting
disabled
GPIO
selected
Analog input
selected
N
Power supply stable
INITX = 0
-
INITX = 1
-
Setting
disabled
Setting
disabled
Power
supply
stable
INITX = 1
-
Timer mode,
RTC mode, or
Stop mode state
Deep standby
RTC mode or Deep
standby Stop mode
state
Power supply stable
Power supply stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Power
supply
stable
INITX = 1
-
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
GPIO
selected
Hi-Z /
Input
enabled
Hi-Z
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
GPIO
selected
Hi-Z
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
GPIO
selected
Maintain
previous
state
External interrupt
enabled selected
Resource other
than above
selected
Hi-Z /
Internal
input fixed
at 0
Return
from
Deep
standby
mode
state
Hi-Z /
Input
enabled
M
Resource other
than above
selected
Device internal
reset state
Run
mode or
Sleep
mode
state
Hi-Z
GPIO
selected
Analog input
selected
INITX
input
state
Setting
disabled
GPIO
selected
Document Number: 002-05635 Rev.*B
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
Page 57 of 126
Pin status type
MB9A340NB Series
Function group
Power
supply
unstable
Trace selected
O
Power-on
reset or
low-volta
ge
detection
state
Resource other
than above
selected
Setting
disabled
Device internal
reset state
Power supply stable
INITX = 0
-
INITX = 1
-
Setting
disabled
Setting
disabled
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Hi-Z
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
GPIO
selected
Analog input
selected
INITX
input
state
Run
mode or
Sleep
mode
state
Power
supply
stable
INITX = 1
-
Timer mode,
RTC mode, or
Stop mode state
Deep standby
RTC mode or Deep
standby Stop mode
state
Power supply stable
Power supply stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
Trace
output
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Return
from
Deep
standby
mode
state
Power
supply
stable
INITX = 1
-
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
GPIO
selected
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
GPIO
selected
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
GPIO
selected
P
Trace
output
Trace selected
Resource other
than above
selected
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Hi-Z
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
GPIO
selected
Analog input
selected
Q
Resource other
than above
selected
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Trace
output
Trace selected
External interrupt
enabled selected
Hi-Z /
Internal
input fixed
at 0
Setting
disabled
GPIO
selected
Document Number: 002-05635 Rev.*B
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Page 58 of 126
Pin status type
MB9A340NB Series
Function group
Power
supply
unstable
-
Analog input
selected
R
Power-on
reset or
low-volta
ge
detection
state
Hi-Z
INITX
input
state
Device internal
reset state
Power supply stable
INITX = 0
-
INITX = 1
-
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Run
mode or
Sleep
mode
state
Power
supply
stable
INITX = 1
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
Timer mode,
RTC mode, or
Stop mode state
Deep standby
RTC mode or Deep
standby Stop mode
state
Power supply stable
Power supply stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
SPL = 1
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
WKUP
enabled
External interrupt
enabled selected
Maintain
previous
state
Setting
disabled
Setting
disabled
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Resource other
than above
selected
GPIO
selected
CEC
enabled
S
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Hi-Z /
WKUP
input
enabled
Internal
input
fixed at 0
Maintain
previous
state
Setting
disabled
Maintain
previous
state
Maintain
previous
state
Maintain
previous
state
Hi-Z
Hi-Z /
Input
enabled
Hi-Z /
Input
enabled
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
Document Number: 002-05635 Rev.*B
WKUP
input
enabled
Hi-Z /
Internal
input fixed
at 0
Setting
disabled
GPIO
selected
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
GPIO
selected
Setting
disabled
Resource other
than above
selected
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
Return
from
Deep
standby
mode
state
Power
supply
stable
INITX = 1
Hi-Z /
Internal
input
fixed at 0
/
Analog
input
enabled
GPIO
selected
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Internal
input
fixed at 0
GPIO
selected
Page 59 of 126
Pin status type
MB9A340NB Series
Function group
Power
supply
unstable
CEC
enabled
WKUP
enabled
T
Power-on
reset or
low-volta
ge
detection
state
Setting
disabled
Setting
disabled
INITX
input
state
Device internal
reset state
Power supply stable
INITX = 0
-
INITX = 1
-
Setting
disabled
Setting
disabled
Setting
disabled
Power
supply
stable
INITX = 1
Maintain
previous
state
Hi-Z
GPIO
selected
Deep standby
RTC mode or Deep
standby Stop mode
state
Power supply stable
Power supply stable
INITX = 1
SPL = 0
SPL = 1
Maintain
Maintain
previous
previous
state
state
INITX = 1
SPL = 0
SPL = 1
Maintain
Maintain
previous
previous
state
state
Maintain
previous
state
Maintain
previous
state
Hi-Z /
Input
enabled
Timer mode,
RTC mode, or
Stop mode state
Setting
disabled
External interrupt
enabled selected
Resource other
than above
selected
Run
mode or
Sleep
mode
state
Hi-Z /
Input
enabled
Maintain
previous
state
Hi-Z /
Internal
input fixed
at 0
WKUP
input
enabled
Hi-Z /
WKUP
input
enabled
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
Internal
input
fixed at 0
Return
from
Deep
standby
mode
state
Power
supply
stable
INITX = 1
Maintain
previous
state
GPIO
selected
*1: Oscillation is stopped at Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode,
and Deep Standby Stop mode.
*2: Oscillation is stopped at Stop mode and Deep Standby Stop mode.
Document Number: 002-05635 Rev.*B
Page 60 of 126
MB9A340NB Series
12. Electrical Characteristics
12.1 Absolute Maximum Ratings
Parameter
Symbol
Power supply voltage*1, *2
Analog power supply voltage*1, *3
Analog reference voltage*1, *3
VCC
AVCC
AVRH
Input voltage*1
VI
Rating
Min
VSS - 0.5
VSS - 0.5
VSS - 0.5
VSS - 0.5
VSS - 0.5
Analog pin input voltage*1
VIA
VSS - 0.5
Output voltage*1
VO
VSS - 0.5
L level maximum output current*4
IOL
-
L level average output current*5
IOLAV
-
L level total maximum output current
L level total average output current*6
∑IOL
∑IOLAV
-
H level maximum output current*4
IOH
-
H level average output current*5
IOHAV
-
H level total maximum output current
H level total average output current*6
Power consumption
Storage temperature
∑IOH
∑IOHAV
PD
TSTG
- 55
Max
VSS + 4.6
VSS + 4.6
VSS + 4.6
VCC + 0.5
(≤ 4.6 V)
VSS + 6.5
AVCC + 0.5
(≤ 4.6 V)
VCC + 0.5
(≤ 4.6 V)
10
Unit
Remarks
V
V
V
V
V
5 V tolerant
V
V
mA
39
mA
4
10.5
27
100
50
- 10
mA
mA
mA
mA
mA
mA
39
mA
-4
12
27
- 100
- 50
300
+ 150
mA
mA
mA
mA
mA
mW
°C
P81/UDP0 ,
P80/UDM0 pins
*7
*8
P81/UDP0 ,
P80/UDM0 pins
*7
*8
*1: These parameters are based on the condition that VSS = AVSS = 0 V.
*2: VCC must not drop below VSS - 0.5 V.
*3: Ensure that the voltage does not to exceed VCC + 0.5 V, for example, when the power is turned on.
*4: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
*5: The average output current is defined as the average current value flowing through any one of the corresponding pins
for a 100 ms period.
*6: The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms.
*7: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80).
*8: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0).
WARNING:
−
Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or
temperature) in excess of absolute maximum ratings.
Do not exceed any of these ratings.
Document Number: 002-05635 Rev.*B
Page 61 of 126
MB9A340NB Series
12.2 Recommended Operating Conditions
(VSS = AVSS = 0.0V)
Parameter
Symbol
Conditions
Power supply voltage
VCC
-
Analog power supply voltage
AVCC
-
AVRH
-
AVRL
CS
TA
--
Analog reference voltage
Smoothing capacitor
Operating temperature
Value
Min
1.65*4
3.0*4
1.65
2.7
AVCC
AVSS
1
- 40
Unit
Max
3.6
3.6
3.6
AVCC
AVCC
AVSS
10
+ 85
V
V
V
V
V
µF
°C
Remarks
*1
*2
AVCC = VCC
AVCC ≥ 2.7 V
AVCC< 2.7 V
For Regulator*3
*1: When P81/UDP0 and P80/UDM0 pins are used as GPIO (P81, P80).
*2: When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0).
*3: See C Pin in Handling Devices for the connection of the smoothing capacitor.
*4: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction
execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or built-in Low-speed CR is
possible to operate only.
WARNING:
−
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All
of the device's electrical characteristics are warranted when the device is operated under these conditions.
Any use of semiconductor devices will be under their recommended operating condition.
Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device
failure.
No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you
are considering application under any conditions other than listed herein, please contact sales representatives beforehand.
Document Number: 002-05635 Rev.*B
Page 62 of 126
MB9A340NB Series
12.3 DC Characteristics
12.3.1 Current rating
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin
name
ICC
Power
supply
current
VCC
ICCS
Conditions
PLL
Run mode
CPU: 40 MHz,
Peripheral: 40 MHz
CPU: 40 MHz,
Peripheral: the clock stops
NOP operation
High-speed
CR
Run mode
Sub
Run mode
Low-speed
CR
Run mode
PLL
Sleep mode
High-speed
CR
Sleep mode
Sub
Sleep mode
Low-speed
CR
Sleep mode
Value
Typ*3
Unit
Max*4
Remarks
15.5
21
mA
*1, *5
8.7
12
mA
*1, *5
CPU/ Peripheral: 4 MHz*2
1.8
2.9
mA
*1
CPU/ Peripheral: 32 kHz
110
680
μA
*1, *6
CPU/ Peripheral: 100 kHz
125
700
μA
*1
Peripheral: 40 MHz
9
12.5
mA
*1, *5
Peripheral: 4 MHz*2
0.8
1.6
mA
*1
Peripheral: 32 kHz
96
670
μA
*1, *6
Peripheral: 100 kHz
110
680
μA
*1
*1: When all ports are fixed.
*2: When setting it to 4 MHz by trimming.
*3: TA=+25°C, VCC=3.6 V
*4: TA=+85°C, VCC=3.6 V
*5: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
*6: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
Document Number: 002-05635 Rev.*B
Page 63 of 126
MB9A340NB Series
Parameter
Symbol
Value
Pin
name
Conditions
Main Timer
mode
ICCT
Sub Timer
mode
ICCR
RTC mode
ICCH
Power supply
current
Stop mode
VCC
ICCHD
ICCRD
Deep
Standby
Stop mode
Deep
Standby
RTC mode
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
TA = + 25°C,
When LVD is off
TA = + 85°C,
When LVD is off
TA = + 25°C,
When LVD is off
Typ*2
Max*2
-
Unit
Remarks
mA
*1, *3
mA
*1, *3
12
35
μA
*1, *4
-
330
μA
*1, *4
9.8
29
μA
*1, *4
-
280
μA
*1, *4
9
28
μA
*1
TA = + 85°C,
When LVD is off
-
270
μA
*1
TA = + 25°C,
When LVD is off,
When RAM is off
1.25
7
μA
*1, *4, *5
TA = + 25°C,
When LVD is off,
When RAM is on
5.3
18
μA
*1, *4, *5
70
μA
*1, *4, *5
100
μA
*1, *4, *5
1.9
9
μA
*1, *5
5.9
20
μA
*1, *5
75
μA
*1, *5
105
μA
*1, *5
TA = + 85°C,
When LVD is off,
When RAM is off
TA = + 85°C,
When LVD is off,
When RAM is on
TA = + 25°C,
When LVD is off,
When RAM is off
TA = + 25°C,
When LVD is off,
When RAM is on
TA = + 85°C,
When LVD is off,
When RAM is off
TA = + 85°C,
When LVD is off,
When RAM is on
-
-
*1: When all ports are fixed.
*2: VCC=3.6 V
*3: When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
*4: When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
*5: RAM on/off setting is on-chip SRAM only.
Document Number: 002-05635 Rev.*B
Page 64 of 126
MB9A340NB Series
Low-Voltage Detection Current
(VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Low-voltage
detection circuit
(LVD) power
supply current
Pin
name
Symbol
ICCLVD
Conditions
Value
Typ
Max
Unit
Remarks
At operation
for reset
VCC = 3.6 V
0.13
0.3
μA
At not detect
At operation
for interrupt
VCC = 3.6 V
0.13
0.3
μA
At not detect
VCC
Flash Memory Current
(VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Flash memory
write/erase
current
Pin
name
Symbol
ICCFLASH
VCC
Conditions
At Write/Erase
Value
Typ
9.5
Max
11.2
Unit
mA
Remarks
*
*: The current at which to write or erase Flash memory, ICCFLASH is added to ICC.
A/D Converter Current
(VCC = VCC28 = AVCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = AVSS = 0V, TA = - 40°C to +85°C)
Parameter
Power supply
current
Reference power
supply current
Pin
name
Symbol
ICCAD
ICCAVRH
AVCC
AVRH
Document Number: 002-05635 Rev.*B
Conditions
Value
Typ
Max
Unit
At 1unit
operation
0.27
0.42
mA
At stop
0.03
10
μA
At 1unit
operation
AVRH=3.6 V
0.72
1.29
mA
At stop
0.02
2.6
μA
Remarks
Page 65 of 126
MB9A340NB Series
12.3.2 Pin Characteristics
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
H level input
voltage
(hysteresis
input)
L level input
voltage
(hysteresis
input)
Symbol
Pin name
CMOS
hysteresis
input pin,
MD0, MD1
VIHS
5V tolerant
input pin
CMOS
hysteresis
input pin,
MD0, MD1
Min
VCC ≥ 2.7 V
VCC × 0.8
VCC < 2.7 V
VCC × 0.7
VCC ≥ 2.7 V
VCC × 0.8
VCC < 2.7 V
Typ
Max
Unit
-
VCC + 0.3
V
-
VSS + 5.5
V
Remarks
VCC × 0.7
VCC ≥ 2.7 V
VCC × 0.2
VSS - 0.3
-
V
VCC < 2.7 V
VCC × 0.3
VCC ≥ 2.7 V
VCC × 0.2
VILS
5V tolerant
input pin
4 mA type
H level
output voltage
Conditions
VOH
The pin
doubled as
USB I/O
VSS - 0.3
-
VCC < 2.7 V
V
VCC × 0.3
VCC ≥ 2.7 V,
IOH = - 4 mA
VCC - 0.5
VCC < 2.7 V,
IOH = - 2 mA
VCC - 0.45
-
VCC
V
VCC - 0.4
-
VCC
V
VSS
-
0.4
V
VSS
-
0.4
V
VCC = AVCC =
AVRH = VSS =
AVSS = 0.0 V
-5
-
+5
μA
-
-
+1.8
μA
VCC ≥ 2.7 V
21
33
66
VCC < 2.7 V
-
-
134
-
-
5
15
VCC ≥ 2.7 V,
IOH = - 12 mA
VCC < 2.7 V,
IOH = - 6.5 mA
VCC ≥ 2.7 V,
IOL = 4 mA
4 mA type
L level
output voltage
VCC < 2.7 V,
IOL = 2 mA
VOL
The pin
doubled as
USB I/O
-
Input leak
current
Pull-up
resistor value
Input
capacitance
IIL
RPU
CIN
CEC0,
CEC1
VCC ≥ 2.7 V,
IOL = 10.5 mA
VCC < 2.7 V,
IOL = 5 mA
Pull-up pin
Other than
VCC,
VSS,
AVCC,
AVSS,
AVRH
Document Number: 002-05635 Rev.*B
kΩ
pF
Page 66 of 126
MB9A340NB Series
12.4 AC Characteristics
12.4.1 Main Clock Input Characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Pin
name
Symbol
Input frequency
Internal operating
clock*1 frequency
Internal operating
clock*1 cycle time
Unit
Max
Remarks
4
4
48
20
MHz
-
4
48
MHz
-
20.83
250
ns
-
PWH/tCYLH,
PWL/tCYLH
45
55
%
tCF,
tCR
-
-
5
ns
When using external
clock
tCYLH
Input clock pulse
width
Input clock rising
time and falling
time
Min
VCC ≥ 2.7 V
VCC < 2.7 V
fCH
Input clock cycle
Value
Conditions
X0,
X1
When crystal oscillator is
connected
When using external
clock
When using external
clock
When using external
clock
fCM
-
-
-
40
MHz
Master clock
fCC
fCP0
fCP1
fCP2
-
-
-
40
40
40
40
MHz
MHz
MHz
MHz
Base clock (HCLK/FCLK)
APB0 bus clock*2
APB1 bus clock*2
APB2 bus clock*2
tCYCC
tCYCP0
tCYCP1
tCYCP2
-
-
25
-
ns
Base clock (HCLK/FCLK)
-
-
25
-
ns
APB0 bus clock*2
-
-
25
-
ns
APB1 bus clock*2
-
-
25
-
ns
APB2 bus clock*2
*1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
*2: For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet.
X0
Document Number: 002-05635 Rev.*B
Page 67 of 126
MB9A340NB Series
12.4.2 Sub Clock Input Characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Input frequency
fCL
Input clock cycle
tCYLL
Input clock pulse
width
-
Pin
name
X0A,
X1A
Value
Conditions
Min
Typ
Max
Unit
Remarks
-
-
32.768
-
kHz
-
32
-
100
kHz
When crystal oscillator is
connected
When using external clock
-
10
-
31.25
μs
When using external clock
PWH/tCYLL,
PWL/tCYLL
45
-
55
%
When using external clock
X0A
12.4.3 Built-in CR Oscillation Characteristics
Built-in High-speed CR
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Clock frequency
Frequency
stabilization time
Symbol
fCRH
tCRWT
Value
Conditions
Min
Typ
Max
TA = + 25°C
VCC ≥ 2.7 V
3.96
4
4.04
TA = + 25°C
VCC < 2.7 V
3.9
4
4.1
TA = - 40°C to + 85°C
3.84
4
4.16
TA = - 40°C to + 85°C
2.8
-
5.2
-
-
-
30
Unit
MHz
Remarks
When trimming*1
When not trimming
μs
*2
*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature trimming.
*2: This is the time to stabilize the frequency of High-speed CR clock after setting trimming value.
This period is able to use High-speed CR clock as source clock.
Built-in Low-speed CR
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Clock frequency
Symbol
fCRL
Document Number: 002-05635 Rev.*B
Conditions
-
Value
Min
50
Typ
100
Max
150
Unit
Remarks
kHz
Page 68 of 126
MB9A340NB Series
12.4.4 Operating Conditions of Main and USB PLL (In the case of using main clock for input of PLL)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
Symbol
Min
Typ
Max
Unit
tLOCK
100
-
-
μs
fPLLI
4
5
-
16
37
75
-
-
MHz
multip
le
MHz
MHz
MHz
PLL multiple rate
-
PLL macro oscillation clock frequency
Main PLL clock frequency*2
USB clock frequency*3
fPLLO
fCLKPLL
fCLKSPLL
-
150
40
48
Remarks
After the M frequency division
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
*3: For more information about USB clock, see Chapter 2-2: USB Clock Generation in FM3 Family Peripheral Manual
Communication Macro Part.
12.4.5 Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input clock of the Main
PLL)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
PLL oscillation stabilization wait time*1
(LOCK UP time)
PLL input clock frequency
PLL multiple rate
PLL macro oscillation clock frequency
Main PLL clock frequency*2
Symbol
Value
Min
Typ
Unit
Max
tLOCK
100
-
-
μs
fPLLI
fPLLO
fCLKPLL
3.8
19
72
-
4
-
4.2
35
150
40
MHz
multiple
MHz
MHz
Remarks
*1: Time from when the PLL starts operating until the oscillation stabilizes.
*2: For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
Note:
−
Make sure to input to the Main PLL source clock, the High-speed CR clock (CLKHC) that the frequency/temperature has been
trimmed.
When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account
and prevent the master clock from exceeding the maximum frequency.
Document Number: 002-05635 Rev.*B
Page 69 of 126
MB9A340NB Series
Main PLL connection
Main clock (CLKMO)
High-speed CR clock (CLKHC)
PLL input
clock
K
divider
PLL macro
oscillation clock
Main
PLL
M
divider
Main PLL
clock
(CLKPLL)
N
divider
USB PLL connection
Main clock (CLKMO)
K
divider
PLL input
clock
PLL macro
oscillation clock
USB PLL
M
divider
USB
clock
N
divider
Document Number: 002-05635 Rev.*B
Page 70 of 126
MB9A340NB Series
12.4.6 Reset Input Characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Pin
name
Symbol
Reset input time
tINITX
INITX
Value
Conditions
Min
-
Unit
Max
500
-
Remarks
ns
12.4.7 Power-on Reset Timing
(VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Power supply shut down time
tOFF
Power ramp rate
dV/dt
Time until releasing
Power-on reset
Pin name
VCC
Value
Conditions
Unit
Remarks
Min
Typ
Max
-
1
-
-
ms
*1
Vcc:0.2 V to 1.65 V
0.2
-
1000
mV/μs
*2
-
1.34
-
16.09
ms
tPRT
*1: VCC must be held below 0.2 V for minimum period of tOFF. Improper initialization may occur if this condition is not met.
*2: This dV/dt characteristic is applied at the power-on of cold start (tOFF>1 ms).
Note:
−
If tOFF cannot be satisfied designs must assert external reset(INITX) at power-up and at any brownout event per “12. 4. 6.Reset
Input Characteristics”.
1.65V
VCC
VDH
0.2V
dV/dt
0.2V
tPRT
Internal RST
CPU Operation
RST Active
0.2V
tOFF
release
start
Glossary:
VDH: detection voltage of Low Voltage detection reset. See “12.7 Low-Voltage Detection Characteristics”
Document Number: 002-05635 Rev.*B
Page 71 of 126
MB9A340NB Series
12.4.8 External Bus Timing
External bus clock output characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Output frequency
Symbol
tCYCLE
Pin name
MCLKOUT*
Value
Conditions
VCC ≥ 2.7 V
VCC < 2.7 V
Min
-
Unit
Max
40
20
MHz
MHz
*: The external bus clock output (MCLKOUT) is a divided clock of HCLK.
For more information about setting of clock divider, see Chapter 12: External Bus Interface in FM3 Family Peripheral Manual.
When external bus clock is not output, this characteristic does not give any effect on external bus operation.
MCLKOUT
External bus signal input/output characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Conditions
VIH
Value
Unit
0.8 × VCC
V
0.2 × VCC
V
VOH
0.8 × VCC
V
VOL
0.2 × VCC
V
Remarks
Signal input characteristics
VIL
Signal output characteristics
Input signal
VIH
VIL
VIH
VIL
Output signal
VOH
VOL
VOH
VOL
Document Number: 002-05635 Rev.*B
Page 72 of 126
MB9A340NB Series
Separate Bus Access Asynchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin name
MOEX
Min pulse width
tOEW
MOEX
MCSX ↓ → Address
output delay time
tCSL – AV
MCSX[7:0],
MAD[24:0]
MOEX ↑ →
Address hold time
tOEH - AX
MOEX,
MAD[24:0]
MCSX ↓ →
MOEX ↓ delay time
tCSL - OEL
MOEX ↑ →
MCSX ↑ time
tOEH - CSH
MCSX ↓ →
MDQM ↓ delay time
tCSL - RDQML
MCSX,
MDQM[1:0]
Data set up →
MOEX ↑ time
tDS - OE
MOEX,
MADATA[15:0]
MOEX ↑ →
Data hold time
tDH - OE
MOEX,
MADATA[15:0]
MWEX
Min pulse width
tWEW
MWEX
MWEX ↑ → Address
output delay time
tWEH - AX
MWEX,
MAD[24:0]
MCSX ↓ →
MWEX ↓ delay time
tCSL - WEL
MWEX ↑ →
MCSX ↑ delay time
tWEH - CSH
MCSX ↓→
MDQM ↓ delay time
tCSL-WDQML
MCSX,
MDQM[1:0]
MWEX ↓→
Data output time
tCSL - DV
MCSX,
MADATA[15:0]
MWEX ↑ →
Data hold time
tWEH - DX
MWEX,
MADATA[15:0]
MOEX,
MCSX[7:0]
MWEX,
MCSX[7:0]
Value
Conditions
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
Min
Unit
Max
MCLK×n-3
-
-9
-12
MCLK×m-9
MCLK×m-12
30
38
+9
+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
MCLK×m+9
MCLK×m+12
-
0
-
ns
MCLK×n-3
-
ns
0
MCLK×m-9
MCLK×m-12
0
0
MCLK×n-9
MCLK×n-12
0
MCLK×n-9
MCLK×n-12
MCLK-9
MCLK-12
0
MCLK×m+9
MCLK×m+12
MCLK×n+9
MCLK×n+12
MCLK×m+9
MCLK×m+12
MCLK×n+9
MCLK×n+12
MCLK+9
MCLK+12
MCLK×m+9
MCLK×m+12
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Note:
−
When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16).
Document Number: 002-05635 Rev.*B
Page 73 of 126
MB9A340NB Series
MCLK
MCSX[7:0]
MAD[24:0]
MOEX
MDQM[1:0]
MWEX
MADATA[15:0]
Document Number: 002-05635 Rev.*B
Page 74 of 126
MB9A340NB Series
Separate Bus Access Synchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Address delay time
tAV
tCSL
MCSX delay time
tCSH
tREL
MOEX delay time
tREH
Data set up →
MCLK ↑ time
MCLK ↑ →
Data hold time
tDS
tDH
tWEL
MWEX delay time
tWEH
tDQML
MDQM[1:0]
delay time
tDQMH
MCLK ↑ →
Data output time
MCLK ↑ →
Data hold time
tODS
tOD
Pin name
MCLK,
MAD[24:0]
MCLK,
MCSX[7:0]
MCLK,
MOEX
MCLK,
MADATA[15:0]
MCLK,
MADATA[15:0]
MCLK,
MWEX
MCLK,
MDQM[1:0]
MCLK,
MADATA[15:0]
MCLK,
MADATA[15:0]
Value
Conditions
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC <2.7 V
VCC ≥ 2.7 V
VCC <2.7 V
Min
Unit
Max
1
12
13
ns
1
12
ns
1
12
ns
1
1
9
12
9
12
ns
ns
24
37
-
ns
0
-
ns
1
1
1
1
MCLK + 1
1
9
12
9
12
9
12
9
12
MCLK + 18
MCLK + 24
18
24
ns
ns
ns
ns
ns
ns
Note:
−
When the external load capacitance CL = 30 pF.
MCLK
MCSX[7:0]
MAD[24:0]
MOEX
MDQM[1:0]
MWEX
MADATA[15:0]
Document Number: 002-05635 Rev.*B
Page 75 of 126
MB9A340NB Series
Multiplexed Bus Access Asynchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Multiplexed
address delay time
tALE-CHMADV
Multiplexed
address hold time
tCHMADH
Pin name
MALE,
MADATA[15:0]
Value
Conditions
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
Min
-2
MCLK×n+0
MCLK×n+0
Unit
Max
+10
+20
MCLK×n+10
MCLK×n+20
ns
ns
Note:
−
When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16).
MCLK
MCSX[7:0]
MALE
MAD [24:0]
MOEX
MDQM [1:0]
MWEX
MADATA[15:0]
Document Number: 002-05635 Rev.*B
Page 76 of 126
MB9A340NB Series
Multiplexed Bus Access Synchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
tCHAL
MALE delay time
tCHAH
MCLK ↑ →
Multiplexed
Address delay time
tCHMADV
MCLK ↑ →
Multiplexed
Data output time
tCHMADX
Pin name
MCLK,
ALE
Value
Conditions
VCC ≥ 2.7 V
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
Min
Max
Unit
9
12
9
12
ns
ns
ns
ns
1
tOD
ns
1
tOD
ns
1
1
Remarks
VCC ≥ 2.7 V
MCLK,
MADATA[15:0]
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
Note:
−
When the external load capacitance CL = 30 pF.
MCLK
MCSX[7:0]
MALE
MAD [24:0]
MOEX
MDQM [1:0]
MWEX
MADATA[15:0]
Document Number: 002-05635 Rev.*B
Page 77 of 126
MB9A340NB Series
External Ready Input Timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
MCLK ↑
MRDY input
setup time
Symbol
tRDYI
Pin name
MCLK,
MRDY
Value
Conditions
Min
VCC ≥ 2.7 V
23
VCC < 2.7 V
37
Max
-
Unit
Remarks
ns
When RDY is input
···
MCLK
Over 2cycles
Original
MOEX
MWEX
tRDYI
MRDY
When RDY is released
MCLK
··· ···
2 cycles
Extended
MOEX
MWEX
tRDYI
0.5×VCC
MRDY
Document Number: 002-05635 Rev.*B
Page 78 of 126
MB9A340NB Series
12.4.9 Base Timer Input Timing
Timer input timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin name
Value
Conditions
Min
Input pulse width
TIOAn/TIOBn
(when using as
ECK, TIN)
tTIWH,
tTIWL
-
2tCYCP
tTIWH
Unit
Remarks
Max
-
ns
tTIWL
ECK
VIHS
TIN
VIHS
VILS
VILS
Trigger input timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Input pulse width
Symbol
tTRGH,
tTRGL
Pin name
Conditions
TIOAn/TIOBn
(when using
as TGIN)
-
VIHS
Min
2tCYCP
tTRGH
TGIN
Value
Max
-
Unit
Remarks
ns
tTRGL
VIHS
VILS
VILS
Note:
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the Base Timer is connected to, see Block Diagram in this data sheet.
Document Number: 002-05635 Rev.*B
Page 79 of 126
MB9A340NB Series
12.4.10 CSIO/UART Timing
CSIO (SPI = 0, SCINV = 0)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Baud rate
Serial clock cycle time
tSCYC
SCK ↓ → SOT delay time
tSLOVI
SIN → SCK ↑ setup time
tIVSHI
SCK ↑ → SIN hold time
tSHIXI
Serial clock L pulse width
Serial clock H pulse width
tSLSH
tSHSL
SCK ↓ → SOT delay time
tSLOVE
SIN → SCK ↑ setup time
tIVSHE
SCK ↑ → SIN hold time
tSHIXE
SCK falling time
SCK rising time
tF
tR
Pin
name
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
-
Master
mode
Slave mode
VCC ≥ 2.7 V
Min
Max
VCC < 2.7 V
Min
Max
Conditions
Unit
-
8
-
8
4tCYCP
-
4tCYCP
-
Mbps
ns
- 30
+ 30
- 20
+ 20
ns
50
-
36
-
ns
0
-
0
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
33
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to clock synchronous mode.
−
tCYCP indicates the APB bus clock cycle time.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
−
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
−
When the external load capacitance CL = 30 pF.
Document Number: 002-05635 Rev.*B
Page 80 of 126
MB9A340NB Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
SOT
VOL
tIVSLI
VIH
SIN
tSLIXI
VIH
VIL
VIL
Master mode
tSHSL
SCK
tSLSH
VIH
VIH
VIL
tR
tF
VIL
VIL
tSHOVE
SOT
VOH
VOL
tIVSLE
SIN
VIH
VIL
tSLIXE
VIH
VIL
Slave mode
Document Number: 002-05635 Rev.*B
Page 81 of 126
MB9A340NB Series
CSIO (SPI = 0, SCINV = 1)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Baud rate
Serial clock cycle time
tSCYC
SCK ↑ → SOT delay time
tSHOVI
SIN → SCK ↓ setup time
tIVSLI
SCK ↓ → SIN hold time
tSLIXI
Serial clock L pulse width
Serial clock H pulse width
tSLSH
tSHSL
SCK ↑ → SOT delay time
tSHOVE
SIN → SCK ↓ setup time
tIVSLE
SCK ↓ → SIN hold time
tSLIXE
SCK falling time
SCK rising time
tF
tR
Pin
name
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
-
Master
mode
Slave mode
VCC ≥ 2.7 V
Min
Max
VCC < 2.7 V
Min
Max
Conditions
Unit
-
8
-
8
4tCYCP
-
4tCYCP
-
Mbps
ns
- 30
+ 30
- 20
+ 20
ns
50
-
36
-
ns
0
-
0
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
33
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to clock synchronous mode.
−
−
−
tCYCP indicates the APB bus clock cycle time.
−
When the external load capacitance CL = 30 pF.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
Document Number: 002-05635 Rev.*B
Page 82 of 126
MB9A340NB Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
SOT
VOL
tIVSLI
VIH
SIN
tSLIXI
VIH
VIL
VIL
Master mode
tSHSL
SCK
tSLSH
VIH
VIH
VIL
tR
tF
VIL
VIL
tSHOVE
SOT
VOH
VOL
tIVSLE
SIN
VIH
VIL
tSLIXE
VIH
VIL
Slave mode
Document Number: 002-05635 Rev.*B
Page 83 of 126
MB9A340NB Series
CSIO (SPI = 1, SCINV = 0)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Baud rate
Serial clock cycle time
tSCYC
SCK ↑ → SOT delay time
tSHOVI
SIN → SCK ↓ setup time
tIVSLI
SCK ↓→ SIN hold time
tSLIXI
SOT → SCK ↓ delay time
tSOVLI
Serial clock L pulse width
Serial clock H pulse width
tSLSH
tSHSL
SCK ↑ → SOT delay time
tSHOVE
SIN → SCK ↓ setup time
tIVSLE
SCK ↓→ SIN hold time
tSLIXE
SCK falling time
SCK rising time
tF
tR
Pin
name
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
SCKx
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
-
Master
mode
Slave mode
VCC ≥ 2.7 V
VCC < 2.7 V
Conditions
Min
Max
Min
Max
Unit
-
8
-
8
4tCYCP
-
4tCYCP
-
Mbps
ns
- 30
+ 30
- 20
+ 20
ns
50
-
36
-
ns
0
-
0
-
ns
2tCYCP - 34
-
2tCYCP - 34
-
ns
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
-
50
-
33
ns
10
-
10
-
ns
20
-
20
-
ns
-
5
5
-
5
5
ns
ns
Notes:
−
The above characteristics apply to clock synchronous mode.
−
−
−
tCYCP indicates the APB bus clock cycle time.
−
When the external load capacitance CL = 30 pF.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
Document Number: 002-05635 Rev.*B
Page 84 of 126
MB9A340NB Series
tSCYC
VOH
SCK
VOL
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
Master mode
tSLSH
VIH
SCK
tR
VOH
VOL
tIVSLE
SIN
VIL
tF
*
SOT
VIL
tSHSL
VIH
VIH
tSHOVE
VOH
VOL
tSLIXE
VIH
VIL
VIH
VIL
Slave mode
*: Changes when writing to TDR register
Document Number: 002-05635 Rev.*B
Page 85 of 126
MB9A340NB Series
CSIO (SPI = 1, SCINV = 1)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Pin
name
Symbol
Min
Max
Min
Max
Unit
Baud rate
-
-
-
8
-
8
Mbps
Serial clock cycle time
tSCYC
SCKx
4tCYCP
-
4tCYCP
-
ns
SCK ↓ → SOT delay time
tSLOVI
SCKx,
SOTx
- 30
+ 30
- 20
+ 20
ns
SIN → SCK ↑ setup time
tIVSHI
50
-
36
-
ns
SCK ↑ → SIN hold time
tSHIXI
0
-
0
-
ns
SOT → SCK ↑ delay time
tSOVHI
2tCYCP - 34
-
2tCYCP - 34
-
ns
Serial clock L pulse width
Serial clock H pulse width
tSLSH
tSHSL
2tCYCP - 10
tCYCP + 10
-
2tCYCP - 10
tCYCP + 10
-
ns
ns
SCK ↓ → SOT delay time
tSLOVE
-
50
-
33
ns
SIN → SCK ↑ setup time
tIVSHE
10
-
10
-
ns
SCK ↑ → SIN hold time
tSHIXE
20
-
20
-
ns
SCK falling time
SCK rising time
tF
tR
-
5
5
-
5
5
ns
ns
SCKx,
SINx
SCKx,
SINx
SCKx,
SOTx
SCKx
SCKx
SCKx,
SOTx
SCKx,
SINx
SCKx,
SINx
SCKx
SCKx
-
VCC ≥ 2.7 V
VCC < 2.7 V
Conditions
Master mode
Slave mode
Notes:
−
The above characteristics apply to clock synchronous mode.
−
−
−
tCYCP indicates the APB bus clock cycle time.
−
When the external load capacitance CL = 30 pF.
About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
Document Number: 002-05635 Rev.*B
Page 86 of 126
MB9A340NB Series
tSCYC
VOH
SCK
tSOVHI
SOT
tSLOVI
VOH
VOL
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VOH
VOL
VIH
VIL
Master mode
tR
tF
tSHSL
SCK
VIL
VIH
tSLSH
VIH
VIL
VIL
tSLOVE
SOT
VOH
VOL
VOH
VOL
tIVSHE
SIN
tSHIXE
VIH
VIL
VIH
VIL
Slave mode
Document Number: 002-05635 Rev.*B
Page 87 of 126
MB9A340NB Series
UART external clock input (EXT = 1)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Serial clock L pulse width
Serial clock H pulse width
SCK falling time
SCK rising time
Symbol
tSLSH
tSHSL
tF
tR
CL = 30 pF
Min
Unit
Max
tCYCP + 10
tCYCP + 10
-
5
5
Remarks
ns
ns
ns
ns
tF
tR
tSHSL
SCK
V IL
Document Number: 002-05635 Rev.*B
Value
Conditions
V IH
tSLSH
V IH
V IL
V IL
V IH
Page 88 of 126
MB9A340NB Series
12.4.11 External Input Timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Input pulse width
Symbol
tINH,
tINL
Pin name
Conditions
Min
Max
Unit
Remarks
ADTG
-
2tCYCP*1
-
ns
A/D converter trigger input
INTxx,
NMIX
*2
2tCYCP + 100*1
-
ns
*3
500
-
ns
External interrupt
NMI
WKUPx
*4
600
-
ns
Deep standby wake up
*1: tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the Multi-function Timer is connected to, see Block Diagram in this data sheet.
*2: When in Run mode, in Sleep mode.
*3: When in Timer mode, in RTC mode, in Stop mode.
*4: When in Deep Standby RTC mode, in Deep Standby Stop mode.
Document Number: 002-05635 Rev.*B
Page 89 of 126
MB9A340NB Series
12.4.12 I2C Timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
SCL clock frequency
(Repeated) START
condition hold time
SDA ↓ → SCL ↓
SCL clock L width
SCL clock H width
(Repeated) START
condition setup time
SCL ↑ → SDA ↓
Data hold time
SCL ↓ → SDA ↓ ↑
Data setup time
SDA ↓ ↑ → SCL ↑
STOP condition setup time
SCL ↑ → SDA ↑
Bus free time between
STOP condition and
START condition
Noise filter
Symbol
Standard-mode
Conditions
Min
Fast-mode
Max
Min
Max
Unit
FSCL
0
100
0
400
kHz
tHDSTA
4.0
-
0.6
-
μs
tLOW
tHIGH
4.7
4.0
-
1.3
0.6
-
μs
μs
4.7
-
0.6
-
μs
0
3.45*2
0
0.9*3
μs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
μs
tBUF
4.7
-
1.3
-
μs
2 tCYCP*4
-
2 tCYCP*4
-
ns
tSUSTA
tHDDAT
tSP
CL = 30 pF,
R = (Vp/IOL)*1
-
Remarks
*1: R and C represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively.
Vp indicates the power supply voltage of the pull-up resistor and IOL indicates VOL guaranteed current.
*2: The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal.
*3: A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies
the requirement of tSUDAT ≥ 250 ns.
*4: tCYCP is the APB bus clock cycle time.
About the APB bus number that I2C is connected to, see Block Diagram in this data sheet.
To use Standard-mode, set the APB bus clock at 2 MHz or more.
To use Fast-mode, set the APB bus clock at 8 MHz or more.
SDA
SCL
Document Number: 002-05635 Rev.*B
Page 90 of 126
MB9A340NB Series
12.4.13 ETM Timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Data hold
tETMH
TRACECLK
frequency
1/ tTRACE
Pin name
TRACECLK,
TRACED[3:0]
TRACECLK
TRACECLK
clock cycle
Conditions
Min
Max
Unit
VCC ≥ 2.7 V
2
11
VCC < 2.7 V
2
15
VCC ≥ 2.7 V
-
40
MHz
VCC < 2.7 V
-
20
MHz
VCC ≥ 2.7 V
25
-
ns
VCC < 2.7 V
50
-
ns
Remarks
ns
tTRACE
Note:
−
When the external load capacitance CL = 30 pF.
HCLK
TRACECLK
TRACED[3:0]
Document Number: 002-05635 Rev.*B
Page 91 of 126
MB9A340NB Series
12.4.14 JTAG Timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin name
TMS, TDI setup time tJTAGS
TCK,
TMS, TDI
TMS, TDI hold time
tJTAGH
TCK,
TMS, TDI
TDO delay time
tJTAGD
TCK,
TDO
Value
Conditions
VCC ≥ 2.7 V
Min
Max
Unit
15
-
ns
15
-
ns
VCC ≥ 2.7 V
-
25
VCC < 2.7 V
-
45
VCC < 2.7 V
VCC ≥ 2.7 V
VCC < 2.7 V
Remarks
ns
Note:
−
When the external load capacitance CL = 30 pF.
TCK
TMS/TDI
TDO
Document Number: 002-05635 Rev.*B
Page 92 of 126
MB9A340NB Series
12.5 12-bit A/D Converter
Electrical Characteristics for the A/D Converter
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)
Parameter
Resolution
Integral Nonlinearity
Differential
Nonlinearity
Zero transition voltage
Full-scale transition
voltage
Value
Typ
Symbol
Pin name
-
-
-
±2
12
± 4.5
bit
LSB
-
-
-
± 2.2
± 2.5
LSB
VZT
ANxx
-
±6
± 15
mV
VFST
ANxx
-
AVRH ± 6
AVRH ± 15
mV
2.0*1
4.0*1
10*1
0.6
1.2
3.0
100
200
500
-
-
μs
10
us
-
1000
ns
Min
Unit
Max
Conversion time
-
-
Sampling time*2
tS
-
Compare clock
cycle*3
tCCK
-
tSTT
-
-
-
1.0
μs
-
AVCC
-
0.27
0.03
0.42
10
mA
μA
-
0.72
1.29
mA
-
AVRH
-
0.02
2.6
μA
-
-
pF
μA
State transition time
to operation
permission
Power supply current
(analog + digital)
Reference power
supply current
(between AVRH to
AVSS)
Analog input capacity
CAIN
-
Analog input resistor
RAIN
-
-
-
Interchannel disparity
Analog port input leak
current
Analog input voltage
-
-
-
-
9.4
2.2
5.5
10.5
4
-
ANxx
-
-
5
-
ANxx
AVSS
AVRH
2.7
AVRH
AVCC
AVCC
Reference voltage
AVRL
AVSS
AVSS
*1: The conversion time is the value of sampling time (tS) + compare time (tC).
kΩ
Remarks
AVCC ≥ 2.7 V
1.8 V< AVCC < 2.7 V
1.65 V< AVCC < 1.8 V
AVCC ≥ 2.7 V
1.8 V< AVCC < 2.7 V
1.65 V< AVCC < 1.8 V
AVCC ≥ 2.7 V
1.8 V< AVCC < 2.7 V
1.65 V< AVCC < 1.8 V
A/D 1unit operation
When A/D stops
A/D 1unit operation
AVRH=3.6 V
When A/D stops
AVCC ≥ 2.7 V
1.8 V< AVCC < 2.7 V
1.65 V< AVCC < 1.8 V
LSB
V
V
AVCC ≥ 2.7 V
AVCC < 2.7 V
V
The condition of the minimum conversion time is the following.
AVCC ≥ 2.7 V, HCLK=40 MHz
sampling time: 0.6 μs, compare time: 1.4 μs
1.8 V < AVCC < 2.7 V, HCLK=40 MHz
sampling time: 1.2 μs, compare time: 2.8 μs
1.65 V < AVCC < 1.8 V, HCLK=40 MHz
sampling time: 3 μs, compare time: 7 μs
Ensure that it satisfies the value of the sampling time (tS) and compare clock cycle (tCCK).
For setting of the sampling time and the compare clock cycle, see Chapter 1-1: A/D Converter in FM3 Family Peripheral Manual
Analog Macro Port.
The register setting of the A/D Converter are reflected in the operation according to the APB bus clock timing.
The sampling clock and compare clock is generated from the Base clock (HCLK).
About the APB bus number which the A/D Converter is connected to, see Block Diagram in this data sheet.
*2: A necessary sampling time changes by external impedance.
Ensure that it set the sampling time to satisfy (Equation 1).
Document Number: 002-05635 Rev.*B
Page 93 of 126
MB9A340NB Series
*3: The compare time (tC) is the value of (Equation 2).
REXT
ANxx
Analog input pin
Comparator
RAIN
Analog signal
source
CAIN
(Equation 1) tS ≥ ( RAIN + REXT ) × CAIN × 9
tS:
Sampling time[ns]
RAIN:
Input resistor of A/D[kΩ] = 2.2 kΩ at 2.7 V < AVCC < 3.6 V
Input resistor of A/D[kΩ] = 5.5 kΩ at 1.8 V < AVCC < 2.7 V
Input resistor of A/D[kΩ] = 10.5 kΩ at 1.65 V < AVCC < 1.8 V
CAIN:
Input capacity of A/D[pF] = 9.4 pF at 1.65 V < AVCC < 3.6 V
REXT:
Output impedance of external circuit[kΩ]
(Equation 2) tC = tCCK × 14
tC:
Compare time
tCCK:
Compare clock cycle
Document Number: 002-05635 Rev.*B
Page 94 of 126
MB9A340NB Series
Definition of 12-bit A/D Converter Terms
• Resolution:
• Integral Nonlinearity:
• Differential Nonlinearity:
Analog variation that is recognized by an A/D converter.
Deviation of the line between the zero-transition point
(0b000000000000 ←→ 0b000000000001) and the full-scale transition
point (0b111111111110 ←→ 0b111111111111) from the actual conversion
characteristics.
Deviation from the ideal value of the input voltage that is required to
change the output code by 1 LSB.
Integral Nonlinearity
Differential Nonlinearity
0xFFF
Actual conversion
characteristics
0xFFE
0x(N+1)
{1 LSB(N-1) + VZT}
VFST
VNT
0x004
(Actuallymeasured
value)
(Actually-measured
value)
0x003
Digital output
Digital output
0xFFD
0xN
Actual conversion
characteristics
Ideal characteristics
V(N+1)T
0x(N-1)
(Actually-measured
value)
Actual conversion
characteristics
Ideal characteristics
0x002
VNT
(Actually-measured
value)
0x(N-2)
0x001
VZT (Actually-measured value)
AVSS
Actual conversion characteristics
AVRH
AVSS
AVRH
Analog input
Linearity error of digital output N =
Analog input
VNT - {1LSB × (N - 1) + VZT}
1LSB
Differential linearity error of digital output N =
1LSB =
N:
VZT:
VFST:
VNT:
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST - VZT
4094
A/D converter digital output value.
Voltage at which the digital output changes from 0x000 to 0x001.
Voltage at which the digital output changes from 0xFFE to 0xFFF.
Voltage at which the digital output changes from 0x(N − 1) to 0xN.
Document Number: 002-05635 Rev.*B
Page 95 of 126
MB9A340NB Series
12.6 USB Characteristics
(VCC = 3.0V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Input
characteristics
Output
characteristics
Symbol
Pin
name
Value
Conditions
Min
Max
Unit
Remarks
Input H level voltage
VIH
-
2.0
VCC + 0.3
V
*1
Input L level voltage
VIL
-
VSS - 0.3
0.8
V
*1
VDI
-
0.2
-
V
*2
VCM
-
0.8
2.5
V
*2
2.8
3.6
V
*3
0
0.3
V
*3
1.3
4
4
2.0
20
20
V
ns
ns
*4
*5
*5
Differential input
sensitivity
Different common mode
range
Output H level voltage
VOH
Output L level voltage
VOL
Crossover voltage
Rising time
Falling time
Rising/falling time
matching
Output impedance
Rising time
Falling time
Rising/falling time
matching
VCRS
tFR
tFF
External
pull-down
resistor = 15
kΩ
External
pull-up
resistor = 1.5
kΩ
Full-Speed
Full-Speed
tFRFM
Full-Speed
90
111.11
%
*5
ZDRV
tLR
tLF
Full-Speed
Low-Speed
Low-Speed
28
75
75
44
300
300
Ω
ns
ns
*6
*7
*7
tLRFM
Low-Speed
80
125
%
*7
UDP0,
UDM0
*1: The switching threshold voltage of Single-End-Receiver of USB I/O buffer is set as within VIL (Max) = 0.8 V,
VIH (Min) = 2.0 V (TTL input standard).
There are some hysteresis to lower noise sensitivity.
Minimum differential input
sensitivity [V]
*2: Use the differential-Receiver to receive the USB differential data signal.
The Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V
to the local ground reference level.
Above voltage range is the common mode input voltage range.
Common mode input voltage [V]
Document Number: 002-05635 Rev.*B
Page 96 of 126
MB9A340NB Series
*3: The output drive capability of the driver is below 0.3 V at Low-State (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or
above (to ground and 15 kΩ load) at High-State (VOH).
*4: The cross voltage of the external differential output signal (D + /D −) of USB I/O buffer is within 1.3 V to 2.0 V.
VCRS specified range
*5: They indicate the rising time (Trise) and falling time (Tfall) of the full-speed differential data signal.
They are defined by the time between 10% and 90% of the output signal voltage.
For full-speed buffer, Tr/Tf ratio is regulated as within ± 10% to minimize RFI emission.
Rising time
Document Number: 002-05635 Rev.*B
Falling time
Page 97 of 126
MB9A340NB Series
*6: USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode).
USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω. So, discrete series resistor (Rs)
addition is defined in order to satisfy the above definition and keep balance.
When using this USB I/O, use it with 25 Ω to 30 Ω (recommendation value 27 Ω) Series resistor Rs.
28Ω to 44Ω Equiv. Imped.
28Ω to 44Ω Equiv. Imped.
Mount it as external resistor.
Rs series resistor 25Ω to 30Ω
Series resistor of 27Ω (recommendation value) must be added.
And, use resistance with an uncertainty of 5% by E24 sequence.
*7: They indicate the rising time (Trise) and falling time (Tfall) of the low-speed differential data signal.
They are defined by the time between 10% and 90% of the output signal voltage.
Rising time
Falling time
See Figure Low-Speed Load (Compliance Load) for conditions of the external load.
Document Number: 002-05635 Rev.*B
Page 98 of 126
MB9A340NB Series
Low-Speed Load (Upstream Port Load) - Reference 1
CL = 50pF to 150pF
CL = 50pF to 150pF
Low-Speed Load (Downstream Port Load) - Reference 2
CL =
200pF to 600pF
CL =
200pF to 600pF
Low-Speed Load (Compliance Load)
CL = 200pF to 450pF
CL = 200pF to 450pF
Document Number: 002-05635 Rev.*B
Page 99 of 126
MB9A340NB Series
12.7 Low-Voltage Detection Characteristics
12.7.1 Low-Voltage Detection Reset
(TA = - 40°C to + 85°C)
Parameter
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
LVD stabilization
wait time
LVD detection
delay time
Symbol
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
Conditions
SVHR*1 = 00000
SVHR*1 = 00001
SVHR*1 = 00010
SVHR*1 = 00011
SVHR*1 = 00100
SVHR*1 = 00101
SVHR*1 = 00110
SVHR*1 = 00111
SVHR*1 = 01000
SVHR*1 = 01001
SVHR*1 = 01010
SVHR*1 = 01011
SVHR*1 = 01100
SVHR*1 = 01101
SVHR*1 = 01110
SVHR*1 = 01111
SVHR*1 = 10000
SVHR*1 = 10001
SVHR*1 = 10010
SVHR*1 = 10011
Value
Min
Typ
Max
1.38
1.50
1.60
1.43
1.55
1.65
1.43
1.55
1.65
Same as SVHR = 00000 value
1.47
1.60
1.73
Same as SVHR = 00000 value
1.52
1.65
1.78
Same as SVHR = 00000 value
1.56
1.70
1.84
Same as SVHR = 00000 value
1.61
1.75
1.89
Same as SVHR = 00000 value
1.66
1.80
1.94
Same as SVHR = 00000 value
1.70
1.85
2.00
Same as SVHR = 00000 value
1.75
1.90
2.05
Same as SVHR = 00000 value
1.79
1.95
2.11
Same as SVHR = 00000 value
1.84
2.00
2.16
Same as SVHR = 00000 value
1.89
2.05
2.21
Same as SVHR = 00000 value
2.30
2.50
2.70
Same as SVHR = 00000 value
2.39
2.60
2.81
Same as SVHR = 00000 value
2.48
2.70
2.92
Same as SVHR = 00000 value
2.58
2.80
3.02
Same as SVHR = 00000 value
2.67
2.90
3.13
Same as SVHR = 00000 value
2.76
3.00
3.24
Same as SVHR = 00000 value
2.85
3.10
3.35
Same as SVHR = 00000 value
2.94
3.20
3.46
Same as SVHR = 00000 value
Unit
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
tLVDW
-
-
-
5200 × tCYCP*2
μs
tLVDDL
-
-
-
200
μs
Remarks
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
*1: The SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is initialized to 00000 by
Low-Voltage Detection Reset.
*2: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05635 Rev.*B
Page 100 of 126
MB9A340NB Series
12.7.2 Interrupt of Low-Voltage Detection
(TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
Detected voltage
Released voltage
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
VDL
VDH
LVD stabilization wait
time
tLVDW
LVD detection delay
time
tLVDDL
Conditions
Min
Typ
Max
Unit
1.56
1.61
1.61
1.66
1.66
1.70
1.70
1.75
1.75
1.79
1.79
1.84
1.84
1.89
1.89
1.93
2.30
2.39
2.39
2.48
2.48
2.58
2.58
2.67
2.67
2.76
2.76
2.85
2.85
2.94
2.94
3.04
1.70
1.75
1.75
1.80
1.80
1.85
1.85
1.90
1.90
1.95
1.95
2.00
2.00
2.05
2.05
2.10
2.50
2.60
2.60
2.70
2.70
2.80
2.80
2.90
2.90
3.00
3.00
3.10
3.10
3.20
3.20
3.30
1.84
1.89
1.89
1.94
1.94
2.00
2.00
2.05
2.05
2.11
2.11
2.16
2.16
2.21
2.21
2.27
2.70
2.81
2.81
2.92
2.92
3.02
3.02
3.13
3.13
3.24
3.24
3.35
3.35
3.46
3.46
3.56
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
-
-
-
5200 × tCYCP*
μs
-
-
-
200
μs
SVHI = 00100
SVHI = 00101
SVHI = 00110
SVHI = 00111
SVHI = 01000
SVHI = 01001
SVHI = 01010
SVHI = 01011
SVHI = 01100
SVHI = 01101
SVHI = 01110
SVHI = 01111
SVHI = 10000
SVHI = 10001
SVHI = 10010
SVHI = 10011
Remarks
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
When voltage drops
When voltage rises
*: tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05635 Rev.*B
Page 101 of 126
MB9A340NB Series
12.8 Flash Memory Write/Erase Characteristics
12.8.1 Write / Erase time
(VCC = 1.65V to 3.6V, TA = - 40°C to + 85°C)
Value
Parameter
Typ*
Max*
Large Sector
1.1
2.7
Small Sector
0.3
0.9
Half word (16-bit)
write time
30
Chip erase time
6.8
Sector erase
time
Unit
Remarks
s
Includes write time prior to internal erase
528
μs
Not including system-level overhead time
18
s
Includes write time prior to internal erase
*: The typical value is immediately after shipment, the maximum value is guarantee value under 10,000 cycle of erase/write.
12.8.2 Write cycles and data hold time
Erase/write cycles (cycle)
Data hold time (year)
1,000
20*
10,000
10*
Remarks
*: At average + 85C
Document Number: 002-05635 Rev.*B
Page 102 of 126
MB9A340NB Series
12.9 Return Time from Low-Power Consumption Mode
12.9.1 Return Factor: Interrupt/WKUP
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the
program operation.
Return Count Time
(VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Value
Symbol
Typ
Unit
Max*
Remarks
μs
Sleep mode
tCYCC
High-speed CR Timer mode,
Main Timer mode,
PLL Timer mode
40
80
μs
350
700
μs
690
880
μs
278
523
μs
318
603
μs
When RAM is off
278
523
μs
When RAM is on
Low-speed CR Timer mode
Sub Timer mode
tICNT
RTC mode,
Stop mode
Deep Standby RTC mode
Deep Standby Stop mode
*: The maximum value depends on the accuracy of built-in CR.
Operation example of return from Low-Power consumption mode (by external interrupt*)
External
interrupt
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: External interrupt is set to detecting fall edge.
Document Number: 002-05635 Rev.*B
Page 103 of 126
MB9A340NB Series
Operation example of return from Low-Power consumption mode (by internal resource interrupt*)
Internal
resource
interrupt
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
*: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.
Notes:
−
The return factor is different in each Low-Power consumption modes.
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral
Manual.
−
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power
consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral
Manual.
Document Number: 002-05635 Rev.*B
Page 104 of 126
MB9A340NB Series
12.9.2 Return Factor: Reset
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program
operation.
Return Count Time
(VCC = 1.65V to 3.6V, VDDI = 1.1V to 1.3V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Value
Symbol
Typ
Max*
Unit
148
263
μs
148
263
μs
258
483
μs
Sub Timer mode
322
516
μs
RTC/Stop mode
278
523
μs
Deep Standby RTC mode
Deep Standby Stop mode
318
278
603
523
μs
μs
Sleep mode
High-speed CR Timer mode,
Main Timer mode,
PLL Timer mode
Low-speed CR Timer mode
tRCNT
Remarks
When RAM is off
When RAM is on
*: The maximum value depends on the accuracy of built-in CR.
Operation example of return from Low-Power consumption mode (by INITX)
INITX
Internal reset
Reset active
Release
tRCNT
CPU
Operation
Document Number: 002-05635 Rev.*B
Start
Page 105 of 126
MB9A340NB Series
Operation example of return from low power consumption mode (by internal resource reset*)
Internal
resource
reset
Internal reset
Reset active
Release
tRCNT
CPU
Operation
Start
*: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.
Notes:
−
The return factor is different in each Low-Power consumption modes.
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral
Manual.
−
When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power
consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual.
−
The time during the power-on reset/low-voltage detection reset is excluded. See (6) Power-on Reset Timing in 4.
AC Characteristics in Electrical Characteristics for the detail on the time during the power-on reset/low-voltage
detection reset.
−
When in recovery from reset, CPU changes to the High-speed CR Run mode. When using the main clock or the
PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the Main PLL clock stabilization
wait time.
−
The internal resource reset means the watchdog reset and the CSV reset.
Document Number: 002-05635 Rev.*B
Page 106 of 126
MB9A340NB Series
13. Ordering Information
On-chip
Flash
memory
Part number
On-chip
SRAM
MB9AF341LBPMC1-G-JNE2
Main: 64 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF342LBPMC1-G-JNE2
Main: 128 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF344LBPMC1-G-JNE2
Main: 256 Kbyte
Work: 32 Kbyte
32 Kbyte
MB9AF341LBPMC-G-JNE2
Main: 64 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF342LBPMC-G-JNE2
Main: 128 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF344LBPMC-G-JNE2
Main: 256 Kbyte
Work: 32 Kbyte
32 Kbyte
MB9AF341LBQN-G-AVE2
Main: 64 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF342LBQN-G-AVE2
Main: 128 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF344LBQN-G-AVE2
Main: 256 Kbyte
Work: 32 Kbyte
32 Kbyte
MB9AF341MBPMC-G-JNE2
Main: 64 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF342MBPMC-G-JNE2
Main: 128 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF344MBPMC-G-JNE2
Main: 256 Kbyte
Work: 32 Kbyte
32 Kbyte
MB9AF341MBPMC1-G-JNE2
Main: 64 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF342MBPMC1-G-JNE2
Main: 128 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF344MBPMC1-G-JNE2
Main: 256 Kbyte
Work: 32 Kbyte
32 Kbyte
MB9AF341MBBGL-GE1
Main: 64 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF342MBBGL-GE1
Main: 128 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF344MBBGL-GE1
Main: 256 Kbyte
Work: 32 Kbyte
32 Kbyte
MB9AF341NBPMC-G-JNE2
Main: 64 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF342NBPMC-G-JNE2
Main: 128 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF344NBPMC-G-JNE2
Main: 256 Kbyte
Work: 32 Kbyte
32 Kbyte
Document Number: 002-05635 Rev.*B
Package
Packing
Plastic  LQFP 64-pin
(0.5mm pitch),
(LQD064)
Plastic  LQFP 64-pin
(0.65mm pitch),
(LQG064)
Plastic  QFN 64-pin
(0.5mm pitch),
(VNC064)
Plastic  LQFP 80-pin
(0.5mm pitch),
(LQH080)
Tray
Plastic  LQFP 80-pin
(0.65mm pitch),
(LQJ080)
Plastic  PFBGA 96-pin
(0.5mm pitch),
(FDG096)
Plastic  LQFP 100-pin
(0.5mm pitch),
(LQI100)
Page 107 of 126
MB9A340NB Series
On-chip
Flash
memory
Part number
On-chip
SRAM
MB9AF341NBPQC-G-JNE2
Main: 64 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF342NBPQC-G-JNE2
Main: 128 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF344NBPQC-G-JNE2
Main: 256 Kbyte
Work: 32 Kbyte
32 Kbyte
MB9AF341NBBGL-GE1
Main: 64 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF342NBBGL-GE1
Main: 128 Kbyte
Work: 32 Kbyte
16 Kbyte
MB9AF344NBBGL-GE1
Main: 256 Kbyte
Work: 32 Kbyte
32 Kbyte
Document Number: 002-05635 Rev.*B
Package
Packing
Plastic  QFP 100-pin
(0.65mm pitch),
(PQH100)
Tray
Plastic  PFBGA 112-pin
(0.8mm pitch),
(LBC112)
Page 108 of 126
MB9A340NB Series
14. Package Dimensions
Package Type
Package Code
LQFP 100
LQI100
D
D1
75
4
D
5 7
51
D1
51
50
76
4
5 7
75
50
76
E1 E
5 4
7
E1 E
5 4
7
3
6
26
100
1
26
25
1
25
2 5 7
e
100
BOTTOM VIEW
0.1 0 C A-B D
3
0.2 0 C A-B D
b
TOP VIEW
8
0.0 8
C A-B
D
2
A
9
A
SEAT ING
PLA NE
A'
0.25
L1
0.0 8 C
c
A1
b
10
SECTION A-A'
L
SIDE VIEW
SYMBOL
DETAIL A
DIMENSIONS
MIN.
NOM. MAX.
1.70
A
A1
0.05
b
0.15
0.15
0.27
c
0.09
0.20
D
16.00 BSC
D1
14.00 BSC
e
0.50 BSC
E
16.00 BSC
E1
14.00 BSC
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
NOTES :
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING
LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
3. DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
4. TO BE DETERMINED AT SEATING PLANE C.
5. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED
AT DATUM PLANE H.
6. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED
WITHIN THE ZONE INDICATED.
7. REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY
SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST
FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS.
BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER
SECTIONS OF THE MOLDER BODY.
8. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR
PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b
MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON
THE LOWER RADIUS OR THE LEAD FOOT.
9. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD
BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
10. A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO
THE LOWEST POINT OF THE PACKAGE BODY.
002-11500 *A
PACKAGE OUTLINE, 100 LEAD LQFP
14.0X14.0X1.7 MM LQI100 REV*A
Document Number: 002-05635 Rev.*B
Page 109 of 126
MB9A340NB Series
Package Type
Package Code
QFP 100
PQH100
D
D1
4
5 7
80
51
81
51
50
80
50
81
31
100
E1 E
5
7
6
3
4
31
100
1
30
e
3
0.40 C A-B D
30
2 5 7
1
0.20 C A-B D
b
0.13
C A-B
D
BOTTOM VIEW
8
TOP VIEW
2
9
A
A'
SEATING
PLANE
L2
c
10
b
0.10 C
SECTION A-A'
DETAIL A
SIDE VIEW
SYMBOL
DIMENSIONS
MIN.
NOM. MAX.
A1
0.05
0.45
b
0.27
c
0.11
A
3.35
0.32
0.23
D
23.90 BSC
D1
20.00 BSC
e
0.65 BSC
E
17.90 BSC
E1
14.00 BSC
0
L
0.37
8
0.73
0.88
L1
1.95 REF
L2
0.25 BSC
1.03
PACKAGE OUTLINE, 100 LEAD QFP
20.00X14.00X3.35 MM PQH100 REV**
002-15156 **
Document Number: 002-05635 Rev.*B
Page 110 of 126
MB9A340NB Series
Package Type
Package Code
LQFP 80
LQH080
D
D1
60
4
5 7
41
41
40
61
60
40
61
21
80
5
7
E1
E
4
3
6
80
21
1
20
D
e
20
2 5 7
0.10 C A-B D
3
b
0.08
C A-B
1
BOTTOM VIEW
D
0.20 C A-B D
8
TOP VIEW
2
A
A
A'
0.08 C
SIDE VIEW
SEATING
PLANE
9
L1
L
0.25
A1
10
c
b
SECTION A-A'
DIMENSIONS
SYMBOL
MIN. NOM. MAX.
A
A1
1. 70
0.05
0.15
b
0.15
0.27
c
0.09
0.20
D
14.00 BSC.
D1
12.00 BSC.
e
0.50 BSC
E
14.00 BSC.
E1
12.00 BSC.
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
PACKAGE OUTLINE, 80 LEAD LQFP
12.0X12.0X1.7 MM LQH080 Rev **
002-11501 **
Document Number: 002-05635 Rev.*B
Page 111 of 126
MB9A340NB Series
Package Type
Package Code
LQFP 80
LQJ080
D
D1
60
4
5 7
41
41
61
40
E1
60
40
61
21
80
E
5
7
4
3
6
80
21
1
20
20
2 5 7
1
0.10 C A-B D
3
e
0.20 C A-B D
b
ddd
C A-B
D
8
2
A
9
A
A'
0.10 C
SEATING
PLANE
c
L1
0.2 5
A1
10
b
SECTION A-A'
L
SYMBOL
DIMENSIONS
MIN. NOM. MAX.
1.70
A
A1
0.00
b
0.16
c
0.09
0.20
0.32
0.38
0.20
D
16.00 BSC
D1
14.00 BSC
e
0.65 BSC
E
16.00 BSC
14.00 BSC
E1
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
0
8
PACKAGE OUTLINE, 80 LEAD LQFP
14.0X14.0X1.7 MM LQJ080 REV**
002-14043 **
Document Number: 002-05635 Rev.*B
Page 112 of 126
MB9A340NB Series
Package Type
Package Code
LQFP 64
LQD064
4
D
D1
48
5 7
33
33
32
49
48
32
49
17
64
5
7
E1
E
4
3
6
17
64
1
16
e
1
16
2 5 7
3
BOTTOM VIEW
0.10 C A-B D
0.20 C A-B D
b
0.08
C A-B
D
8
TOP VIEW
A
2
9
A
A'
0.08 C
SEATING
PLANE
L1
0.25
L
A1
c
b
SECTION A-A'
10
SIDE VIEW
SYMBOL
DIMENSIONS
MIN. NOM. MAX.
A
A1
1. 70
0.00
0.20
b
0.15
0.2
c
0.09
0.20
D
12.00 BSC.
D1
10.00 BSC.
e
0.50 BSC
E
12.00 BSC.
E1
10.00 BSC.
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
PACKAGE OUTLINE, 64 LEAD LQFP
10.0X10.0X1.7 MM LQD064 Rev**
002-11499 **
Document Number: 002-05635 Rev.*B
Page 113 of 126
MB9A340NB Series
Package Type
Package Code
LQFP 64
LQG064
D
D1
48
4
5 7
33
33
32
49
48
32
49
17
64
E1 E
5
7
4
3
17
64
1
16
e
1
16
2 5 7
3
BOTTOM VIEW
0.10 C A-B D
0.20 C A-B D
b
0.13
C A-B
D
8
TOP VIEW
2
A
A
A'
0.10 C
SEATI NG
PLA NE
0.2 5
L1
L
9
A1
10
c
b
SEC TION A -A'
SIDE VIEW
SYMBOL
DIMENSION
MIN.
NOM. MAX.
1.70
A
A1
0.00
0.20
b
0.27
c
0.09
0.32
0.37
0.20
D
14.00 BSC
D1
12.00 BSC
e
0.65 BSC
E
14.00 BSC
E1
12.00 BSC
L
0.45
0.60
0.75
L1
0.30
0.50
0.70
0
PACKAGE OUTLINE, 64 LEAD LQFP
12.0X12.0X1.7 MM LQG064 REV**
002-13881 **
Document Number: 002-05635 Rev.*B
Page 114 of 126
MB9A340NB Series
Package Type
Package Code
QFN 64
VNC064
0.10
D
0.10 C
2X
D2
A
48
33
33
32
49
C A B
48
32
49
0.10
C A B
5
(ND-1)
E
e
17
64
1
INDEXMARK
8
E2
16
9
B
e
L
0.10 C
TOP VIEW
64
17
16
BOTTOM VIEW
2X
b
1
4
0.10
0.05
C A B
C
0.10 C
A
0.05 C
SEATINGPLANE
C
A1
SIDE VIEW
DIMENSIONS
NOTES:
SYMBOL
MIN. NOM. MAX.
A
A1
0.90
0.00
0.05
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. DIMENSIONING AND TOLERANCING CONFORMS TO ASME Y14.5M-1994.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4
D
9.00 BSC
E
9.00 BSC
b
0.20 0.25 0.30
D2
6.00 BSC
E2
6.00 BSC
6.
7.
e
0.50 BSC
8
R
0.20 REF
L
0.35
0.40 0.45
N
64
ND
16
5
9
DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED
BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL
HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL,
THE DIMENSION "b" SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
ND REFERS TO THE NUMBER OF TERMINALS ON D SIDE OR E SIDE.
MAX. PACKAGE WARPAGE IS 0.05mm.
MAXIMUM ALLOWABLE BURR IS 0.076mm IN ALL DIRECTIONS.
PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE INDICATED ZONE.
BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT
SINK SLUG AS WELL AS THE TERMINALS.
PACKAGE OUTLINE, 64 LEAD QFN
9.0X9.0X0.9 MM VNC064 6.0X6.0 MM EPAD (SAWN) Rev*.*
002-13234 **
Document Number: 002-05635 Rev.*B
Page 115 of 126
MB9A340NB Series
Package Type
Package Code
FBGA 112
LBC112
A
0.20 C
11
2X
10
9
6
8
7
6
5
4
3
2
1
L
PIN A1
CORNER
INDEX MARK
K
J
H
G
F
E
D
7
C
B
A
6
B
0.20 C
TOP VIEW
2X
BOTTOM VIEW
DETAIL A
5
112x φb
C
0.10 C
DETAIL A
0.08
C A B
SIDE VIEW
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS.
DIMENSIONS
SYMBOL
MIN.
NOM.
MAX.
2. SOLDER BALL POSITION DESIGNATIO
N PER JEP95, SECTION 3, SPP-020.
A
-
-
1.45
3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
A1
0.25
0.35
0.45
4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
D
10.00 BSC
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
E
10.00 BSC
N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX
D1
8.00 BSC
E1
8.00 BSC
MD
PLANE PARALLEL TO DATUM C.
11
ME
11
N
112
b
SIZE MD X ME.
5. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A
0.35
0.45
eD
0.80 BSC
eE
0.80 BSC
SD
0.00
SE
0.00
6. "SD" AND "SE" ARE MEASUREDWITH RESPECT TO DATUMS A AND B AND
DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
0.55
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW,
"SD" OR "SE" = 0.
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW,
"SD" = eD/2 AND "SE" = eE/2.
7. A1 CORNER TO BE IDENTIFIED BY
CHAMFER, LASER OR INK MARK
METALIZED MARK, INDENTATION OR OTHER MEANS.
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER
BALLS.
PACKAGE OUTLINE, 112 BALL FBGA
10.00X10.00X1.45 MM LBC112 REV**
002-13225 **
Document Number: 002-05635 Rev.*B
Page 116 of 126
MB9A340NB Series
Package Type
Package Code
FBGA 96
FDG096
A
0.20 C
11
2X
10
9
6
8
7
6
5
4
3
2
1
L
PIN A1
CORNER
INDEX MARK
K
J
H
G
F
E
D
7
0.20 C
TOP VIEW
C
B
A
6
B
2X
BOTTOM VIEW
DETAIL A
0.20 C
0.08 C
C
96xφb
DETAIL A
5
0.05
SIDE VIEW
C A B
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS.
DIMENSIONS
SYMBOL
MIN.
NOM.
MAX.
2. SOLDER BALL POSITION DESIGNATIO
N PER JEP95, SECTION 3, SPP-020.
A
-
-
1.30
3. "e" REPRESENTSTHE SOLDER BALL GRID PITCH.
A1
0.15
0.25
0.35
4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
D
6.00 BSC
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
E
6.00 BSC
N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX
D1
5.00 BSC
E1
5.00 BSC
MD
11
ME
11
N
96
b
SIZE MD X ME.
5. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A
0.20
0.30
eD
0.50 BSC
eE
0.50 BSC
SD
0.00
SE
0.00
PLANE PARALLEL TO DATUM C.
6. "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND
DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
0.40
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW,
"SD" OR "SE" = 0.
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW,
"SD" = eD/2 AND "SE" = eE/2.
7. A1 CORNER TO BE IDENTIFIED BY
CHAMFER, LASER OR INK MARK
METALIZED MARK, INDENTATION OR OTHER MEANS.
8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER
BALLS.
PACKAGE OUTLINE, 96 BALL FBGA
6.0X6.0X1.3 MM FDG096 REV**
002-13224 **
Document Number: 002-05635 Rev.*B
Page 117 of 126
MB9A340NB Series
15. Errata
This chapter describes the errata for MB9A340N, MB9A340NA and MB9A340MB series. Details include errata trigger conditions,
scope of impact, available workaround, and silicon revision applicability.
Contact your local Cypress Sales Representative if you have questions.
15.1 Part Numbers Affected
Part Number
Initial Revision
MB9AF341NPMC-G-JNE2, MB9AF342NPMC-G-JNE2, MB9AF344NPMC-G-JNE2,
MB9AF341NPQC-G-JNE2, MB9AF342NPQC-G-JNE2, MB9AF344NPQC-G-JNE2,
MB9AF341NBGL-GE1, MB9AF342NBGL-GE1, MB9AF344NBGL-GE1,
MB9AF341MPMC-G-JNE2, MB9AF342MPMC-G-JNE2, MB9AF344MPMC-G-JNE2,
MB9AF341MPMC1-G-JNE2, MB9AF342MPMC1-G-JNE2, MB9AF344MPMC1-G-JNE2,
MB9AF341MBGL-GE1, MB9AF342MBGL-GE1, MB9AF344MBGL-GE1,
MB9AF341LPMC1-G-JNE2, MB9AF342LPMC1-G-JNE2, MB9AF344LPMC1-G-JNE2,
MB9AF341LPMC-G-JNE2, MB9AF342LPMC-G-JNE2, MB9AF344LPMC-G-JNE2,
MB9AF341LQN-G-AVE2, MB9AF342LQN-G-AVE2, MB9AF344LQN-G-AVE2
Rev. A
MB9AF341NAPMC-G-JNE2, MB9AF342NAPMC-G-JNE2, MB9AF344NAPMC-G-JNE2,
MB9AF341NAPQC-G-JNE2, MB9AF342NAPQC-G-JNE2, MB9AF344NAPQC-G-JNE2,
MB9AF341NABGL-GE1, MB9AF342NABGL-GE1, MB9AF344NABGL-GE1,
MB9AF341MAPMC-G-JNE2, MB9AF342MAPMC-G-JNE2, MB9AF344MAPMC-G-JNE2,
MB9AF341MAPMC1-G-JNE2, MB9AF342MAPMC1-G-JNE2, MB9AF344MAPMC1-G-JNE2,
MB9AF341MABGL-GE1, MB9AF342MABGL-GE1, MB9AF344MABGL-GE1,
MB9AF341LAPMC1-G-JNE2, MB9AF342LAPMC1-G-JNE2, MB9AF344LAPMC1-G-JNE2,
MB9AF341LAPMC-G-JNE2, MB9AF342LAPMC-G-JNE2, MB9AF344LAPMC-G-JNE2,
MB9AF341LAQN-G-AVE2, MB9AF342LAQN-G-AVE2, MB9AF344LAQN-G-AVE2
Rev. B
MB9AF341NBPMC-G-JNE2, MB9AF342NBPMC-G-JNE2, MB9AF344NBPMC-G-JNE2,
MB9AF341NBPQC-G-JNE2, MB9AF342NBPQC-G-JNE2, MB9AF344NBPQC-G-JNE2,
MB9AF341NBBGL-GE1, MB9AF342NBBGL-GE1, MB9AF344NBBGL-GE1,
MB9AF341MBPMC-G-JNE2, MB9AF342MBPMC-G-JNE2, MB9AF344MBPMC-G-JNE2,
MB9AF341MBPMC1-G-JNE2, MB9AF342MBPMC1-G-JNE2, MB9AF344MBPMC1-G-JNE2,
MB9AF341MBBGL-GE1, MB9AF342MBBGL-GE1, MB9AF344MBBGL-GE1,
MB9AF341LBPMC1-G-JNE2, MB9AF342LBPMC1-G-JNE2, MB9AF344LBPMC1-G-JNE2,
MB9AF341LBPMC-G-JNE2, MB9AF342LBPMC-G-JNE2, MB9AF344LBPMC-G-JNE2,
MB9AF341LBQN-G-AVE2, MB9AF342LBQN-G-AVE2, MB9AF344LBQN-G-AVE2
15.2 Qualification Status
Product Status: In Production − Qual.
Document Number: 002-05635 Rev.*B
Page 118 of 126
MB9A340NB Series
15.3 Errata Summary
This table defines the errata applicability to available devices.
Items
Part Number
Silicon Revision
Fix Status
[1] FLASH lower bank read during write
Refer to 15.1
Initial rev.
Fixed in Rev. A
[2] FLASH read during write & erase suspend
Refer to 15.1
Initial rev.
Fixed in Rev. A
[3] Regulator issue
Refer to 15.1
Initial rev., Rev. A
Fixed in Rev. B
[4] HDMI-CEC arbitration lost issue
Refer to 15.1
Initial rev., Rev. A
Fixed in Rev. B
[5] HDMI-CEC polling message issue
Refer to 15.1
Initial rev., Rev. A , Rev. B
Next silicon is not planned
1. FLASH lower bank read during write
 PROBLEM DEFINITION
During writing (programming) to FLASH memory of an upper bank, FLASH memory of a lower bank could not be read at a
specific timing in some operation combinations.
 PARAMETERS AFFECTED
N/A
 TRIGGER CONDITION(S)
This issue may happen when read data or fetch instruction from the FLASH memory lower bank (smaller sector), while a write
(program) operation to the FLASH memory upper bank (larger sector) is in progress.
 SCOPE OF IMPACT
Instructions could not be fetched (read) correctly from the lower bank, and then execution of the (corrupted) instructions may
cause a hard fault or run-away. If an instruction in RAM reads a data from the lower bank while writing to the upper bank, an
incorrect value might be read.
 WORKAROUND
To rewrite the upper bank of FLASH memory, put the write instruction in RAM instead of the lower bank and execute it from the
RAM. Do not access the lower bank until the write operation is completed (RDY=1). Especially to avoid a vector fetch from
the lower bank of the FLASH memory by an interrupt occurred, the interrupt should be prohibited or the vector address should
be set to RAM by the vector table offset register.
 FIX STATUS
This issue was fixed in Rev. A.
2. FLASH Read during Write & Sector Erase Suspend
 PROBLEM DEFINITION
When writing is executed during sector erase suspend, FLASH memory could not be read correctly at a specific timing.
 PARAMETERS AFFECTED
N/A
 TRIGGER CONDITION(S)
This issue may happen when read data or fetch instruction from the FLASH memory bank (higher or lower), while a write
(program) operation is in progress to the opposite bank which has a sector erase suspended. The following flow could not be
executed correctly.
(a) Erase a sector of a bank
(b) Suspend the sector erase operation
(c) Write to a different sector of the bank
(d) Execute an instruction or read data in the opposite bank
 SCOPE OF IMPACT
Document Number: 002-05635 Rev.*B
Page 119 of 126
MB9A340NB Series
Instructions could not be fetched (read) correctly, and then execution of the (corrupted) instructions may cause a hard fault or
run-away. If an instruction in RAM reads a data from the bank, an incorrect value might be read.
 WORKAROUND
Do not execute the write operation to a different sector in the same bank at sector erase suspend.
 FIX STATUS
This issue was fixed in Rev. A.
3. Regulator issue
 PROBLEM DEFINITION
The regulator does not get initialized while internal power-up sequence.
 PARAMETERS AFFECTED
N/A
 TRIGGER CONDITION(S)
This issue rarely happens depending on states of internal circuits which the user cannot control.
 SCOPE OF IMPACT
MCU does not start operation if this issue occurs.
 WORKAROUND
This error cannot be avoided by any software.
 FIX STATUS
This issue was fixed in Rev. B.
4. HDMI-CEC arbitration lost issue
 PROBLEM DEFINITION
Large external load on CEC bus may cause arbitration lost.
 PARAMETERS AFFECTED
N/A
 TRIGGER CONDITION(S)
The arbitration lost detection mechanism samples outputting signals and determines that arbitration lost occurs if sampled
signals do not match the outputting signals. The large external load on the CEC bus increases slew rate of the signals. The
increased slew rate makes the mismatch between outputting signals and sampled signals and the mismatch misleads MCU
that arbitration lost occurs.
 SCOPE OF IMPACT
Once the arbitration lost is detected, the CEC aborts the transmission. Any transmission cannot be completed.
 WORKAROUND
This error cannot be avoided by any software. Reduce the external load.
 FIX STATUS
This issue was fixed in Rev. B.
5. HDMI-CEC polling message issue
 PROBLEM DEFINITION
Error#1) While MCU sends a Polling Message, it always returns a NACK to a message coming to the MCU from another node.
Error#2) MCU always waits for 7-bit signal free on CEC line before it drives the line even when the last line initiator was another
node.
 PARAMETERS AFFECTED
N/A
 TRIGGER CONDITION(S)
This error always happens.
 SCOPE OF IMPACT
MCU does not reply properly to another node.
Document Number: 002-05635 Rev.*B
Page 120 of 126
MB9A340NB Series
 WORKAROUND
The software workaround is applied to Error #1.
1.
Store 0x0 to SFREE register.
2.
Monitor CEC line with GPIO and wait until 1 lasts for the signal free time.
3.
Store frame data to TXDATA register and store 0x0F to RCADR1 or RCADR2 register.
It sends a message after 3~4 clocks of 32.768 kHz clock when TXDATA is stored 0x0F.
If the device receives a frame from another node within 2~3 clocks after storing TXDATA, the bus error occurs and if the device
receives a frame from another node within 3~4 clocks after storing TXDATA, the arbitration lost occurs. In these cases:
4-A-1. Set RCADR1 or RCADR2 to former value from 0x0F to reply ACK
4-A-2. Return back to step 2 above
If the device receives a frame from another node within 1~2 clocks after storing TXDATA, take these steps.
4-B-1. Monitor CEC line with GPIO after 50us from storing TXDATA
4-B-2. Set TXEN to 1 -> 0 -> 1 immediately when GPIO finds state low on the CEC line
4-B-3. Set RCADR1 or RCADR2 to former value from 0x0F to reply ACK
4-B-4. Return back to step 2 above
For Error #2, there is no software workaround, but signal free time of fixed 7-bit does not violate HDMI-CEC specification. The
specification says signal free time must be more than and equals to 5-bit.
 FIX STATUS
The user uses the workaround to avoid the issue. The next silicon fixing the issue is not planned.
Document Number: 002-05635 Rev.*B
Page 121 of 126
MB9A340NB Series
16. Major Changes
Spansion Publication Number: DS706-00039
Page
Section
Revision 2.0
FEATURE
• On-chip Memories
2
• USB Interface
6
• Unique ID
PRODUCT LINEUP
7
• Function
48
HANDLING DEVICES
MEMORY MAP
53
• Memory Map (2)
PIN STATUS IN EACH CPU STATE
58
• List of Pin Status
ELECTRICAL CHARACTERISTICS
3.DC Characteristics
65
(1) Current rating
4.AC Characteristics
(3) Built-in CR Oscillation
68
Characteristics
• Built-in high-speed CR
(7) External Bus Timing
72, 73
• Separate Bus Access Asynchronous
SRAM Mode
• Separate Bus Access Synchronous
74
SRAM Mode
79, 81,
(9) CSIO Timing
83, 85
88
(11) I2C Timing
5. 12-bit A/D Converter
91
• Electrical characteristics for the A/D
converter (Preliminary value)
93
• Definition of 12-bit A/D Converter
Terms
7. Low-Voltage Detection
Characteristics
(1) Low-Voltage Detection Reset
99
(2) Interrupt of Low-Voltage Detection
Revision 2.1
Revision 3.0
98
-
-
-
-
2
3
FEATURES
•External Bus Interface
•Multi-function Serial Interface
Document Number: 002-05635 Rev.*B
Change Results
Revised the descriptions of [Flash memory].
Revised the descriptions of [USB function].
Added the descriptions of "Unique ID".
Added the descriptions.
Revised the Pin status type of "I".
 Revised the descriptions of Power supply current.
 Added the "Flash memory write/erase current".
 Added the footnote.
Revised the table and the footnote.
Revised the table and the figure.
 Revised the title to "CSIO Timing".
 Revised the note.
Revised the footnote.
• Revised the parameter.
• Revised the symbol.
• Corrected the value.
• Revised the parameter.
• Revised the symbol.
• Corrected "Conditions" and "Value" in the table.
• Added the Item.
• Added the footnote.
Added the Item.
Company name and layout design change
Corrected the Series name.
MB9A340NA Series → MB9A340NB Series
Corrected the Product name as follows.
MB9AF344LB, MB9AF342LB, MB9AF341LB
MB9AF344MB, MB9AF342MB, MB9AF341MB
MB9AF344NB, MB9AF342NB, MB9AF341NB
Added the Item.
• Maximum area size : Up to 256 Mbytes
Corrected the description of "I2C"
Page 122 of 126
MB9A340NB Series
Page
7
51
52
63
64,65
86
Section
PRODUCT LINEUP
•Function
BLOCK DIAGRAM
MEMORY MAP
•Memory Map (1)
ELECTRICAL CHARACTERISTICS
2.Recommended Operating Conditions
3.DC Characteristics
(1)Current rating
(9)CSIO Timing
•Synchronous serial (SPI=1, SCINV=1)
(9) CSIO Timing
• External clock(EXT=1): asynchronous
only
(12)I2C Timing
88
91
5.12-bit A/D Converter
•Electrical Characteristics for
the A/D Converter
101
ORDERING INFORMATON
Revision 4.0
Features
2
USB Interface
Memory Map
53
· Memory map(2)
64 - 66
67
70
71
80 - 87
Electrical Characteristics
3. DC Characteristics
(1) Current rating
Electrical Characteristics
3. DC Characteristics
(2) Pin Characteristics
Electrical Characteristics
4. AC Characteristics
(4-1) Operating Conditions of Main and
USB PLL
(4-2) Operating Conditions of Main PLL
Electrical Characteristics
4. AC Characteristics
(6) Power-on Reset Timing
Electrical Characteristics
4. AC Characteristics
(9) CSIO/UART Timing
Document Number: 002-05635 Rev.*B
Change Results
Added the footnote
Corrected the figure
Corrected the address "External Device Area"
Add the footnote
•Corrected the Condition
•Delete the minimum value
•Corrected the remarks
•Add the footnote
Corrected the figure of "MS bit=1"
Corrected the figure
Corrected the description as follows.
•Typical mode → Standard-mode
•High-speed mode→ Fast-mode
•Corrected the terminal name
AN00 ~ AN23 → ANxx
•Corrected the minimum value of "Sampling time"
•Corrected the max and min value of "State transition time
to operation permission"
•Corrected the footnote
Corrected the "Part number"
Added the description of PLL for USB
Added the summary of Flash memory sector and the note
· Changed the table format
· Added Main Timer mode current
· Moved A/D Converter Current
Added input leak current of CEC pin at power off.
Added the figure of Main PLL connection and USB PLL
connection
· Added Time until releasing Power-on reset
· Changed the figure of timing
· Modified from UART Timing to CSIO/UART Timing
· Changed from Internal shift clock operation to Master
mode
· Changed from External shift clock operation to Slave
mode
Page 123 of 126
MB9A340NB Series
Page
Section
Change Results
Electrical Characteristics
5. 12bit A/D Converter
· Added the typical value of Integral Nonlinearity,
Differential Nonlinearity, Zero transition voltage and
Full-scale transition voltage
· Added Conversion time at AVcc < 2.7V
102 105
Electrical Characteristics
9. Return Time from Low-Power
Consumption Mode
Added Return Time from Low-Power Consumption Mode
106,
107
Ordering Information
Changed notation of part number
92
NOTE: Please see “Document History” about later revised information.
Document Number: 002-05635 Rev.*B
Page 124 of 126
MB9A340NB Series
Document History
Document Title: MB9A340NB Series 32-bit ARM® Cortex®-M3 FM3 Microcontroller
Document Number: 002-05635
Revision
ECN
**
-
Orig. of
Submission
Change
Date
AKIH
06/10/2015
Description of Change
Migrated to Cypress and assigned document number 002-05635.
No change to document contents or format.
*A
5199288
AKIH
04/01/2016
Updated to Cypress format.
Updated “12.4.7 Power-On Reset Timing”. Changed parameter from “Power Supply
rise time(Tr)[ms]” to “Power ramp rate(dV/dt)[mV/μs]” and added some comments
(Page 71)
Modified RTC description in “Features, Real-Time Clock(RTC)” as below
Changed starting count value from 01 to 00. Deleted “second , or day of the week”
in the Interrupt function (Page 3)
Added Notes for JTAG (Page 39), Changed “J-TAG” to” JTAG” in “4 List of Pin
Functions” (Page 29)
Updated Package code and dimensions as follows (Page 8-15, 107-117)
*B
5534251
YSKA
07/26/2017
FPT-64P-M38 -> LQD064, FPT-64P-M39
-> LQG064,
LCC-64P-M24
-> VNC064, FPT-80P-M37
-> LQH080,
FPT-80P-M40 -> LQJ080, BGA-96P-M07
-> FDG096,
FPT-100P-M23 -> LQI100,
FPT-100P-M36
-> PQH100
BGA-112P-M04 -> LBC112
Added “15. Errata” (Page 118)
Change the name from “USB Function” to “USB Device” (Page 1, 7, 38)
Add “Analog reference voltage(AVRL)” in “12.2 Recommended Operating
Conditions” and “12.6 12-bit A/D Converter”(Page 62, 93)
Corrected the following statement
Analog port input current  Analog port input leak current
in chapter 12.6. 12-bit A/D Converter (Page 93)
Added the Baud rate spec in “12.5.10 CSIO/UART Timing”(Page 80, 82, 84, 86)
Document Number: 002-05635 Rev.*B
Page 125 of 126
MB9A340NB Series
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
ARM®
Cortex®
Microcontrollers
Automotive
Clocks & Buffers
Interface
Internet of Things
Memory
cypress.com/arm
cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/iot
cypress.com/memory
Microcontrollers
cypress.com/mcu
PSoC
cypress.com/psoc
Power Management ICs
Touch Sensing
USB Controllers
Wireless/RF
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6
Cypress Developer Community
Forums | WICED IOT Forums | Projects | Video | Blogs |
Training | Components
Technical Support
cypress.com/support
cypress.com/pmic
cypress.com/touch
cypress.com/usb
cypress.com/wireless
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.
© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or
other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwi se have a written agreement with Cypress governing the use of the Software,
then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source
code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form
externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are
infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction,
modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It
is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress
products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support
devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the
failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform
can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress
from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs,
damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-05635 Rev.*B
July 26, 2017
Page 126 of 126
Similar pages