High Efficacy VIOLET LED Emitter LZ1-00UA00 Key Features High Efficacy 5W VIOLET LED Ultra-small foot print – 4.4mm x 4.4mm Surface mount ceramic package with integrated glass lens Very low Thermal Resistance (4.2°C/W) Electrically neutral thermal path Very high Radiant Flux density Autoclave (121°C, 2 ATM, 100% RH, 168 Hours) JEDEC Level 1 for Moisture Sensitivity Level Lead (Pb) free and RoHS compliant Reflow solderable (up to 6 cycles) Emitter available on Standard or Miniature MCPCB (optional) Typical Applications Dental Curing and Teeth Whitening Ink and adhesive curing Sterilization and Medical DNA Gel Description The LZ1-00UA00 VIOLET LED emitter provides superior radiometric power in the wavelength range specifically required for sterilization, dental curing lights, and numerous medical applications. With a 4.4mm x 4.4mm ultrasmall footprint, this package provides exceptional optical power density. The radiometric power performance and optimal peak wavelength of this LED are matched to the response curves of dental resins, inks and adhesives, resulting in a significantly reduced curing time. The patented design has unparalleled thermal and optical performance. The high quality materials used in the package are chosen to optimize light output, have excellent VIOLET resistance, and minimize stresses which results in monumental reliability and radiant flux maintenance. UV RADIATION Avoid exposure to the beam Wear protective eyewear COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Part number options Base part number Part number Description LZ1-00UA00-xxxx LZ1 emitter LZ1-10UA00-xxxx LZ1 emitter on Standard Star MCPCB LZ1-30UA00-xxxx LZ1 emitter on Miniature round MCPCB COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 2 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Bin kit option codes Full distribution wavelength (385-410nm) Kit number suffix Min flux Bin Color Bin Range Description 0000 H U4 - U8 full distribution flux; full distribution wavelength J000 J U4 - U8 J minimum flux bin; full distribution wavelength K000 K U4 - U8 K minimum flux bin; full distribution wavelength L000 L U4 - U8 L minimum flux bin; full distribution wavelength Color Bin Range Description Two wavelength bins (10nm range) Kit number suffix Min flux Bin Wavelength U4 and U5 bin (385 – 395nm) 0U45 H U4 - U5 full distribution flux; wavelength U4 and U5 bin JU45 J U4 – U5 J minimum flux bin; wavelength U4 and U5 bins KU45 K U4 – U5 K minimum flux bin; wavelength U4 and U5 bins LU45 L U4 – U5 L minimum flux bin; wavelength U4 and U5 bins Wavelength U5 and U6 bin (390 – 400nm) 0U56 H U5 - U6 full distribution flux; wavelength U5 and U6 bin JU56 J U5 - U6 J minimum flux bin; wavelength U5 and U6 bins KU56 K U5 - U6 K minimum flux bin; wavelength U5 and U6 bins LU56 L U5 - U6 L minimum flux bin; wavelength U5 and U6 bins Wavelength U6 and U7 bin (395 – 405nm) 0U67 H U6 - U7 full distribution flux; wavelength U6 and U7 bin JU67 J U6 - U7 J minimum flux bin; wavelength U6 and U7 bins KU67 K U6 - U7 K minimum flux bin; wavelength U6 and U7 bins LU67 L U6 - U7 L minimum flux bin; wavelength U6 and U7 bins Wavelength U7 and U8 bin (400 – 410nm) 0U78 H U7 - U8 full distribution flux; wavelength U7 and U8 bin JU78 J U7 - U8 J minimum flux bin; wavelength U7 and U8 bins KU78 K U7 - U8 K minimum flux bin; wavelength U7 and U8 bins LU78 L U7 - U8 L minimum flux bin; wavelength U7 and U8 bins COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 3 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Single wavelength bin (5nm range) Kit number suffix Min flux Bin Color Bin Range Description Wavelength U4 bin only (385 – 390nm) 00U4 H U4 full distribution flux; wavelength U4 bin only Wavelength U5 bin only (390 – 395nm) 00U5 H U5 full distribution flux; wavelength U5 bin only J0U5 J U5 J minimum flux bin; wavelength U5 bin only K0U5 K U5 K minimum flux bin; wavelength U5 bin only L0U5 L U5 L minimum flux bin; wavelength U5 bin only Wavelength U6 bin only (395 – 400nm) 00U6 H U6 full distribution flux; wavelength U6 bin only J0U6 J U6 J minimum flux bin; wavelength U6 bin only K0U6 K U6 K minimum flux bin; wavelength U6 bin only L0U6 L U6 L minimum flux bin; wavelength U6 bin only Wavelength U7 bin only (400 – 405nm) 00U7 H U7 full distribution flux; wavelength U7 bin only J0U7 J U7 J minimum flux bin; wavelength U7 bin only K0U7 K U7 K minimum flux bin; wavelength U7 bin only L0U7 L U7 L minimum flux bin; wavelength U7 bin only Wavelength U8 bin only (405 – 410nm) 00U8 H U8 full distribution flux; wavelength U8 bin only J0U8 J U8 J minimum flux bin; wavelength U8 bin only K0U8 K U8 K minimum flux bin; wavelength U8 bin only L0U8 L U8 L minimum flux bin; wavelength U8 bin only Notes: 1. Default bin kit option is -0000 COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 4 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Radiant Flux Bins Table 1: Bin Code Minimum Radiant Flux (Φ) @ IF = 700mA [1,2] (mW) Maximum Radiant Flux (Φ) @ IF = 700mA [1,2] (mW) H 410 512 J 512 640 K 640 800 L 800 1000 M 1000 1250 Notes for Table 1: 1. Radiant flux performance guaranteed within published operating conditions. LED Engin maintains a tolerance of ± 10% on flux measurements. 2. Future products will have even higher levels of radiant flux performance. Contact LED Engin Sales for updated information. Peak Wavelength Bins Table 2: Bin Code Minimum Peak Wavelength (λP) @ IF = 700mA [1] (nm) Maximum Peak Wavelength (λP) @ IF = 700mA [1] (nm) U4 385 390 U5 390 395 U6 395 400 U7 400 405 U8 405 410 Notes for Table 2: 1. LED Engin maintains a tolerance of ± 2.0nm on peak wavelength measurements. Forward Voltage Bins Table 3: Bin Code Minimum Forward Voltage (VF) @ IF = 700mA [1] (V) Maximum Forward Voltage (VF) @ IF = 700mA [1] (V) 0 3.20 4.40 Notes for Table 3: 1. LED Engin maintains a tolerance of ± 0.04V for forward voltage measurements. COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 5 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Absolute Maximum Ratings Table 4: Parameter DC Forward Current Symbol Value Unit IF 1000 mA [1] Peak Pulsed Forward Current [2] IFP 1000 mA Reverse Voltage VR See Note 3 V Storage Temperature Tstg -40 ~ +150 °C Junction Temperature TJ 125 °C Soldering Temperature Tsol 260 °C Allowable Reflow Cycles 6 Autoclave Conditions 121°C at 2 ATM, 100% RH for 168 hours ESD Sensitivity [4] > 2,000 V HBM Class 2 JESD22-A114-D Notes for Table 4: 1. Maximum DC forward current is determined by the overall thermal resistance and ambient temperature. Follow the curves in Figure 10 for current derating. 2: Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%. 3. LEDs are not designed to be reverse biased. 4. LED Engin recommends taking reasonable precautions towards possible ESD damages and handling the LZ1-00UA00 in an electrostatic protected area (EPA). An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1. Optical Characteristics @ TC = 25°C Table 5: Typical Parameter Symbol Radiant Flux (@ IF = 700mA) Φ Radiant Flux (@ IF = 1000mA) Φ λP 385 Peak Wavelength Viewing Angle [1] [2] Total Included Angle [3] 385-390nm Unit 390-400nm 400-410nm 760 860 1000 mW 1070 1200 1400 mW 395 405 nm 2Θ1/2 85 Degrees Θ0.9V 100 Degrees Notes for Table 5: 1. When operating the VIOLET LED, observe IEC 60825-1 class 3B rating. Avoid exposure to the beam. 2. Viewing Angle is the off axis angle from emitter centerline where the radiometric power is ½ of the peak value. 3. Total Included Angle is the total angle that includes 90% of the total radiant flux. Electrical Characteristics @ TC = 25°C Table 6: Parameter Symbol Typical Unit Forward Voltage (@ IF = 700mA) VF 3.9 V Forward Voltage (@ IF = 1000mA) VF 4.1 V Temperature Coefficient of Forward Voltage ΔVF/ΔTJ -3.7 mV/°C Thermal Resistance (Junction to Case) RΘJ-C 4.2 °C/W COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 6 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com IPC/JEDEC Moisture Sensitivity Level Table 7 - IPC/JEDEC J-STD-20D.1 MSL Classification: Soak Requirements Floor Life Standard Accelerated Level Time Conditions Time (hrs) Conditions Time (hrs) Conditions 1 Unlimited ≤ 30°C/ 85% RH 168 +5/-0 85°C/ 85% RH n/a n/a Notes for Table 7: 1. The standard soak time includes a default value of 24 hours for semiconductor manufacturer’s exposure time (MET) between bake and bag and the floor life of maximum time allowed out of the bag at the end user of distributor’s facility. Average Radiant Flux Maintenance Projections Lumen maintenance generally describes the ability of an emitter to retain its output over time. The useful lifetime for power LEDs is also defined as Radiant Flux Maintenance, with the percentage of the original light output remaining at a defined time period. Based on long-term WHTOL testing, LED Engin projects that the LZ Series will deliver, on average, 70% Radiant Flux Maintenance (RP70%) at 20,000 hours of operation at a forward current of 700 mA per die. This projection is based on constant current operation with junction temperature maintained at or below 80°C. COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 7 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Mechanical Dimensions (mm) Pin Out Pad Function 1 Cathode 2 Anode 3 Anode 4 Cathode 5 1 [2] Thermal 2 5 4 3 Figure 1: Package outline drawing. Notes for Figure 1: 1. Unless otherwise noted, the tolerance = ± 0.20 mm. 2. Thermal contact, Pad 5, is electrically neutral. Recommended Solder Pad Layout (mm) Figure 2a: Recommended solder pad layout for anode, cathode, and thermal pad Note for Figure 2a: 1. Unless otherwise noted, the tolerance = ± 0.20 mm. COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 8 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Recommended Solder Mask Layout (mm) Figure 2b: Recommended solder mask opening for anode, cathode, and thermal pad Note for Figure 2b: 1. Unless otherwise noted, the tolerance = ± 0.20 mm. Recommended 8mil Stencil Apertures Layout (mm) Figure 2c: Recommended solder mask opening for anode, cathode, and thermal pad Note for Figure 2c: 1. Unless otherwise noted, the tolerance = ± 0.20 mm. COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 9 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Reflow Soldering Profile Figure 3: Reflow soldering profile for lead free soldering. Typical Radiation Pattern 100 90 Relative Intensity (%) 80 70 60 50 40 30 20 10 0 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Angular Displacement (Degrees) Figure 4: Typical representative spatial radiation pattern. COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 10 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Typical Relative Spectral Power Distribution 1 Relative Spectral Power 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 300 350 400 450 500 Wavelength (nm) Figure 5: Typical relative spectral power vs. wavelength @ TC = 25°C. Typical Peak Wavelength Shift over Temperature Peak Wavelength Shift (nm) 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 20 40 60 80 100 120 Case Temperature (ºC) Figure 6: Typical peak wavelength shift vs. case temperature. COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 11 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Typical Normalized Radiant Flux 1.4 Normalized Radiant Flux 1.2 1 0.8 0.6 0.4 0.2 0 0 200 400 600 800 1000 IF - Forward Current (mA) Figure 7: Typical normalized radiant flux vs. forward current @ TC = 25°C. Typical Normalized Radiant Flux over Temperature 1.2 Normalized Radiant Flux 1 0.8 0.6 0.4 0.2 0 0 20 40 60 80 100 120 Case Temperature (ºC) Figure 8: Typical normalized radiant flux vs. case temperature. COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 12 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Typical Forward Current Characteristics 1200 IF - Forward Current (mA) 1000 800 600 400 200 0 2.5 3.0 3.5 4.0 4.5 5.0 100 125 VF - Forward Voltage (V) Figure 9: Typical forward current vs. forward voltage @ T C = 25°C. Current De-rating IF - Maximum Current (mA) 1200 1000 800 700 (Rated) 600 400 RΘJ-A = 9°C/W RΘJ-A = 11°C/W RΘJ-A = 13°C/W 200 0 0 25 50 75 Maximum Ambient Temperature (ºC) Figure 10: Maximum forward current vs. ambient temperature based on T J(MAX) = 125°C. Notes for Figure 10: 1. RΘJ-C [Junction to Case Thermal Resistance] for the LZ1-00UA00 is typically 4.2°C/W. 2. RΘJ-A [Junction to Ambient Thermal Resistance] = RΘJ-C + RΘC-A [Case to Ambient Thermal Resistance]. COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 13 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Emitter Tape and Reel Specifications (mm) Figure 11: Emitter carrier tape specifications (mm). Figure 12: Emitter reel specifications (mm). Notes: 1. Reel quantity minimum: 100 emitters. Reel quantity maximum: 2000 emitters COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 14 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com LZ1 MCPCB Family Emitter + MCPCB Typical Vf Thermal Resistance (V) (°C /W) Typical If (mA) Part number Type of MCPCB Diameter (mm) LZ1-1xxxxx 1-channel Star 19.9 4.2 + 1.5 = 5.7 3.9 700 LZ1-3xxxxx 1-channel Mini 11.5 4.2 + 2.0 = 6.2 3.9 700 Mechanical Mounting of MCPCB MCPCB bending should be avoided as it will cause mechanical stress on the emitter, which could lead to substrate cracking and subsequently LED dies cracking. To avoid MCPCB bending: o Special attention needs to be paid to the flatness of the heat sink surface and the torque on the screws. o Care must be taken when securing the board to the heat sink. This can be done by tightening three M3 screws (or #4-40) in steps and not all the way through at once. Using fewer than three screws will increase the likelihood of board bending. o It is recommended to always use plastics washers in combinations with the three screws. o If non-taped holes are used with self-tapping screws, it is advised to back out the screws slightly after tightening (with controlled torque) and then re-tighten the screws again. Thermal interface material To properly transfer heat from LED emitter to heat sink, a thermally conductive material is required when mounting the MCPCB on to the heat sink. There are several varieties of such material: thermal paste, thermal pads, phase change materials and thermal epoxies. An example of such material is Electrolube EHTC. It is critical to verify the material’s thermal resistance to be sufficient for the selected emitter and its operating conditions. Wire soldering To ease soldering wire to MCPCB process, it is advised to preheat the MCPCB on a hot plate of 125-150oC. Subsequently, apply the solder and additional heat from the solder iron will initiate a good solder reflow. It is recommended to use a solder iron of more than 60W. It is advised to use lead-free, no-clean solder. For example: SN-96.5 AG-3.0 CU 0.5 #58/275 from Kester (pn: 24-7068-7601) COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 15 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com LZ1-1xxxxx 1 channel, Standard Star MCPCB (1x1) Dimensions (mm) Notes: Unless otherwise noted, the tolerance = ± 0.2 mm. Slots in MCPCB are for M3 or #4-40 mounting screws. LED Engin recommends plastic washers to electrically insulate screws from solder pads and electrical traces. LED Engin recommends using thermal interface material when attaching the MCPCB to a heat sink. The thermal resistance of the MCPCB is: RΘC-B 1.5°C/W Components used MCPCB: ESD chips: HT04503 BZT52C5-C10 (Bergquist) (Diodes, Inc, for 1 LED die) Pad layout Ch. 1 MCPCB Pad 1,2,3 4,5,6 String/die Function 1/A Cathode Anode + COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 16 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com LZ1-3xxxxx 1 channel, Mini Round MCPCB (1x1) Dimensions (mm) Notes: Unless otherwise noted, the tolerance = ± 0.20 mm. LED Engin recommends using thermal interface material when attaching the MCPCB to a heat sink. The thermal resistance of the MCPCB is: RΘC-B 2.0°C/W Components used MCPCB: ESD chips: HT04503 BZT52C5-C10 (Bergquist) (Diodes, Inc, for 1 LED die) Pad layout Ch. 1 MCPCB Pad 1 2 String/die Function 1/A Anode + Cathode - COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 17 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Company Information LED Engin, Inc., based in California’s Silicon Valley, specializes in ultra-bright, ultra compact solid state lighting solutions allowing lighting designers & engineers the freedom to create uncompromised yet energy efficient lighting experiences. The LuxiGen™ Platform — an emitter and lens combination or integrated module solution, delivers superior flexibility in light output, ranging from 3W to 90W, a wide spectrum of available colors, including whites, multi-color and UV, and the ability to deliver upwards of 5,000 high quality lumens to a target. The small size combined with powerful output allows for a previously unobtainable freedom of design wherever high-flux density, directional light is required. LED Engin’s packaging technologies lead the industry with products that feature lowest thermal resistance, highest flux density and consummate reliability, enabling compact and efficient solid state lighting solutions. LED Engin is committed to providing products that conserve natural resources and reduce greenhouse emissions. LED Engin reserves the right to make changes to improve performance without notice. Please contact [email protected] or (408) 922-7200 for more information. COPYRIGHT © 2013 LED ENGIN. ALL RIGHTS RESERVED. LZ1-00UA00 (5.4 – 11/18/13) 18 LED Engin | 651 River Oaks Parkway | San Jose, CA 95134 USA | ph +1 408 922 7200 | fax +1 408 922 0158 | em [email protected] | www.ledengin.com Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: LED Engin: LZ1-00UA00 LZ1-10UA00 LZ1-30UA00 LZ1-00UA00-U4 LZ1-00UA00-U5 LZ1-00UA00-U6 LZ1-00UA00-U7 LZ100UA00-U8 LZ1-10UA00-U4 LZ1-10UA00-U5 LZ1-10UA00-U6 LZ1-10UA00-U7 LZ1-10UA00-U8 LZ1-00UA00-J000 LZ1-10UA00-J000 LZ1-10UA00-K000 LZ1-00UA00-L000 LZ1-10UA00-L000 LZ1-00UA00-K000