...the world's most energy friendly microcontrollers EFM32GG232 DATASHEET F1024/F512 • ARM Cortex-M3 CPU platform • High Performance 32-bit processor @ up to 48 MHz • Memory Protection Unit • Flexible Energy Management System • 20 nA @ 3 V Shutoff Mode • 0.4 µA @ 3 V Shutoff Mode with RTC • 0.8 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention • 1.1 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention • 80 µA/MHz @ 3 V Sleep Mode • 219 µA/MHz @ 3 V Run Mode, with code executed from flash • 1024/512 KB Flash • Read-while-write support • 128 KB RAM • 53 General Purpose I/O pins • Configurable push-pull, open-drain, pull-up/down, input filter, drive strength • Configurable peripheral I/O locations • 16 asynchronous external interrupts • Output state retention and wake-up from Shutoff Mode • 12 Channel DMA Controller • 12 Channel Peripheral Reflex System (PRS) for autonomous inter-peripheral signaling • Hardware AES with 128/256-bit keys in 54/75 cycles • Timers/Counters • 4× 16-bit Timer/Counter • 4×3 Compare/Capture/PWM channels • Dead-Time Insertion on TIMER0 • 16-bit Low Energy Timer • 1× 24-bit Real-Time Counter and 1× 32-bit Real-Time Counter • 3× 16/8-bit Pulse Counter with asynchronous operation • Watchdog Timer with dedicated RC oscillator @ 50 nA • Backup Power Domain • RTC and retention registers in a separate power domain, available in all energy modes • Operation from backup battery when main power drains out • Communication interfaces • 3× Universal Synchronous/Asynchronous Receiver/Transmitter • UART/SPI/SmartCard (ISO 7816)/IrDA/I2S • 2× Low Energy UART • Autonomous operation with DMA in Deep Sleep Mode 2 • 2× I C Interface with SMBus support • Address recognition in Stop Mode • Ultra low power precision analog peripherals • 12-bit 1 Msamples/s Analog to Digital Converter • 8 single ended channels/4 differential channels • On-chip temperature sensor • 12-bit 500 ksamples/s Digital to Analog Converter • 2 single ended channels/1 differential channel • 2× Analog Comparator • Capacitive sensing with up to 16 inputs • 3× Operational Amplifier • 6.1 MHz GBW, Rail-to-rail, Programmable Gain • Supply Voltage Comparator • Low Energy Sensor Interface (LESENSE) • Autonomous sensor monitoring in Deep Sleep Mode • Wide range of sensors supported, including LC sensors and capacitive buttons • Ultra efficient Power-on Reset and Brown-Out Detector • Debug Interface • 2-pin Serial Wire Debug interface • 1-pin Serial Wire Viewer • Embedded Trace Module v3.5 (ETM) • Pre-Programmed UART Bootloader • Temperature range -40 to 85 ºC • Single power supply 1.98 to 3.8 V • TQFP64 package 32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for: • Energy, gas, water and smart metering • Health and fitness applications • Smart accessories • Alarm and security systems • Industrial and home automation ...the world's most energy friendly microcontrollers 1 Ordering Information Table 1.1 (p. 2) shows the available EFM32GG232 devices. Table 1.1. Ordering Information Ordering Code Flash (kB) RAM (kB) Max Speed (MHz) Supply Voltage (V) Temperature (ºC) Package EFM32GG232F512G-E-QFP64 512 128 48 1.98 - 3.8 -40 - 85 TQFP64 EFM32GG232F1024G-E-QFP64 1024 128 48 1.98 - 3.8 -40 - 85 TQFP64 Adding the suffix 'R' to the part number (e.g. EFM32GG232F512G-E-QFP64R) denotes tape and reel. Visit www.silabs.com for information on global distributors and representatives. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 2 www.silabs.com ...the world's most energy friendly microcontrollers 2 System Summary 2.1 System Introduction The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32GG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32GG232 devices. For a complete feature set and in-depth information on the modules, the reader is referred to the EFM32GG Reference Manual. A block diagram of the EFM32GG232 is shown in Figure 2.1 (p. 3) . Figure 2.1. Block Diagram GG232F512/ 1024 Core and Mem ory Clock Managem ent Mem ory Protection Unit ARM Cortex ™- M3 processor Flash Program Mem ory RAM Mem ory Debug Interface w/ ETM DMA Controller Energy Managem ent High Freq. Crystal Oscillator High Freq RC Oscillator Voltage Regulator Voltage Com parator Aux High Freq. RC Oscillator Low Freq. RC Oscillator Brown- out Detector Power- on Reset Low Freq. Crystal Oscillator Ultra Low Freq. RC Oscillator Back- up Power Dom ain 32- bit bus Peripheral Reflex System Serial Interfaces I/ O Ports Tim ers and Triggers USART Low Energy UART 2 I C Ex ternal Interrupts General Purpose I/ O Pin Reset Pin Wakeup Tim er/ Counter LESENSE Low Energy Tim er Real Tim e Counter Pulse Counter Watchdog Tim er Analog Interfaces ADC DAC Back- up RTC Security Hardware AES Operational Am plifier Analog Com parator 2.1.1 ARM Cortex-M3 Core The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in EFM32 Cortex-M3 Reference Manual. 2.1.2 Debug Interface (DBG) This device includes hardware debug support through a 2-pin serial-wire debug interface and an Embedded Trace Module (ETM) for data/instruction tracing . In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 3 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.3 Memory System Controller (MSC) The Memory System Controller (MSC) is the program memory unit of the EFM32GG microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1. 2.1.4 Direct Memory Access Controller (DMA) The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM. 2.1.5 Reset Management Unit (RMU) The RMU is responsible for handling the reset functionality of the EFM32GG. 2.1.6 Energy Management Unit (EMU) The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32GG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks. 2.1.7 Clock Management Unit (CMU) The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32GG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 Watchdog (WDOG) The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure. 2.1.9 Peripheral Reflex System (PRS) The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS. 2.1.10 Inter-Integrated Circuit Interface (I2C) 2 2 The I C module provides an interface between the MCU and a serial I C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. 2 The interface provided to software by the I C module, allows both fine-grained control of the transmission 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 4 www.silabs.com ...the world's most energy friendly microcontrollers process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes. 2.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices. 2.1.12 Pre-Programmed UART Bootloader The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note. 2.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) TM The unique LEUART , the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.14 Timer/Counter (TIMER) The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/PulseWidth Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications. 2.1.15 Real Time Counter (RTC) The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down. 2.1.16 Backup Real Time Counter (BURTC) The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy Modes and it can also run in backup mode, making it operational even if the main power should drain out. 2.1.17 Low Energy Timer (LETIMER) TM The unique LETIMER , the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC. 2.1.18 Pulse Counter (PCNT) The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 5 www.silabs.com ...the world's most energy friendly microcontrollers 2.1.19 Analog Comparator (ACMP) The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.20 Voltage Comparator (VCMP) The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.21 Analog to Digital Converter (ADC) The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals. 2.1.22 Digital to Analog Converter (DAC) The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output. 2.1.23 Operational Amplifier (OPAMP) The EFM32GG232 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable gain using internal resistors etc. 2.1.24 Low Energy Sensor Interface (LESENSE) TM The Low Energy Sensor Interface (LESENSE ), is a highly configurable sensor interface with support for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget. 2.1.25 Backup Power Domain The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC, and a set of retention registers, available in all energy modes. This power domain can be configured to automatically change power source to a backup battery when the main power drains out. The backup power domain enables the EFM32GG232 to keep track of time and retain data, even if the main power source should drain out. 2.1.26 Advanced Encryption Standard Accelerator (AES) The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 6 www.silabs.com ...the world's most energy friendly microcontrollers and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 2.1.27 General Purpose Input/Output (GPIO) In the EFM32GG232, there are 53 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals. 2.2 Configuration Summary The features of the EFM32GG232 is a subset of the feature set described in the EFM32GG Reference Manual. Table 2.1 (p. 7) describes device specific implementation of the features. Table 2.1. Configuration Summary Module Configuration Pin Connections Cortex-M3 Full configuration NA DBG Full configuration DBG_SWCLK, DBG_SWDIO, DBG_SWO MSC Full configuration NA DMA Full configuration NA RMU Full configuration NA EMU Full configuration NA CMU Full configuration CMU_OUT0, CMU_OUT1 WDOG Full configuration NA PRS Full configuration NA I2C0 Full configuration I2C0_SDA, I2C0_SCL I2C1 Full configuration I2C1_SDA, I2C1_SCL USART0 Full configuration with IrDA US0_TX, US0_RX. US0_CLK, US0_CS USART1 Full configuration with I2S US1_TX, US1_RX, US1_CLK, US1_CS USART2 Full configuration with I2S US2_TX, US2_RX, US2_CLK, US2_CS LEUART0 Full configuration LEU0_TX, LEU0_RX LEUART1 Full configuration LEU1_TX, LEU1_RX TIMER0 Full configuration with DTI TIM0_CC[2:0], TIM0_CDTI[2:0] TIMER1 Full configuration TIM1_CC[2:0] TIMER2 Full configuration TIM2_CC[2:0] TIMER3 Full configuration TIM3_CC[2:0] RTC Full configuration NA BURTC Full configuration NA LETIMER0 Full configuration LET0_O[1:0] 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 7 www.silabs.com ...the world's most energy friendly microcontrollers Module Configuration Pin Connections PCNT0 Full configuration, 16-bit count register PCNT0_S[1:0] PCNT1 Full configuration, 8-bit count register PCNT1_S[1:0] PCNT2 Full configuration, 8-bit count register PCNT2_S[1:0] ACMP0 Full configuration ACMP0_CH[7:0], ACMP0_O ACMP1 Full configuration ACMP1_CH[7:0], ACMP1_O VCMP Full configuration NA ADC0 Full configuration ADC0_CH[7:0] DAC0 Full configuration DAC0_OUT[1:0], DAC0_OUTxALT AES Full configuration NA GPIO 53 pins Available pins are shown in Table 4.3 (p. 55) OPAMP 2.3 Memory Map The EFM32GG232 memory map is shown in Figure 2.2 (p. 8) , with RAM and Flash sizes for the largest memory configuration. Figure 2.2. EFM32GG232 Memory Map with largest RAM and Flash sizes 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 8 www.silabs.com ...the world's most energy friendly microcontrollers 3 Electrical Characteristics 3.1 Test Conditions 3.1.1 Typical Values The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 9) , unless otherwise specified. 3.1.2 Minimum and Maximum Values The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in Table 3.2 (p. 9) , unless otherwise specified. 3.2 Absolute Maximum Ratings The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 9) may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p. 9) . Table 3.1. Absolute Maximum Ratings Symbol Parameter Condition Min Typ Max TSTG Storage temperature range TS Maximum soldering temperature VDDMAX External main supply voltage 0 3.8 V VIOPIN Voltage on any I/O pin -0.3 VDD+0.3 V -40 Unit 150 °C Latest IPC/JEDEC J-STD-020 Standard 260 °C Current per I/O pin (sink) 100 mA Current per I/O pin (source) -100 mA IIOMAX 3.3 General Operating Conditions 3.3.1 General Operating Conditions Table 3.2. General Operating Conditions Symbol Parameter TAMB Ambient temperature range VDDOP Operating supply voltage fAPB Internal APB clock frequency 48 MHz fAHB Internal AHB clock frequency 48 MHz 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 Min Typ -40 1.98 9 Max Unit 85 °C 3.8 V www.silabs.com ...the world's most energy friendly microcontrollers 3.4 Current Consumption Table 3.3. Current Consumption Symbol IEM0 IEM1 IEM2 IEM3 IEM4 Parameter EM0 current. No prescaling. Running prime number calculation code from flash. (Production test condition = 14MHz) EM1 current (Production test condition = 14MHz) Condition Min Typ Max Unit 48 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V 219 240 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 205 225 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 206 229 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 209 232 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 211 234 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 215 242 µA/ MHz 1.2 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 243 327 µA/ MHz 48 MHz HFXO, all peripheral clocks disabled, VDD= 3.0 V 80 90 µA/ MHz 28 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 80 90 µA/ MHz 21 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 81 91 µA/ MHz 14 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 83 99 µA/ MHz 11 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 85 100 µA/ MHz 6.6 MHz HFRCO, all peripheral clocks disabled, VDD= 3.0 V 90 102 µA/ MHz 1.2 MHz HFRCO. all peripheral clocks disabled, VDD= 3.0 V 122 152 µA/ MHz EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=25°C 1.1 EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, VDD= 3.0 V, TAMB=85°C 8.8 VDD= 3.0 V, TAMB=25°C 0.8 VDD= 3.0 V, TAMB=85°C 8.2 VDD= 3.0 V, TAMB=25°C 0.02 0.08 µA VDD= 3.0 V, TAMB=85°C 0.5 2.5 µA EM2 current EM3 current 1 1.9 1 µA 1 21.5 1 µA 1 1.5 1 µA 1 20.3 1 µA EM4 current 1 Only one RAM block enabled. The RAM block size is 32 kB. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 10 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.1 EM2 Current Consumption 1 Figure 3.1. EM2 current consumption. RTC prescaled to 1 Hz, 32.768 kHz LFRCO. 3.4.2 EM3 Current Consumption Figure 3.2. EM3 current consumption. 1 Using backup RTC. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 11 www.silabs.com ...the world's most energy friendly microcontrollers 3.4.3 EM4 Current Consumption Figure 3.3. EM4 current consumption. 3.5 Transition between Energy Modes The transition times are measured from the trigger to the first clock edge in the CPU. Table 3.4. Energy Modes Transitions Symbol Parameter Min Typ Max Unit tEM10 Transition time from EM1 to EM0 0 HFCORECLK cycles tEM20 Transition time from EM2 to EM0 2 µs tEM30 Transition time from EM3 to EM0 2 µs tEM40 Transition time from EM4 to EM0 163 µs 3.6 Power Management The EFM32GG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32 Hardware Design Considerations". 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 12 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.5. Power Management Symbol Parameter Condition Min Typ Max Unit BOD threshold on falling external supply voltage EM0 1.74 1.96 V VBODextthr- EM2 1.74 1.98 V 1.57 1.70 V VBODintthr- BOD threshold on falling internally regulated supply voltage VBODextthr+ BOD threshold on rising external supply voltage VPORthr+ Power-on Reset (POR) threshold on rising external supply voltage tRESET Delay from reset is released until program execution starts Applies to Power-on Reset, Brown-out Reset and pin reset. 163 µs CDECOUPLE Voltage regulator decoupling capacitor. X5R capacitor recommended. Apply between DECOUPLE pin and GROUND 1 µF 1.85 1.98 V 1.98 V 3.7 Flash Table 3.6. Flash Symbol Parameter ECFLASH Flash erase cycles before failure Condition Min TAMB<150°C RETFLASH Flash data retention tW_PROG Word (32-bit) programming time tPERASE Page erase time tDERASE Typ IWRITE VFLASH Unit 20000 cycles 10000 h TAMB<85°C 10 years TAMB<70°C 20 years 20 µs LPERASE == 0 20 20.4 20.8 ms LPERASE == 1 40 40.4 40.8 ms Device erase time 161.6 ms LPERASE == 0 IERASE Max 1 mA 1 mA 1 mA 1 mA 14 Erase current LPERASE == 1 7 LPWRITE == 0 14 LPWRITE == 1 7 Write current Supply voltage during flash erase and write 1.98 3.8 V 1 Measured at 25°C 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 13 www.silabs.com ...the world's most energy friendly microcontrollers 3.8 General Purpose Input Output Table 3.7. GPIO Symbol Parameter VIOIL Input low voltage VIOIH Input high voltage VIOOH VIOOL Output high voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Output low voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD) Condition Min Typ Max Unit 0.30VDD V 0.70VDD V Sourcing 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.80VDD V Sourcing 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.90VDD V Sourcing 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.85VDD V Sourcing 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.90VDD V Sourcing 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.75VDD V Sourcing 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.85VDD V Sourcing 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.60VDD V Sourcing 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.80VDD V Sinking 0.1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.20VDD V Sinking 0.1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOWEST 0.10VDD V Sinking 1 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.10VDD V Sinking 1 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW 0.05VDD V Sinking 6 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.30VDD V Sinking 6 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD 0.20VDD V Sinking 20 mA, VDD=1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH 0.35VDD V 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 14 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ Max Sinking 20 mA, VDD=3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH Unit 0.20VDD V IIOLEAK Input leakage current RPU I/O pin pull-up resistor 40 kOhm RPD I/O pin pull-down resistor 40 kOhm RIOESD Internal ESD series resistor 200 Ohm tIOGLITCH Pulse width of pulses to be removed by the glitch suppression filter tIOOF VIOHYST High Impedance IO connected to GROUND or VDD ±0.1 ±40 nA 10 50 ns GPIO_Px_CTRL DRIVEMODE = LOWEST and load capacitance CL=12.5-25pF. 20+0.1CL 250 ns GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance CL=350-600pF 20+0.1CL 250 ns Output fall time I/O pin hysteresis (VIOTHR+ - VIOTHR-) VDD = 1.98 - 3.8 V 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 0.10VDD 15 V www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.4. Typical Low-Level Output Current, 2V Supply Voltage 5 0.20 4 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.15 0.10 3 2 0.05 1 - 40°C 25°C 85°C 0.00 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] - 40°C 25°C 85°C 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 45 20 40 35 Low- Level Output Current [m A] Low- Level Output Current [m A] 15 10 30 25 20 15 5 10 5 - 40°C 25°C 85°C 0 0.0 0.5 1.5 1.0 Low- Level Output Voltage [V] 0 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 - 40°C 25°C 85°C 0.5 1.5 1.0 Low- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 16 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.5. Typical High-Level Output Current, 2V Supply Voltage 0.00 0.0 - 40°C 25°C 85°C - 40°C 25°C 85°C –0.5 High- Level Output Current [m A] High- Level Output Current [m A] –0.05 –0.10 –1.0 –1.5 –0.15 –2.0 –0.20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –2.5 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = LOW 0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] High- Level Output Current [m A] –5 –10 –20 –30 –15 –40 –20 0.0 1.5 0.5 1.0 High- Level Output Voltage [V] –50 0.0 2.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 1.5 0.5 1.0 High- Level Output Voltage [V] 2.0 GPIO_Px_CTRL DRIVEMODE = HIGH 17 www.silabs.com ...the world's most energy friendly microcontrollers 0.5 10 0.4 8 Low- Level Output Current [m A] Low- Level Output Current [m A] Figure 3.6. Typical Low-Level Output Current, 3V Supply Voltage 0.3 0.2 0.1 6 4 2 - 40°C 25°C 85°C 0.0 0.0 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = LOW 40 50 35 40 Low- Level Output Current [m A] Low- Level Output Current [m A] 30 25 20 15 30 20 10 10 5 0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 - 40°C 25°C 85°C 0 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 0.5 1.5 1.0 2.0 Low- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 18 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.7. Typical High-Level Output Current, 3V Supply Voltage 0.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –1 High- Level Output Current [m A] High- Level Output Current [m A] –0.1 –0.2 –0.3 –2 –3 –4 –0.4 –5 –0.5 0.0 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –6 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = LOWEST 2.5 3.0 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 –50 0.0 3.0 GPIO_Px_CTRL DRIVEMODE = STANDARD 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 0.5 1.5 1.0 2.0 High- Level Output Voltage [V] 2.5 3.0 GPIO_Px_CTRL DRIVEMODE = HIGH 19 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.8. Typical Low-Level Output Current, 3.8V Supply Voltage 0.8 14 0.7 12 Low- Level Output Current [m A] Low- Level Output Current [m A] 0.6 0.5 0.4 0.3 10 8 6 4 0.2 2 0.1 0.0 0.0 - 40°C 25°C 85°C 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 50 50 40 40 30 20 10 30 20 10 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOW Low- Level Output Current [m A] Low- Level Output Current [m A] GPIO_Px_CTRL DRIVEMODE = LOWEST 0.5 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 - 40°C 25°C 85°C 0 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 0.5 1.5 1.0 2.0 2.5 Low- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 20 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.9. Typical High-Level Output Current, 3.8V Supply Voltage 0.0 –0.1 0 - 40°C 25°C 85°C –1 - 40°C 25°C 85°C –2 High- Level Output Current [m A] High- Level Output Current [m A] –0.2 –0.3 –0.4 –0.5 –3 –4 –5 –6 –0.6 –7 –0.7 –0.8 0.0 –8 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –9 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = LOWEST 3.0 3.5 0 - 40°C 25°C 85°C - 40°C 25°C 85°C –10 High- Level Output Current [m A] –10 High- Level Output Current [m A] 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] GPIO_Px_CTRL DRIVEMODE = LOW 0 –20 –30 –40 –50 0.0 0.5 –20 –30 –40 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 –50 0.0 3.5 GPIO_Px_CTRL DRIVEMODE = STANDARD 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 0.5 1.5 1.0 2.0 2.5 High- Level Output Voltage [V] 3.0 3.5 GPIO_Px_CTRL DRIVEMODE = HIGH 21 www.silabs.com ...the world's most energy friendly microcontrollers 3.9 Oscillators 3.9.1 LFXO Table 3.8. LFXO Symbol Parameter Condition Min Typ Max fLFXO Supported nominal crystal frequency ESRLFXO Supported crystal equivalent series resistance (ESR) CLFXOL Supported crystal external load range X DCLFXO Duty cycle 48 ILFXO Current consumption for core and buffer after startup. ESR=30 kOhm, CL=10 pF, LFXOBOOST in CMU_CTRL is 1 190 nA tLFXO Start- up time. ESR=30 kOhm, CL=10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1 400 ms 32.768 Unit kHz 30 120 kOhm 1 25 pF 50 53.5 % 1 See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration". 3.9.2 HFXO Table 3.9. HFXO Symbol Parameter fHFXO Supported nominal crystal Frequency ESRHFXO The transconductance of the HFXO input transistor at crystal startup CHFXOL Supported crystal external load range tHFXO Min Typ Current consumption for HFXO after startup Startup time Max 4 Crystal frequency 48 MHz Supported crystal equivalent series re- Crystal frequency 32 MHz sistance (ESR) Crystal frequency 4 MHz gmHFXO IHFXO Condition HFXOBOOST in CMU_CTRL equals 0b11 Unit 48 MHz 50 Ohm 30 60 Ohm 400 1500 Ohm 20 mS 5 25 pF 4 MHz: ESR=400 Ohm, CL=20 pF, HFXOBOOST in CMU_CTRL equals 0b11 85 µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 165 µA 32 MHz: ESR=30 Ohm, CL=10 pF, HFXOBOOST in CMU_CTRL equals 0b11 400 µs 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 22 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.3 LFRCO Table 3.10. LFRCO Symbol Parameter fLFRCO Oscillation frequency , VDD= 3.0 V, TAMB=25°C tLFRCO Startup time not including software calibration 150 µs ILFRCO Current consumption 300 900 nA TUNESTEPL- Frequency step for LSB change in TUNING value 1.5 FRCO Condition Min Typ 31.29 Max 32.768 Unit 34.28 kHz % Figure 3.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage 42 42 - 40°C 25°C 85°C 40 38 38 Frequency [kHz] Frequency [kHz] 40 36 34 34 32 32 30 2.0 2.2 2.6 3.0 Vdd [V] 3.4 2.0 V 3V 3.8 V 36 30 –40 3.8 –15 5 25 Tem perature [°C] 45 Typ Max 65 85 3.9.4 HFRCO Table 3.11. HFRCO Symbol fHFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C Settling time after start-up Condition Min Unit 28 MHz frequency band 27.5 28.0 28.5 MHz 21 MHz frequency band 20.6 21.0 21.4 MHz 14 MHz frequency band 13.7 14.0 14.3 MHz 11 MHz frequency band 10.8 11.0 11.2 MHz 1 6.60 2 1.20 7 MHz frequency band 6.48 1 MHz frequency band 1.15 fHFRCO = 14 MHz 1 6.72 1 MHz 2 1.25 2 MHz 0.6 Cycles 25 Cycles tHFRCO_settling Settling time after band switch 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 23 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Current consumption (Production test condition = 14MHz) IHFRCO TUNESTEPHFRCO Condition Min Typ Max Unit fHFRCO = 28 MHz 165 190 µA fHFRCO = 21 MHz 134 155 µA fHFRCO = 14 MHz 106 120 µA fHFRCO = 11 MHz 94 110 µA fHFRCO = 6.6 MHz 77 90 µA fHFRCO = 1.2 MHz 25 32 µA 3 Frequency step for LSB change in TUNING value 0.3 % 1 For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable. For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable. 3 The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions. 2 1.45 1.45 1.40 1.40 1.35 1.35 Frequency [MHz] Frequency [MHz] Figure 3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature 1.30 - 40°C 25°C 85°C 1.25 1.20 1.30 1.25 1.20 1.15 1.15 1.10 1.10 1.05 2.0 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 1.05 –40 3.8 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 6.70 6.70 6.65 6.65 6.60 6.60 Frequency [MHz] Frequency [MHz] Figure 3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature 6.55 6.50 6.45 6.40 6.50 6.45 6.40 - 40°C 25°C 85°C 6.35 6.30 2.0 6.55 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 3.4 3.6 2.0 V 3.0 V 3.8 V 6.35 6.30 –40 3.8 24 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers 11.2 11.2 11.1 11.1 11.0 11.0 Frequency [MHz] Frequency [MHz] Figure 3.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature 10.9 10.8 10.8 10.7 10.6 2.0 10.9 10.7 - 40°C 25°C 85°C 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 10.6 –40 3.8 2.0 V 3.0 V 3.8 V –15 5 25 Tem perature [°C] 45 65 85 14.2 14.2 14.1 14.1 14.0 14.0 Frequency [MHz] Frequency [MHz] Figure 3.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature 13.9 13.8 13.7 13.8 13.7 - 40°C 25°C 85°C 13.6 13.5 2.0 13.9 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 13.6 13.5 –40 3.8 –15 5 25 Tem perature [°C] 45 65 85 21.2 21.2 21.1 21.1 21.0 21.0 20.9 20.9 Frequency [MHz] Frequency [MHz] Figure 3.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature 20.8 20.7 20.6 20.7 20.6 20.5 20.5 - 40°C 25°C 85°C 20.4 20.3 2.0 20.8 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 3.4 3.6 2.0 V 3.0 V 3.8 V 20.4 20.3 –40 3.8 25 –15 5 25 Tem perature [°C] 45 65 85 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature 28.2 28.4 28.2 28.0 28.0 Frequency [MHz] Frequency [MHz] 27.8 27.6 27.8 27.6 27.4 27.4 27.2 27.0 2.0 - 40°C 25°C 85°C 2.2 2.4 2.6 2.8 3.0 Vdd [V] 3.2 3.4 3.6 2.0 V 3.0 V 3.8 V 27.2 27.0 –40 3.8 –15 5 25 Tem perature [°C] 45 Typ Max 65 85 3.9.5 AUXHFRCO Table 3.12. AUXHFRCO Symbol fAUXHFRCO Parameter Oscillation frequency, VDD= 3.0 V, TAMB=25°C Condition Min 28 MHz frequency band 27.5 28.0 28.5 MHz 21 MHz frequency band 20.6 21.0 21.4 MHz 14 MHz frequency band 13.7 14.0 14.3 MHz 11 MHz frequency band 10.8 11.0 11.2 MHz 1 6.60 2 1.20 7 MHz frequency band 6.48 1 MHz frequency band 1.15 tAUXHFRCO_settlingSettling time after start-up fAUXHFRCO = 14 MHz DCAUXHFRCO fAUXHFRCO = 14 MHz Duty cycle Unit TUNESTEPAUX- Frequency step for LSB change in HFRCO TUNING value 1 6.72 2 1.25 0.6 48.5 1 MHz 2 MHz Cycles 50 51 % 3 % 0.3 1 For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable. For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable. 3 The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions. 2 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 26 www.silabs.com ...the world's most energy friendly microcontrollers 3.9.6 ULFRCO Table 3.13. ULFRCO Symbol Parameter Condition Min Typ Max fULFRCO Oscillation frequency 25°C, 3V TCULFRCO Temperature coefficient 0.05 %/°C VCULFRCO Supply voltage coefficient -18.2 %/V 0.70 Unit 1.75 kHz 3.10 Analog Digital Converter (ADC) Table 3.14. ADC Symbol Parameter VADCIN Input voltage range Condition Min Single ended Differential VADCREFIN Input range of external reference voltage, single ended and differential Typ Max Unit 0 VREF V -VREF/2 VREF/2 V 1.25 VDD V VADCREFIN_CH7 Input range of external negative reference voltage on channel 7 See VADCREFIN 0 VDD - 1.1 V VADCREFIN_CH6 Input range of external positive reference voltage on channel 6 See VADCREFIN 0.625 VDD V 0 VDD V VADCCMIN Common mode input range IADCIN Input current CMRRADC Analog input common mode rejection ratio IADC IADCREF Average active current Current consumption of internal voltage reference 2pF sampling capacitors <100 nA 65 dB 1 MSamples/s, 12 bit, external reference 351 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b00 67 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b01 63 µA 10 kSamples/s 12 bit, internal 1.25 V reference, WARMUPMODE in ADCn_CTRL set to 0b10 64 µA Internal voltage reference 65 µA 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 27 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter CADCIN Input capacitance RADCIN Input ON resistance RADCFILT Input RC filter resistance CADCFILT Input RC filter/decoupling capacitance fADCCLK ADC Clock Frequency tADCCONV Acquisition time tADCACQVDD3 Required acquisition time for VDD/3 reference SNRADC Min Typ Max 2 1 Unit pF MOhm 10 250 kOhm fF 13 MHz 6 bit 7 ADCCLK Cycles 8 bit 11 ADCCLK Cycles 12 bit 13 ADCCLK Cycles 1 256 ADCCLK Cycles Conversion time tADCACQ tADCSTART Condition Programmable 2 µs Startup time of reference generator and ADC core in NORMAL mode 5 µs Startup time of reference generator and ADC core in KEEPADCWARM mode 1 µs 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 59 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 1 MSamples/s, 12 bit, single ended, VDD reference 65 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 65 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 67 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 69 dB Signal to Noise Ratio (SNR) 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 28 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min SIgnal-to-Noise And Distortion-ratio (SINAD) Max Unit 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 63 dB 200 kSamples/s, 12 bit, single ended, VDD reference 67 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 66 dB 200 kSamples/s, 12 bit, differential, 2xVDD reference 70 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 62 dB 1 MSamples/s, 12 bit, single ended, VDD reference 64 dB 1 MSamples/s, 12 bit, differential, internal 1.25V reference 60 dB 1 MSamples/s, 12 bit, differential, internal 2.5V reference 64 dB 1 MSamples/s, 12 bit, differential, 5V reference 54 dB 1 MSamples/s, 12 bit, differential, VDD reference 66 dB 1 MSamples/s, 12 bit, differential, 2xVDD reference 68 dB 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 61 dB 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 65 dB 200 kSamples/s, 12 bit, single ended, VDD reference 66 dB 200 kSamples/s, 12 bit, differential, internal 1.25V reference 63 dB 200 kSamples/s, 12 bit, differential, internal 2.5V reference 66 dB 200 kSamples/s, 12 bit, differential, 5V reference 66 dB 65 dB 200 kSamples/s, 12 bit, differential, VDD reference SINADADC Typ 200 kSamples/s, 12 bit, differential, VDD reference 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 29 63 62 www.silabs.com ...the world's most energy friendly microcontrollers Symbol SFDRADC Parameter Spurious-Free Dynamic Range (SFDR) Condition Min Unit 69 dB 1 MSamples/s, 12 bit, single ended, internal 1.25V reference 64 dBc 1 MSamples/s, 12 bit, single ended, internal 2.5V reference 76 dBc 1 MSamples/s, 12 bit, single ended, VDD reference 73 dBc 1 MSamples/s, 12 bit, differential, internal 1.25V reference 66 dBc 1 MSamples/s, 12 bit, differential, internal 2.5V reference 77 dBc 1 MSamples/s, 12 bit, differential, VDD reference 76 dBc 1 MSamples/s, 12 bit, differential, 2xVDD reference 75 dBc 1 MSamples/s, 12 bit, differential, 5V reference 69 dBc 200 kSamples/s, 12 bit, single ended, internal 1.25V reference 75 dBc 200 kSamples/s, 12 bit, single ended, internal 2.5V reference 75 dBc 200 kSamples/s, 12 bit, single ended, VDD reference 76 dBc 200 kSamples/s, 12 bit, differential, internal 1.25V reference 79 dBc 200 kSamples/s, 12 bit, differential, internal 2.5V reference 79 dBc 200 kSamples/s, 12 bit, differential, 5V reference 78 dBc 79 dBc 200 kSamples/s, 12 bit, differential, 2xVDD reference 79 dBc After calibration, single ended 0.3 mV 0.3 3 mV 68 Offset voltage After calibration, differential TGRADADCTH Max 200 kSamples/s, 12 bit, differential, 2xVDD reference 200 kSamples/s, 12 bit, differential, VDD reference VADCOFFSET Typ -3 Thermometer output gradient DNLADC Differential non-linearity (DNL) INLADC Integral non-linearity (INL), End point method MCADC No missing codes VDD= 3.0 V, external 2.5V reference 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 -1 1 11.999 30 -1.92 mV/°C -6.3 ADC Codes/ °C ±0.7 4 LSB ±1.2 ±3.0 LSB 12 bits www.silabs.com ...the world's most energy friendly microcontrollers Symbol GAINED OFFSETED Parameter Condition Min Typ Max 2 0.033 2 0.03 2 0.7 1.25V reference 0.01 2.5V reference 0.01 1.25V reference 0.2 Gain error drift Offset error drift 2 2.5V reference Unit 0.2 3 %/°C 3 %/°C 3 LSB/°C 3 LSB/°C 0.62 1 On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale input for chips that have the missing code issue. 2 Typical numbers given by abs(Mean) / (85 - 25). 3 Max number given by (abs(Mean) + 3x stddev) / (85 - 25). The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.17 (p. 31) and Figure 3.18 (p. 32) , respectively. Figure 3.17. Integral Non-Linearity (INL) Digital ouput code INL= | [(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2 N - 1 4095 4094 4093 4092 Actual ADC tranfer function before offset and gain correction Actual ADC tranfer function after offset and gain correction INL Error (End Point INL) 3 Ideal transfer curve 2 1 VOFFSET 0 Analog Input 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 31 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.18. Differential Non-Linearity (DNL) Digital ouput code DNL= | [(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2 N - 2 Full Scale Range 4095 4094 Example: Adjacent input value VD+ 1 corrresponds to digital output code D+ 1 4093 4092 Actual transfer function with one m issing code. Example: Input value VD corrresponds to digital output code D Code width = 2 LSB DNL= 1 LSB Ideal transfer curve 5 0.5 LSB Ideal spacing between two adjacent codes VLSBIDEAL= 1 LSB 4 3 2 1 Ideal 50% Transition Point Ideal Code Center 0 Analog Input 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 32 www.silabs.com ...the world's most energy friendly microcontrollers 3.10.1 Typical performance Figure 3.19. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 33 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.20. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 34 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.21. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C 1.25V Reference 2.5V Reference 2XVDDVSS Reference 5VDIFF Reference VDD Reference 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 35 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.22. ADC Absolute Offset, Common Mode = Vdd /2 5 2.0 Vref= 1V25 Vref= 2V5 Vref= 2XVDDVSS Vref= 5VDIFF Vref= VDD 4 1.5 2 Actual Offset [LSB] Actual Offset [LSB] 3 VRef= 1V25 VRef= 2V5 VRef= 2XVDDVSS VRef= 5VDIFF VRef= VDD 1 0 –1 1.0 0.5 0.0 –2 –0.5 –3 –4 2.0 2.2 2.4 2.6 2.8 3.0 Vdd (V) 3.2 3.4 3.6 –1.0 –40 3.8 Offset vs Supply Voltage, Temp = 25°C –15 5 25 Tem p (C) 45 65 85 Offset vs Temperature, Vdd = 3V Figure 3.23. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V 79.4 71 2XVDDVSS 70 1V25 79.2 Vdd 69 79.0 67 5VDIFF 2V5 66 SFDR [dB] SNR [dB] 68 Vdd 2V5 78.8 78.6 2XVDDVSS 78.4 65 78.2 64 63 –40 –15 5 25 Tem perature [°C] 45 65 5VDIFF 1V25 85 78.0 –40 Signal to Noise Ratio (SNR) 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 –15 5 25 Tem perature [°C] 45 65 85 Spurious-Free Dynamic Range (SFDR) 36 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.24. ADC Temperature sensor readout 2600 Vdd= 2.0 Vdd= 3 Vdd= 3.8 Sensor readout 2500 2400 2300 2200 2100 –40 –25 –15 –5 5 15 25 35 Tem perature [°C] 45 55 65 75 85 3.11 Digital Analog Converter (DAC) Table 3.15. DAC Symbol VDACOUT VDACCM Parameter Output voltage range Condition Min Typ 0 VDD V VDD voltage reference, differential -VDD VDD V 0 VDD V 1 500 kSamples/s, 12 bit IDAC 400 1 100 kSamples/s, 12 bit 200 1 1 kSamples/s 12 bit NORMAL SRDAC Sample rate fDAC DAC clock frequency 17 Clock cyckles per conversion tDACCONV Conversion time tDACSETTLE Settling time SNRDAC Signal to Noise Ratio (SNR) 1 µA 1 µA 1 µA 600 260 25 500 ksamples/s Continuous Mode CYCDACCONV Unit VDD voltage reference, single ended Output common mode voltage range Active current including references for 2 channels Max 1000 kHz Sample/Hold Mode 250 kHz Sample/Off Mode 250 kHz 2 2 µs 5 µs 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 58 dB 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 59 dB 500 kSamples/s, 12 bit, differential, internal 1.25V reference 58 dB 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 37 www.silabs.com ...the world's most energy friendly microcontrollers Symbol SNDRDAC SFDRDAC VDACOFFSET Parameter Signal to Noisepulse Distortion Ratio (SNDR) Spurious-Free Dynamic Range(SFDR) Condition Min Typ Max Unit 500 kSamples/s, 12 bit, differential, internal 2.5V reference 58 dB 500 kSamples/s, 12 bit, differential, VDD reference 59 dB 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 57 dB 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 54 dB 500 kSamples/s, 12 bit, differential, internal 1.25V reference 56 dB 500 kSamples/s, 12 bit, differential, internal 2.5V reference 53 dB 500 kSamples/s, 12 bit, differential, VDD reference 55 dB 500 kSamples/s, 12 bit, single ended, internal 1.25V reference 62 dBc 500 kSamples/s, 12 bit, single ended, internal 2.5V reference 56 dBc 500 kSamples/s, 12 bit, differential, internal 1.25V reference 61 dBc 500 kSamples/s, 12 bit, differential, internal 2.5V reference 55 dBc 500 kSamples/s, 12 bit, differential, VDD reference 60 dBc After calibration, single ended 2 12 mV After calibration, differential 2 mV Offset voltage DNLDAC Differential non-linearity ±1 LSB INLDAC Integral non-linearity ±5 LSB MCDAC No missing codes 12 bits 1 Measured with a static input code and no loading on the output. 3.12 Operational Amplifier (OPAMP) The electrical characteristics for the Operational Amplifiers are based on simulations. Table 3.16. OPAMP Symbol IOPAMP Parameter Active Current Condition Min Typ Max Unit (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, Unity Gain 350 405 µA (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, Unity Gain 95 115 µA 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 38 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1, Unity Gain GOL GBWOPAMP PMOPAMP Open Loop Gain Gain Bandwidth Product Phase Margin RINPUT Input Resistance RLOAD Load Resistance ILOAD_DC DC Load Current VINPUT Input Voltage VOUTPUT 17 µA (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 101 dB (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 98 dB (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 91 dB (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 6.1 MHz (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 1.8 MHz (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 0.25 MHz (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, CL=75 pF 64 ° (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, CL=75 pF 58 ° (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1, CL=75 pF 58 ° 100 200 Ohm OPAxHCMDIS=0 VSS VDD V OPAxHCMDIS=1 VSS VDD-1.2 V VSS VDD V Output Voltage -13 0 11 mV 1 mV Input Offset Voltage VOFFSET_DRIFT Input Offset Voltage Drift NOPAMP Mohm 11 mA Unity Gain, VSS<Vin<VDD-1.2, OPAxHCMDIS=1 SROPAMP Unit 13 Unity Gain, VSS<Vin<VDD, OPAxHCMDIS=0 VOFFSET Max Slew Rate Voltage Noise 0.02 mV/°C (OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0 3.2 V/µs (OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1 0.8 V/µs (OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1 0.1 V/µs Vout=1V, RESSEL=0, 0.1 Hz<f<10 kHz, OPAxHCMDIS=0 101 µVRMS Vout=1V, RESSEL=0, 0.1 Hz<f<10 kHz, OPAxHCMDIS=1 141 µVRMS 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 39 www.silabs.com ...the world's most energy friendly microcontrollers Symbol Parameter Condition Min Typ Max Unit Vout=1V, RESSEL=0, 0.1 Hz<f<1 MHz, OPAxHCMDIS=0 196 µVRMS Vout=1V, RESSEL=0, 0.1 Hz<f<1 MHz, OPAxHCMDIS=1 229 µVRMS RESSEL=7, 0.1 Hz<f<10 kHz, OPAxHCMDIS=0 1230 µVRMS RESSEL=7, 0.1 Hz<f<10 kHz, OPAxHCMDIS=1 2130 µVRMS RESSEL=7, 0.1 Hz<f<1 MHz, OPAxHCMDIS=0 1630 µVRMS RESSEL=7, 0.1 Hz<f<1 MHz, OPAxHCMDIS=1 2590 µVRMS Figure 3.25. OPAMP Common Mode Rejection Ratio Figure 3.26. OPAMP Positive Power Supply Rejection Ratio 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 40 www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.27. OPAMP Negative Power Supply Rejection Ratio Figure 3.28. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V Figure 3.29. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 41 www.silabs.com ...the world's most energy friendly microcontrollers 3.13 Analog Comparator (ACMP) Table 3.17. ACMP Symbol Parameter VACMPIN Input voltage range 0 VDD V VACMPCM ACMP Common Mode voltage range 0 VDD V IACMP IACMPREF Active current Current consumption of internal voltage reference Condition Min Typ Max Unit BIASPROG=0b0000, FULLBIAS=0 and HALFBIAS=1 in ACMPn_CTRL register 0.1 0.6 µA BIASPROG=0b1111, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register 2.87 12 µA BIASPROG=0b1111, FULLBIAS=1 and HALFBIAS=0 in ACMPn_CTRL register 250 520 µA Internal voltage reference off. Using external voltage reference 0 µA Internal voltage reference 5 µA 0 12 mV VACMPOFFSET Offset voltage BIASPROG= 0b1010, FULLBIAS=0 and HALFBIAS=0 in ACMPn_CTRL register VACMPHYST ACMP hysteresis Programmable 17 mV CSRESSEL=0b00 in ACMPn_INPUTSEL 43 kOhm CSRESSEL=0b01 in ACMPn_INPUTSEL 78 kOhm CSRESSEL=0b10 in ACMPn_INPUTSEL 111 kOhm CSRESSEL=0b11 in ACMPn_INPUTSEL 145 kOhm RCSRES tACMPSTART Capacitive Sense Internal Resistance Startup time -12 10 µs The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in Equation 3.1 (p. 42) . IACMPREF is zero if an external voltage reference is used. Total ACMP Active Current IACMPTOTAL = IACMP + IACMPREF 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 42 (3.1) www.silabs.com ...the world's most energy friendly microcontrollers Figure 3.30. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 4.5 2.5 HYSTSEL= 0.0 HYSTSEL= 2.0 HYSTSEL= 4.0 HYSTSEL= 6.0 4.0 3.5 Response Tim e [us] Current [uA] 2.0 1.5 1.0 3.0 2.5 2.0 1.5 1.0 0.5 0.5 0.0 4 8 ACMP_CTRL_BIASPROG 0 0.0 12 Current consumption, HYSTSEL = 4 0 2 4 6 8 10 ACMP_CTRL_BIASPROG 12 14 Response time 100 BIASPROG= 0.0 BIASPROG= 4.0 BIASPROG= 8.0 BIASPROG= 12.0 Hysteresis [m V] 80 60 40 20 0 0 1 2 4 3 ACMP_CTRL_HYSTSEL 5 6 7 Hysteresis 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 43 www.silabs.com ...the world's most energy friendly microcontrollers 3.14 Voltage Comparator (VCMP) Table 3.18. VCMP Symbol Parameter VVCMPIN Input voltage range VDD V VVCMPCM VCMP Common Mode voltage range VDD V IVCMP Condition Min Typ Max Unit BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register 0.3 0.6 µA BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0. 22 30 µA NORMAL 10 µs Active current tVCMPREF Startup time reference generator VVCMPOFFSET Offset voltage Single ended -230 Differential VVCMPHYST VCMP hysteresis tVCMPSTART Startup time -40 190 mV 10 mV 40 mV 10 µs The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation: VCMP Trigger Level as a Function of Level Setting VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL (3.2) 3.15 I2C Table 3.19. I2C Standard-mode (Sm) Symbol Parameter Min Typ 0 Max Unit 1 fSCL SCL clock frequency tLOW SCL clock low time 4.7 µs tHIGH SCL clock high time 4.0 µs tSU,DAT SDA set-up time 250 ns tHD,DAT SDA hold time tSU,STA Repeated START condition set-up time 4.7 µs tHD,STA (Repeated) START condition hold time 4.0 µs tSU,STO STOP condition set-up time 4.0 µs tBUF Bus free time between a STOP and START condition 4.7 µs 8 100 2,3 3450 kHz ns 1 For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32GG Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10 [s] * fHFPERCLK [Hz]) - 4). 2 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 44 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.20. I2C Fast-mode (Fm) Symbol Parameter Min Typ Max Unit fSCL SCL clock frequency tLOW SCL clock low time 1.3 µs tHIGH SCL clock high time 0.6 µs tSU,DAT SDA set-up time 100 ns tHD,DAT SDA hold time tSU,STA Repeated START condition set-up time 0.6 µs tHD,STA (Repeated) START condition hold time 0.6 µs tSU,STO STOP condition set-up time 0.6 µs tBUF Bus free time between a STOP and START condition 1.3 µs 1 0 400 2,3 8 900 kHz ns 1 For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32GG Reference Manual. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW). 3 -9 When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10 [s] * fHFPERCLK [Hz]) - 4). 2 Table 3.21. I2C Fast-mode Plus (Fm+) Symbol Parameter Min Typ fSCL SCL clock frequency tLOW SCL clock low time 0.5 µs tHIGH SCL clock high time 0.26 µs tSU,DAT SDA set-up time 50 ns tHD,DAT SDA hold time 8 ns tSU,STA Repeated START condition set-up time 0.26 µs tHD,STA (Repeated) START condition hold time 0.26 µs tSU,STO STOP condition set-up time 0.26 µs tBUF Bus free time between a STOP and START condition 0.5 µs 0 Max Unit 1 1000 kHz 1 For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32GG Reference Manual. 3.16 USART SPI Figure 3.31. SPI Master Timing CS t CS_MO t SCKL_MO SCLK CLKPOL = 0 t SCLK SCLK CLKPOL = 1 MOSI t SU_MI t H_MI MISO 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 45 www.silabs.com ...the world's most energy friendly microcontrollers Table 3.22. SPI Master Timing Symbol Parameter tSCLK 1 2 SCLK period Condition Min Typ Max Unit 2 * tHFPER- ns CLK tCS_MO 1 2 CS to MOSI -2.00 1.00 ns tSCLK_MO 1 2 SCLK to MOSI -4.00 3.00 ns IOVDD = 1.98 V 36.00 ns tSU_MI 1 2 MISO setup time IOVDD = 3.0 V 29.00 ns -4.00 ns tH_MI 1 2 MISO hold time 1 Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0) Measurement done at 10% and 90% of VDD (figure shows 50% of VDD) 2 Figure 3.32. SPI Slave Timing CS t CS_ACT_MI t CS_DIS_MI SCLK CLKPOL = 0 SCLK CLKPOL = 1 t SCLK_HI t SU_MO t SCLK_LO t SCLK t H_MO MOSI t SCLK_MI MISO Table 3.23. SPI Slave Timing Symbol Parameter tSCLK_sl 1 2 SCKL period Min Typ Max Unit 2 * tHFPER- ns CLK tSCLK_hi 1 2 SCLK high period 3 * tHFPER- ns CLK tSCLK_lo 1 2 SCLK low period 3 * tHFPER- ns CLK tCS_ACT_MI 1 2 CS active to MISO 4.00 30.00 ns tCS_DIS_MI 1 2 CS disable to MISO 4.00 30.00 ns tSU_MO 1 2 MOSI setup time 4.00 ns tH_MO 1 2 MOSI hold time 2 + 2* tHF- ns PERCLK tSCLK_MI 1 2 SCLK to MISO 9 + tHFPERCLK 36 + 2*tHF- ns PERCLK 1 Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0) Measurement done at 10% and 90% of VDD (figure shows 50% of VDD) 2 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 46 www.silabs.com ...the world's most energy friendly microcontrollers 3.17 Digital Peripherals Table 3.24. Digital Peripherals Symbol Parameter Condition IUSART USART current USART idle current, clock enabled 4.9 µA/ MHz IUART UART current UART idle current, clock enabled 3.4 µA/ MHz ILEUART LEUART current LEUART idle current, clock enabled 140 nA II2C I2C current I2C idle current, clock enabled 6.1 µA/ MHz ITIMER TIMER current TIMER_0 idle current, clock enabled 6.9 µA/ MHz ILETIMER LETIMER current LETIMER idle current, clock enabled 119 nA IPCNT PCNT current PCNT idle current, clock enabled 54 nA IRTC RTC current RTC idle current, clock enabled 54 nA IAES AES current AES idle current, clock enabled 3.2 µA/ MHz IGPIO GPIO current GPIO idle current, clock enabled 3.7 µA/ MHz IPRS PRS current PRS idle current 3.5 µA/ MHz IDMA DMA current Clock enable 11.0 µA/ MHz 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 Min 47 Typ Max Unit www.silabs.com ...the world's most energy friendly microcontrollers 4 Pinout and Package Note Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32GG232. 4.1 Pinout The EFM32GG232 pinout is shown in Figure 4.1 (p. 48) and Table 4.1 (p. 48). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question. Figure 4.1. EFM32GG232 Pinout (top view, not to scale) Table 4.1. Device Pinout Pin Alternate Functionality / Description Pin # QFP64 Pin# and Name Pin Name Analog 1 PA0 TIM0_CC0 #0/1/4 I2C0_SDA #0 LEU0_RX #4 PRS_CH0 #0 GPIO_EM4WU0 2 PA1 TIM0_CC1 #0/1 I2C0_SCL #0 CMU_CLK1 #0 PRS_CH1 #0 3 PA2 TIM0_CC2 #0/1 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 Timers Communication Other 48 CMU_CLK0 #0 www.silabs.com ...the world's most energy friendly microcontrollers Pin # QFP64 Pin# and Name Pin Alternate Functionality / Description Pin Name Analog Timers Communication Other ETM_TD0 #3 4 PA3 TIM0_CDTI0 #0 LES_ALTEX2 #0 ETM_TD1 #3 5 PA4 TIM0_CDTI1 #0 LES_ALTEX3 #0 ETM_TD2 #3 6 PA5 TIM0_CDTI2 #0 LEU1_TX #1 LES_ALTEX4 #0 ETM_TD3 #3 7 IOVDD_0 8 VSS 9 PC0 ACMP0_CH0 DAC0_OUT0ALT #0/ OPAMP_OUT0ALT TIM0_CC1 #4 PCNT0_S0IN #2 US0_TX #5 US1_TX #0 I2C0_SDA #4 LES_CH0 #0 PRS_CH2 #0 10 PC1 ACMP0_CH1 DAC0_OUT0ALT #1/ OPAMP_OUT0ALT TIM0_CC2 #4 PCNT0_S1IN #2 US0_RX #5 US1_RX #0 I2C0_SCL #4 LES_CH1 #0 PRS_CH3 #0 11 PC2 ACMP0_CH2 DAC0_OUT0ALT #2/ OPAMP_OUT0ALT TIM0_CDTI0 #4 US2_TX #0 LES_CH2 #0 12 PC3 ACMP0_CH3 DAC0_OUT0ALT #3/ OPAMP_OUT0ALT TIM0_CDTI1 #4 US2_RX #0 LES_CH3 #0 13 PC4 ACMP0_CH4 OPAMP_P0 TIM0_CDTI2 #4 LETIM0_OUT0 #3 PCNT1_S0IN #0 US2_CLK #0 I2C1_SDA #0 LES_CH4 #0 14 PC5 ACMP0_CH5 OPAMP_N0 LETIM0_OUT1 #3 PCNT1_S1IN #0 US2_CS #0 I2C1_SCL #0 LES_CH5 #0 15 PB7 LFXTAL_P TIM1_CC0 #3 US0_TX #4 US1_CLK #0 16 PB8 LFXTAL_N TIM1_CC1 #3 US0_RX #4 US1_CS #0 17 PA8 TIM2_CC0 #0 18 PA9 TIM2_CC1 #0 19 PA10 TIM2_CC2 #0 20 RESETn 21 PB11 22 VSS 23 AVDD_1 24 PB13 HFXTAL_P US0_CLK #4/5 LEU0_TX #1 25 PB14 HFXTAL_N US0_CS #4/5 LEU0_RX #1 26 IOVDD_3 Digital IO power supply 3. 27 AVDD_0 Analog power supply 0. 28 PD0 ADC0_CH0 DAC0_OUT0ALT #4/ OPAMP_OUT0ALT OPAMP_OUT2 #1 PCNT2_S0IN #0 US1_TX #1 29 PD1 ADC0_CH1 DAC0_OUT1ALT #4/ OPAMP_OUT1ALT TIM0_CC0 #3 PCNT2_S1IN #0 US1_RX #1 Digital IO power supply 0. Ground. Reset input, active low. To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. DAC0_OUT0 / OPAMP_OUT0 LETIM0_OUT0 #1 TIM1_CC2 #3 I2C1_SDA #1 Ground. Analog power supply 1. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 49 DBG_SWO #2 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # QFP64 Pin# and Name Pin Name Analog Timers Communication Other 30 PD2 ADC0_CH2 TIM0_CC1 #3 US1_CLK #1 DBG_SWO #3 31 PD3 ADC0_CH3 OPAMP_N2 TIM0_CC2 #3 US1_CS #1 ETM_TD1 #0/2 32 PD4 ADC0_CH4 OPAMP_P2 LEU0_TX #0 ETM_TD2 #0/2 33 PD5 ADC0_CH5 OPAMP_OUT2 #0 LEU0_RX #0 ETM_TD3 #0/2 34 PD6 ADC0_CH6 OPAMP_P1 LETIM0_OUT0 #0 TIM1_CC0 #4 PCNT0_S0IN #3 US1_RX #2 I2C0_SDA #1 LES_ALTEX0 #0 ACMP0_O #2 ETM_TD0 #0 35 PD7 ADC0_CH7 OPAMP_N1 LETIM0_OUT1 #0 TIM1_CC1 #4 PCNT0_S1IN #3 US1_TX #2 I2C0_SCL #1 CMU_CLK0 #2 LES_ALTEX1 #0 ACMP1_O #2 ETM_TCLK #0 36 PD8 BU_VIN 37 PC6 ACMP0_CH6 I2C0_SDA #2 LEU1_TX #0 LES_CH6 #0 ETM_TCLK #2 38 PC7 ACMP0_CH7 I2C0_SCL #2 LEU1_RX #0 LES_CH7 #0 ETM_TD0 #2 39 VDD_DREG Power supply for on-chip voltage regulator. 40 DECOUPLE Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin. 41 PC8 ACMP1_CH0 TIM2_CC0 #2 US0_CS #2 LES_CH8 #0 42 PC9 ACMP1_CH1 TIM2_CC1 #2 US0_CLK #2 LES_CH9 #0 GPIO_EM4WU2 43 PC10 ACMP1_CH2 TIM2_CC2 #2 US0_RX #2 LES_CH10 #0 44 PC11 ACMP1_CH3 US0_TX #2 LES_CH11 #0 45 PC12 ACMP1_CH4 DAC0_OUT1ALT #0/ OPAMP_OUT1ALT 46 PC13 ACMP1_CH5 DAC0_OUT1ALT #1/ OPAMP_OUT1ALT TIM0_CDTI0 #1/3 TIM1_CC0 #0 TIM1_CC2 #4 PCNT0_S0IN #0 47 PC14 ACMP1_CH6 DAC0_OUT1ALT #2/ OPAMP_OUT1ALT TIM0_CDTI1 #1/3 TIM1_CC1 #0 PCNT0_S1IN #0 US0_CS #3 LES_CH14 #0 48 PC15 ACMP1_CH7 DAC0_OUT1ALT #3/ OPAMP_OUT1ALT TIM0_CDTI2 #1/3 TIM1_CC2 #0 US0_CLK #3 LES_CH15 #0 DBG_SWO #1 49 PF0 TIM0_CC0 #5 LETIM0_OUT0 #2 US1_CLK #2 I2C0_SDA #5 LEU0_TX #3 DBG_SWCLK #0/1/2/3 50 PF1 TIM0_CC1 #5 LETIM0_OUT1 #2 US1_CS #2 I2C0_SCL #5 LEU0_RX #3 DBG_SWDIO #0/1/2/3 GPIO_EM4WU3 51 PF2 TIM0_CC2 #5 LEU0_TX #4 ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4 52 PF3 TIM0_CDTI0 #2/5 PRS_CH0 #1 ETM_TD3 #1 53 PF4 TIM0_CDTI1 #2/5 PRS_CH1 #1 54 PF5 TIM0_CDTI2 #2/5 PRS_CH2 #1 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 CMU_CLK1 #1 CMU_CLK0 #1 LES_CH12 #0 50 LES_CH13 #0 www.silabs.com ...the world's most energy friendly microcontrollers Pin Alternate Functionality / Description Pin # QFP64 Pin# and Name Pin Name Analog Timers Communication Other 55 IOVDD_5 56 VSS 57 PE8 PCNT2_S0IN #1 58 PE9 PCNT2_S1IN #1 59 PE10 TIM1_CC0 #1 US0_TX #0 BOOT_TX 60 PE11 TIM1_CC1 #1 US0_RX #0 LES_ALTEX5 #0 BOOT_RX 61 PE12 TIM1_CC2 #1 US0_RX #3 US0_CLK #0 I2C0_SDA #6 CMU_CLK1 #2 LES_ALTEX6 #0 62 PE13 US0_TX #3 US0_CS #0 I2C0_SCL #6 LES_ALTEX7 #0 ACMP0_O #0 GPIO_EM4WU5 63 PE14 TIM3_CC0 #0 LEU0_TX #2 64 PE15 TIM3_CC1 #0 LEU0_RX #2 Digital IO power supply 5. Ground. PRS_CH3 #1 4.2 Alternate Functionality Pinout A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in Table 4.2 (p. 51) . The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings. Note Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0. Table 4.2. Alternate functionality overview Alternate Functionality LOCATION 0 1 2 3 4 5 6 Description ACMP0_CH0 PC0 Analog comparator ACMP0, channel 0. ACMP0_CH1 PC1 Analog comparator ACMP0, channel 1. ACMP0_CH2 PC2 Analog comparator ACMP0, channel 2. ACMP0_CH3 PC3 Analog comparator ACMP0, channel 3. ACMP0_CH4 PC4 Analog comparator ACMP0, channel 4. ACMP0_CH5 PC5 Analog comparator ACMP0, channel 5. ACMP0_CH6 PC6 Analog comparator ACMP0, channel 6. ACMP0_CH7 PC7 Analog comparator ACMP0, channel 7. ACMP0_O PE13 ACMP1_CH0 PC8 Analog comparator ACMP1, channel 0. ACMP1_CH1 PC9 Analog comparator ACMP1, channel 1. ACMP1_CH2 PC10 Analog comparator ACMP1, channel 2. ACMP1_CH3 PC11 Analog comparator ACMP1, channel 3. ACMP1_CH4 PC12 Analog comparator ACMP1, channel 4. PD6 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 Analog comparator ACMP0, digital output. 51 www.silabs.com ...the world's most energy friendly microcontrollers Alternate Functionality LOCATION 0 1 2 3 4 5 6 Description ACMP1_CH5 PC13 Analog comparator ACMP1, channel 5. ACMP1_CH6 PC14 Analog comparator ACMP1, channel 6. ACMP1_CH7 PC15 Analog comparator ACMP1, channel 7. ACMP1_O PF2 ADC0_CH0 PD0 Analog to digital converter ADC0, input channel number 0. ADC0_CH1 PD1 Analog to digital converter ADC0, input channel number 1. ADC0_CH2 PD2 Analog to digital converter ADC0, input channel number 2. ADC0_CH3 PD3 Analog to digital converter ADC0, input channel number 3. ADC0_CH4 PD4 Analog to digital converter ADC0, input channel number 4. ADC0_CH5 PD5 Analog to digital converter ADC0, input channel number 5. ADC0_CH6 PD6 Analog to digital converter ADC0, input channel number 6. ADC0_CH7 PD7 Analog to digital converter ADC0, input channel number 7. BOOT_RX PE11 Bootloader RX. BOOT_TX PE10 Bootloader TX. BU_VIN PD8 Battery input for Backup Power Domain CMU_CLK0 PA2 PC12 PD7 Clock Management Unit, clock output number 0. CMU_CLK1 PA1 PD8 PE12 Clock Management Unit, clock output number 1. OPAMP_N0 PC5 Operational Amplifier 0 external negative input. OPAMP_N1 PD7 Operational Amplifier 1 external negative input. OPAMP_N2 PD3 Operational Amplifier 2 external negative input. DAC0_OUT0 / OPAMP_OUT0 PB11 Digital to Analog Converter DAC0_OUT0 / OPAMP output channel number 0. PD7 Analog comparator ACMP1, digital output. DAC0_OUT0ALT / PC0 OPAMP_OUT0ALT PC1 PC2 PC3 PD0 Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0. DAC0_OUT1ALT / PC12 OPAMP_OUT1ALT PC13 PC14 PC15 PD1 Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1. OPAMP_OUT2 PD5 PD0 OPAMP_P0 PC4 Operational Amplifier 0 external positive input. OPAMP_P1 PD6 Operational Amplifier 1 external positive input. OPAMP_P2 PD4 Operational Amplifier 2 external positive input. DBG_SWCLK PF0 PF0 PF0 PF0 DBG_SWDIO PF1 PF1 PF1 PF1 DBG_SWO PF2 PC15 PD1 PD2 ETM_TCLK PD7 PC6 ETM_TD0 PD6 PC7 PA2 Embedded Trace Module ETM data 0. ETM_TD1 PD3 PD3 PA3 Embedded Trace Module ETM data 1. ETM_TD2 PD4 PD4 PA4 Embedded Trace Module ETM data 2. ETM_TD3 PD5 PD5 PA5 Embedded Trace Module ETM data 3. GPIO_EM4WU0 PA0 Operational Amplifier 2 output. Debug-interface Serial Wire clock input. Note that this function is enabled to pin out of reset, and has a built-in pull down. Debug-interface Serial Wire data input / output. Note that this function is enabled to pin out of reset, and has a built-in pull up. Debug-interface Serial Wire viewer Output. PF3 Note that this function is not enabled after reset, and must be enabled by software to be used. Embedded Trace Module ETM clock . 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 Pin can be used to wake the system up from EM4 52 www.silabs.com ...the world's most energy friendly microcontrollers Alternate Functionality LOCATION 0 1 2 3 4 5 6 Description GPIO_EM4WU2 PC9 Pin can be used to wake the system up from EM4 GPIO_EM4WU3 PF1 Pin can be used to wake the system up from EM4 GPIO_EM4WU4 PF2 Pin can be used to wake the system up from EM4 GPIO_EM4WU5 PE13 Pin can be used to wake the system up from EM4 HFXTAL_N PB14 High Frequency Crystal negative pin. Also used as external optional clock input pin. HFXTAL_P PB13 High Frequency Crystal positive pin. I2C0_SCL PA1 PD7 PC7 PC1 PF1 PE13 I2C0 Serial Clock Line input / output. I2C0_SDA PA0 PD6 PC6 PC0 PF0 PE12 I2C0 Serial Data input / output. I2C1_SCL PC5 I2C1_SDA PC4 LES_ALTEX0 PD6 LESENSE alternate exite output 0. LES_ALTEX1 PD7 LESENSE alternate exite output 1. LES_ALTEX2 PA3 LESENSE alternate exite output 2. LES_ALTEX3 PA4 LESENSE alternate exite output 3. LES_ALTEX4 PA5 LESENSE alternate exite output 4. LES_ALTEX5 PE11 LESENSE alternate exite output 5. LES_ALTEX6 PE12 LESENSE alternate exite output 6. LES_ALTEX7 PE13 LESENSE alternate exite output 7. LES_CH0 PC0 LESENSE channel 0. LES_CH1 PC1 LESENSE channel 1. LES_CH2 PC2 LESENSE channel 2. LES_CH3 PC3 LESENSE channel 3. LES_CH4 PC4 LESENSE channel 4. LES_CH5 PC5 LESENSE channel 5. LES_CH6 PC6 LESENSE channel 6. LES_CH7 PC7 LESENSE channel 7. LES_CH8 PC8 LESENSE channel 8. LES_CH9 PC9 LESENSE channel 9. LES_CH10 PC10 LESENSE channel 10. LES_CH11 PC11 LESENSE channel 11. LES_CH12 PC12 LESENSE channel 12. LES_CH13 PC13 LESENSE channel 13. LES_CH14 PC14 LESENSE channel 14. LES_CH15 PC15 LESENSE channel 15. LETIM0_OUT0 PD6 LETIM0_OUT1 PD7 LEU0_RX PD5 LEU0_TX PD4 LEU1_RX PC7 LEU1_TX PC6 I2C1 Serial Clock Line input / output. PB11 PB11 I2C1 Serial Data input / output. PF0 PC4 Low Energy Timer LETIM0, output channel 0. PF1 PC5 Low Energy Timer LETIM0, output channel 1. PB14 PE15 PF1 PA0 LEUART0 Receive input. PB13 PE14 PF0 PF2 LEUART0 Transmit output. Also used as receive input in half duplex communication. LEUART1 Receive input. LEUART1 Transmit output. Also used as receive input in half duplex communication. PA5 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 53 www.silabs.com ...the world's most energy friendly microcontrollers Alternate Functionality LOCATION 0 1 2 3 4 5 6 Description LFXTAL_N PB8 Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin. LFXTAL_P PB7 Low Frequency Crystal (typically 32.768 kHz) positive pin. PCNT0_S0IN PC13 PC0 PD6 Pulse Counter PCNT0 input number 0. PCNT0_S1IN PC14 PC1 PD7 Pulse Counter PCNT0 input number 1. PCNT1_S0IN PC4 Pulse Counter PCNT1 input number 0. PCNT1_S1IN PC5 Pulse Counter PCNT1 input number 1. PCNT2_S0IN PD0 PE8 Pulse Counter PCNT2 input number 0. PCNT2_S1IN PD1 PE9 Pulse Counter PCNT2 input number 1. PRS_CH0 PA0 PF3 Peripheral Reflex System PRS, channel 0. PRS_CH1 PA1 PF4 Peripheral Reflex System PRS, channel 1. PRS_CH2 PC0 PF5 Peripheral Reflex System PRS, channel 2. PRS_CH3 PC1 PE8 Peripheral Reflex System PRS, channel 3. TIM0_CC0 PA0 PA0 PD1 PA0 PF0 Timer 0 Capture Compare input / output channel 0. TIM0_CC1 PA1 PA1 PD2 PC0 PF1 Timer 0 Capture Compare input / output channel 1. TIM0_CC2 PA2 PA2 PD3 PC1 PF2 Timer 0 Capture Compare input / output channel 2. TIM0_CDTI0 PA3 PC13 PF3 PC13 PC2 PF3 Timer 0 Complimentary Deat Time Insertion channel 0. TIM0_CDTI1 PA4 PC14 PF4 PC14 PC3 PF4 Timer 0 Complimentary Deat Time Insertion channel 1. TIM0_CDTI2 PA5 PC15 PF5 PC15 PC4 PF5 Timer 0 Complimentary Deat Time Insertion channel 2. TIM1_CC0 PC13 PE10 PB7 PD6 Timer 1 Capture Compare input / output channel 0. TIM1_CC1 PC14 PE11 PB8 PD7 Timer 1 Capture Compare input / output channel 1. TIM1_CC2 PC15 PE12 PB11 PC13 Timer 1 Capture Compare input / output channel 2. TIM2_CC0 PA8 PC8 Timer 2 Capture Compare input / output channel 0. TIM2_CC1 PA9 PC9 Timer 2 Capture Compare input / output channel 1. TIM2_CC2 PA10 PC10 Timer 2 Capture Compare input / output channel 2. TIM3_CC0 PE14 Timer 3 Capture Compare input / output channel 0. TIM3_CC1 PE15 Timer 3 Capture Compare input / output channel 1. US0_CLK PE12 PC9 PC15 PB13 PB13 USART0 clock input / output. US0_CS PE13 PC8 PC14 PB14 PB14 USART0 chip select input / output. US0_RX PE11 PC10 PE12 PB8 PC1 USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO). USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. US0_TX PE10 PC11 PE13 PB7 PC0 USART0 Synchronous mode Master Output / Slave Input (MOSI). US1_CLK PB7 PD2 PF0 USART1 clock input / output. US1_CS PB8 PD3 PF1 USART1 chip select input / output. US1_RX PC1 PD1 PD6 USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO). USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. US1_TX PC0 PD0 PD7 USART1 Synchronous mode Master Output / Slave Input (MOSI). 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 54 www.silabs.com ...the world's most energy friendly microcontrollers Alternate LOCATION Functionality 0 1 2 3 4 5 6 Description US2_CLK PC4 USART2 clock input / output. US2_CS PC5 USART2 chip select input / output. US2_RX PC3 USART2 Asynchronous Receive. USART2 Synchronous mode Master Input / Slave Output (MISO). USART2 Asynchronous Transmit.Also used as receive input in half duplex communication. US2_TX PC2 USART2 Synchronous mode Master Output / Slave Input (MOSI). 4.3 GPIO Pinout Overview The specific GPIO pins available in EFM32GG232 is shown in Table 4.3 (p. 55) . Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0. Table 4.3. GPIO Pinout Port Pin 15 Pin 14 Pin 13 Pin 12 Pin 11 Pin 10 Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Port A - - - - - PA10 PA9 PA8 - - PA5 PA4 PA3 PA2 PA1 PA0 Port B - PB14 PB13 - PB11 - - PB8 PB7 - - - - - - - Port C PC15 PC14 PC13 PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 Port D - - - - - - - PD8 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 Port E PE15 PE14 PE13 PE12 PE11 PE10 PE9 PE8 - - - - - - - - Port F - - - - - - - - - - PF5 PF4 PF3 PF2 PF1 PF0 4.4 Opamp Pinout Overview The specific opamp terminals available in EFM32GG232 is shown in Figure 4.2 (p. 55) . Figure 4.2. Opamp Pinout PC4 PC5 PD4 PD3 PD6 PD7 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 OUT0ALT + OPA0 OUT0 + OPA2 OUT2 OUT1ALT + OPA1 OUT1 - 55 PB11 PB12 PC0 PC1 PC2 PC3 PC12 PC13 PC14 PC15 PD0 PD1 PD5 www.silabs.com ...the world's most energy friendly microcontrollers 4.5 TQFP64 Package Figure 4.3. TQFP64 Note: 1. 2. 3. 4. 5. All dimensions & tolerancing confirm to ASME Y14.5M-1994. The top package body size may be smaller than the bottom package body size. Datum 'A,B', and 'B' to be determined at datum plane 'H'. To be determined at seating place 'C'. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25mm per side. 'D1' and 'E1' are maximum plastic body size dimension including mold mismatch. Dimension 'D1' and 'E1' shall be determined at datum plane 'H'. 6. Detail of Pin 1 indicatifier are option all but must be located within the zone indicated. 7. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm 8. Exact shape of each corner is optional. 9. These dimension apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip. 10.All dimensions are in millimeters. Table 4.4. QFP64 (Dimensions in mm) DIM MIN NOM MAX DIM A - 1.10 1.20 L1 A1 0.05 - 0.15 R1 0.08 - - A2 0.95 1.00 1.05 R2 0.08 - 0.20 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 56 MIN NOM MAX - www.silabs.com ...the world's most energy friendly microcontrollers DIM MIN NOM MAX DIM MIN NOM MAX b 0.17 0.22 0.27 S 0.20 - - b1 0.17 0.20 0.23 θ 0° 3.5° 7° c 0.09 - 0.20 θ1 0° - - C1 0.09 - 0.16 θ2 11° 12° 13° θ3 11° 12° 13° D 12.0 BSC D1 10.0 BSC e 0.50 BSC E 12.0 BSC E1 10.0 BSC L 0.45 0.60 0.75 The TQFP64 Package is 10 by 10 mm in size and has a 0.5 mm pin pitch. The TQFP64 Package uses Nickel-Palladium-Gold preplated leadframe. All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb). For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 57 www.silabs.com ...the world's most energy friendly microcontrollers 5 PCB Layout and Soldering 5.1 Recommended PCB Layout Figure 5.1. TQFP64 PCB Land Pattern a p8 p7 p6 p1 b e c p2 p5 p3 p4 d Table 5.1. QFP64 PCB Land Pattern Dimensions (Dimensions in mm) Symbol Dim. (mm) Symbol Pin number Symbol Pin number a 1.60 P1 1 P6 48 b 0.30 P2 16 P7 49 c 0.50 P3 17 P8 64 d 11.50 P4 32 - - e 11.50 P5 33 - - 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 58 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.2. TQFP64 PCB Solder Mask a b e c d Table 5.2. QFP64 PCB Solder Mask Dimensions (Dimensions in mm) Symbol Dim. (mm) a 1.72 b 0.42 c 0.50 d 11.50 e 11.50 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 59 www.silabs.com ...the world's most energy friendly microcontrollers Figure 5.3. TQFP64 PCB Stencil Design a b e c d Table 5.3. QFP64 PCB Stencil Design Dimensions (Dimensions in mm) 1. 2. 3. 4. 5. 6. Symbol Dim. (mm) a 1.50 b 0.20 c 0.50 d 11.50 e 11.50 The drawings are not to scale. All dimensions are in millimeters. All drawings are subject to change without notice. The PCB Land Pattern drawing is in compliance with IPC-7351B. Stencil thickness 0.125 mm. For detailed pin-positioning, see Figure 4.3 (p. 56) . 5.2 Soldering Information The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 60 www.silabs.com ...the world's most energy friendly microcontrollers 6 Chip Marking, Revision and Errata 6.1 Chip Marking In the illustration below package fields and position are shown. Figure 6.1. Example Chip Marking (top view) 6.2 Revision The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 61) . 6.3 Errata Please see the errata document for EFM32GG232 for description and resolution of device erratas. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 61 www.silabs.com ...the world's most energy friendly microcontrollers 7 Revision History 7.1 Revision 1.40 March 21st, 2016 Added clarification on conditions for INLADC and DNLADC parameters. Reduced maximum and typical current consumption for all EM0 entries except 48 MHz in the Current Consumption table in the Electrical Characteristics section. Increased maximum specifications for EM2 current, EM3 current, and EM4 current in the Current Consumption table in the Electrical Characteristics section. Increased typical specification for EM2 and EM3 current at 85 C in the Current Consumption table in the Electrical Characteristics section. Added EM2, EM3, and EM4 current consumption vs. temperature graphs. Added a new EM2 entry and specified the existing specification is for EM0 for the BOD threshold on falling external supply voltage in the Power Management table in the Electrical Characteristics section. Reduced maximum input leakage current in the GPIO table in the Electrical Characteristics section. Added a maximum current consumption specification to the LFRCO table in the Electrical Characteristics section. Added maximum specifications for the active current including references for two channels to the DAC table in the Electrical Characteristics section. Increased the maximum specification for DAC offset voltage in the DAC table in the Electrical Characteristics section. Increased the typical specifications for active current with FULLBIAS=1 and capacitive sense internal resistance in the ACMP table in the Electrical Characteristics section. Added minimum and maximum specifications and updated the typical value for the VCMP offset voltage in the VCMP table in the Electrical Characteristics section. Removed the maximum specification and reduced the typical value for hysteresis in the VCMP table in the Electrical Characteristics section. Updated all graphs in the Electrical Characteristics section to display data for 2.0 V as the minimum voltage. 7.2 Revision 1.30 May 23rd, 2014 Removed "preliminary" markings Updated HFRCO figures. Corrected single power supply voltage minimum value from 1.85V to 1.98V. Updated Current Consumption information. Updated Power Management information. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 62 www.silabs.com ...the world's most energy friendly microcontrollers Updated GPIO information. Updated LFRCO information. Updated HFRCO information. Updated ULFRCO information. Updated ADC information. Updated DAC information. Updated OPAMP information. Updated ACMP information. Updated VCMP information. Added AUXHFRCO information. 7.3 Revision 1.21 November 21st, 2013 Updated figures. Updated errata-link. Updated chip marking. Added link to Environmental and Quality information. Re-added missing DAC-data. 7.4 Revision 1.20 September 30th, 2013 Added I2C characterization data. Added SPI characterization data. Corrected the DAC and OPAMP2 pin sharing information in the Alternate Functionality Pinout section. Corrected GPIO operating voltage from 1.8 V to 1.85 V. Updated that the EM2 current consumption test was carried out with only one RAM block enabled. Corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. Updated Environmental information. Updated trademark, disclaimer and contact information. Other minor corrections. 7.5 Revision 1.10 June 28th, 2013 Updated power requirements in the Power Management section. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 63 www.silabs.com ...the world's most energy friendly microcontrollers Removed minimum load capacitance figure and table. Added reference to application note. Other minor corrections. 7.6 Revision 1.00 September 11th, 2012 Updated the HFRCO 1 MHz band typical value to 1.2 MHz. Updated the HFRCO 7 MHz band typical value to 6.6 MHz. Other minor corrections. 7.7 Revision 0.98 May 25th, 2012 Corrected EM3 current consumption in the Electrical Characteristics section. 7.8 Revision 0.96 February 28th, 2012 Added reference to errata document. Corrected TQFP64 package drawing. Updated PCB land pattern, solder mask and stencil design. 7.9 Revision 0.95 September 28th, 2011 Flash configuration for Giant Gecko is now 1024KB or 512KB. For flash sizes below 512KB, see the Leopard Gecko Family. Corrected operating voltage from 1.8 V to 1.85 V. Added rising POR level to Electrical Characteristics section. Updated Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup. Added Gain error drift and Offset error drift to ADC table. Added Opamp pinout overview. Added reference to errata document. Corrected TQFP64 package drawing. Updated PCB land pattern, solder mask and stencil design. 7.10 Revision 0.90 June 29th, 2011 Initial preliminary release. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 64 www.silabs.com ...the world's most energy friendly microcontrollers A Disclaimer and Trademarks A.1 Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. A.2 Trademark Information Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 65 www.silabs.com ...the world's most energy friendly microcontrollers B Contact Information Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Please visit the Silicon Labs Technical Support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 66 www.silabs.com ...the world's most energy friendly microcontrollers Table of Contents 1. Ordering Information .................................................................................................................................. 2 2. System Summary ...................................................................................................................................... 3 2.1. System Introduction ......................................................................................................................... 3 2.2. Configuration Summary .................................................................................................................... 7 2.3. Memory Map ................................................................................................................................. 8 3. Electrical Characteristics ............................................................................................................................. 9 3.1. Test Conditions .............................................................................................................................. 9 3.2. Absolute Maximum Ratings .............................................................................................................. 9 3.3. General Operating Conditions ........................................................................................................... 9 3.4. Current Consumption ..................................................................................................................... 10 3.5. Transition between Energy Modes .................................................................................................... 12 3.6. Power Management ....................................................................................................................... 12 3.7. Flash .......................................................................................................................................... 13 3.8. General Purpose Input Output ......................................................................................................... 14 3.9. Oscillators .................................................................................................................................... 22 3.10. Analog Digital Converter (ADC) ...................................................................................................... 27 3.11. Digital Analog Converter (DAC) ...................................................................................................... 37 3.12. Operational Amplifier (OPAMP) ...................................................................................................... 38 3.13. Analog Comparator (ACMP) .......................................................................................................... 42 3.14. Voltage Comparator (VCMP) ......................................................................................................... 44 3.15. I2C ........................................................................................................................................... 44 3.16. USART SPI ................................................................................................................................ 45 3.17. Digital Peripherals ....................................................................................................................... 47 4. Pinout and Package ................................................................................................................................. 48 4.1. Pinout ......................................................................................................................................... 48 4.2. Alternate Functionality Pinout .......................................................................................................... 51 4.3. GPIO Pinout Overview ................................................................................................................... 55 4.4. Opamp Pinout Overview ................................................................................................................. 55 4.5. TQFP64 Package .......................................................................................................................... 56 5. PCB Layout and Soldering ........................................................................................................................ 58 5.1. Recommended PCB Layout ............................................................................................................ 58 5.2. Soldering Information ..................................................................................................................... 60 6. Chip Marking, Revision and Errata .............................................................................................................. 61 6.1. Chip Marking ................................................................................................................................ 61 6.2. Revision ...................................................................................................................................... 61 6.3. Errata ......................................................................................................................................... 61 7. Revision History ...................................................................................................................................... 62 7.1. Revision 1.40 ............................................................................................................................... 62 7.2. Revision 1.30 ............................................................................................................................... 62 7.3. Revision 1.21 ............................................................................................................................... 63 7.4. Revision 1.20 ............................................................................................................................... 63 7.5. Revision 1.10 ............................................................................................................................... 63 7.6. Revision 1.00 ............................................................................................................................... 64 7.7. Revision 0.98 ............................................................................................................................... 64 7.8. Revision 0.96 ............................................................................................................................... 64 7.9. Revision 0.95 ............................................................................................................................... 64 7.10. Revision 0.90 .............................................................................................................................. 64 A. Disclaimer and Trademarks ....................................................................................................................... 65 A.1. Disclaimer ................................................................................................................................... 65 A.2. Trademark Information ................................................................................................................... 65 B. Contact Information ................................................................................................................................. 66 B.1. ................................................................................................................................................. 66 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 67 www.silabs.com ...the world's most energy friendly microcontrollers List of Figures 2.1. Block Diagram ....................................................................................................................................... 3 2.2. EFM32GG232 Memory Map with largest RAM and Flash sizes ........................................................................ 8 3.1. EM2 current consumption. RTC prescaled to 1 Hz, 32.768 kHz LFRCO. ......................................................... 11 3.2. EM3 current consumption. ..................................................................................................................... 11 3.3. EM4 current consumption. ..................................................................................................................... 12 3.4. Typical Low-Level Output Current, 2V Supply Voltage .................................................................................. 16 3.5. Typical High-Level Output Current, 2V Supply Voltage ................................................................................. 17 3.6. Typical Low-Level Output Current, 3V Supply Voltage .................................................................................. 18 3.7. Typical High-Level Output Current, 3V Supply Voltage ................................................................................. 19 3.8. Typical Low-Level Output Current, 3.8V Supply Voltage ............................................................................... 20 3.9. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................... 21 3.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 23 3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 24 3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 24 3.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 25 3.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 25 3.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 25 3.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 26 3.17. Integral Non-Linearity (INL) ................................................................................................................... 31 3.18. Differential Non-Linearity (DNL) .............................................................................................................. 32 3.19. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 33 3.20. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 34 3.21. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 35 3.22. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 36 3.23. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 36 3.24. ADC Temperature sensor readout ......................................................................................................... 37 3.25. OPAMP Common Mode Rejection Ratio ................................................................................................. 40 3.26. OPAMP Positive Power Supply Rejection Ratio ........................................................................................ 40 3.27. OPAMP Negative Power Supply Rejection Ratio ...................................................................................... 41 3.28. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V ..................................................................... 41 3.29. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) .......................................................................... 41 3.30. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 43 3.31. SPI Master Timing ............................................................................................................................... 45 3.32. SPI Slave Timing ................................................................................................................................ 46 4.1. EFM32GG232 Pinout (top view, not to scale) ............................................................................................. 48 4.2. Opamp Pinout ...................................................................................................................................... 55 4.3. TQFP64 .............................................................................................................................................. 56 5.1. TQFP64 PCB Land Pattern ..................................................................................................................... 58 5.2. TQFP64 PCB Solder Mask ..................................................................................................................... 59 5.3. TQFP64 PCB Stencil Design ................................................................................................................... 60 6.1. Example Chip Marking (top view) ............................................................................................................. 61 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 68 www.silabs.com ...the world's most energy friendly microcontrollers List of Tables 1.1. Ordering Information ................................................................................................................................ 2 2.1. Configuration Summary ............................................................................................................................ 7 3.1. Absolute Maximum Ratings ...................................................................................................................... 9 3.2. General Operating Conditions ................................................................................................................... 9 3.3. Current Consumption ............................................................................................................................. 10 3.4. Energy Modes Transitions ...................................................................................................................... 12 3.5. Power Management ............................................................................................................................... 13 3.6. Flash .................................................................................................................................................. 13 3.7. GPIO .................................................................................................................................................. 14 3.8. LFXO .................................................................................................................................................. 22 3.9. HFXO ................................................................................................................................................. 22 3.10. LFRCO .............................................................................................................................................. 23 3.11. HFRCO ............................................................................................................................................. 23 3.12. AUXHFRCO ....................................................................................................................................... 26 3.13. ULFRCO ............................................................................................................................................ 27 3.14. ADC .................................................................................................................................................. 27 3.15. DAC .................................................................................................................................................. 37 3.16. OPAMP ............................................................................................................................................. 38 3.17. ACMP ............................................................................................................................................... 42 3.18. VCMP ............................................................................................................................................... 44 3.19. I2C Standard-mode (Sm) ...................................................................................................................... 44 3.20. I2C Fast-mode (Fm) ............................................................................................................................ 45 3.21. I2C Fast-mode Plus (Fm+) .................................................................................................................... 45 3.22. SPI Master Timing ............................................................................................................................... 46 3.23. SPI Slave Timing ................................................................................................................................ 46 3.24. Digital Peripherals ............................................................................................................................... 47 4.1. Device Pinout ....................................................................................................................................... 48 4.2. Alternate functionality overview ................................................................................................................ 51 4.3. GPIO Pinout ........................................................................................................................................ 55 4.4. QFP64 (Dimensions in mm) .................................................................................................................... 56 5.1. QFP64 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 58 5.2. QFP64 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 59 5.3. QFP64 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 60 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 69 www.silabs.com ...the world's most energy friendly microcontrollers List of Equations 3.1. Total ACMP Active Current ..................................................................................................................... 42 3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 44 2016-03-21 - EFM32GG232FXX - d0125_Rev1.40 70 www.silabs.com Simplicity Studio One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux! IoT Portfolio www.silabs.com/IoT SW/HW Quality Support and Community www.silabs.com/simplicity www.silabs.com/quality community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com