IRF IRG7RA13UTRLPBF Advanced trench igbt technology Datasheet

IRG7RA13UPbF
PDP TRENCH IGBT
Key Parameters
Features
 Advanced Trench IGBT Technology
 Optimized for Sustain and Energy Recovery
circuits in PDP applications
 Low VCE(on) and Energy per Pulse (EPULSETM)
for improved panel efficiency
 High repetitive peak current capability
 Lead Free package
VCE min
360
V
VCE(ON) typ. @ IC = 20A
1.42
V
IRP max @ TC= 25°C
276
A
TJ max
150
°C
C
Description
This IGBT is specifically designed for applications in
Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low
EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction
temperature and high repetitive peak current capability.
These features combine to make this IGBT a highly
efficient, robust and reliable device for PDP applications.
Ordering Information
Base part number
Package Type
IRG7RA13UPbF
D-Pak
C
G
E
G
E
n-channel
G
Gate
D-Pak
C
Collector
Standard Pack
Form
Quantity
Tube
75
Tape and Reel
2000
Tape and Reel Left
3000
Tape and Reel Right
3000
E
Emitter
Complete Part Number
IRG7RA13UPbF
IRG7RA13UTRPbF
IRG7RA13UTRLPbF
IRG7RA13UTRRPbF
Absolute Maximum Ratings
VGE
IC @ TC = 25°C
IC @ TC = 100°C
IRP @ TC = 25°C
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
Parameter
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
Continuous Collector, VGE @ 15V
Repetitive Peak Current 
Power Dissipation
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
Max.
±30
40
20
276
78
31
0.63
-40 to + 150
Units
V
A
W
W/°C
°C
300
Thermal Resistance
Parameter
Junction-to-Case 
Junction-to-Ambient (PCB Mount) 
RJC
RJA
1
www.irf.com
© 2012 International Rectifier
Typ.
–––
—
Max.
1.6
50
Units
°C/W
November 5th, 2012
IRG7RA13UPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
BVCES
Collector-to-Emitter Breakdown Voltage 360
–––
–––
0.4
BVCES/TJ Breakdown Voltage Temp. Coefficient
–––
1.26
–––
1.42
VCE(on)
Static Collector-to-Emitter Voltage
1.84
–––
2.25
–––
1.48
Gate Threshold Voltage
2.2
–––
VGE(th)
–––
-10
VGE(th)/TJ Gate Threshold Voltage Coefficient
–––
1.0
ICES
Collector-to-Emitter Leakage Current
–––
25
–––
75
Gate-to-Emitter Forward Leakage
–––
–––
IGES
Gate-to-Emitter Reverse Leakage
–––
–––
Forward Transconductance
–––
47
gfe
Total Gate Charge
–––
33
Qg
Gate-to-Collector Charge
–––
12
Qgc
td(on)
Turn-On delay time
–––
11
Rise time
–––
13
tr
Turn-Off delay time
–––
75
td(off)
tf
Fall time
–––
120
td(on)
Turn-On delay time
–––
11
Rise time
–––
14
tr
Turn-Off delay time
–––
86
td(off)
tf
Fall time
–––
190
tst
Shoot Through Blocking Time
100
–––
–––
480
EPULSE
Energy per Pulse
–––
570
ESD
Human Body Model
Machine Model
Cies
Coes
Cres
LC
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
–––
–––
–––
–––
LE
Internal Emitter Inductance
–––
Max. Units
Conditions
–––
V
VGE = 0V, ICE = 250µA
–––
V/°C Reference to 25°C, ICE = 1mA
1.52
VGE = 15V, ICE = 12A 
–––
VGE = 15V, ICE = 20A 
–––
VGE = 15V, ICE = 40A 
V
–––
VGE = 15V, ICE = 60A 
–––
VGE = 15V, ICE = 20A, TJ = 150°C 
4.7
V
VCE = VGE, ICE = 1.0mA
––– mV/°C
10
VCE = 360V, VGE = 0V
150
µA VCE = 360V, VGE = 0V, TJ = 125°C
–––
VCE = 360V, VGE = 0V, TJ = 150°C
100
VGE = 30V
nA
-100
VGE = -30V
–––
S
VCE = 25V, ICE = 12A
–––
VCE = 240V, IC = 12A, VGE = 15V 
nC
–––
–––
IC = 12A, VCC = 196V
–––
RG = 10, L=210µH
ns
TJ = 25°C
–––
–––
–––
IC = 12A, VCC = 196V
–––
RG = 10, L=200µH, LS= 150nH
ns
TJ = 150°C
–––
–––
–––
ns VCC = 240V, VGE = 15V, RG= 5.1
–––
L = 220nH, C= 0.20µF, VGE = 15V
VCC = 240V, RG= 5.1, TJ = 25°C
µJ
–––
L = 220nH, C= 0.20µF, VGE = 15V
VCC = 240V, RG= 5.1, TJ = 100°C
Class 1C
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
880
–––
VGE = 0V
47
–––
pF VCE = 30V
26
–––
ƒ = 1.0MHz
4.5
–––
Between lead,
6mm (0.25in.)
nH
from package
7.5
–––
and center of die contact
Notes:
 Half sine wave with duty cycle = 0.01, ton = 1.0µsec.
 R is measured at TJ approximately 90°C.
 Pulse width ≤ 400µs; duty cycle ≤ 2%.
 When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint
and soldering techniques refer to application note #AN-994.
2
www.irf.com
© 2012 International Rectifier
November 5th, 2012
IRG7RA13UPbF
200
200
VGE = 18V
160
VGE = 12V
VGE = 10V
VGE = 8.0V
120
VGE = 15V
160
ICE (A)
ICE (A)
VGE = 18V
VGE = 15V
VGE = 6.0V
80
VGE = 12V
VGE = 10V
VGE = 8.0V
120
40
VGE = 6.0V
80
40
0
0
0
2
4
6
8
10
0
2
4
Fig 1. Typical Output Characteristics @ 25°C
200
VGE = 18V
VGE = 18V
VGE = 15V
VGE = 15V
160
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
ICE (A)
ICE (A)
10
Fig 2. Typical Output Characteristics @ 75°C
200
120
8
V CE (V)
V CE (V)
160
6
80
40
VGE = 12V
VGE = 10V
VGE = 8.0V
120
VGE = 6.0V
80
40
0
0
0
2
4
6
8
10
0
2
4
V CE (V)
6
8
10
V CE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
200
14
IC = 12A
12
160
10
VCE (V)
ICE (A)
120
T J = 25°C
T J = 150°C
80
TJ = 25°C
TJ = 150°C
8
6
4
40
2
0
0
2
4
6
8
10
12
14
16
V GE (V)
Fig 5. Typical Transfer Characteristics
3
www.irf.com
© 2012 International Rectifier
0
5
10
15
20
V GE (V)
Fig 6. VCE(ON) vs. Gate Voltage
November 5th, 2012
IRG7RA13UPbF
300
40
Repetitive Peak Current (A)
250
IC (A)
30
20
10
200
150
100
ton= 1µs
Duty cycle = 0.01
Half Sine Wave
50
0
25
50
75
100
125
0
150
25
TC (°C)
75
100
125
150
Case Temperature (°C)
Fig 7. Maximum Collector Current
vs. Case Temperature
Fig 8. Typical Repetitive Peak Current
vs. Case Temperature
1300
1300
VCC = 240V
1100
L = 220nH
C = 0.4µF
1200
L = 220nH
C = variable
100°C
Energy per Pulse (µJ)
1200
Energy per Pulse (µJ)
50
1000
900
25°C
800
700
1100
100°C
1000
25°C
900
800
600
700
500
400
600
160
170
180
190
200
210
220
230
195 200 205 210 215 220 225 230 235 240
IC, Peak Collector Current (A)
VCE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
Fig 10. Typical EPULSE vs.
Collector-to-Emitter Voltage
1600
100
VCC = 240V
100µsec
1000
C= 0.3µF
1msec
1
800
Tc = 25°C
Tj = 150°C
Single Pulse
C= 0.2µF
600
0.1
400
1
25
50
75
100
125
150
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
10µsec
10
1200
IC (A)
Energy per Pulse (µJ)
C= 0.4µF
L = 220nH
t = 1µs half sine
1400
www.irf.com
© 2012 International Rectifier
10
100
1000
V CE (V)
Fig 12. Forward Bias Safe Operating Area
November 5th, 2012
IRG7RA13UPbF
20
VGE, Gate-to-Source Voltage (V)
1000
Cies
100
Coes
ID= 12A
VDS = 240V
VDS = 150V
VDS = 60V
16
12
8
4
Cres
0
10
0
100
0
200
10
20
30
40
QG Total Gate Charge (nC)
VCE (V)
Fig 14. Typical Gate Charge
vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs.
Collector-to-Emitter Voltage
10
Thermal Response ( Z thJC )
Capacitance (pF)
10000
1
D = 0.50
0.20
0.10
0.05
0.1
J
0.02
0.01
R1
R1
J
1
R2
R2
R3
R3
C
1
2
3
2
3
Ci= iRi
Ci= iRi
0.01
1E-005
0.0001
4
4
C
i (sec)
0.018744
0.000006
0.575445
0.000170
0.687910
0.001311
0.314901 0.006923
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
R4
R4
Ri(°C/W)
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
5
www.irf.com
© 2012 International Rectifier
November 5th, 2012
IRG7RA13UPbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
PULSE B
Ipulse
RG
DUT
tST
Fig 16a. tst and EPULSE Test Circuit
VCE
Fig 16b. tst Test Waveforms
Energy
IC Current
L
VCC
DUT
0
1K
Fig 16c. EPULSE Test Waveforms
6
www.irf.com
© 2012 International Rectifier
Fig 17. - Gate Charge Circuit (turn-off)
November 5th, 2012
IRG7RA13UPbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
Notes: This part marking information applies to devices produced after 02/26/2001
EXAMPLE: THIS IS AN IRFR120
WITH ASSEMBLY
LOT CODE 1234
ASSEMBLED ON WW 16, 2001
IN THE ASSEMBLY LINE "A"
PART NUMBER
INTERNATIONAL
RECTIFIER
LOGO
Note: "P" in assembly line position
indicates "Lead-Free"
IRFR120
12
116A
34
ASSEMBLY
LOT CODE
DATE CODE
YEAR 1 = 2001
WEEK 16
LINE A
"P" in assembly line position indicates
"Lead-Free" qualification to the consumer-level
OR
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFR120
12
ASSEMBLY
LOT CODE
34
DATE CODE
P = DESIGNATES LEAD-FREE
PRODUCT (OPTIONAL)
P = DESIGNATES LEAD-FREE
PRODUCT QUALIFIED TO THE
CONSUMER LEVEL (OPTIONAL)
YEAR 1 = 2001
WEEK 16
A = ASSEMBLY SITE CODE
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
7
www.irf.com
© 2012 International Rectifier
November 5th, 2012
IRG7RA13UPbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Qualification information†
Industrial††
Qualification level
(per JEDEC JESD47F ††† guidelines )
Moisture Sensitivity Level
D-Pak
RoHS compliant
†
MSL1
(per JEDEC J‐STD‐020D††† )
Yes
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Higher qualification ratings may be available should the user have such requirements. Please contact your
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
Visit us at www.irf.com for sales contact information.
8
www.irf.com
© 2012 International Rectifier
November 5th, 2012
Similar pages