OPA705 O PA OPA2705 OPA4705 705 OPA 705 OPA OPA 705 705 ® SBOS182A – JUNE 2001 Low-Cost, CMOS, Rail-to-Rail, I/O OPERATIONAL AMPLIFIERS FEATURES DESCRIPTION ● RAIL-TO-RAIL INPUT AND OUTPUT ● WIDE SUPPLY RANGE: Single Supply: 4V to 12V Dual Supplies: ±2 to ±6 ● LOW QUIESCENT CURRENT: 160µA ● LIMITED RANGE CMRR: 96dB ● LOW OFFSET: 0.5mV ● HIGH SPEED: 1MHz, 0.6V/ µs ● MicroSIZE PACKAGES: SOT23-5, MSOP-8, TSSOP-14 ● LOW INPUT BIAS CURRENT: 1pA The OPA705 series low-cost op amps are optimized for applications requiring rail-to-rail input and output swing. Single, dual, and quad versions are offered in a variety of packages. While the quiescent current is less than 200µA per amplifier, the OPA705 still offers excellent dynamic performance (1MHz GBW and 0.6V/µs SR) and unity-gain stability. The OPA705 series is fully specified and guaranteed over the supply range of ±2V to ±6V. Input swing extends 300mV beyond the rail and the output swings to within 40mV of the rail. The single version (OPA705) is available in the MicroSIZE SOT23-5 and in the standard SO-8 surface-mount packages. The dual version (OPA2705) is available in the MSOP-8, SO-8, and DIP-8 packages. The quad OPA4705 is available in the TSSOP-14 and SO-14 packages. All are specified for operation from –40°C to +85°C. APPLICATIONS ● AUTOMOTIVE APPLICATIONS: Audio, Sensor Applications, Security Systems ● PORTABLE EQUIPMENT ● ACTIVE FILTERS ● TRANSDUCER AMPLIFIER ● TEST EQUIPMENT ● DATA ACQUISITION OPA705 Out 1 V– 2 +In 3 5 OPA705 NC 1 8 NC –In 2 7 V+ +In 3 6 Out V– 4 5 NC V+ SO-8, DIP-8 OPA2705 4 SOT23-5 –In Out A –In A 1 A 2 +In A 3 V– 4 B 8 V+ 7 Out B OPA4705 Out A 1 –In A 2 A 14 Out D 13 –In D D +In A 3 12 +In D V+ 4 11 V– +In B 5 10 +In C B C 6 –In B –In B 6 9 –In C 5 +In B Out B 7 8 Out C TSSOP-14, SO-14 MSOP-8, SO-8, DIP-8 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright © 2001, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. www.ti.com ABSOLUTE MAXIMUM RATINGS(1) ELECTROSTATIC DISCHARGE SENSITIVITY Supply Voltage, V+ to V– ................................................................. 13.2V Signal Input Terminals, Voltage(2) ..................... (V–) –0.3V to (V+) +0.3V Current(2) .................................................... 10mA Output Short-Circuit(3) .............................................................. Continuous Operating Temperature .................................................. –55°C to +125°C Storage Temperature ..................................................... –65°C to +150°C Junction Temperature .................................................................... +150°C Lead Temperature (soldering, 10s) ............................................... +300°C This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. (2) Input terminals are diode-clamped to the power supply rails. Input signals that can swing more than 0.3V beyond the supply rails should be current-limited to 10mA or less. (3) Short-circuit to ground, one amplifier per package. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. PACKAGE/ORDERING INFORMATION PRODUCT DESCRIPTION MINIMUM RECOMMENDED GAIN OPA705NA Single, GBW = 1MHz 1 SOT23-5 331 A05 " " " " " Single, GBW = 1MHz 1 SO-8 182 OPA705UA " " " " " OPA705PA Single, GBW = 1MHz 1 DIP-8 006 OPA705PA OPA2705EA Dual, GBW = 1MHz 1 MSOP-8 337 B05 " " " " " " OPA2705UA Dual, GBW = 1MHz 1 SO-8 182 OPA2705UA " " " " " " OPA2705PA Dual, GBW = 1MHz 1 DIP-8 006 OPA2705PA OPA4705EA Quad, GBW = 1MHz 1 TSSOP-14 357 OPA4705EA " " " " " " OPA4705UA Quad, GBW = 1MHz 1 SO-14 235 OPA4705UA " " " " " " " OPA705UA " PACKAGE PACKAGE DRAWING NUMBER PACKAGE MARKING ORDERING NUMBER(1) TRANSPORT MEDIA OPA705NA/250 OPA705NA/3K OPA705UA OPA705UA/2K5 OPA705PA Tape and Reel Tape and Reel Rails Tape and Reel Rails OPA2705EA/250 OPA2705EA/2K5 OPA2705UA OPA2705UA/2K5 OPA2705PA Tape and Reel Tape and Reel Rails Tape and Reel Rails OPA4705EA/250 OPA4705EA/2K5 OPA4705UA OPA4705UA/2K5 Tape and Reel Tape and Reel Rails Tape and Reel NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /3K indicates 3000 devices per reel). Ordering 3000 pieces of “OPA705NA/3K” will get a single 3000-piece Tape and Reel. 2 OPA705, 2705, 4705 SBOS182A ELECTRICAL CHARACTERISTICS: VS = 4V to 12V Boldface limits apply over the specified temperature range, TA = –40°C to +85°C At TA = +25°C, RL = 20kΩ connected to VS / 2 and VOUT = VS / 2, unless otherwise noted. OPA705NA, UA, PA OPA2705EA, UA, PA OPA4705EA, UA PARAMETER OFFSET VOLTAGE Input Offset Voltage Drift vs Power Supply Over Temperature Channel Separation, dc f = 1kHz CONDITION VOS dVOS / dT PSRR INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio over Temperature VCM CMRR over Temperature INPUT BIAS CURRENT Input Bias Current Input Offset Current IB IOS MIN VS = ±5V, VCM = 0V TA = –40°C to +85°C VS = ±2V to ±6V, VCM = 0V VS = ±2V to ±6V, VCM = 0V RL = 20kΩ VS = ±5V, (V–) – 0.3V < VCM < (V+) + 0.3V VS = ±5V, (V–) < VCM < (V+) VS = ±5V, (V–) – 0.3V < VCM < (V+) – 2V VS = ±5V, (V–) < VCM < (V+) – 2V (V–) – 0.3 66 66 VS = ±5V, VCM = 0V VS = ±5V, VCM = 0V en in OPEN-LOOP GAIN Open-Loop Voltage Gain AOL over Temperature over Temperature OUTPUT Voltage Output Swing from Rail Output Current Short-Circuit Current Capacitive Load Drive FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time, 0.1% 0.01% Overload Recovery Time Total Harmonic Distortion + Noise IOUT ISC OPA705, 2705, 4705 SBOS182A RL = 100kΩ, AOL > 80dB RL = 20kΩ, AOL > 100dB RL = 5kΩ, AOL > 100dB |VS – VOUT| < 1V CLOAD GBW SR tS THD+N POWER SUPPLY Specified Voltage Range, Single Supply Specified Voltage Range, Dual Supplies Operating Voltage Range Quiescent Current (per amplifier) over Temperature TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance SOT23-5 Surface-Mount MSOP-8 Surface-Mount TSSOP-14 Surface-Mount SO-8 Surface Mount SO-14 Surface Mount DIP-8 VS = ±5V, VCM = 0V VS = ±5V, VCM = 0V VS = ±5V, VCM = 0V RL = 100kΩ, (V–)+0.1V < VO < (V+)–0.1V RL = 20kΩ, (V–)+0.075V < VO < (V+)–0.075V RL = 20kΩ, (V–)+0.075V < VO < (V+)–0.075V RL = 5kΩ, (V–)+0.15V < VO < (V+)–0.15V RL = 5kΩ, (V–)+0.15V < VO < (V+)–0.15V IQ 100 100 ±0.5 ±4 20 100 1 98 ±5 mV µV/°C µV/V µV/V µV/V dB (V+) + 0.3 V dB dB dB dB ±10 ±10 pA pA 77 74 96 93 4 • 109 || 4 5 • 1012 || 4 Ω || pF Ω || pF 6 45 2.5 µVp-p nV/√Hz fA/√Hz 120 110 106 110 106 dB dB dB dB dB 75 150 ±10 ±40 See Typical Performance Curves 1 0.6 15 20 3 0.02 4 ±2 –40 –55 –65 250 85 125 150 θJA 200 150 100 150 100 100 mV mV mV mA mA MHz V/µs µs µs µs % 12 ±6 3.6 to 12 160 200 IO = 0 UNITS 100 40 CL = 100pF G = +1 VS = ±5V, G = +1 VS = ±5V, 5V Step, G = +1 VS = ±5V, 5V Step, G = +1 VIN • Gain = VS VS = ±5V, VO = 3Vp-p, G = +1, f = 1kHz VS VS MAX ±1 ±0.5 INPUT IMPEDANCE Differential Common-Mode NOISE Input Voltage Noise, f = 0.1Hz to 10Hz Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz TYP V V V µA µA °C °C °C °C/W °C/W °C/W °C/W °C/W °C/W 3 TYPICAL CHARACTERISTICS At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted. CMRR vs FREQUENCY 100 100 80 80 60 60 40 40 20 20 0 0 –20 –20 –40 –40 –60 10 100 1k 10k 100k 1M 120 CMRR Limited Range 100 80 CMRR (dB) 120 Phase (°) Gain (dB) GAIN AND PHASE vs FREQUENCY 120 60 CMRR Full Scale 40 20 –60 10M 0 1 10 100 Frequency (Hz) 1k 10k 100k 1M Frequency (Hz) PSRR vs FREQUENCY MAXIMUM AMPLITUDE vs FREQUENCY 140 7 120 6 100 5 Amplitude (V) 80 60 4 3 40 2 20 1 0 0 1 10 100 1k 10k 100k 1M 1k 100 10k 100k Frequency (Hz) CHANNEL SEPARATION vs FREQUENCY INPUT CURRENT AND VOLTAGE SPECTRAL NOISE vs FREQUENCY 160 10M 10000 10000 Current Noise Input Current and Voltage Spectral Noise nV/√Hz 140 Channel Separation (dB) 1M Frequency (Hz) 120 100 80 60 40 1000 1000 Voltage Noise 100 100 10 10 1 1 20 0 0.1 10 100 1k 10k Frequency (Hz) 4 100k 1M 0.1 0.1 1 10 100 1k 10k 100k 1M Frequency (Hz) OPA705, 2705, 4705 SBOS182A Output Current Spectral Noise fA/√Hz PSRR (dB) (V+) – (V–) = 12V TYPICAL CHARACTERISTICS (Cont.) At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted. COMMON-MODE REJECTION RATIO vs TEMPERATURE OPEN-LOOP GAIN vs TEMPERATURE 120 140 110 130 100 AOL (dB) CMRR (dB) Limited Scale 90 120 110 80 100 70 Full Scale 60 –80 –60 –40 –20 0 20 40 60 80 90 –100 –75 –50 –25 100 120 140 Temperature (°C) INPUT BIAS (IB) AND OFFSET (IOS) CURRENT vs TEMPERATURE 25 50 75 100 125 150 175 QUIESCENT CURRENT vs TEMPERATURE 250 100000 10000 200 1000 IB 100 IQ (µA) Bias Current (pA) 0 Temperature (°C) IOS 10 150 100 1 50 0.1 0 –100 –75 –50 –25 0.0 –50 –25 0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175 Temperature (°C) Temperature (°C) PSRR vs TEMPERATURE TOTAL HARMONIC DISTORTION PLUS NOISE (Load = 5kΩ, BW = 8kHz, 1.0Vrms, G = +1) 120 1.000 110 0.100 THD (%) PSRR (dB) 100 90 80 0.010 70 60 0.001 –75 –50 –25 0 10 25 50 75 100 110 130 150 Temperature (°C) OPA705, 2705, 4705 SBOS182A 1 10 100 1k 10k 100k Frequency (Hz) 5 TYPICAL CHARACTERISTICS (Cont.) At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted. INPUT BIAS CURRENT (IB) vs COMMON-MODE VOLTAGE (VCM) TEMPERATURE = 125°C 15 20 10 15 Input Bias Current (nA) Input Bias Current (pA) INPUT BIAS CURRENT (IB) vs COMMON-MODE VOLTAGE (VCM) TEMPERATURE = °25C 5 0 –5 10 5 0 –10 –5 –15 –10 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 –6 –5 –4 –3 –2 –1 0 SHORT-CIRCUIT CURRENT vs SUPPLY VOLTAGE 4 5 6 60 ISC N (Sinking) Short-Circuit Current (mA) Quiescent Current (µA) 3 QUIESCENT CURRENT vs SUPPLY VOLTAGE 190 180 170 160 150 140 130 120 50 40 30 ISC P (Sourcing) 20 10 0 2 4 6 8 10 12 14 2 4 6 8 10 12 Supply Voltage (V) Supply Voltage (V) OUTPUT VOLTAGE SWING vs OUTPUT CURRENT SMALL-SIGNAL OVERSHOOT (%) vs CAPACITIVE LOAD AND GAIN 6 14 90 +125°C 4 G = +1 80 +25°C 70 –55°C Sourcing 2 Overshoot (%) Output Voltage (V) 2 Common-Mode Voltage, VCM (V) 200 0 –2 Sinking 60 50 G = –1 40 30 20 –55°C –4 G = +5 10 +125°C +25°C –6 0 0 10 20 30 40 Output Current (±mA) 6 1 Common-Mode Voltage, VCM (V) 50 60 70 10 100 1k 10k Load Capacitance Value (pF) OPA705, 2705, 4705 SBOS182A TYPICAL CHARACTERISTICS (Cont.) At TA = +25°C, VS = ±5V, and RL = 20kΩ, unless otherwise noted. SETTLING TIME vs GAIN VOS PRODUCTION DISTRIBUTION 100 25 90 20 70 Frequency (%) Settling Time (µs) 80 0.01% 60 50 40 30 10 5 0.1% 20 15 10 0 100 –5.0 –4.5 –4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10 1 Non-Inverting Gain (V/V) Voltage Offset (mV) SMALL SIGNAL STEP RESPONSE (G = +1V/V, RL = 20kΩ, CL = 100pF) VOS DRIFT PRODUCTION DISTRIBUTION 25 15 50mV/div Frequency (%) 20 10 5 0 ≤ 30 ≤ 27 ≤ 24 ≤ 21 ≤ 18 ≤ 15 ≤ 12 ≤9 ≤6 ≤3 <0 <3 <6 <9 < 12 < 15 < 18 < 21 < 24 < 27 < 30 > 30 5µs/div Voltage Offset (µV/°C) 1V/div LARGE SIGNAL STEP RESPONSE (G = +1V/V, RL = 20kΩ, CL = 100pF) 10µs/div OPA705, 2705, 4705 SBOS182A 7 APPLICATIONS INFORMATION Power-supply pins should be bypassed with 1000pF ceramic capacitors in parallel with 1µF tantalum capacitors. OPA705 series op amps can operate on 160µA quiescent current from a single (or split) supply in the range of 4V to 12V (±2V to ±6V), making them highly versatile and easy to use. The OPA705 is unity-gain stable and offers 1MHz bandwidth and 0.6V/µs slew rate. OPERATING VOLTAGE OPA705 series op amps are fully specified and guaranteed from +4V to +12V over a temperature range of –40ºC to +85ºC. Parameters that vary significantly with operating voltages or temperature are shown in the Typical Characteristics. Rail-to-rail input and output swing helps maintain dynamic range, especially in low supply applications. Figure 1 shows the input and output waveforms for the OPA705 in unitygain configuration. Operation is from a ±5V supply with a 100kΩ load connected to VS /2. The input is a 10Vp-p sinusoid. Output voltage is approximately 10Vp-p. RAIL-TO-RAIL INPUT The input common-mode voltage range of the OPA705 series extends 300mV beyond the supply rails at room temperature. This is achieved with a complementary input stage—an Nchannel input differential pair in parallel with a P-channel differential pair, as shown in Figure 2. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 2.0V to 300mV above the positive supply, while the Pchannel pair is on for inputs from 300mV below the negative supply to approximately (V+) – 1.5V. There is a small transition region, typically (V+) – 2.0V to (V+) – 1.5V, in which both pairs are on. This 500mV transition region can vary ±100mV with process variation. Thus, the transition region (both stages on) can range from (V+) – 2.1V to (V+) – 1.4V on the low end, up to (V+) – 1.9V to (V+) – 1.6V on the high end. Within the 500mV transition region PSRR, CMRR, offset voltage, and offset drift, and THD may vary compared to operation outside this region. G = +1, VS = ±5V 2.0V/div Input Output (inverted on scope) 200µs/div FIGURE 1. Rail-to-Rail Input and Output. V+ VO VIN+ VIN– V– FIGURE 2. Simplified Schematic. 8 OPA705, 2705, 4705 SBOS182A INPUT VOLTAGE Device inputs are protected by ESD diodes that will conduct if the input voltages exceed the power supplies by more than approximately 300mV. Momentary voltages greater than 300mV beyond the power supply can be tolerated if the current is limited to 10mA. This is easily accomplished with an input resistor, as shown in Figure 3. Many input signals are inherently current-limited to less than 10mA; therefore, a limiting resistor is not always required. The OPA705 features no phase inversion when the inputs extend beyond supplies if the input current is limited, as seen in Figure 4. CAPACITIVE LOAD AND STABILITY The OPA705 series op amps can drive up to 1000pF pure capacitive load. Increasing the gain enhances the amplifier’s ability to drive greater capacitive loads (see the typical performance curve “Small Signal Overshoot vs Capacitive Load”). +V IOVERLOAD 10mA max RAIL-TO-RAIL OUTPUT A class AB output stage with common-source transistors is used to achieve rail-to-rail output. This output stage is capable of driving 1kΩ loads connected to any point between V+ and ground. For light resistive loads (> 100kΩ), the output voltage can swing to 40mV from the supply rail. With moderate resistive loads (20kΩ), the output can swing to within 75mV from the supply rails while maintaining high open-loop gain (see the typical performance curve “Output Voltage Swing vs Output Current”). VOUT OPA705 VIN R V– One method of improving capacitive load drive in the unitygain configuration is to insert a 10Ω to 20Ω resistor inside the feedback loop, as shown in Figure 5. This reduces ringing with large capacitive loads while maintaining DC accuracy. FIGURE 3. Input Current Protection for Voltages Exceeding the Supply Voltage. RS 20Ω OPA705 VOUT VIN CL RL VS = ±5.0V, VIN = 11Vp-p 2.0V/div FIGURE 5. Series Resistor in Unity-Gain Buffer Configuration Improves Capacitive Load Drive. 20µs/div FIGURE 4. OPA705—No Phase Inversion with Inputs Greater than the Power-Supply Voltage. OPA705, 2705, 4705 SBOS182A APPLICATION CIRCUITS The OPA705 series op amps are optimized for driving medium-speed sampling data converters. Figure 6 shows the OPA2705 in a dual-supply buffered reference configuration for the DAC7644. The DAC7644 is a 16-bit, low-power, quad-voltage output converter. Small size makes the combination ideal for automatic test equipment, data acquisition systems, and other low-power space-limited applications. 9 NC 48 NC 47 NC 46 NC 45 VOUTA Sense 44 VOUTA 43 VREFL AB Sense 42 VREFL AB 41 VREFH AB 40 VREFH AB Sense 39 DAC7644 VOUTB Sense 38 VOUTB 37 +V V– VOUT –2.5V 1/2 OPA2705 Ref Negative Reference 500pF V+ 500pF 1/2 OPA2705 VOUT +2.5V Ref Positive Reference –V FIGURE 6. OPA705 as Dual Supply Configuration-Buffered References for the DAC7644. 10 OPA705, 2705, 4705 SBOS182A PACKAGE OPTION ADDENDUM www.ti.com 12-Feb-2016 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) OPA2705EA/250 ACTIVE VSSOP DGK 8 250 Green (RoHS & no Sb/Br) CU NIPDAUAG Level-2-260C-1 YEAR -40 to 85 B05 OPA2705EA/250G4 ACTIVE VSSOP DGK 8 250 Green (RoHS & no Sb/Br) CU NIPDAUAG Level-2-260C-1 YEAR -40 to 85 B05 OPA2705PA ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU N / A for Pkg Type -40 to 85 OPA2705PA OPA2705PAG4 ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU N / A for Pkg Type -40 to 85 OPA2705PA OPA2705UA ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA 2705UA OPA2705UAG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA 2705UA OPA4705EA/250 ACTIVE TSSOP PW 14 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA 4705EA OPA4705EA/250G4 ACTIVE TSSOP PW 14 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA 4705EA OPA4705EA/2K5 ACTIVE TSSOP PW 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA 4705EA OPA4705EA/2K5G4 ACTIVE TSSOP PW 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA 4705EA OPA4705UA LIFEBUY SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA4705UA OPA4705UAG4 LIFEBUY SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA4705UA OPA705NA/250 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 A05 OPA705NA/250G4 ACTIVE SOT-23 DBV 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 A05 OPA705NA/3K ACTIVE SOT-23 DBV 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 A05 OPA705PA ACTIVE PDIP P 8 50 Green (RoHS & no Sb/Br) CU NIPDAU N / A for Pkg Type -40 to 85 OPA705PA OPA705UA ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 85 OPA 705UA Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 12-Feb-2016 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 29-Jan-2014 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing OPA2705EA/250 VSSOP DGK 8 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 250 180.0 12.4 5.3 3.4 1.4 8.0 12.0 Q1 OPA4705EA/250 TSSOP PW 14 250 180.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 OPA4705EA/2K5 TSSOP PW 14 2500 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 OPA705NA/250 SOT-23 DBV 5 250 178.0 9.0 3.3 3.2 1.4 4.0 8.0 Q3 OPA705NA/3K SOT-23 DBV 5 3000 178.0 9.0 3.23 3.17 1.37 4.0 8.0 Q3 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 29-Jan-2014 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) OPA2705EA/250 VSSOP OPA4705EA/250 TSSOP DGK 8 250 210.0 185.0 35.0 PW 14 250 210.0 185.0 35.0 OPA4705EA/2K5 TSSOP PW 14 2500 367.0 367.0 35.0 OPA705NA/250 SOT-23 DBV 5 250 180.0 180.0 18.0 OPA705NA/3K SOT-23 DBV 5 3000 180.0 180.0 18.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated