ML65 ML65 Series DC-DC Converter Application Features Power Source of Portable Products Palmtops Portable Cameras and Video Recorders Wireless mouse and keyboard Ordering Information Designator a b c d ML65 Version ML65A ML65B ML65C ML65D ML65E ML65F Description Version Output Voltage eg. 30=3.0V General Description The ML65 is a group of PWM Step-up DC/DC converter IC with ultra-low supply current by CMOS process. 33=3.3V 50=5.0V Package Type P = SOT-89 M = SOT-23 T = TO-92 Device Orientation R = Embossed Tape (Orientation of Device : Right) L = Embossed Tape (Orientation of Device : Left) B = Bag (TO-92) Package Designator M P T M P T M P M P M P M P Package SOT23-3 SOT89-3 TO-92 SOT23-3 SOT89-3 TO-92 SOT23-5 SOT89-5 SOT23-5 SOT89-5 SOT23-5 SOT89-5 SOT23-5 SOT89-5 Small number of external components: inductor, diode and capacitor. Ultra low input current : Typical 6uA Output Voltage Accuracy : +/- 2.5 % Low ripple and noise Low startup voltage : Max 0.9V (with 1mA input) High Efficiency: Typical 80% PackageAvailable: SOT- 89 (500mW), SOT-23 (150mW) & TO - 92 (300mW) It consists of an oscillator, a PWM control circuit, a Lx switch driver transistor, a reference voltage unit, an error amplifier for voltage detection and an Lx switch protection circuit. It is suitable for use with battery-powered instruments with low noise and ultra low supply current. Switching Transistor CE Function VDD Pin FB Pin Features Build-in Transistor No No No Lx External Transistor No No No Ext Yes No No Lx+CE Yes No No Ext+CE No Yes No Lx+VDD No Yes Yes FB Build-in Transistor External Transistor Build-in Transistor Build-in Transistor P1/10 Rev. B, July 2005 ML65 ML65A Pin Configuration Package Pin Number SOT23-3 SOT89-3 TO-92 1 1 1 3 2 2 2 3 3 Pin Name Function VSS VOUT LX Ground Output Voltage monitor, Internal IC Power Supply Switch Block Diagram Typical Applications P2/10 Rev. B, July 2005 ML65 ML65B Pin Configuration Package Pin Number SOT23-3 SOT89-3 TO-92 1 1 1 3 2 2 2 3 3 Pin Name Function VSS VOUT EXT Ground Output Voltage monitor, Internal IC Power Supply External Switch Transistor Drive Block Diagram Typical Applications P3/10 Rev. B, July 2005 ML65 ML65C Pin Configuration Package Pin Number SOT23-5 SOT89-5 4 5 2 2 5 4 1 3 3 1 Pin Name Function VSS VOUT Lx CE NC Ground Output Voltage monitor, Internal IC Power Supply Switch Chip Enable NC Block Diagram Typical Applications P4/10 Rev. B, July 2005 ML65 ML65D Pin Configuration Package Pin Number SOT23-5 SOT89-5 4 5 2 2 5 4 1 3 3 1 Pin Name Function VSS VOUT EXT CE NC Ground Output Voltage monitor, Internal IC Power Supply External Switch Transistor Drive Chip Enable NC Block Diagram Typical Applications P5/10 Rev. B, July 2005 ML65 ML65E Pin Configuration Package Pin Number SOT23-5 SOT89-5 4 5 2 2 5 4 1 3 3 1 Pin Name Function VSS VDD Lx VOUT NC Ground Power Supply Switch Output Voltage Monitor NC Block Diagram Typical Applications P6/10 Rev. B, July 2005 ML65 ML65F Pin Configuration Package Pin Number SOT23-5 SOT89-5 4 5 2 2 5 4 1 3 3 1 Pin Name Function VSS VOUT Lx FB NC Ground Power Supply Switch Feedback NC Block Diagram Typical Applications P7/10 Rev. B, July 2005 ML65 Absolute Maximum Ratings Parameter Input Voltage VDD Input Voltage Lx Pin Voltage EXT Pin Voltage CE Pin Voltage Lx Pin Current EXT Pin Current SOT-89 Continuous TO-92 Total Power Dissipation SOT-23 Operating Ambient Temperature Storage Temperature Symbol VIN VDD VLX VEXT VCE ILX IEXT Ratings 10 10 10 -0.3 ~ VOUT + 0.3 -0.3 ~ VOUT + 0.3 600 + 30 500 Units V V V V V mA mA Pd 300 mW 150 Topr Tstg -25 ~ +85 o C -40 ~ +125 o C Electrical Characteristics VIN = VOUT * 0.6, VSS = 0V, IOUT = 10mA, Ta = 25 oC, unless otherwise specified. Parameter Symbol Output Voltage VOUT Input Voltage Startup Voltage Hold-on Voltage VIN VSTART VHOLD Supply Current 1 IDD1 Supply Current 2 Lx Switching Current Lx Leakage Current IDD2 ILX ILXLEAK EXT “High” On Current IEXTH EXT “Low” On Current IEXTL CE “High” Voltage CE “Low” Voltage CE “High” Current CE “Low” Current Oscillator Frequency Duty Cycle Efficiency Slow-Start Time VCEH VCEL ICEH ICEL FOSC MAXDTY EFF TSS Conditions IOUT = 1mA, VIN: 0→2V IOUT = 1mA, VIN: 2→0V No external component, VIN = VOUT * 0.95 VIN = VIN + 0.5V VLX = 0.4V, VIN = VOUT * 0.95 VIN =VLX=6.0V No external component, VIN = VOUT * 0.95, VEXT = VOUT – 0.4V No external component, VIN = VOUT * 0.95, VEXT = 0.4V VIN = VOUT * 0.95 VIN = VOUT * 0.95 VOUT = 6.0V, VCE = 6.0V VOUT = 6.0V, VCE = 0.0V Min Typ Max Units Vout * Vout * Vout V 0.975 1.025 8 V 0.8 0.9 V 0.7 V 30~70 uA 11~26 250 uA mA uA 0.5 -5.5 mA 13 mA 0.7 0.2 0.25 -0.25 80 5 100 87 85 15 92 25 V V uA uA KHz % % ms Note : 1. Schokkty diode: 1N5817 or 1N5819 (forward voltage drop : 0.2V) 2. Inductor : 47uH (ESR < 0.5Ω) 3. Capacitor : Tantalum type, 47 uF P8/10 Rev. B, July 2005 ML65 Electrical Characteristics VIN = 1.8V, IOUT = 10mA, Ta = 25 oC, unless otherwise provided. Symbol Conditions Min Typ Max VOUT 2.925 3.000 3.075 VIN 8 VSTART IOUT = 1mA 0.8 0.9 VHOLD IOUT = 1mA 0.7 IDD1 VIN = 2.85V 30 IDD2 VIN = 3.05V 11 ILX VLX=0.4V, VIN=2.85V 250 ILXLEAK VIN=6.0V, VLX=6.0V 0.5 FOSC 100 150 MAXDTY 80 87 92 EFF 85 TSS 5 15 25 Units V V V V uA uA mA uA KHz % % ms ML65A33 VOUT = 3.3V VIN = 2.0V, IOUT = 10mA, Ta = 25 oC, unless otherwise provided. Parameter Symbol Conditions Min Typ Max Output Voltage VOUT 3.218 3.300 3.383 Input Voltage VIN 8 Startup Voltage VSTART IOUT = 1mA 0.8 0.9 Hold-on Voltage VHOLD IOUT = 1mA 0.7 Supply Current 1 IDD1 VIN = 3.135V 33 Supply Current 2 IDD2 VIN = 3.35V 12 Lx Switching Current ILX VLX=0.4V, VIN=3.135V 260 Lx Leakage Current ILXLEAK VIN=6.0V, VLX=6.0V 0.5 Oscillator Frequency FOSC 100 150 Oscillator Duty Cycle MAXDTY 80 87 92 Efficiency EFF 85 Slow –Start Time TSS 5 15 25 Units V V V V uA uA mA uA KHz % % ms ML65A50 VOUT = 5.0V VIN = 3.0V, IOUT = 10mA, Ta = 25 oC, unless otherwise provided. Parameter Symbol Conditions Min Output Voltage VOUT 4.875 Input Voltage VIN Startup Voltage VSTART IOUT = 1mA Hold-on Voltage VHOLD IOUT = 1mA 0.7 Supply Current 1 IDD1 VIN = 4.75V Supply Current 2 IDD2 VIN = 5.05V Lx Switching Current ILX VLX=0.4V, VIN= 4.75V Lx Leakage Current ILXLEAK VIN=6.0V, VLX=6.0V Oscillator Frequency FOSC Oscillator Duty Cycle MAXDTY 80 Efficiency EFF Slow –Start Time TSS 5 Units V V V V uA uA mA uA KHz % % ms ML65A30 VOUT = 3.0V Parameter Output Voltage Input Voltage Startup Voltage Hold-on Voltage Supply Current 1 Supply Current 2 Lx Switching Current Lx Leakage Current Oscillator Frequency Oscillator Duty Cycle Efficiency Slow –Start Time P9/10 Typ Max 5.000 5.125 8 0.8 0.9 70 26 290 100 87 85 15 0.5 150 92 25 Rev. B, July 2005 ML65 Application Notes 1. It is recommended to use capacitor with a capacity of 10uF or more for good frequency characteristics, otherwise it will lead to high output ripple. Tantalum type capacitor is recommended. As there may be the case where a spike-shaped high voltage is generated by the inductor when Lx transistor is turned off, the operating voltage of capacitor should be at least three times of the output set voltage so as to avoid over-voltage damage. 2. It is recommended to use inductor has sufficiently small d.c. resistance, large allowable current and hardly reaches magnetic saturation. When the inductance of inductor is small, there may be the case that the inductor current exceeds the absolute maximum ratings at the maximum load condition. 3. It is recommended to place external components as close as possible to the DC/DC converter so as to minimize the interconnection parasitic between components and DC/DC converter, especially for the capacitor connected to VOUT pin. It is recommended to place 0.1uF ceramic capacitor between VOUT pin and VSS pin. 4. It is recommended to provide sufficient grounding for VSS pin. This will help to stable the zero level within DC/DC converter induced by the switching current level variation during operation. And the insufficient grounding may result in unstable operation of DC/DC converter. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. P10/10 Rev. B, July 2005