CY7C25442KV18 72-Mbit QDR® II+ SRAM Two-Word Burst Architecture (2.0 Cycle Read Latency) with ODT 72-Mbit QDR® II+ SRAM Two-Word Burst Architecture (2.0 Cycle Read Latency) with ODT Features ■ JTAG 1149.1 compatible test access port ■ Phase Locked Loop (PLL) for accurate data placement ■ Separate independent read and write data ports ❐ Supports concurrent transactions ■ 333-MHz clock for high bandwidth ■ Two-word burst for reducing address bus frequency ■ Double data rate (DDR) interfaces on both read and write ports (data transferred at 666 MHz) at 333 MHz Functional Description ■ Available in 2.0 clock cycle latency ■ Two input clocks (K and K) for precise DDR timing ❐ SRAM uses rising edges only ■ Echo clocks (CQ and CQ) simplify data capture in high speed systems ■ Data valid pin (QVLD) to indicate valid data on the output ■ On-die termination (ODT) feature ❐ Supported for D[x:0], BWS[x:0], and K/K inputs ■ Single multiplexed address input bus latches address inputs for both read and write ports ■ Separate port selects for depth expansion ■ Synchronous internally self-timed writes ■ QDR® II+ operates with 2.0 cycle read latency when DOFF is asserted HIGH The CY7C25442KV18 are 1.8-V synchronous pipelined SRAMs, equipped with QDR II+ architecture. Similar to the QDR II architecture, QDR II+ architecture consists of two separate ports: the read port and the write port to access the memory array. The read port has dedicated data outputs to support read operations and the write port has dedicated data inputs to support write operations. QDR II+ architecture has separate data inputs and data outputs to completely eliminate the need to “turn around” the data bus that exists with common devices. Access to each port is through a common address bus. Addresses for read and write addresses are latched on alternate rising edges of the input (K) clock. Accesses to the QDR II+ read and write ports are independent of one another. To maximize data throughput, both read and write ports are equipped with DDR interfaces. Each address location is associated with two 36-bit words (CY7C25442KV18) that burst sequentially into or out of the device. Because data can be transferred into and out of the device on every rising edge of both input clocks (K and K), memory bandwidth is maximized while simplifying system design by eliminating bus “turnarounds”. ■ Operates similar to QDR I device with 1 cycle read latency when DOFF is asserted LOW ■ Available in × 36 configurations ■ Full data coherency, providing most current data ■ Core VDD = 1.8 V ± 0.1 V; VDDQ = 1.4 V to VDD [1] ❐ Supports both 1.5 V and 1.8 V supply ■ HSTL inputs and variable drive HSTL output buffers ■ Available in 165-ball FBGA package (13 × 15 × 1.4 mm) ■ Offered in both Pb-free and non Pb-free packages Configurations With Read Cycle Latency of 2.0 cycles: CY7C25442KV18 – 2M × 36 These devices have an on-die termination feature supported for D[x:0], BWS[x:0], and K/K inputs, which helps eliminate external termination resistors, reduce cost, reduce board area, and simplify board routing. Depth expansion is accomplished with port selects, which enables each port to operate independently. All synchronous inputs pass through input registers controlled by the K or K input clocks. All data outputs pass through output registers controlled by the K or K input clocks. Writes are conducted with on-chip synchronous self-timed write circuitry. For a complete list of related documentation, click here. Selection Guide Description Maximum operating frequency Maximum operating current × 36 333 MHz 333 990 300 MHz 300 910 Unit MHz mA Note 1. The Cypress QDR II+ devices surpass the QDR consortium specification and can support VDDQ = 1.4 V to VDD. Cypress Semiconductor Corporation Document Number: 001-66481 Rev. *G • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised November 23, 2017 CY7C25442KV18 Logic Block Diagram – CY7C25442KV18 K CLK Gen. DOFF 20 Address Register Read Add. Decode K Write Reg 1M x 36 Array Address Register Write Reg 1M x 36 Array A(19:0) 20 36 Write Add. Decode D[35:0] A(19:0) RPS Control Logic Read Data Reg. CQ 72 VREF WPS BWS[3:0] 36 Control Logic 36 Reg. Reg. 36 Reg. 36 CQ 36 Q[35:0] QVLD Document Number: 001-66481 Rev. *G Page 2 of 28 CY7C25442KV18 Contents Pin Configurations ........................................................... 4 Pin Definitions .................................................................. 5 Functional Overview ........................................................ 6 Read Operations ......................................................... 6 Write Operations ......................................................... 7 Byte Write Operations ................................................. 7 Concurrent Transactions ............................................. 7 Depth Expansion ......................................................... 7 Programmable Impedance .......................................... 7 Echo Clocks ................................................................ 7 Valid Data Indicator (QVLD) ........................................ 7 On-Die Termination (ODT) .......................................... 7 PLL .............................................................................. 7 Application Example ........................................................ 8 Truth Table ........................................................................ 9 Write Cycle Descriptions ................................................. 9 IEEE 1149.1 Serial Boundary Scan (JTAG) .................. 10 Disabling the JTAG Feature ...................................... 10 Test Access Port ....................................................... 10 Performing a TAP Reset ........................................... 10 TAP Registers ........................................................... 10 TAP Instruction Set ................................................... 10 TAP Controller State Diagram ....................................... 12 TAP Controller Block Diagram ...................................... 13 TAP Electrical Characteristics ...................................... 13 TAP AC Switching Characteristics ............................... 14 TAP Timing and Test Conditions .................................. 15 Identification Register Definitions ................................ 16 Scan Register Sizes ....................................................... 16 Instruction Codes ........................................................... 16 Document Number: 001-66481 Rev. *G Boundary Scan Order .................................................... 17 Power Up Sequence in QDR II+ SRAM ......................... 18 Power-Up Sequence ................................................. 18 PLL Constraints ......................................................... 18 Maximum Ratings ........................................................... 19 Operating Range ............................................................. 19 Neutron Soft Error Immunity ......................................... 19 Electrical Characteristics ............................................... 19 DC Electrical Characteristics ..................................... 19 AC Electrical Characteristics ..................................... 21 Capacitance .................................................................... 21 Thermal Resistance ........................................................ 21 AC Test Loads and Waveforms ..................................... 21 Switching Characteristics .............................................. 22 Switching Waveforms .................................................... 23 Read/Write/Deselect Sequence ................................ 23 Ordering Information ...................................................... 24 Ordering Code Definitions ......................................... 24 Package Diagram ............................................................ 25 Acronyms ........................................................................ 26 Document Conventions ................................................. 26 Units of Measure ....................................................... 26 Document History Page ................................................. 27 Sales, Solutions, and Legal Information ...................... 28 Worldwide Sales and Design Support ....................... 28 Products .................................................................... 28 PSoC® Solutions ....................................................... 28 Cypress Developer Community ................................. 28 Technical Support ..................................................... 28 Page 3 of 28 CY7C25442KV18 Pin Configurations The pin configuration for CY7C25442KV18 follows. [2] Figure 1. 165-ball FBGA (13 × 15 × 1.4 mm) pinout CY7C25442KV18 (2M × 36) 1 2 3 4 5 6 7 8 9 10 11 A CQ NC/288M A WPS BWS2 K BWS1 RPS A NC/144M CQ B Q27 Q18 D18 A BWS3 K BWS0 A D17 Q17 Q8 C D27 Q28 D19 VSS A A A VSS D16 Q7 D8 D D28 D20 Q19 VSS VSS VSS VSS VSS Q16 D15 D7 E Q29 D29 Q20 VDDQ VSS VSS VSS VDDQ Q15 D6 Q6 F Q30 Q21 D21 VDDQ VDD VSS VDD VDDQ D14 Q14 Q5 G D30 D22 Q22 VDDQ VDD VSS VDD VDDQ Q13 D13 D5 H DOFF VREF VDDQ VDDQ VDD VSS VDD VDDQ VDDQ VREF ZQ J D31 Q31 D23 VDDQ VDD VSS VDD VDDQ D12 Q4 D4 K Q32 D32 Q23 VDDQ VDD VSS VDD VDDQ Q12 D3 Q3 L Q33 Q24 D24 VDDQ VSS VSS VSS VDDQ D11 Q11 Q2 M D33 Q34 D25 VSS VSS VSS VSS VSS D10 Q1 D2 N D34 D26 Q25 VSS A A A VSS Q10 D9 D1 P Q35 D35 Q26 A A QVLD A A Q9 D0 Q0 R TDO TCK A A A ODT A A A TMS TDI Note 2. NC/144M and NC/288M are not connected to the die and can be tied to any voltage level. Document Number: 001-66481 Rev. *G Page 4 of 28 CY7C25442KV18 Pin Definitions Pin Name I/O Pin Description D[x:0] InputData Input Signals. Sampled on the rising edge of K and K clocks during valid write operations. Synchronous CY7C25442KV18 D[35:0] WPS InputWrite Port Select Active LOW. Sampled on the rising edge of the K clock. When asserted active, a Synchronous write operation is initiated. Deasserting deselects the write port. Deselecting the write port ignores D[x:0]. BWS0, BWS1, BWS2, BWS3 InputByte Write Select 0, 1, 2 and 3 Active LOW. Sampled on the rising edge of the K and K clocks during Synchronous write operations. Used to select which byte is written into the device during the current portion of the write operations. Bytes not written remain unaltered. A InputAddress Inputs. Sampled on the rising edge of the K (read address) and K (write address) clocks during Synchronous active read and write operations. These address inputs are multiplexed for both read and write operations. Internally, the device is organized as 2M × 36 (2 arrays each of 1M × 36) for CY7C25442KV18. Therefore, only 20 address inputs for CY7C25442KV18. These inputs are ignored when the appropriate port is deselected. Q[x:0] OutputData Output Signals. These pins drive out the requested data during a read operation. Valid data is Synchronous driven out on the rising edge of the K and K clocks during read operations. When the read port is deselected, Q[x:0] are automatically tristated. RPS InputRead Port Select Active LOW. Sampled on the rising edge of positive input clock (K). When active, Synchronous a read operation is initiated. Deasserting deselects the read port. When deselected, the pending access is allowed to complete and the output drivers are automatically tristated following the next rising edge of the K clock. Each read access consists of a burst of two sequential transfers. CY7C25442KV18 BWS0 controls D[8:0], BWS1 controls D[17:9], BWS2 controls D[26:18] and BWS3 controls D[35:27]. All the Byte Write Selects are sampled on the same edge as the data. Deselecting a Byte Write Select ignores the corresponding byte of data and it is not written into the device. CY7C25442KV18 Q[35:0] QVLD Valid output indicator Valid Output Indicator. The Q Valid indicates valid output data. QVLD is edge aligned with CQ and CQ. ODT [3] On-Die Termination input pin On-Die Termination Input. This pin is used for on-die termination of the input signals. ODT range selection is made during power-up initialization. A LOW on this pin selects a low range that follows RQ/3.33 for 175 < RQ < 350 (where RQ is the resistor tied to ZQ pin)A HIGH on this pin selects a high range that follows RQ/1.66 for 175 < RQ < 250 (where RQ is the resistor tied to the ZQ pin). When left floating, a high range termination value is selected by default. Note 3. On-Die Termination (ODT) feature is supported for D[x:0], BWS[x:0], and K/K inputs. Document Number: 001-66481 Rev. *G Page 5 of 28 CY7C25442KV18 Pin Definitions (continued) Pin Name I/O Pin Description K Input Clock Positive Input Clock Input. The rising edge of K is used to capture synchronous inputs to the device and to drive out data through Q[x:0]. All accesses are initiated on the rising edge of K. K Input Clock Negative Input Clock Input. K is used to capture synchronous inputs being presented to the device and to drive out data through Q[x:0]. CQ Echo Clock Synchronous Echo Clock Outputs. This is a free-running clock and is synchronized to the input clock (K) of the QDR II+. The timing for the echo clocks is shown in Switching Characteristics on page 22. CQ Echo Clock Synchronous Echo Clock Outputs. This is a free-running clock and is synchronized to the input clock (K) of the QDR II+. The timing for the echo clocks is shown in the Switching Characteristics on page 22. ZQ Input Output Impedance Matching Input. This input is used to tune the device outputs to the system data bus impedance. CQ, CQ, and Q[x:0] output impedance are set to 0.2 x RQ, where RQ is a resistor connected between ZQ and ground. Alternatively, connect this pin directly to VDDQ, which enables the minimum impedance mode. This pin cannot be connected directly to GND or left unconnected. DOFF Input PLL Turn Off Active LOW. Connecting this pin to ground turns off the PLL inside the device. The timing in the operation with the PLL turned off differs from those listed in this datasheet. For normal operation, connect this pin to a pull-up through a 10 K or less pull-up resistor. The device behaves in the QDR I mode when the PLL is turned off. In this mode, the device can be operated at a frequency of up to 167 MHz with QDR I timing. TDO Output TDO Pin for JTAG. TCK Input TCK Pin for JTAG. TDI Input TDI Pin for JTAG. TMS Input TMS Pin for JTAG. NC N/A Not Connected to the Die. Can be tied to any voltage level. NC/144M Input Not Connected to the Die. Can be tied to any voltage level. NC/288M Input Not Connected to the Die. Can be tied to any voltage level. VREF InputReference Reference Voltage Input. Static input used to set the reference level for HSTL inputs, outputs, and AC measurement points. VDD Power Supply Power Supply Inputs to the Core of the Device. VSS Ground Ground for the Device. VDDQ Power Supply Power Supply Inputs for the Outputs of the Device. Functional Overview The CY7C25442KV18 are synchronous pipelined Burst SRAMs equipped with a read port and a write port. The read port is dedicated to read operations and the write port is dedicated to write operations. Data flows into the SRAM through the write port and flows out through the read port. These devices multiplex the address inputs to minimize the number of address pins required. By having separate read and write ports, the QDR II+ eliminates the need to “turn around” the data bus and avoids any possible data contention, thereby simplifying system design. Each access consists of two 36-bit data transfers in the case of CY7C25442KV18 in one clock cycle. These devices operate with a read latency of two cycles when the DOFF pin is tied HIGH. When the DOFF pin is set LOW or connected to VSS, the device behaves in the QDR I mode with a read latency of one clock cycle. Document Number: 001-66481 Rev. *G Accesses for both ports are initiated on the rising edge of the positive input clock (K). All synchronous input and output timing are referenced from the rising edge of the input clocks (K and K). All synchronous data inputs (D[x:0]) pass through input registers controlled by the input clocks (K and K). All synchronous data outputs (Q[x:0]) pass through output registers controlled by the rising edge of the input clocks (K and K) as well. All synchronous control (RPS, WPS, BWS[x:0]) inputs pass through input registers controlled by the rising edge of the input clocks (K and K). CY7C25442KV18 is described in the following sections. Read Operations The CY7C25442KV18 is organized internally as two arrays of 1M × 36. Accesses are completed in a burst of two sequential 36-bit data words. Read operations are initiated by asserting RPS active at the rising edge of the positive input clock (K). The Page 6 of 28 CY7C25442KV18 address is latched on the rising edge of the K clock. The address presented to the address inputs is stored in the read address register. Following the next two K clocks rise, the corresponding lowest order 36-bit word of data is driven on to the Q[35:0] using K as the output timing reference. On the subsequent rising edge of K, the next 36-bit data word is driven on to the Q[35:0]. The requested data is valid 0.45 ns from the rising edge of the input clock (K and K). When the read port is deselected, the CY7C25442KV18 first completes the pending read transactions. Synchronous internal circuitry automatically tristates the outputs following the next rising edge of the positive input clock (K). This enables for a seamless transition between devices without the insertion of wait states in a depth expanded memory. Write Operations Write operations are initiated by asserting WPS active at the rising edge of the positive input clock (K). On the same K clock rise, the data presented to D[35:0] is latched and stored into the lower 36-bit write data register, provided BWS[3:0] are asserted active. On the subsequent rising edge of the negative input clock (K), the address is latched and the information presented to D[35:0] is also stored into the write data register, provided BWS[3:0] are asserted active. The 72 bits of data are then written into the memory array at the specified location. When deselected, the write port ignores all inputs after the pending write operations are completed. Byte Write Operations Byte write operations are supported by the CY7C25442KV18. A write operation is initiated as described in the Write Operations section. The bytes that are written are determined by BWS0, BWS1, BWS2 and BWS3, which are sampled with each set of 36-bit data words. Asserting the appropriate Byte Write Select input during the data portion of a write latches the data being presented and writes it into the device. Deasserting the Byte Write Select input during the data portion of a write enables the data stored in the device for that byte to remain unaltered. This feature can be used to simplify read, modify, or write operations to a byte write operation. Concurrent Transactions The read and write ports on the CY7C25442KV18 operate completely independently of one another. As each port latches the address inputs on different clock edges, the user can read or write to any location, regardless of the transaction on the other port. The user can start reads and writes in the same clock cycle. If the ports access the same location at the same time, the SRAM delivers the most recent information associated with the specified address location. This includes forwarding data from a write cycle that was initiated on the previous K clock rise. Depth Expansion The CY7C25442KV18 has a port select input for each port. This enables easy depth expansion. Both port selects are sampled on the rising edge of the positive input clock only (K). Each port select input can deselect the specified port. Deselecting a port does not affect the other port. All pending transactions (read and write) are completed before the device is deselected. Document Number: 001-66481 Rev. *G Programmable Impedance An external resistor, RQ, must be connected between the ZQ pin on the SRAM and VSS to enable the SRAM to adjust its output driver impedance. The value of RQ must be 5 × the value of the intended line impedance driven by the SRAM. The allowable range of RQ to guarantee impedance matching with a tolerance of ±15% is between 175 and 350 , with VDDQ = 1.5 V. The output impedance is adjusted every 1024 cycles upon power-up to account for drifts in supply voltage and temperature. Echo Clocks Echo clocks are provided on the QDR II+ to simplify data capture on high-speed systems. Two echo clocks are generated by the QDR II+. CQ is referenced with respect to K and CQ is referenced with respect to K. These are free-running clocks and are synchronized to the input clock of the QDR II+. The timing for the echo clocks is shown in Switching Characteristics on page 22. Valid Data Indicator (QVLD) QVLD is provided on the QDR II+ to simplify data capture on high-speed systems. The QVLD is generated by the QDR II+ device along with data output. This signal is also edge-aligned with the echo clock and follows the timing of any data pin. This signal is asserted half a cycle before valid data arrives. On-Die Termination (ODT) These devices have an On-Die Termination feature for Data inputs (D[x:0]), Byte Write Selects (BWS[x:0]), and Input Clocks (K and K). The termination resistors are integrated within the chip. The ODT range selection is enabled through ball R6 (ODT pin). The ODT termination tracks the value of RQ where RQ is the resistor tied to the ZQ pin. The ODT range is selected during power-up initialization. A LOW on this pin selects a low range that follows RQ/3.33 for 175 < RQ < 350 (where RQ is the resistor tied to the ZQ pin)A HIGH on this pin selects a high range that follows RQ/1.66 for 175 < RQ < 250 (where RQ is the resistor tied to the ZQ pin). When left floating, a high range termination value is selected by default. For a detailed description on the ODT implementation, refer to the application note, On-Die Termination for QDR® II+/DDR II+ SRAMs AN42468. PLL These chips use a PLL that is designed to function between 120 MHz and the specified maximum clock frequency. During power-up, when the DOFF is tied HIGH, the PLL is locked after 20 s of stable clock. The PLL can also be reset by slowing or stopping the input clocks K and K for a minimum of 30 ns. However, it is not necessary to reset the PLL to lock to the desired frequency. The PLL automatically locks 20 s after a stable clock is presented. The PLL may be disabled by applying ground to the DOFF pin. When the PLL is turned off, the device behaves in the QDR I mode with one cycle latency and a longer access time). For information, refer to the application note, AN46982 - PLL Considerations in QDR-II/II+/DDR-II/II+ SRAMS. Page 7 of 28 CY7C25442KV18 Application Example Figure 2 shows two QDR II+ used in an application. Figure 2. Application Example (Width Expansion) SRAM#1 D[x:0] A RPS WPS ZQ CQ/CQ Q[x:0] BWS K K RQ SRAM#2 D[x:0] A RPS WPS ZQ CQ/CQ Q[x:0] BWS K K RQ DATA IN[2x:0] DATA OUT [2x:0] ADDRESS RPS WPS BWS CLKIN1/CLKIN1 CLKIN2/CLKIN2 SOURCE K SOURCE K FPGA / ASIC Document Number: 001-66481 Rev. *G Page 8 of 28 CY7C25442KV18 Truth Table The truth table for CY7C25442KV18 follows. [4, 5, 6, 7, 8, 9] Operation K RPS WPS DQ DQ Write Cycle: Load address on the rising edge of K; input write data on K and K rising edges. L–H X L D(A) at K(t) D(A + 1) at K(t) Read Cycle: (2.0 cycle Latency) Load address on the rising edge of K; wait two cycles; read data on K and K rising edges. L–H L X Q(A) at K(t + 2) Q(A + 1) at K(t + 2) NOP: No Operation L–H H H D=X Q = High Z D=X Q = High Z Stopped X X Previous State Previous State Standby: Clock Stopped Write Cycle Descriptions The write cycle description table for CY7C25442KV18 follows. [4, 10] BWS0 BWS1 BWS2 BWS3 K K Comments L L L L L–H – During the data portion of a write sequence, all four bytes (D[35:0]) are written into the device. L L L L – L H H H L–H L H H H – H L H H L–H H L H H – H H L H L–H H H L H – H H H L L–H H H H L – H H H H L–H H H H H – L–H During the data portion of a write sequence, all four bytes (D[35:0]) are written into the device. – During the data portion of a write sequence, only the lower byte (D[8:0]) is written into the device. D[35:9] remains unaltered. L–H During the data portion of a write sequence, only the lower byte (D[8:0]) is written into the device. D[35:9] remains unaltered. – During the data portion of a write sequence, only the byte (D[17:9]) is written into the device. D[8:0] and D[35:18] remains unaltered. L–H During the data portion of a write sequence, only the byte (D[17:9]) is written into the device. D[8:0] and D[35:18] remains unaltered. – During the data portion of a write sequence, only the byte (D[26:18]) is written into the device. D[17:0] and D[35:27] remains unaltered. L–H During the data portion of a write sequence, only the byte (D[26:18]) is written into the device. D[17:0] and D[35:27] remains unaltered. – During the data portion of a write sequence, only the byte (D[35:27]) is written into the device. D[26:0] remains unaltered. L–H During the data portion of a write sequence, only the byte (D[35:27]) is written into the device. D[26:0] remains unaltered. – No data is written into the device during this portion of a write operation. L–H No data is written into the device during this portion of a write operation. Notes 4. X = “Don't Care,” H = Logic HIGH, L = Logic LOW, ?represents rising edge. 5. Device powers up deselected with the outputs in a tristate condition. 6. “A” represents address location latched by the devices when transaction was initiated. A + 1 represents the internal address sequence in the burst. 7. “t” represents the cycle at which a Read/Write operation is started. t + 1, and t + 2 are the first, and second clock cycles respectively succeeding the “t” clock cycle. 8. Data inputs are registered at K and K rising edges. Data outputs are delivered on K and K rising edges as well. 9. Ensure that when clock is stopped K = K and C = C = HIGH. This is not essential, but permits most rapid restart by overcoming transmission line charging symmetrically. 10. Based on a write cycle that was initiated in accordance with the Truth Table. NWS0, NWS1, BWS0, BWS1, BWS2 and BWS3 can be altered on different portions of a write cycle, as long as the setup and hold requirements are achieved. Document Number: 001-66481 Rev. *G Page 9 of 28 CY7C25442KV18 IEEE 1149.1 Serial Boundary Scan (JTAG) These SRAMs incorporate a serial boundary scan Test Access Port (TAP) in the FBGA package. This part is fully compliant with IEEE Standard #1149.1-2001. The TAP operates using JEDEC standard 1.8 V logic levels. Disabling the JTAG Feature It is possible to operate the SRAM without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (VSS) to prevent clocking of the device. TDI and TMS are internally pulled up and may be unconnected. They may alternatively be connected to VDD through a pull-up resistor. TDO must be left unconnected. Upon power-up, the device comes up in a reset state, which does not interfere with the operation of the device. Test Access Port Test Clock The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK. Test Mode Select (TMS) The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK. This pin may be left unconnected if the TAP is not used. The pin is pulled up internally, resulting in a logic HIGH level. Test Data-In (TDI) The TDI pin is used to serially input information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For information about loading the instruction register, see the TAP Controller State Diagram on page 12. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is connected to the most significant bit (MSB) on any register. Test Data-Out (TDO) The TDO output pin is used to serially clock data out from the registers. The output is active, depending upon the current state of the TAP state machine (see Instruction Codes on page 16). The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register. Performing a TAP Reset A Reset is performed by forcing TMS HIGH (VDD) for five rising edges of TCK. This Reset does not affect the operation of the SRAM and can be performed while the SRAM is operating. At power-up, the TAP is reset internally to ensure that TDO comes up in a High Z state. TAP Registers Registers are connected between the TDI and TDO pins to scan the data in and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction registers. Data is serially loaded into the TDI pin on the rising edge of TCK. Data is output on the TDO pin on the falling edge of TCK. Document Number: 001-66481 Rev. *G Instruction Register Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO pins, as shown in TAP Controller Block Diagram on page 13. Upon power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state, as described in the previous section. When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary “01” pattern to allow for fault isolation of the board-level serial test path. Bypass Register To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit register that can be placed between TDI and TDO pins. This enables shifting of data through the SRAM with minimal delay. The bypass register is set LOW (VSS) when the BYPASS instruction is executed. Boundary Scan Register The boundary scan register is connected to all of the input and output pins on the SRAM. Several No Connect (NC) pins are also included in the scan register to reserve pins for higher density devices. The boundary scan register is loaded with the contents of the RAM input and output ring when the TAP controller is in the Capture-DR state and is then placed between the TDI and TDO pins when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions can be used to capture the contents of the input and output ring. The Boundary Scan Order on page 17 shows the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO. Identification (ID) Register The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded in the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in Identification Register Definitions on page 16. TAP Instruction Set Eight different instructions are possible with the three-bit instruction register. All combinations are listed in Instruction Codes on page 16. Three of these instructions are listed as RESERVED and must not be used. The other five instructions are described in this section in detail. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO pins. To execute the instruction after it is shifted in, the TAP controller must be moved into the Update-IR state. Page 10 of 28 CY7C25442KV18 IDCODE The IDCODE instruction loads a vendor-specific, 32-bit code into the instruction register. It also places the instruction register between the TDI and TDO pins and shifts the IDCODE out of the device when the TAP controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register at power-up or whenever the TAP controller is supplied a Test-Logic-Reset state. SAMPLE Z The SAMPLE Z instruction connects the boundary scan register between the TDI and TDO pins when the TAP controller is in a Shift-DR state. The SAMPLE Z command puts the output bus into a High Z state until the next command is supplied during the Update IR state. SAMPLE/PRELOAD SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When the SAMPLE/PRELOAD instructions are loaded into the instruction register and the TAP controller is in the Capture-DR state, a snapshot of data on the input and output pins is captured in the boundary scan register. The user must be aware that the TAP controller clock can only operate at a frequency up to 20 MHz, while the SRAM clock operates more than an order of magnitude faster. Because there is a large difference in the clock frequencies, it is possible that during the Capture-DR state, an input or output undergoes a transition. The TAP may then try to capture a signal while in transition (metastable state). This does not harm the device, but there is no guarantee as to the value that is captured. Repeatable results may not be possible. PRELOAD places an initial data pattern at the latched parallel outputs of the boundary scan register cells before the selection of another boundary scan test operation. The shifting of data for the SAMPLE and PRELOAD phases can occur concurrently when required, that is, while the data captured is shifted out, the preloaded data can be shifted in. BYPASS When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between the TDI and TDO pins. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board. EXTEST The EXTEST instruction drives the preloaded data out through the system output pins. This instruction also connects the boundary scan register for serial access between the TDI and TDO in the Shift-DR controller state. EXTEST OUTPUT BUS TRISTATE IEEE Standard 1149.1 mandates that the TAP controller be able to put the output bus into a tristate mode. The boundary scan register has a special bit located at bit #108. When this scan cell, called the “extest output bus tristate,” is latched into the preload register during the Update-DR state in the TAP controller, it directly controls the state of the output (Q-bus) pins, when the EXTEST is entered as the current instruction. When HIGH, it enables the output buffers to drive the output bus. When LOW, this bit places the output bus into a High Z condition. To guarantee that the boundary scan register captures the correct value of a signal, the SRAM signal must be stabilized long enough to meet the TAP controller’s capture setup plus hold times (tCS and tCH). The SRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the CK and CK captured in the boundary scan register. This bit can be set by entering the SAMPLE/PRELOAD or EXTEST command, and then shifting the desired bit into that cell, during the Shift-DR state. During Update-DR, the value loaded into that shift-register cell latches into the preload register. When the EXTEST instruction is entered, this bit directly controls the output Q-bus pins. Note that this bit is pre-set LOW to enable the output when the device is powered up, and also when the TAP controller is in the Test-Logic-Reset state. After the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO pins. Reserved Document Number: 001-66481 Rev. *G These instructions are not implemented but are reserved for future use. Do not use these instructions. Page 11 of 28 CY7C25442KV18 TAP Controller State Diagram The state diagram for the TAP controller follows. [11] 1 TEST-LOGIC RESET 0 0 TEST-LOGIC/ IDLE 1 SELECT DR-SCAN 1 1 SELECT IR-SCAN 0 0 1 1 CAPTURE-DR CAPTURE-IR 0 0 SHIFT-DR 0 SHIFT-IR 1 1 EXIT1-DR 1 EXIT1-IR 0 0 PAUSE-IR 1 0 1 EXIT2-DR 0 EXIT2-IR 1 1 UPDATE-IR UPDATE-DR 1 1 0 PAUSE-DR 0 0 0 1 0 Note 11. The 0/1 next to each state represents the value at TMS at the rising edge of TCK. Document Number: 001-66481 Rev. *G Page 12 of 28 CY7C25442KV18 TAP Controller Block Diagram 0 Bypass Register 2 Selection Circuitry TDI 1 0 Selection Circuitry Instruction Register 31 30 29 . . 2 1 0 1 0 TDO Identification Register 108 . . . . 2 Boundary Scan Register TCK TAP Controller TMS TAP Electrical Characteristics Over the Operating Range Parameter [12, 13, 14] Description Test Conditions Min Max Unit VOH1 Output HIGH voltage IOH =2.0 mA 1.4 – V VOH2 Output HIGH voltage IOH =100 A 1.6 – V VOL1 Output LOW voltage IOL = 2.0 mA – 0.4 V VOL2 Output LOW voltage IOL = 100 A – 0.2 V VIH Input HIGH voltage VIL Input LOW voltage IX Input and output load current 0.65 × VDD VDD + 0.3 GND VI VDD V –0.3 0.35 × VDD V –5 5 A Notes 12. These characteristics pertain to the TAP inputs (TMS, TCK, TDI and TDO). Parallel load levels are specified in the Electrical Characteristics on page 19. 13. Overshoot: VIH(AC) < VDDQ + 0.35 V (Pulse width less than tCYC/2), Undershoot: VIL(AC) > 0.3 V (Pulse width less than tCYC/2). 14. All voltage referenced to ground. Document Number: 001-66481 Rev. *G Page 13 of 28 CY7C25442KV18 TAP AC Switching Characteristics Over the Operating Range Parameter [15, 16] Description Min Max Unit 50 – ns TCK clock frequency – 20 MHz TCK clock HIGH 20 – ns TCK clock LOW 20 – ns tTMSS TMS setup to TCK Clock Rise 5 – ns tTDIS TDI setup to TCK Clock Rise 5 – ns tCS Capture setup to TCK Rise 5 – ns tTMSH TMS Hold after TCK Clock Rise 5 – ns tTDIH TDI Hold after Clock Rise 5 – ns tCH Capture Hold after Clock Rise 5 – ns tTDOV TCK Clock LOW to TDO Valid – 10 ns tTDOX TCK Clock LOW to TDO Invalid 0 – ns tTCYC TCK clock cycle time tTF tTH tTL Setup Times Hold Times Output Times Notes 15. tCS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register. 16. Test conditions are specified using the load in TAP AC Test Conditions. tR/tF = 1 ns. Document Number: 001-66481 Rev. *G Page 14 of 28 CY7C25442KV18 TAP Timing and Test Conditions Figure 3 shows the TAP timing and test conditions. [17] Figure 3. TAP Timing and Test Conditions 0.9 V ALL INPUT PULSES 1.8 V 0.9 V 50 TDO 0V Z0 = 50 (a) CL = 20 pF tTH GND tTL Test Clock TCK tTMSH tTMSS tTCYC Test Mode Select TMS tTDIS tTDIH Test Data In TDI Test Data Out TDO tTDOV tTDOX Note 17. Test conditions are specified using the load in TAP AC Test Conditions. tR/tF = 1 ns. Document Number: 001-66481 Rev. *G Page 15 of 28 CY7C25442KV18 Identification Register Definitions Value Instruction Field Description CY7C25442KV18 Revision Number (31:29) 000 Cypress Device ID (28:12) 11010010100100100 Cypress JEDEC ID (11:1) 00000110100 ID Register Presence (0) 1 Version number. Defines the type of SRAM. Allows unique identification of SRAM vendor. Indicates the presence of an ID register. Scan Register Sizes Register Name Bit Size Instruction 3 Bypass 1 ID 32 Boundary Scan 109 Instruction Codes Instruction Code Description EXTEST 000 Captures the input and output ring contents. IDCODE 001 Loads the ID register with the vendor ID code and places the register between TDI and TDO. This operation does not affect SRAM operation. SAMPLE Z 010 Captures the input and output contents. Places the boundary scan register between TDI and TDO. Forces all SRAM output drivers to a High Z state. RESERVED 011 Do Not Use: This instruction is reserved for future use. SAMPLE/PRELOAD 100 Captures the input and output contents. Places the boundary scan register between TDI and TDO. Does not affect the SRAM operation. RESERVED 101 Do Not Use: This instruction is reserved for future use. RESERVED 110 Do Not Use: This instruction is reserved for future use. BYPASS 111 Places the bypass register between TDI and TDO. This operation does not affect SRAM operation. Document Number: 001-66481 Rev. *G Page 16 of 28 CY7C25442KV18 Boundary Scan Order Bit # Bump ID Bit # Bump ID Bit # Bump ID Bit # Bump ID 0 6R 28 10G 56 6A 84 1J 1 6P 29 9G 57 5B 85 2J 2 6N 30 11F 58 5A 86 3K 3 7P 31 11G 59 4A 87 3J 4 7N 32 9F 60 5C 88 2K 5 7R 33 10F 61 4B 89 1K 6 8R 34 11E 62 3A 90 2L 7 8P 35 10E 63 2A 91 3L 8 9R 36 10D 64 1A 92 1M 9 11P 37 9E 65 2B 93 1L 10 10P 38 10C 66 3B 94 3N 11 10N 39 11D 67 1C 95 3M 12 9P 40 9C 68 1B 96 1N 13 10M 41 9D 69 3D 97 2M 14 11N 42 11B 70 3C 98 3P 15 9M 43 11C 71 1D 99 2N 16 9N 44 9B 72 2C 100 2P 17 11L 45 10B 73 3E 101 1P 18 11M 46 11A 74 2D 102 3R 19 9L 47 10A 75 2E 103 4R 20 10L 48 9A 76 1E 104 4P 21 11K 49 8B 77 2F 105 5P 22 10K 50 7C 78 3F 106 5N 23 9J 51 6C 79 1G 107 5R 24 9K 52 8A 80 1F 108 Internal 25 10J 53 7A 81 3G 26 11J 54 7B 82 2G 27 11H 55 6B 83 1H Document Number: 001-66481 Rev. *G Page 17 of 28 CY7C25442KV18 Power Up Sequence in QDR II+ SRAM PLL Constraints QDR II+ SRAMs must be powered up and initialized in a predefined manner to prevent undefined operations. ■ PLL uses K clock as its synchronizing input. The input must have low phase jitter, which is specified as tKC Var. ■ The PLL functions at frequencies down to 120 MHz. ■ If the input clock is unstable and the PLL is enabled, then the PLL may lock onto an incorrect frequency, causing unstable SRAM behavior. To avoid this, provide 20 s of stable clock to relock to the desired clock frequency. Power-Up Sequence ■ Apply power and drive DOFF either HIGH or LOW (All other inputs can be HIGH or LOW). ❐ Apply VDD before VDDQ. ❐ Apply VDDQ before VREF or at the same time as VREF. ❐ Drive DOFF HIGH. ■ Provide stable DOFF (HIGH), power and clock (K, K) for 20 s to lock the PLL ~ ~ Figure 4. Power Up Waveforms K K ~ ~ Unstable Clock > 20μs Stable clock Start Normal Operation Clock Start (Clock Starts after V DD / V DDQ Stable) VDD / VDDQ DOFF Document Number: 001-66481 Rev. *G V DD / V DDQ Stable (< +/- 0.1V DC per 50ns ) Fix HIGH (or tie to VDDQ) Page 18 of 28 CY7C25442KV18 Maximum Ratings Operating Range Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage temperature ................................ –65 °C to +150 °C Range Industrial Ambient Temperature (TA) VDD [19] VDDQ [19] –40 °C to +85 °C 1.8 ± 0.1 V 1.4 V to VDD Ambient temperature with power applied ................................... –55 °C to +125 °C Supply voltage on VDD Relative to GND .....–0.5 V to +2.9 V Supply voltage on VDDQ Relative to GND .... –0.5 V to +VDD DC applied to outputs in High Z ........ –0.5 V to VDDQ + 0.3 V Neutron Soft Error Immunity Test Conditions Typ DC input voltage [18] ........................... –0.5 V to VDD + 0.3 V Parameter Description Current into outputs (LOW) ........................................ 20 mA LSBU Logical Single-Bit Upsets 25 °C LMBU Logical Multi-Bit Upsets SEL Single Event Latch up Static discharge voltage (MIL-STD-883, M. 3015) ........................................ > 2,001 V Latch-up current .................................................... > 200 mA Max* Unit 197 216 FIT/ Mb 25 °C 0 0.01 FIT/ Mb 85 °C 0 0.1 FIT/ Dev * No LMBU or SEL events occurred during testing; this column represents a statistical 2, 95% confidence limit calculation. For more details refer to Application Note, Accelerated Neutron SER Testing and Calculation of Terrestrial Failure Rates - AN54908. Electrical Characteristics Over the Operating Range DC Electrical Characteristics Over the Operating Range Parameter [20] Description Test Conditions Min Typ Max Unit VDD Power supply voltage 1.7 1.8 1.9 V VDDQ Supply voltage 1.4 1.5 VDD V VOH Output HIGH voltage Note 21 VDDQ/2 – 0.12 – VDDQ/2 + 0.12 V VOL Output LOW voltage Note 22 VDDQ/2 – 0.12 – VDDQ/2 + 0.12 V VOH(LOW) Output HIGH voltage IOH =0.1 mA, Nominal Impedance VDDQ – 0.2 – VDDQ V VOL(LOW) Output LOW voltage IOL = 0.1 mA, Nominal Impedance VSS – 0.2 V VIH Input HIGH voltage VREF + 0.1 – VDDQ + 0.15 V VIL Input LOW voltage –0.15 – VREF – 0.1 V IX Input leakage current GND VI VDDQ 2 – 2 A IOZ Output leakage current GND VI VDDQ, Output Disabled 2 – 2 A VREF Input reference voltage [23] Typical value = 0.75 V 0.68 0.75 0.95 V Notes 18. Overshoot: VIH(AC) < VDDQ + 0.35 V (Pulse width less than tCYC/2), Undershoot: VIL(AC) > 0.3 V (Pulse width less than tCYC/2). 19. Power up: Assumes a linear ramp from 0 V to VDD(min) within 200 ms. During this time VIH < VDD and VDDQ < VDD. 20. All Voltage referenced to Ground. 21. Output are impedance controlled. IOH = (VDDQ/2)/(RQ/5) for values of 175 ohms < RQ < 350 ohms. 22. Output are impedance controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175 ohms < RQ < 350 ohms. 23. VREF(min) = 0.68 V or 0.46 VDDQ, whichever is larger, VREF(max) = 0.95 V or 0.54 VDDQ, whichever is smaller. Document Number: 001-66481 Rev. *G Page 19 of 28 CY7C25442KV18 Electrical Characteristics (continued) Over the Operating Range DC Electrical Characteristics (continued) Over the Operating Range Parameter [20] IDD [24] ISB1 Description VDD Operating Supply Automatic Power down Current Test Conditions Min Typ Max Unit VDD = Max, IOUT = 0 mA, 333 MHz (× 36) f = fMAX = 1/tCYC 300 MHz (× 36) – – 990 mA – – 910 mA Max VDD, 333 MHz (× 36) Both Ports Deselected, 300 MHz (× 36) VIN VIH or VIN VIL, f = fMAX = 1/tCYC, Inputs Static – – 290 mA – – 280 mA Note 24. The operation current is calculated with 50% read cycle and 50% write cycle. Document Number: 001-66481 Rev. *G Page 20 of 28 CY7C25442KV18 AC Electrical Characteristics Over the Operating Range Parameter [25] Description Test Conditions Min Typ Max Unit VIH Input HIGH voltage VREF + 0.2 – VDDQ + 0.24 V VIL Input LOW voltage –0.24 – VREF – 0.2 V Max Unit 4 pF 4 pF Capacitance Parameter [26] Description Test Conditions TA = 25 C, f = 1 MHz, VDD = 1.8 V, VDDQ = 1.5 V CIN Input capacitance CO Output capacitance Thermal Resistance Parameter [26] JA (0 m/s) JA (1 m/s) Description 165-ball FBGA Unit Package Test Conditions Thermal resistance (junction to ambient) Socketed on a 170 × 220 × 2.35 mm, eight-layer printed circuit board JA (3 m/s) 14.43 °C/W 13.40 °C/W 12.66 °C/W JB Thermal resistance (junction to board) 11.38 °C/W JC Thermal resistance (junction to case) 3.30 °C/W AC Test Loads and Waveforms Figure 5. AC Test Loads and Waveforms VREF = 0.75 V VREF 0.75 V VREF OUTPUT DEVICE UNDER TEST ZQ Z0 = 50 RL = 50 VREF = 0.75 V R = 50 ALL INPUT PULSES 1.25 V 0.75 V OUTPUT DEVICE UNDER TEST ZQ RQ = 250 (a) 0.75 V INCLUDING JIG AND SCOPE 5 pF [27] 0.25 V SLEW RATE= 2 V/ns RQ = 250 (b) Note 25. Overshoot: VIH(AC) < VDDQ + 0.35 V (Pulse width less than tCYC/2), Undershoot: VIL(AC) > 0.3 V (Pulse width less than tCYC/2). 26. Tested initially and after any design or process change that may affect these parameters. 27. Unless otherwise noted, test conditions are based on signal transition time of 2 V/ns, timing reference levels of 0.75 V, Vref = 0.75 V, RQ = 250, VDDQ = 1.5 V, input pulse levels of 0.25 V to 1.25 V, and output loading of the specified IOL/IOH and load capacitance shown in (a) of Figure 5. Document Number: 001-66481 Rev. *G Page 21 of 28 CY7C25442KV18 Switching Characteristics Over the Operating Range [27, 28] Cypress Consortium Parameter Parameter 333 MHz Description VDD(typical) to the first access [29] tPOWER 300 MHz Unit Min Max Min Max 1 – 1 – ms tCYC tKHKH K Clock cycle time 3.0 8.4 3.3 8.4 ns tKH tKHKL Input clock (K/K) HIGH 1.20 – 1.32 – ns tKL tKLKH Input clock (K/K) LOW 1.20 – 1.32 – ns tKHKH tKHKH K clock rise to K clock rise (rising edge to rising edge) 1.35 – 1.49 – ns Setup Times tSA tAVKH Address setup to K clock rise 0.3 – 0.3 – ns tSC tIVKH Control setup to K clock rise (RPS, WPS) 0.3 – 0.3 – ns tSCDDR tIVKH DDR control setup to clock (K/K) rise (BWS0, BWS1, BWS2, BWS3) 0.3 – 0.3 – ns tSD tDVKH D[X:0] setup to clock (K/K) rise 0.3 – 0.3 – ns Hold Times tHA tKHAX Address hold after K clock rise 0.3 – 0.3 – ns tHC tKHIX Control hold after K clock rise (RPS, WPS) 0.3 – 0.3 – ns tHCDDR tKHIX DDR control hold after clock (K/K) rise (BWS0, BWS1, BWS2, BWS3) 0.3 – 0.3 – ns tHD tKHDX D[X:0] hold after clock (K/K) rise 0.3 – 0.3 – ns – 0.45 – 0.45 ns –0.45 – –0.45 – ns – 0.45 – 0.45 ns –0.45 – –0.45 – ns 0.27 ns Output Times tCO tCHQV K/K clock rise to data valid tDOH tCHQX Data output hold after output K/K clock rise (active to active) tCCQO tCHCQV K/K clock rise to echo clock valid tCQOH tCHCQX Echo clock hold after K/K clock rise tCQD tCQHQV Echo clock high to data valid tCQDOH tCQHQX Echo clock high to data invalid –0.25 – –0.27 – ns tCQH tCQHCQL Output clock (CQ/CQ) HIGH [30] 1.25 – 1.40 – ns 1.25 – 1.40 – ns – 0.45 – 0.45 ns –0.45 – –0.45 – ns –0.20 0.20 –0.20 0.20 ns tCQHCQH tCHZ tCQHCQH tCHQZ 0.25 CQ clock rise to CQ clock rise (rising edge to rising edge) Clock (K/K) rise to high Z (active to high Z) [31, 32] tCLZ tCHQX1 Clock (K/K) rise to low Z tQVLD tCQHQVLD Echo clock high to QVLD valid [33] [31, 32] [30] PLL Timing tKC Var tKC Var Clock phase jitter – 0.20 – 0.20 ns tKC lock tKC lock PLL lock time (K) 20 – 20 – s tKC Reset tKC Reset K static to PLL reset [34] 30 – 30 – ns Notes 28. When a part with a maximum frequency above 300 MHz is operating at a lower clock frequency, it requires the input timings of the frequency range in which it is being operated and outputs data with the output timings of that frequency range. 29. This part has a voltage regulator internally; tPOWER is the time that the power must be supplied above VDD minimum initially before initiating a read or write operation. 30. These parameters are extrapolated from the input timing parameters (tCYC/2 - 250 ps, where 250 ps is the internal jitter). These parameters are only guaranteed by design and are not tested in production. 31. tCHZ, tCLZ, are specified with a load capacitance of 5 pF as in part (b) of Figure 5 on page 21. Transition is measured 100 mV from steady state voltage. 32. At any voltage and temperature tCHZ is less than tCLZ and tCHZ less than tCO. 33. tQVLD spec is applicable for both rising and falling edges of QVLD signal. 34. Hold to >VIH or <VIL. Document Number: 001-66481 Rev. *G Page 22 of 28 CY7C25442KV18 Switching Waveforms Read/Write/Deselect Sequence Figure 6. Waveform for 2.0 Cycle Read Latency [35, 36, 37] READ 1 WRITE 2 READ 3 READ 5 WRITE 4 NOP 7 WRITE 6 WRITE 8 NOP 9 10 11 12 K tKH tKHKH tCYC tKL K RPS tSC tHC WPS A D A0 D10 A1 A2 tSA tHA tSA tHA D11 D30 A3 A4 A5 D31 D50 D51 A6 D60 D61 tSD tHD tSD tHD tQVLD QVLD tQVLD Q tCQD tCO tCLZ Q00 tCHZ tDOH Q01 Q20 (Read Latency = 2.0 Cycles) Q21 Q40 Q41 tCQDOH tCCQO CQ tCQH tCQHCQH tCQOH tCCQO CQ tCQOH DON’T CARE UNDEFINED Notes 35. Q00 refers to output from address A0. Q01 refers to output from the next internal burst address following A0, that is, A0 + 1. 36. Outputs are disabled (High Z) one clock cycle after a NOP. 37. In this example, if address A0 = A1, then data Q00 = D10 and Q01 = D11. Write data is forwarded immediately as read results. This note applies to the whole diagram. Document Number: 001-66481 Rev. *G Page 23 of 28 CY7C25442KV18 Ordering Information The following table contains only the parts that are currently available. If you do not see what you are looking for, contact your local sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices. Table 1. Ordering Information Speed (MHz) Ordering Code Package Diagram Package Type Operating Range 333 CY7C25442KV18-333BZI 51-85180 165-ball FBGA (13 × 15 × 1.4 mm) Industrial 300 CY7C25442KV18-300BZI 51-85180 165-ball FBGA (13 × 15 × 1.4 mm) Industrial 333 CY7C25442KV18-333BZXI 51-85180 165-ball FBGA (13 × 15 × 1.4 mm) Industrial Ordering Code Definitions CY 7 C 25442 K V18 - XXX BZ X I Temperature Range: I = Industrial X = Pb-free; X Absent = Leaded Package Type: BZ = 165-ball FBGA Speed Grade: XXX = 333 MHz or 300 MHz V18 = 1.8 V VDD Process Technology: K = 65 nm Part Identifier: 25442 = 72-Mbit QDR(R) II+ SRAM Two-Word Bust Architecture with ODT Technology Code: C = CMOS Marketing Code: 7 = SRAMs Company ID: CY = Cypress Document Number: 001-66481 Rev. *G Page 24 of 28 CY7C25442KV18 Package Diagram Figure 7. 165-ball FBGA (13 × 15 × 1.4 mm) BB165D/BW165D (0.5 Ball Diameter) Package Outline, 51-85180 51-85180 *G Document Number: 001-66481 Rev. *G Page 25 of 28 CY7C25442KV18 Acronyms Acronym Document Conventions Description Units of Measure DDR Double Data Rate EIA Electronic Industries Alliance °C degree Celsius FBGA Fine-Pitch Ball Grid Array MHz megahertz HSTL High-Speed Transceiver Logic µA microampere I/O Input/Output µs microsecond JEDEC Joint Electron Devices Engineering Council mA milliampere JTAG Joint Test Action Group mm millimeter LSB Least Significant Bit ms millisecond LMBU Logical Multiple Bit Upset mV millivolt LSBU Logical Single Bit Upset ns nanosecond MSB Most Significant Bit ohm PLL Phase Locked Loop % percent QDR Quad Data Rate pF picofarad SEL Single Event Latch-up ps picosecond SRAM Static Random Access Memory V volt TAP Test Access Port W watt TCK Test Clock TDI Test Data-In TDO Test Data-Out TMS Test Mode Select Document Number: 001-66481 Rev. *G Symbol Unit of Measure Page 26 of 28 CY7C25442KV18 Document History Page Document Title: CY7C25442KV18, 72-Mbit QDR® II+ SRAM Two-Word Burst Architecture (2.0 Cycle Read Latency) with ODT Document Number: 001-66481 Rev. ECN No. Orig. of Change Submission Date Description Of Change ** 3128828 NJY 01/05/2011 Changed base part number from CY7C2540KV18 to CY7C25402KV18, from CY7C2555KV18 to CY7C25552KV18, from CY7C2542KV18 to CY7C25422KV18, and from CY7C2544KV18 to CY7C25442KV18. Updated Ordering Information: Changed Ordering Code to reflect the change in base part number. Added Ordering Code Definitions. *A 3542147 PRIT 03/13/2012 Removed CY7C25402KV18, CY7C25552KV18 and CY7C25422KV18 related information in all instances across the document. Removed 250 MHz and 200 MHz frequencies related information in all instances across the document. Removed Commercial Temperature Range related information in all instances across the document. Updated Package Diagram. Added Acronyms and Units of Measure. Updated to new template. *B 3909173 PRIT 02/20/2013 Updated Package Diagram: spec 51-85180 – Changed revision from *E to *F. *C 4375336 PRIT 05/09/2014 Updated Application Example: Updated Figure 2. Updated Thermal Resistance: Updated values of JA parameter. Included JB parameter and its details. Updated to new template. *D 4394348 PRIT 05/30/2014 Updated Features: Added Pb-free packages related information. Updated Ordering Information: Updated part numbers. *E 4578255 PRIT 11/25/2014 Updated Functional Description: Added “For a complete list of related documentation, click here.” at the end. *F 5171195 PRIT 03/11/2016 Updated Package Diagram: spec 51-85180 – Changed revision from *F to *G. Updated to new template. Completing Sunset Review. *G 5975049 AESATP12 11/23/2017 Updated logo and copyright. Document Number: 001-66481 Rev. *G Page 27 of 28 CY7C25442KV18 Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products ® ® ARM Cortex Microcontrollers Automotive cypress.com/arm cypress.com/automotive Clocks & Buffers Interface cypress.com/clocks cypress.com/interface Internet of Things Memory cypress.com/iot cypress.com/memory Microcontrollers cypress.com/mcu PSoC cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing Cypress Developer Community Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components Technical Support cypress.com/support cypress.com/touch USB Controllers Wireless Connectivity PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 cypress.com/usb cypress.com/wireless © Cypress Semiconductor Corporation, 2011-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 001-66481 Rev. *G Revised November 23, 2017 Page 28 of 28