C3M0280090J Silicon Carbide Power MOSFET TM C3M MOSFET Technology VDS 900 V ID @ 25˚C 11 A RDS(on) 280 mΩ N-Channel Enhancement Mode Features • • • • • • Package New C3M SiC MOSFET technology High blocking voltage with low On-resistance High speed switching with low capacitances New low impedance package with driver source Fast intrinsic diode with low reverse recovery (Qrr) Halogen free, RoHS compliant TAB Drain Benefits • • • • Drain (TAB) Higher system efficiency Reduced cooling requirements Increased power density Increased system switching frequency 1 2 3 4 5 G KS S S S 7 S Gate (Pin 1) Applications • • • • • 6 S Driver Source (Pin 2) Renewable energy Lighting High voltage DC/DC converters Telecom Power Supplies Induction Heating Power Source (Pin 3,4,5,6,7) Part Number Package C3M0280090J 7L D2PAK Maximum Ratings (TC = 25 ˚C unless otherwise specified) Symbol Parameter Unit Test Conditions Note VDSmax Drain - Source Voltage 900 V VGS = 0 V, ID = 100 μA VGSmax Gate - Source Voltage -8/+18 V Absolute maximum values VGSop Gate - Source Voltage -4/+15 V Recommended operational values Note (1) VGS = 15 V, TC = 25˚C Fig. 19 ID Continuous Drain Current ID(pulse) PD TJ , Tstg TL 11 7 A VGS = 15 V, TC = 100˚C Pulsed Drain Current 22 A Pulse width tP limited by Tjmax Fig. 22 Power Dissipation 50 W TC=25˚C, TJ = 150 ˚C Fig. 20 -55 to +150 ˚C 260 ˚C Operating Junction and Storage Temperature Solder Temperature Note (1): MOSFET can also safely operate at 0/+15 V 1 Value C3M0280090J Rev. - , 12-2015 1.6mm (0.063”) from case for 10s Electrical Characteristics (TC = 25˚C unless otherwise specified) Symbol Parameter V(BR)DSS Drain-Source Breakdown Voltage VGS(th) Gate Threshold Voltage Min. Typ. Max. 900 1.8 2.1 3.5 1.6 Unit Test Conditions V VGS = 0 V, ID = 100 μA V VDS = VGS, ID = 1.2 mA V VDS = VGS, ID = 1.2 mA, TJ = 150ºC IDSS Zero Gate Voltage Drain Current 1 100 μA VDS = 900 V, VGS = 0 V IGSS Gate-Source Leakage Current 10 250 nA VGS = 15 V, VDS = 0 V 280 360 RDS(on) Drain-Source On-State Resistance 385 3.6 gfs Transconductance Ciss Input Capacitance 150 Coss Output Capacitance 20 Crss Reverse Transfer Capacitance 2 Eoss Coss Stored Energy 4.5 EON Turn-On Switching Energy 19 EOFF Turn Off Switching Energy 3.7 td(on) Turn-On Delay Time 10.5 Rise Time 6.5 Turn-Off Delay Time 11 Fall Time 4 Internal Gate Resistance 26 tr td(off) tf RG(int) Qgs Gate to Source Charge 2.8 Qgd Gate to Drain Charge 3.4 Qg Total Gate Charge 9.5 VGS = 15 V, ID = 7.5 A mΩ VGS = 15 V, ID = 7.5 A, TJ = 150ºC VDS= 15 V, IDS= 7.5 A S 3.1 Note VDS= 15 V, IDS= 7.5 A, TJ = 150ºC f = 1 MHz VAC = 25 mV μJ Fig. 4, 5, 6 Fig. 7 Fig. 17, 18 VGS = 0 V, VDS = 600 V pF Fig. 11 Fig. 16 μJ VDS = 400 V, VGS = -4 V/15 V, ID = 7.5 A, RG(ext) = 2.5Ω, L= 220 μH, TJ = 150ºC Fig. 26, 29 Note(3) ns VDD = 400 V, VGS = -4 V/15 V ID = 7.5 A, RG(ext) = 2.5 Ω, Timing relative to VDS Inductive load Fig. 27, 29 Note(3) Ω f = 1 MHz, VAC = 25 mV nC VDS = 400 V, VGS = -4 V/15 V ID = 7.5 A Per IEC60747-8-4 pg 21 Fig. 12 Reverse Diode Characteristics (TC = 25˚C unless otherwise specified) Symbol VSD IS IS, pulse Parameter Typ. Diode Forward Voltage Max. Test Conditions Unit 4.8 V VGS = -4 V, ISD = 4 A 4.4 V VGS = -4 V, ISD = 4 A, TJ = 150 °C Note Fig. 8, 9, 10 Continuous Diode Forward Current 9 A VGS = -4 V Note (2) Diode pulse Current 22 A VGS = -4 V, pulse width tP limited by Tjmax Note (2) VGS = -4 V, ISD = 7.5 A, VR = 400 V dif/dt = 600 A/µs, TJ = 150 °C Note (2) trr Reverse Recover time 20 ns Qrr Reverse Recovery Charge 47 nC Irrm Peak Reverse Recovery Current 3.4 A Note (2): When using SiC Body Diode the maximum recommended VGS = -4V Thermal Characteristics Symbol 2 Parameter Max. RθJC Thermal Resistance from Junction to Case 2.5 RθJA Thermal Resistance From Junction to Ambient 40 C3M0280090J Rev. - , 12-2015 Unit °C/W Test Conditions Note Fig. 21 Typical Performance Conditions: TJ = -55 °C tp = < 200 µs 18 VGS = 13 V 16 14 12 VGS = 15 V Conditions: TJ = 25 °C tp = < 200 µs 18 VGS = 13 V 16 Drain-Source Current, IDS (A) 20 VGS = 15 V VGS = 11 V 10 VGS = 9 V 8 6 VGS = 7 V 4 Drain-Source Current, IDS (A) 20 14 VGS = 11 V 12 VGS = 9 V 10 8 6 VGS = 7 V 4 2 2 0 0 0 2 4 6 8 10 0 2 4 Drain-Source Voltage, VDS (V) Figure 1. Output Characteristics TJ = -55 ºC 2.5 Conditions: TJ = 150 °C tp = < 200 µs 18 10 Conditions: IDS = 7 A VGS = 15 V tp < 200 µs VGS = 15 V VGS = 13 V 16 Drain-Source Current, IDS (A) 8 Figure 2. Output Characteristics TJ = 25 ºC 14 2.0 On Resistance, RDS On (P.U.) 20 6 Drain-Source Voltage, VDS (V) VGS = 11 V 12 VGS = 9 V 10 8 6 VGS = 7 V 4 1.5 1.0 0.5 2 0.0 0 0 2 4 6 8 -50 10 -25 0 Figure 3. Output Characteristics TJ = 150 ºC Conditions: VGS = 15 V tp < 200 µs 500 TJ = 150 °C 400 TJ = -55 °C 300 75 100 125 150 Conditions: IDS = 7 A tp < 200 µs 550 On Resistance, RDS On (mOhms) On Resistance, RDS On (mOhms) 500 50 Figure 4. Normalized On-Resistance vs. Temperature 600 600 25 Junction Temperature, TJ (°C) Drain-Source Voltage, VDS (V) TJ = 25 °C 200 100 450 VGS = 11 V 400 350 VGS = 13 V 300 250 VGS = 15 V 200 150 100 50 0 0 0 5 10 15 Drain-Source Current, IDS (A) Figure 5. On-Resistance vs. Drain Current For Various Temperatures 3 C3M0280090J Rev. - , 12-2015 20 -50 -25 0 25 50 75 100 Junction Temperature, TJ (°C) Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 125 150 Typical Performance -8 Conditions: VDS = 20 V tp < 200 µs -7 -6 -5 -4 -3 -2 -1 0 0 TJ = 150 °C 10 VGS = -4 V Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 15 TJ = 25 °C TJ = -55 °C 5 -5 VGS = 0 V VGS = -2 V -10 -15 Conditions: TJ = -55°C tp < 200 µs 0 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Figure 7. Transfer Characteristic for Various Junction Temperatures -8 -7 -6 -5 -4 -3 -2 Figure 8. Body Diode Characteristic at -55 ºC -1 0 -8 -7 -6 -5 -4 -3 -2 -1 VGS = -4 V -5 VGS = 0 V VGS = -2 V -10 VGS = -4 V -5 VGS = 0 V VGS = -2 V -10 -15 Conditions: TJ = 25°C tp < 200 µs Drain-Source Voltage VDS (V) -15 Conditions: TJ = 150°C tp < 200 µs -20 Drain-Source Voltage VDS (V) Figure 9. Body Diode Characteristic at 25 ºC 2.0 1.5 1.0 0.5 0.0 0 25 50 75 100 125 Junction Temperature TJ (°C) Figure 11. Threshold Voltage vs. Temperature 4 Conditions: IDS = 7.5 A IGS = 10 mA VDS = 400 V TJ = 25 °C 12 Gate-Source Voltage, VGS (V) Threshold Voltage, Vth (V) 16 Conditons VGS = VDS IDS = 1.2 mA -25 C3M0280090J Rev. - , 12-2015 -20 Figure 10. Body Diode Characteristic at 150 ºC 3.0 2.5 0 0 Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 0 -50 -20 Drain-Source Voltage VDS (V) Gate-Source Voltage, VGS (V) 150 8 4 0 -4 0 2 4 6 8 Gate Charge, QG (nC) Figure 12. Gate Charge Characteristics 10 Typical Performance -6 -5 -4 -3 -2 -1 0 -6 -5 -4 -3 -2 -1 0 0 -5 VGS = 5 V VGS = 10 V -10 VGS = 15 V VGS = 0 V Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) VGS = 0 V 0 -5 VGS = 5 V VGS = 10 V -10 VGS = 15 V -15 -15 Conditions: TJ = -55 °C tp < 200 µs Conditions: TJ = 25 °C tp < 200 µs -20 Drain-Source Voltage VDS (V) Figure 13. 3rd Quadrant Characteristic at -55 ºC -6 -5 -4 -3 -2 -1 -20 Drain-Source Voltage VDS (V) Figure 14. 3rd Quadrant Characteristic at 25 ºC 10 0 0 8 -5 VGS = 5 V VGS = 10 V -10 VGS = 15 V Stored Energy, EOSS (µJ) Drain-Source Current, IDS (A) VGS = 0 V 4 2 -15 Conditions: TJ = 150 °C tp < 200 µs 0 0 -20 Drain-Source Voltage VDS (V) 6 100 300 600 700 800 1000 Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz 900 1000 Conditions: TJ = 25 °C VAC = 25 mV f = 1 MHz Ciss 100 Capacitance (pF) Capacitance (pF) 500 Figure 16. Output Capacitor Stored Energy Ciss Coss 10 100 Coss 10 Crss Crss 1 1 0 50 100 Drain-Source Voltage, VDS (V) 150 Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V) 5 400 Drain to Source Voltage, VDS (V) Figure 15. 3rd Quadrant Characteristic at 150 ºC 1000 200 C3M0280090J Rev. - , 12-2015 200 0 100 200 300 400 500 600 Drain-Source Voltage, VDS (V) 700 Figure 18. Capacitances vs. Drain-Source Voltage (0 - 900V) 800 900 Typical Performance 60 Conditions: TJ ≤ 150 °C Conditions: TJ ≤ 150 °C 10 Maximum Dissipated Power, Ptot (W) Drain-Source Continous Current, IDS (DC) (A) 12 8 6 4 2 0 -55 -30 -5 20 45 70 95 120 50 40 30 20 10 0 145 -55 Case Temperature, TC (°C) 20 45 70 95 120 145 Figure 20. Maximum Power Dissipation Derating vs. Case Temperature 0.5 1 10 µs 10.00 Drain-Source Current, IDS (A) 0.3 0.1 0.05 100E-3 0.02 0.01 SinglePulse 10E-3 Limited by RDS On 100 ms 1.00 0.10 Conditions: TC = 25 °C D = 0, Parameter: tp 0.01 1E-6 10E-6 100E-6 1E-3 10E-3 Time, tp (s) 100E-3 0.1 1 1 1000 Conditions: TJ = 25 °C VDD = 400 V RG(ext) = 2.5 Ω VGS = -4V/+15 V FWD = C3M0280090J L = 220 μH 50 ETotal Switching Loss (uJ) Switching Loss (uJ) 80 100 Figure 22. Safe Operating Area 60 Conditions: TJ = 25 °C VDD = 600 V RG(ext) = 2.5 Ω VGS = -4V/+15 V FWD = C3M0280090J L = 220 μH 10 Drain-Source Voltage, VDS (V) Figure 21. Transient Thermal Impedance (Junction - Case) 100 100 µs 1 ms 1E-3 60 EOn 40 20 40 ETotal 30 EOn 20 10 EOff 0 EOff 0 0 2 4 6 8 10 12 14 Drain to Source Current, IDS (A) Figure 23. Clamped Inductive Switching Energy vs. Drain Current (VDD = 600V) 6 -5 Case Temperature, TC (°C) Figure 19. Continuous Drain Current Derating vs. Case Temperature Junction To Case Impedance, ZthJC (oC/W) -30 C3M0280090J Rev. - , 12-2015 16 0 2 4 6 8 10 12 14 Drain to Source Current, IDS (A) Figure 24. Clamped Inductive Switching Energy vs. Drain Current (VDD = 400V) 16 Typical Performance 40 Switching Loss (uJ) 40 Conditions: TJ = 25 °C VDD = 400 V IDS = 7.5 A VGS = -4V/+15 V FWD = C3M0280090J L = 220 μH 30 EOn 20 10 ETotal 20 EOn 10 EOff EOff 0 0 0 5 10 15 20 25 External Gate Resistor RG(ext) (Ohms) 20 Conditions: TJ = 25 °C VDD = 400 V IDS = 7.5 A VGS = -4V/+15 V FWD = C3M0280090J L = 220 μH 16 0 25 50 75 100 125 Figure 26. Clamped Inductive Switching Energy vs. Temperature td(off) 12 td(on) tr 8 tf 4 0 0 5 10 15 20 25 External Gate Resistor RG(ext) (Ohms) Figure 27. Switching Times vs. RG(ext) 7 C3M0280090J Rev. - , 12-2015 150 Junction Temperature, TJ (°C) Figure 25. Clamped Inductive Switching Energy vs. RG(ext) Times (ns) Conditions: IDS = 7.5 A VDD = 400 V RG(ext) = 2.5 Ω VGS = -4V/+15 V FWD = C3M0280090J L = 220 μH 30 ETotal Switching Loss (uJ) 50 Figure 28. Switching Times Definition 175 Test Circuit Schematic Q1 RG VGS= - 4V VDC Q2 RG D.U.T Figure 29. Clamped Inductive Switching Test Circuit Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above. 8 C3M0280090J Rev. - , 12-2015 Package Dimensions Package 7L D2PAK Dim All Dimensions in Millimeters Min C3M0280090J Rev. - , 12-2015 Max 4.570 A 4.300 4.435 A1 0.00 0.125 0.25 b 0.500 0.600 0.700 b2 0.600 0.800 1.000 c 0.330 0.490 0.650 C2 1.170 1.285 1.400 9.125 D 9.025 9.075 D1 4.700 4.800 4.900 E 10.130 10.180 10.230 E1 6.500 7.550 8.600 E2 6.778 7.223 7.665 e 9 typ 1.27 H 15.043 16.178 17.313 L 2.324 2.512 2.700 L1 0.968 1.418 1.868 Ø 0˚ 4˚ 8˚ Ø1 4.5˚ 5˚ 5.5˚ Notes • RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. • REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. • This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links • • • C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support Copyright © 2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 10 C3M0280090J Rev. -, 12-2015 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power