TI1 AM1707CZKBA3 Am1707 armâ® microprocessor Datasheet

Product
Folder
Sample &
Buy
Tools &
Software
Technical
Documents
Support &
Community
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
AM1707 ARM® Microprocessor
1 AM1707 ARM Microprocessor
1.1
Features
1
• 375- and 456-MHz ARM926EJ-S™ RISC Core
– 32-Bit and 16-Bit (Thumb®) Instructions
– Single-Cycle MAC
– ARM Jazelle® Technology
– Embedded ICE-RT™ for Real-Time Debug
• ARM9™ Memory Architecture
– 16KB of Instruction Cache
– 16KB of Data Cache
– 8KB of RAM (Vector Table)
– 64KB of ROM
• Enhanced Direct Memory Access Controller 3
(EDMA3):
– 2 Transfer Controllers
– 32 Independent DMA Channels
– 8 Quick DMA Channels
– Programmable Transfer Burst Size
• 128KB of RAM Memory
• 3.3-V LVCMOS I/Os (Except for USB Interfaces)
• Two External Memory Interfaces:
– EMIFA
• NOR (8- or 16-Bit-Wide Data)
• NAND (8- or 16-Bit-Wide Data)
• 16-Bit SDRAM with 128-MB Address Space
– EMIFB
• 32-Bit or 16-Bit SDRAM with 256-MB
Address Space
• Three Configurable 16550-Type UART Modules:
– UART0 with Modem Control Signals
– 16-Byte FIFO
– 16x or 13x Oversampling Option
– Autoflow Control Signals (CTS, RTS) on UART0
Only
• LCD Controller
• Two Serial Peripheral Interfaces (SPIs) Each with
One Chip Select
• Programmable Real-Time Unit Subsystem
(PRUSS)
– Two Independent Programmable Real-Time Unit
(PRU) Cores
• 32-Bit Load-Store RISC Architecture
• 4KB of Instruction RAM per Core
• 512 Bytes of Data RAM per Core
• PRUSS can be Disabled via Software to
Save Power
– Standard Power-Management Mechanism
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Clock Gating
Entire Subsystem Under a Single PSC Clock
Gating Domain
– Dedicated Interrupt Controller
– Dedicated Switched Central Resource
Multimedia Card (MMC)/Secure Digital (SD) Card
Interface with Secure Data I/O (SDIO)
Two Master and Slave Inter-Integrated Circuit (I2C
Bus™)
One Host-Port Interface (HPI) with 16-Bit-Wide
Muxed Address/Data Bus for High Bandwidth
USB 1.1 OHCI (Host) with Integrated PHY (USB1)
USB 2.0 OTG Port with Integrated PHY (USB0)
– USB 2.0 High- and Full-Speed Client
– USB 2.0 High-, Full-, and Low-Speed Host
– End Point 0 (Control)
– End Points 1,2,3,4 (Control, Bulk, Interrupt or
ISOC) RX and TX
Three Multichannel Audio Serial Ports (McASPs):
– Six Clock Zones and 28 Serial Data Pins
– Supports TDM, I2S, and Similar Formats
– DIT-Capable (McASP2)
– FIFO Buffers for Transmit and Receive
10/100 Mbps Ethernet MAC (EMAC):
– IEEE 802.3 Compliant (3.3-V I/O Only)
– RMII Media-Independent Interface
– Management Data I/O (MDIO) Module
Real-Time Clock (RTC) with 32-kHz Oscillator and
Separate Power Rail
One 64-Bit General-Purpose Timer (Configurable
as Two 32-Bit Timers)
One 64-Bit General-Purpose Watchdog Timer
(Configurable as Two 32-Bit General-Purpose
Timers)
Three Enhanced Pulse Width Modulators
(eHRPWMs):
– Dedicated 16-Bit Time-Base Counter with
Period and Frequency Control
– 6 Single Edge, 6 Dual Edge Symmetric, or 3
Dual Edge Asymmetric Outputs
– Dead-Band Generation
– PWM Chopping by High-Frequency Carrier
– Trip Zone Input
Three 32-Bit Enhanced Capture (eCAP) Modules:
– Configurable as 3 Capture Inputs or 3 Auxiliary
Pulse Width Modulator (APWM) Outputs
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
– Single-Shot Capture of up to Four Event TimeStamps
• Two 32-Bit Enhanced Quadrature Encoder Pulse
(eQEP) Modules
1.2
•
•
Applications
Industrial Automation
Home Automation
1.3
• 256-Ball Pb-Free Plastic Ball Grid Array (PBGA)
[ZKB Suffix], 1.0-mm Ball Pitch
• Commercial, Industrial, Automotive, or Extended
Temperature
•
•
Test and Measurement
Portable Data Terminals
Description
The device is a low-power ARM microprocessor based on an ARM926EJ-S.
The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs)
to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and
high processing performance life through the maximum flexibility of a fully integrated mixed processor
solution.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and
processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and
memory system can operate continuously.
The ARM core has a coprocessor 15 (CP15), protection module, and data and program memory
management units (MMUs) with table look-aside buffers. The ARM core has separate 16KB of instruction
and 16-KB data caches. Both memory blocks are four-way associative with virtual index virtual tag (VIVT).
The ARM core also has 8KB of RAM (Vector Table) and 64KB of ROM.
The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output
(MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial port (McASP) with 16/12/4 serializers
and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a
configurable 16-bit host-port interface (HPI); up to 8 banks of 16 pins of general-purpose input/output
(GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three
UART interfaces (one with both RTS and CTS); three enhanced high-resolution pulse width modulator
(eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be
configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced
quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and
SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed
memory interface (EMIFB) for SDRAM.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and the
network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either halfor full-duplex mode. Additionally, an MDIO interface is available for PHY configuration.
The HPI, I2C, SPI, USB1.1, and USB2.0 ports allow the device to easily control peripheral devices and/or
communicate with host processors.
The rich peripheral set provides the ability to control external peripheral devices and communicate with
external processors. For details on each of the peripherals, see the related sections later in this document
and the associated peripheral reference guides.
The device has a complete set of development tools for the ARM processor. These include C compilers
and a Windows® debugger interface for visibility into source code execution.
Device Information (1)
PART NUMBER
AM1707
(1)
2
PACKAGE
BODY SIZE
BGA (256)
17.00 mm x 17.00 mm
For more information on these devices, see Section 8, Mechanical Packaging and Orderable
Information.
AM1707 ARM Microprocessor
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
1.4
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Functional Block Diagram
JTAG Interface
ARM Subsystem
System Control
ARM926EJ-S CPU
With MMU
PLL/Clock
Generator
w/OSC
Input
Clock(s)
GeneralPurpose
Timer
GeneralPurpose
Timer
(Watchdog)
Memory
Protection
4KB ETB
16KB
16KB
I-Cache D-Cache
Power/Sleep
Controller
RTC/
Pin
32-kHz Multiplexing
OSC
8KB RAM
(Vector Table)
64KB ROM
Switched Central Resource (SCR)
Peripherals
DMA
GPIO
McASP
w/FIFO
(3)
EDMA3
I2C
(2)
eCAP
(3)
SPI
(2)
UART
(3)
eQEP
(2)
USB2.0
OTG Ctlr
PHY
USB1.1
OHCI Ctlr
PHY
(10/100)
EMAC
(RMII)
MDIO
Display Internal Memory
PRU
Subsystem
Connectivity
Control Timers
eHRPWM
(3)
Customizable Interface
Serial Interfaces
Audio Ports
LCD
Ctlr
128 KB
RAM
External Memory Interfaces
HPI
MMC/SD
(8b)
EMIFA(8b/16B)
NAND/Flash
16b SDRAM
EMIFB
SDRAM Only
(16b/32b)
Figure 1-1. AM1707 Functional Block Diagram
AM1707 ARM Microprocessor
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
3
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table of Contents
1
2
3
AM1707 ARM Microprocessor......................... 1
6.10
External Memory Interface A (EMIFA) .............. 64
1.1
Features .............................................. 1
6.11
External Memory Interface B (EMIFB) .............. 75
1.2
Applications ........................................... 2
6.12
Memory Protection Units ............................ 83
1.3
Description ............................................ 2
6.13
MMC / SD / SDIO (MMCSD) ........................ 86
1.4
Functional Block Diagram ............................ 3
6.14
Ethernet Media Access Controller (EMAC) ......... 89
Revision History ......................................... 5
Device Overview ......................................... 6
6.15
6.16
Management Data Input/Output (MDIO) ............ 94
Multichannel Audio Serial Ports (McASP0, McASP1,
and McASP2)........................................ 96
3.1
Device Characteristics ................................ 6
3.2
Device Compatibility .................................. 7
6.17
Serial Peripheral Interface Ports (SPI0, SPI1) ..... 109
3.3
ARM Subsystem ...................................... 8
3.4
Memory Map Summary ............................. 11
6.18
6.19
3.5
Pin Assignments
3.6
Terminal Functions .................................. 14
Enhanced Capture (eCAP) Peripheral............. 127
Enhanced Quadrature Encoder (eQEP)
Peripheral .......................................... 130
Enhanced High-Resolution Pulse-Width Modulator
(eHRPWM) ......................................... 132
....................................
13
4
Device Configuration .................................. 33
5
.........................................
4.2
SYSCFG Module ....................................
4.3
Pullup/Pulldown Resistors ..........................
Device Operating Conditions ........................
4.1
Boot Modes
6.20
6.21
LCD Controller ..................................... 136
33
6.22
Timers .............................................. 151
34
6.23
6.24
Inter-Integrated Circuit Serial Ports (I2C0, I2C1) .. 153
Universal Asynchronous Receiver/Transmitter
(UART) ............................................. 158
6.25
USB1 Host Controller Registers (USB1.1 OHCI) .. 160
6.26
USB0 OTG (USB2.0 OTG)
6.27
Host-Port Interface (UHPI) ......................... 170
6.28
6.29
Power and Sleep Controller (PSC) ................ 177
Programmable Real-Time Unit Subsystem
(PRUSS) ........................................... 180
6.30
Emulation Logic .................................... 183
6.31
IEEE 1149.1 JTAG
6.32
Real Time Clock (RTC) ............................ 191
36
37
5.1
Absolute Maximum Ratings Over Operating
Junction Temperature Range
(Unless Otherwise Noted) ................................. 37
6
5.2
Handling Ratings .................................... 37
5.3
Recommended Operating Conditions ............... 38
5.4
5.5
Notes on Recommended Power-On Hours (POH) . 39
Electrical Characteristics Over Recommended
Ranges of Supply Voltage and Operating Junction
Temperature (Unless Otherwise Noted) ............ 40
Peripheral Information and Electrical
Specifications ........................................... 41
6.1
6.2
6.3
Power Supplies ...................................... 42
6.4
Reset ................................................ 43
6.5
Crystal Oscillator or External Clock Input ........... 46
6.6
Clock PLLs .......................................... 48
6.7
Interrupts
6.8
6.9
4
7
Parameter Information .............................. 41
Recommended Clock and Control Signal Transition
Behavior ............................................. 42
............................................
General-Purpose Input/Output (GPIO) ..............
EDMA ...............................................
8
........................
................................
162
189
Device and Documentation Support .............. 194
7.1
Device Support..................................... 194
7.2
Documentation Support ............................ 195
7.3
Community Resources............................. 195
7.4
Trademarks ........................................ 195
7.5
Electrostatic Discharge Caution
7.6
Glossary............................................ 195
...................
195
52
Mechanical Packaging and Orderable
Information ............................................. 196
56
8.1
Thermal Data for ZKB
59
8.2
Packaging Information ............................. 196
Table of Contents
.............................
196
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
This data manual revision history highlights the changes made to the SPRS637D device-specific data
manual to make it an SPRS637E revision.
Scope: Applicable updates to the AM170x ARM microprocessor device family, specifically relating to the
AM1707 device, which are all now in the production data (PD) stage of development, have been
incorporated.
Revision History
SEE
ADDITIONS/MODIFICATIONS/DELETIONS
Global
•
•
•
•
Section 1.1
Features
Deleted Highlights section. Information was duplicated elsewhere in Features.
Section 1.2
Applications
Added NEW section.
Section 1.3
Description
Added NEW Device Information Table.
Section 3.6
Terminal Functions
Section 3.6.16, Universal Serial Bus Modules (USB0, USB1):
•
Updated/Changed USB0_VDDA12 DESCRIPTION from "...output for bypass cap." to "...output for
bypass cap. For proper device operation, this pin is recommended to be connected..."
Section 3.6.22
Unused USB0
(USB2.0) and USB1
(USB1.1) Pin
Configurations
Updated Features, Applications, and Description for consistency and translation.
Moved Trademarks information from first page to within Section 7, Device and Documentation Support.
Moved ESDS Warning to within Section 7, Device and Documentation Support.
Added numbering to section and table titles that were missing.
Moved Section to within Section 3.6, Terminal Functions
Table 3-24, Unused USB0 and USB1 Pin Configurations:
•
Updated/Changed USB0_VDDA12 Configuration by combining both Configuration columns and
changing text to "Internal USB0 PHY output connected to an external..."
Section 5
Device Operating
Conditions
Section 5.2, Handling Ratings:
•
Split handling, ratings, and certifications from the Abs Max table and placed in NEW Handling Ratings
table.
Section 5.3, Recommended Operating Conditions:
•
Added "Unless specifically indicated" to "These I/O specifications apply to ..." footnote
Section 5.4
Notes on
Recommended
Power-On Hours
(POH)
Table 5-1, Recommended Power-On Hours:
•
Added Silicon Revision column.
Section 6.10.6
EMIFA Electrical
Data/Timing
Table 6-22, EMIFA Asynchronous Memory Switching Characteristics:
•
Updated/Changed the MIN, NOM, and MAX equations for NO. 3, 10, 15, and 24 from "...(EWC*16)..." to
"...EWC..."
Revision History
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
5
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Revision History (continued)
SEE
ADDITIONS/MODIFICATIONS/DELETIONS
Section 6.11.4
EMIFB Electrical
Data/Timing
Table 6-26, EMIFB SDRAM Interface Timing Requirements:
•
Updated/Changed Parameter No. 19 from "tsu(DV-CLKH)" to "t(DV-CLKH)"
•
Added new column: "CVDD = 1.3V"
•
Added new footnote containing "...range rated devices for 456 MHz max CPU operating..."
•
Added new footnote containing "...range rated devices for 400/375/300/266/200 MHz max CPU
operating ..."
Table 6-27, EMIFB SDRAM Interface Switching Characteristics for Commercial (Default) Temperature
Range:
•
Updated/Changed table title from "...Switching Characteristics..." to "...Switching Characteristics for
Commercial (Default) Temperature Range"
•
Added new footnote containing "...range rated devices for 456 MHz max CPU operating ..."
•
Added new footnote containing "...range rated devices for 400/375/300/266/200 MHz max CPU
operating..."
•
Updated/Changed CVDD = 1.3V MIN column values for Parameter No. 4, 6, 8, 10, 12, 14, 16, and 18
from "0.9" to "1.1"
•
Updated/Changed CVDD = 1.3V MAX column values for Parameter No. 3, 5, 7, 9, 11, 13, 15, and 17
from "5.1" to "4.25"
•
Populated CVDD = 1.2V column with values (was empty)
•
Updated/Changed Parameter No. 18 from "tena(CLKH-DLZ)" to "t(CLKH-DLZ)"
Table 6-28, EMIFB SDRAM Interface Switching Characteristics for Industrial, Extended, and Automotive
Temperature Ranges:
•
Added NEW table
Section 6.16
Multichannel Audio
Serial Ports
(McASP0, McASP1,
and McASP2)
Table 6-45, McASP Registers Accessed Through DMA Port:
•
Updated/Changed Read Accesses Register Description from "XBUSEL = 0 in XFMT" to "RBUSEL = 0 in
RFMT"
•
Updated/Changed Write Accesses Register Description from "RBUSEL = 0 in RFMT" to "XBUSEL = 0 in
XFMT"
Section 6.32
Real Time Clock
(RTC)
Section 6.32.2, Registers:
•
Deleted "See the device-specific data ..." sentence
Section 7.6
Glossary
Added NEW section.
3 Device Overview
3.1
Device Characteristics
Table 3-1 provides an overview of the device. The table shows significant features of the device, including
the capacity of on-chip RAM, peripherals, and the package type with pin count.
6
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 3-1. Characteristics of the Device
HARDWARE FEATURES
16/32-bit, up to 256 MB SDRAM
EMIFA
Asynchronous (8/16-bit bus width) RAM, Flash, 16-bit up to 128MB SDRAM, NOR,
NAND
Flash Card Interface
Peripherals
Not all peripherals pins
are available at the
same time (for more
detail, see the Device
Configurations section).
AM1707
EMIFB
MMC and SD cards supported
EDMA3
32 independent channels, 8 QDMA channels, 2 Transfer controllers
Timers
2 64-Bit General Purpose (configurable as 2 separate 32-bit timers, 1 configurable as
Watch Dog)
UART
3 (one with RTS and CTS flow control)
SPI
2 (Each with one hardware chip select)
I2C
2 (both Master/Slave)
Multichannel Audio
Serial Port [McASP]
3 (each with transmit/receive, FIFO buffer, 16/12/4 serializers)
10/100 Ethernet MAC
with Management Data
I/O
eHRPWM
1 (RMII Interface)
6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs
eCAP
3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs
eQEP
2 32-bit QEP channels with 4 inputs/channel
UHPI
1 (16-bit multiplexed address/data)
USB 2.0 (USB0)
High-Speed OTG Controller with on-chip OTG PHY
USB 1.1 (USB1)
Full-Speed OHCI (as host) with on-chip PHY
General-Purpose
Input/Output Port
8 banks of 16-bit
PRU Subsystem
(PRUSS)
2 Programmable PRU Cores
LCD Controller
Size (Bytes)
On-Chip Memory
Organization
1
168KB RAM, 64KB ROM
ARM
16KB I-Cache
16KB D-Cache
8KB RAM (Vector Table)
64KB ROM
ADDITIONAL MEMORY
128KB RAM
JTAG BSDL_ID
DEVIDR0 register
CPU Frequency
MHz
Voltage
Core (V)
0x8B7D F02F (Silicon Revision 1.1)
0x9B7D F02F (Silicon Revisions 3.0, 2.1, and 2.0)
ARM926 375 MHz (1.2V) or 456 MHz (1.3V)
1.2 V nominal for 375 MHz version
1.3 V nominal for 456 MHz version
I/O (V)
Package
Product Status (1)
(1)
3.2
3.3 V
17 mm x 17 mm, 256-Ball 1 mm pitch, PBGA (ZKB)
Product Preview (PP),
Advance Information
(AI),
or Production Data
(PD)
375 MHz Versions - PD
456 MHz Version - PD
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not necessarily include testing of all parameters..
Device Compatibility
The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.
3.3
ARM Subsystem
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
7
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
The ARM Subsystem includes the following features:
• ARM926EJ-S RISC processor
• ARMv5TEJ (32/16-bit) instruction set
• Little endian
• System Control Co-Processor 15 (CP15)
• MMU
• 16KB Instruction cache
• 16KB Data cache
• Write Buffer
• Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
• ARM Interrupt controller
3.3.1
ARM926EJ-S RISC CPU
The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of
ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications
where full memory management, high performance, low die size, and low power are all important. The
ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to
trade off between high performance and high code density. Specifically, the ARM926EJ-S processor
supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes,
providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code
overhead.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both
hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a
complete high performance subsystem, including:
• ARM926EJ -S integer core
• CP15 system control coprocessor
• Memory Management Unit (MMU)
• Separate instruction and data caches
• Write buffer
• Separate instruction and data (internal RAM) interfaces
• Separate instruction and data AHB bus interfaces
• Embedded Trace Module and Embedded Trace Buffer (ETM/ETB)
For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available
at http://www.arm.com
3.3.2
CP15
The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and
data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers
are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as
supervisor or system mode.
3.3.3
MMU
A single set of two level page tables stored in main memory is used to control the address translation,
permission checks and memory region attributes for both data and instruction accesses. The MMU uses a
single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The
MMU features are:
• Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.
8
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
•
•
•
•
•
•
3.3.4
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Mapping sizes are:
– 1MB (sections)
– 64KB (large pages)
– 4KB (small pages)
– 1KB (tiny pages)
Access permissions for large pages and small pages can be specified separately for each quarter of
the page (subpage permissions)
Hardware page table walks
Invalidate entire TLB, using CP15 register 8
Invalidate TLB entry, selected by MVA, using CP15 register 8
Lockdown of TLB entries, using CP15 register 10
Caches and Write Buffer
The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following
features:
• Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)
• Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with
two dirty bits in the Dcache
• Dcache supports write-through and write-back (or copy back) cache operation, selected by memory
region using the C and B bits in the MMU translation tables
• Critical-word first cache refilling
• Cache lockdown registers enable control over which cache ways are used for allocation on a line fill,
providing a mechanism for both lockdown, and controlling cache corruption
• Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG
RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the
TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the
possibility of TLB misses related to the write-back address.
• Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of
the Dcache or Icache, and regions of virtual memory.
The write buffer is used for all writes to a noncachable bufferable region, write-through region and write
misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for
cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a
four-address buffer. The Dcache write-back has eight data word entries and a single address entry.
3.3.5
Advanced High-Performance Bus (AHB)
The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and
the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the
Config Bus and the external memories bus.
3.3.6
Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)
To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an
Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the device also includes the
Embedded Trace Buffer (ETB). The ETM consists of two parts:
• Trace Port provides real-time trace capability for the ARM9.
• Triggering facilities provide trigger resources, which include address and data comparators, counter,
and sequencers.
The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The
ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace
data.
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
9
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
This device uses ETM9™ version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is
available from ARM Ltd. Reference the ' CoreSight™ ETM9™ Technical Reference Manual, revision r0p1'
and the 'ETM9 Technical Reference Manual, revision r2p2'.
3.3.7
ARM Memory Mapping
By default the ARM has access to most on and off chip memory areas, EMIFA, EMIFB, and the additional
128K byte on chip SRAM. Likewise almost all of the on chip peripherals are accessible to the ARM by
default.
To improve security and/or robustness, the device has extensive memory and peripheral protection units
which can be configured to limit access rights to the various on/off chip resources to specific hosts;
including the ARM as well as other master peripherals. This allows the system tasks to be partitioned
between the ARM and DSP as best suites the particular application; while enhancing the overall
robustness of the solution.
See Table 3-2 for a detailed top level device memory map that includes the ARM memory space.
10
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
3.4
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Memory Map Summary
Table 3-2. AM1707 Top Level Memory Map
Start Address
End Address
Size
ARM Mem Map
EDMA Mem
Map
0x0000 0000
0x0000 0FFF
4K
0x0000 1000
0x01BB FFFF
0x01BC 0000
0x01BC 0FFF
4K
ARM ETB memory
0x01BC 1000
0x01BC 17FF
2K
ARM ETB reg
-
0x01BC 1800
0x01BC 18FF
256
ARM Ice Crusher
-
0x01BC 1900
0x01BF FFFF
0x01C0 0000
0x01C0 7FFF
32K
EDMA3 Channel Controller
-
0x01C0 8000
0x01C0 83FF
1024
EDMA3 Transfer Controller 0
-
0x01C0 8400
0x01C0 87FF
1024
EDMA3 Transfer Controller 1
-
0x01C0 8800
0x01C0 FFFF
0x01C1 0000
0x01C1 0FFF
4K
PSC 0
-
0x01C1 1000
0x01C1 1FFF
4K
PLL Controller
-
0x01C1 2000
0x01C1 3FFF
0x01C1 4000
0x01C1 4FFF
4K
SYSCFG
0x01C1 5000
0x01C1 FFFF
0x01C2 0000
0x01C2 0FFF
4K
Timer64P 0
-
0x01C2 1000
0x01C2 1FFF
4K
Timer64P 1
-
0x01C2 2000
0x01C2 2FFF
4K
I2C 0
-
0x01C2 3000
0x01C2 3FFF
4K
RTC
-
0x01C2 4000
0x01C3 FFFF
-
-
0x01C4 0000
0x01C4 0FFF
4K
MMC/SD 0
-
0x01C4 1000
0x01C4 1FFF
4K
SPI 0
-
0x01C4 2000
0x01C4 2FFF
4K
UART 0
0x01C4 3000
0x01CF FFFF
0x01D0 0000
0x01D0 0FFF
4K
McASP 0 Control
-
0x01D0 1000
0x01D0 1FFF
4K
McASP 0 AFIFO Control
-
0x01D0 2000
0x01D0 2FFF
4K
McASP 0 Data
-
0x01D0 3000
0x01D0 3FFF
0x01D0 4000
0x01D0 4FFF
4K
McASP 1 Control
-
0x01D0 5000
0x01D0 5FFF
4K
McASP 1 AFIFO Control
-
0x01D0 6000
0x01D0 6FFF
4K
McASP 1 Data
-
0x01D0 7000
0x01D0 7FFF
0x01D0 8000
0x01D0 8FFF
4K
McASP 2 Control
-
0x01D0 9000
0x01D0 9FFF
4K
McASP 2 AFIFO Control
-
0x01D0 A000
0x01D0 AFFF
4K
McASP 2 Data
-
0x01D0 B000
0x01D0 BFFF
0x01D0 C000
0x01D0 CFFF
4K
UART 1
-
0x01D0 D000
0x01D0 DFFF
4K
UART 2
-
0x01D0 E000
0x01DF FFFF
-
-
0x01E0 0000
0x01E0 FFFF
64K
USB0
-
0x01E1 0000
0x01E1 0FFF
4K
UHPI
0x01E1 1000
0x01E1 1FFF
0x01E1 2000
0x01E1 2FFF
-
PRUSS Mem
Map
Master
Peripheral
Mem Map
LCDC
Mem
Map
PRUSS Local
Address
Space
-
-
-
-
-
-
-
-
-
-
4K
SPI 1
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
11
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 3-2. AM1707 Top Level Memory Map (continued)
Start Address
End Address
Size
ARM Mem Map
EDMA Mem
Map
0x01E1 3000
0x01E1 3FFF
4K
LCD Controller
-
0x01E1 4000
0x01E1 4FFF
4K
Memory Protection Unit 1 (MPU 1)
-
0x01E1 5000
0x01E1 5FFF
4K
Memory Protection Unit 2 (MPU 2)
-
0x01E1 6000
0x01E1 FFFF
0x01E2 0000
0x01E2 1FFF
8K
EMAC Control Module RAM
-
0x01E2 2000
0x01E2 2FFF
4K
EMAC Control Module Registers
-
0x01E2 3000
0x01E2 3FFF
4K
EMAC Control Registers
-
0x01E2 4000
0x01E2 4FFF
4K
EMAC MDIO port
-
0x01E2 5000
0x01E2 5FFF
4K
USB1
-
0x01E2 6000
0x01E2 6FFF
4K
GPIO
-
0x01E2 7000
0x01E2 7FFF
4K
PSC 1
-
0x01E2 8000
0x01E2 8FFF
4K
I2C 1
-
0x01E2 9000
0x01EF FFFF
0x01F0 0000
0x01F0 0FFF
4K
eHRPWM 0
-
0x01F0 1000
0x01F0 1FFF
4K
HRPWM 0
-
0x01F0 2000
0x01F0 2FFF
4K
eHRPWM 1
-
0x01F0 3000
0x01F0 3FFF
4K
HRPWM 1
-
0x01F0 4000
0x01F0 4FFF
4K
eHRPWM 2
-
0x01F0 5000
0x01F0 5FFF
4K
HRPWM 2
-
0x01F0 6000
0x01F0 6FFF
4K
ECAP 0
-
0x01F0 7000
0x01F0 7FFF
4K
ECAP 1
-
0x01F0 8000
0x01F0 8FFF
4K
ECAP 2
-
Master
Peripheral
Mem Map
LCDC
Mem
Map
-
-
-
0x01F0 9000
0x01F0 9FFF
4K
EQEP 0
0x01F0 A000
0x01F0 AFFF
4K
EQEP 1
0x01F0 B000
0x3FFF FFFF
0x4000 0000
0x47FF FFFF
0x4800 0000
0x5FFF FFFF
0x6000 0000
0x6200 0000
-
128M
EMIFA SDRAM data (CS0)
-
0x61FF FFFF
32M
EMIFA async data (CS2)
-
0x63FF FFFF
32M
EMIFA async data (CS3)
-
0x6400 0000
0x65FF FFFF
32M
EMIFA async data (CS4)
-
0x6600 0000
0x67FF FFFF
32M
EMIFA async data (CS5)
-
0x6800 0000
0x6800 7FFF
32K
EMIFA Control Registers
-
0x6800 8000
0x7FFF FFFF
0x8000 0000
0x8001 FFFF
128K
On-chip RAM
0x8002 0000
0xAFFF FFFF
0xB000 0000
0xB000 7FFF
0xB000 8000
0xBFFF FFFF
0xC000 0000
0xCFFF FFFF
0xD000 0000
0xFFFC FFFF
-
32K
EMIFB Control Registers
256M
EMIFB SDRAM Data
-
0xFFFD 0000
0xFFFD FFFF
0xFFFE 0000
0xFFFE DFFF
0xFFFE E000
0xFFFE FFFF
8K
ARM Interrupt Controller
0xFFFF 0000
0xFFFF 1FFF
8K
ARM local RAM
0xFFFF 2000
0xFFFF FFFF
12
PRUSS Mem
Map
64K
ARM local ROM
-
ARM local
RAM (PRU 0
Only)
-
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
3.5
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Pin Assignments
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in
the smallest possible package. Pin multiplexing is controlled using a combination of hardware
configuration at device reset and software programmable register settings.
3.5.1
Pin Map (Bottom View)
Figure 3-1 shows the pin assignments for the ZKB package.
1
2
3
4
5
6
7
8
9
10
AXR1[11]/
GP5[11]
SPI0_CLK/
EQEP1I/
GP5[2]/
BOOT[2]
SPI1_CLK/
EQEP1S/
GP5[7]/
BOOT[7]
EMA_CS[3]/
AMUTE2/
GP2[6]
EMA_CS[0]/
UHPI_HAS/
GP2[4]
EMA_A[0]/
LCD_D[7]/
GP1[0]
EMA_A[4]/
LCD_D[3]/
GP1[4]
T
VSS
VSS
AXR1[0]/
GP4[0]
R
DVDD
AXR1[1]/
GP4[1]
UART0_RXD/
I2C0_SDA/
TM64P0_IN12/
GP5[8]/
BOOT[8]
P
AXR1[3]/
EQEP1A/
GP4[3]
AXR1[2]/
GP4[2]
N
AXR1[5]/
EPWM2B/
GP4[5]
AXR1[4]/
EQEP1B/
GP4[4]
AXR1[10]/
GP5[10]
M
AXR1[9]/
GP4[9]
AXR1[8]/
EPWM1A/
GP4[8]
AXR1[7]/
EPWM1B/
GP4[7]
AXR1[6]/
EPWM2A/
GP4[6]
DVDD
VSS
VSS
L
AHCLKR1/
GP4[11]
ACLKR1/
ECAP2/
APWM2/
GP4[12]
AFSR1/
GP4[13]
AMUTE0/
RESETOUT
DVDD
CVDD
AHCLKX1/
EPWM0B/
GP3[14]
ACLKX1/
EPWM0A/
GP3[15]
AFSX1/
EPWMSYNCI/
EPWMSYNCO/
GP4[10]
DVDD
K RTCK/GP7[14]
SPI0_ENA/ SPI0_SOMI[0]/
EMA_OE/
SPI1_ENA/ UART0_CTS/
UHPI_HDS1/
EQEP0I/
UART2_RXD/ EQEP0A/
AXR0[13]/
GP5[0]/
GP5[3]/
GP5[12]
GP2[7]
BOOT[0]
BOOT[3]
11
12
13
14
EMA_D[0]/
EMA_D[9]/
EMA_A[8]/
EMA_SDCKE/ MMCSD_DAT[0]/ UHPI_HD[9]/
UHPI_HD[0]/
LCD_PCLK/
GP2[0]
LCD_D[9]/
GP0[0]/
GP1[8]
GP0[9]
BOOT[12]
EMA_CLK/
OBSCLK/
AHCLKR2/
GP1[15]
15
16
VSS
VSS
T
DVDD
R
EMA_A[1]/
EMA_BA[0]/
MMCSD_CLK/
LCD_D[4]/
UHPI_HCNTL0/
GP1[14]
GP1[1]
EMA_A[5]/
LCD_D[2]/
GP1[5]
EMA_A[9]/
LCD_HSYNC/
GP1[9]
EMA_D[2]/
EMA_D[10]/
EMA_D[1]/
MMCSD_DAT[2]/ UHPI_HD[10]/ MMCSD_DAT[1]/
UHPI_HD[2]/
LCD_D[10]/
UHPI_HD[1]/
GP0[2]
GP0[10]
GP0[1]
UART0_TXD/
EMA_A[2]/
SPI1_SOMI[0]/ SPI0_SIMO[0]/ EMA_CS[2]/ EMA_BA[1]/
SPI1_SCS[0]/
I2C0_SCL/
I2C1_SCL/
EQEP0S/
UHPI_HCS/ LCD_D[5]/ MMCSD_CMD/
TM64P0_OUT12/ UART2_TXD/
UHPI_HHWIL/ UHPI_HCNTL1/
GP5[5]/
GP5[1]/
GP2[5]/
GP5[9]/
GP5[13]
GP1[13]
GP1[2]
BOOT[5]
BOOT[1]
BOOT[15]
BOOT[9]
EMA_A[6]/
LCD_D[1]/
GP1[6]
EMA_A[11]/
LCD_AC_
ENB_CS/
GP1[11]
EMA_WE_
EMA_D[4]/
EMA_D[12]/
EMA_D[3]/
EMA_D[11]/
DQM[1]/
MMCSD_DAT[4]/ UHPI_HD[12]/ MMCSD_DAT[3]/ UHPI_HD[11]/
UHPI_HDS2/
UHPI_HD[4]/
LCD_D[12]/
UHPI_HD[3]/
LCD_D[11]
AXR0[14]/
GP0[4]
GP0[12]
GP0[3]
GP0[11]
GP2[8]
P
SPI0_SCS[0]/ SPI1_SIMO[0]/
UART0_RTS/ I2C1_SDA/ EMA_WAIT[0]/ EMA_RAS/ EMA_A[10]/
UHPI_HRDY/ EMA_CS[5]/ LCD_VSYNC/
EQEP0B/
GP5[6]/
GP5[4]/
GP2[10]
GP2[2]
GP1[10]
BOOT[6]
BOOT[4]
EMA_A[3]/
LCD_D[6]/
GP1[3]
EMA_A[7]/
LCD_D[0]/
GP1[7]
EMA_A[12]/
LCD_MCLK/
GP1[12]
EMA_D[8]/
EMA_D[6]/
EMA_D[14]/
EMA_D[5]/
EMA_D[13]/
UHPI_HD[8]/ MMCSD_DAT[6]/ UHPI_HD[14]/ MMCSD_DAT[5]/ UHPI_HD[13]/
LCD_D[8]/
UHPI_HD[6]/
LCD_D[14]/
UHPI_HD[5]/
LCD_D[13]/
GP0[14]
GP0[5]
GP0[13]
GP0[8]
GP0[6]
N
DVDD
DVDD
VSS
VSS
DVDD
EMA_WE/
UHPI_HRW/
AXR0[12]/
GP2[3]/
BOOT[14]]
EMA_D[7]/
EMA_WE_
EMA_D[15]/
MMCSD_DAT[7]/
DQM[0]/
UHPI_HD[15]/
UHPI_HINT/ UHPI_HD[7]/
LCD_D[15]/
AXR0[15]/
GP0[7]/
GP0[15]
GP2[9]
BOOT[13]
M
VSS
VSS
VSS
VSS
DVDD
DVDD
EMB_CAS
EMB_D[22]
EMB_D[23]
EMA_CAS/
EMA_CS[4]/
GP2[1]
L
CVDD
CVDD
VSS
VSS
CVDD
CVDD
DVDD
EMB_D[20]
EMB_WE_
DQM[0]/
GP5[15]
EMB_WE
EMB_D[21]
K
J
TMS
TDI
TDO
TRST
EMU0/GP7[15]
CVDD
CVDD
VSS
VSS
CVDD
CVDD
CVDD
EMB_D[5]/
GP6[5]
EMB_D[19]
EMB_D[6]/
GP6[6]
EMB_D[7]/
GP6[7]
J
H
RTC_XI
RTC_XO
TCK
NC
USB0_
VDDA33
RVDD
CVDD
VSS
VSS
CVDD
CVDD
RVDD
EMB_D[3]/
GP6[3]
EMB_D[17]
EMB_D[18]
EMB_D[4]/
GP6[4]
H
G
RTC_CVDD
RTC_VSS
RESET
USB0_DM
DVDD
CVDD
CVDD
VSS
VSS
CVDD
CVDD
DVDD
EMB_D[1]/
GP6[1]
EMB_D[31]
EMB_D[16]
EMB_D[2]/
GP6[2]
G
F
OSCOUT
OSCIN
NC
USB0_DP
DVDD
CVDD
RSV1
VSS
VSS
VSS
DVDD
DVDD
EMB_D[15]/
GP6[15]
EMB_D[29]
EMB_D[30]
EMB_D[0]/
GP6[0]
F
E
PLL0_VSSA
OSCVSS
USB0_
VDDA18
USB0_
DRVVBUS/
GP4[15]
DVDD
VSS
VSS
DVDD
DVDD
VSS
VSS
DVDD
EMB_D[13]/
GP6[13]
EMB_D[27]
EMB_D[28]
EMB_D[14]/
GP6[14]
E
D
PLL0_VDDA
USB0_ID
USB0_VBUS
AMUTE1/
EPWMTZ/
GP4[14]
AFSX0/
GP2[13]/
BOOT[10]
AXR0[6]/
UART1_TXD/
RMII_RXER/
AXR0[10]/
ACLKR2/
GP3[10]
GP3[6]
AXR0[2]/
RMII_TXEN/
AXR2[3]/
GP3[2]
EMB_CS[0]
EMB_A[0]/
GP7[2]
EMB_A[4]/
GP7[6]
EMB_A[8]/
GP7[10]
EMB_D[9]/
GP6[9]
EMB_D[10]/
GP6[10]
EMB_D[11]/
GP6[11]
EMB_D[12]/
GP6[12]
D
C
USB1_
VDDA33
USB1_
VDDA18
USB0_
VDDA12
AFSR0/
GP3[12]
ACLKX0/
ECAP0/
APWM0/
GP2[12]
AXR0[5]/
AXR0[1]/
UART1_RXD/
RMII_RXD[1]/ RMII_TXD[1]/
AXR0[9]/
AFSX2/
ACLKX2/
GP3[9]
GP3[5]
GP3[1]
EMB_BA[0]/
GP7[1]
EMB_A[1]/
GP7[3]
EMB_A[5]/
GP7[7]
EMB_A[9]/
GP7[11]
EMB_SDCKE
EMB_CLK
EMB_WE_
DQM[1]/
GP5[14]
EMB_D[8]/
GP6[8]
C
B
RSV2
VSS
USB1_DM
ACLKR0/
ECAP1/
APWM1/
GP2[15]
AHCLKX0/
AHCLKX2/
USB_
REFCLKIN/
GP2[11]
AXR0[8]/
MDIO_D/
GP3[8]
AXR0[4]/
AXR0[0]/
RMII_RXD[0]/ RMII_TXD[0]/
AXR2[1]/
AFSR2/
GP3[4]
GP3[0]
EMB_BA[1]/
GP7[0]
EMB_A[2]/
GP7[4]
EMB_A[6]/
GP7[8]
EMB_A[11]/
GP7[13]
EMB_WE_
DQM[2]
EMB_D[25]
EMB_A[12]/
GP3[13]
DVDD
B
A
VSS
VSS
USB1_DP
AHCLKR0/
RMII_MHZ_
50_CLK/
GP2[14]/
BOOT[11]
AXR0[11]/
AXR2[0]/
GP3[11]
AXR0[7]/
MDIO_CLK/
GP3[7]
AXR0[3]/
RMII_CRS_DV/
AXR2[2]/
GP3[3]
EMB_RAS
EMB_A[10]/
GP7[12]
EMB_A[3]/
GP7[5]
EMB_A[7]/
GP7[9]
EMB_WE_
DQM[3]
EMB_D[24]
EMB_D[26]
VSS
VSS
A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Figure 3-1. Pin Map (ZKB)
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
13
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
3.6
www.ti.com
Terminal Functions
Table 3-3 to Table 3-23 identify the external signal names, the associated pin/ball numbers along with the
mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal
pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin
description.
3.6.1
Device Reset and JTAG
Table 3-3. Reset and JTAG Terminal Functions
PIN No.
SIGNAL NAME
ZKB
TYPE (1)
PULL (2)
DESCRIPTION
RESET
RESET
AMUTE0/ RESETOUT
G3
I
L4
(3)
O
Device reset input
IPD
Reset output. Multiplexed with McASP0 mute output.
JTAG
TMS
J1
I
IPU
JTAG test mode select
TDI
TDO
J2
I
IPU
JTAG test data input
J3
O
IPD
JTAG test data output
TCK
H3
I
IPU
JTAG test clock
TRST
J4
I
IPD
JTAG test reset
EMU[0]/GP7[15]
J5
I/O
IPU
Emulation Signal
RTCK/GP7[14]
K1
I/O
IPD
JTAG Test Clock Return Clock Output
(1)
(2)
(3)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Open drain mode for RESETOUT function.
3.6.2
High-Frequency Oscillator and PLL
Table 3-4. High-Frequency Oscillator and PLL Terminal Functions
PIN No.
TYPE (1)
PULL (2)
R12
O
IPU
OSCIN
F2
I
Oscillator input
OSCOUT
F1
O
Oscillator output
OSCVSS
E2
GND
Oscillator ground
PLL0_VDDA
D1
PWR
PLL analog VDD (1.2-V filtered supply)
PLL0_VSSA
E1
GND
PLL analog VSS (for filter)
SIGNAL NAME
EMA_CLK/OBSCLK/AHCLKR2/
GP1[15]
ZKB
DESCRIPTION
PLL Observation Clock
1.2-V OSCILLATOR
1.2-V PLL
(1)
(2)
14
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
3.6.3
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Real-Time Clock and 32-kHz Oscillator
Table 3-5. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions
SIGNAL NAME
PIN No.
ZKB
TYPE (1)
PULL (2)
DESCRIPTION
RTC_CVDD
G1
PWR
RTC_XI
H1
I
Low-frequency (32-kHz) oscillator receiver for real-time clock
RTC_XO
H2
O
Low-frequency (32-kHz) oscillator driver for real-time clock
RTC_Vss
G2
GND
(1)
(2)
RTC module core power (isolated from rest of chip CVDD)
Oscillator ground (for filter)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for
that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
3.6.4
External Memory Interface A (ASYNC, SDRAM)
Table 3-6. External Memory Interface A (EMIFA) Terminal Functions
PIN
No.
SIGNAL NAME
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15]
M16
I/O
IPD
EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14]
N14
I/O
IPD
EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13]
N16
I/O
IPD
EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12]
P14
I/O
IPD
EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11]
P16
I/O
IPD
EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10]
R14
I/O
IPD
EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9]
T14
I/O
IPD
EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8]
N12
I/O
IPD
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]
M15
I/O
IPU
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]
N13
I/O
IPU
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]
N15
I/O
IPU
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]
P13
I/O
IPU
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]
P15
I/O
IPU
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]
R13
I/O
IPU
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]
R15
I/O
IPU
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]
T13
I/O
IPU
(1)
(2)
UHPI, LCD,
GPIO
MMC/SD, UHPI, EMIFA data bus
GPIO, BOOT
MMC/SD, UHPI,
GPIO
MMC/SD, UHPI,
GPIO, BOOT
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
15
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 3-6. External Memory Interface A (EMIFA) Terminal Functions (continued)
SIGNAL NAME
PIN
No.
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
EMA_A[12]/LCD_MCLK/GP1[12]
N11
O
IPU
EMA_A[11]/ LCD_AC_ENB_CS/GP1[11]
P11
O
IPU
EMA_A[10]/LCD_VSYNC/GP1[10]
N8
O
IPU
EMA_A[9]/LCD_HSYNC/GP1[9]
R11
O
IPU
EMA_A[8]/LCD_PCLK/GP1[8]
T11
O
IPU
EMA_A[7]/LCD_D[0]/GP1[7]
N10
O
IPD
EMA_A[6]/LCD_D[1]/GP1[6]
P10
O
IPD
EMA_A[5]/LCD_D[2]/GP1[5]
R10
O
IPD
EMA_A[4]/LCD_D[3]/GP1[4]
T10
O
IPD
EMA_A[3]/LCD_D[6]/GP1[3]
N9
O
IPD
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]
P9
O
IPU
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]
R9
O
EMA_A[0]/LCD_D[7]/GP1[0]
T9
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13]
LCD, GPIO
EMIFA address bus
IPU
MMCSD, UHPI,
GPIO
EMIFA address bus.
O
IPD
LCD, GPIO
P8
O
IPU
LCD, UHPI,
GPIO
EMA_BA[0]/LCD_D[4]/GP1[14]
R8
O
IPU
LCD, GPIO
EMA_CLK/OBSCLK/AHCLKR2/GP1[15]
R12
O
IPU
McASP2, GPIO,
EMIFA clock
OBSCLK
EMA_SDCKE/GP2[0]
T12
O
IPU
GPIO
EMA_RAS /EMA_CS[5]/GP2[2]
N7
O
IPU
EMA_CAS /EMA_CS[4]/GP2[1]
L16
O
IPU
EMA_RAS/ EMA_CS[5] /GP2[2]
N7
O
IPU
EMA_CAS/ EMA_CS[4] /GP2[1]
L16
O
IPU
EMIF A
SDRAM, GPIO
EMA_CS[3] /AMUTE2/GP2[6]
T7
O
IPU
McASP2, GPIO
EMA_CS[2] /UHPI_HCS/GP2[5]/BOOT[15]
P7
O
IPU
UHPI, GPIO,
BOOT
EMA_CS[0] /UHPI_HAS/GP2[4]
T8
O
IPU
UHPI, GPIO
EMA_WE /UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]
M13
O
IPU
UHPI, MCASP0, EMIFA SDRAM write
GPIO, BOOT
enable
EMA_WE_DQM[1] /UHPI_HDS2/AXR0[14]/GP2[8]
P12
O
IPU
EMIFA write
enable/data mask for
EMA_D[15:8]
EMIF A chip
select, GPIO
UHPI, McASP,
GPIO
EMA_WE_DQM[0] /UHPI_HINT/AXR0[15]/GP2[9]
EMIFA bank address
EMIFA SDRAM clock
enable
EMIFA SDRAM row
address strobe
EMIFA SDRAM column
address strobe
EMIFA Async Chip
Select
EMIFA SDRAM chip
select
EMIFA write
enable/data mask for
EMA_D[7:0]
M14
O
IPU
EMA_OE /UHPI_HDS1/AXR0[13]/GP2[7]
R7
O
IPU
UHPI, McASP0,
GPIO
EMIFA output enable
EMA_WAIT[0]/ UHPI_HRDY/GP2[10]
N6
I
IPU
UHPI, GPIO
EMIFA wait
input/interrupt
16
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
3.6.5
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
External Memory Interface B (SDRAM only)
Table 3-7. External Memory Interface B (EMIFB) Terminal Functions
SIGNAL NAME
PIN No.
ZKB
TYPE (1)
PULL (2)
EMB_D[31]
G14
I/O
IPD
EMB_D[30]
F15
I/O
IPD
EMB_D[29]
F14
I/O
IPD
EMB_D[28]
E15
I/O
IPD
EMB_D[27]
E14
I/O
IPD
EMB_D[26]
A14
I/O
IPD
EMB_D[25]
B14
I/O
IPD
EMB_D[24]
A13
I/O
IPD
EMB_D[23]
L15
I/O
IPD
EMB_D[22]
L14
I/O
IPD
EMB_D[21]
K16
I/O
IPD
EMB_D[20]
K13
I/O
IPD
EMB_D[19]
J14
I/O
IPD
EMB_D[18]
H15
I/O
IPD
EMB_D[17]
H14
I/O
IPD
EMB_D[16]
G15
I/O
IPD
EMB_D[15]/GP6[15]
F13
I/O
IPD
EMB_D[14]/GP6[14]
E16
I/O
IPD
EMB_D[13]/GP6[13]
E13
I/O
IPD
EMB_D[12]/GP6[12]
D16
I/O
IPD
EMB_D[11]/GP6[11]
D15
I/O
IPD
EMB_D[10]/GP6[10]
D14
I/O
IPD
EMB_D[9]/GP6[9]
D13
I/O
IPD
EMB_D[8]/GP6[8]
C16
I/O
IPD
EMB_D[7]/GP6[7]
J16
I/O
IPD
EMB_D[6]/GP6[6]
J15
I/O
IPD
EMB_D[5]/GP6[5]
J13
I/O
IPD
EMB_D[4]/GP6[4]
H16
I/O
IPD
EMB_D[3]/GP6[3]
H13
I/O
IPD
EMB_D[2]/GP6[2]
G16
I/O
IPD
EMB_D[1]/GP6[1]
G13
I/O
IPD
EMB_D[0]/GP6[0]
F16
I/O
IPD
EMB_A[12]/GP3[13]
B15
O
IPD
EMB_A[11]/GP7[13]
B12
O
IPD
EMB_A[10]/GP7[12]
A9
O
IPD
EMB_A[9]/GP7[11]
C12
O
IPD
EMB_A[8]/GP7[10]
D12
O
IPD
EMB_A[7]/GP7[9]
A11
O
IPD
EMB_A[6]/GP7[8]
B11
O
IPD
EMB_A[5]/GP7[7]
C11
O
IPD
(1)
(2)
MUXED
DESCRIPTION
EMIFB SDRAM data bus
GPIO
GPIO
EMIFB SDRAM row/column
address bus
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
17
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 3-7. External Memory Interface B (EMIFB) Terminal Functions (continued)
PIN No.
SIGNAL NAME
ZKB
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
EMB_A[4]/GP7[6]
D11
O
IPD
EMB_A[3]/GP7[5]
A10
O
IPD
EMB_A[2]/GP7[4]
B10
O
IPD
EMB_A[1]/GP7[3]
C10
O
IPD
EMB_A[0]/GP7[2]
D10
O
IPD
EMB_BA[1]/GP7[0]
B9
O
IPU
EMB_BA[0]/GP7[1]
C9
O
IPU
EMB_CLK
C14
O
IPU
EMIF SDRAM clock
EMB_SDCKE
C13
O
IPU
EMIFB SDRAM clock enable
EMB_WE
K15
O
IPU
EMIFB write enable
EMB_RAS
A8
O
IPU
EMIFB SDRAM row address
strobe
EMB_CAS
L13
O
IPU
EMIFB column address strobe
EMB_CS[0]
D9
O
IPU
EMIFB SDRAM chip select 0
EMB_WE_DQM[3]
A12
O
IPU
EMB_WE_DQM[2]
B13
O
IPU
EMB_WE_DQM[1] /GP5[14]
C15
O
IPU
EMB_WE_DQM[0] /GP5[15]
K14
O
IPU
3.6.6
EMIFB SDRAM row/column
address
GPIO
EMIFB SDRAM bank address
EMIFB write enable/data mask
for EMB_D
GPIO
Serial Peripheral Interface Modules (SPI0, SPI1)
Table 3-8. Serial Peripheral Interface (SPI) Terminal Functions
PIN
No.
SIGNAL NAME
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
SPI0
SPI0_SCS[0] /UART0_RTS/EQEP0B/GP5[4]/BOOT[4]
N4
I/O
IPU
UART0, EQEP0B,
GPIO, BOOT
SPI0 chip select
SPI0_ENA /UART0_CTS/EQEP0A/GP5[3]/BOOT[3]
R5
I/O
IPU
UART0, EQEP0A,
GPIO, BOOT
SPI0 enable
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]
T5
I/O
IPD
eQEP1, GPIO, BOOT
SPI0 clock
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]
P6
I/O
IPD
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]
R6
I/O
IPD
SPI1_SCS[0] /UART2_TXD/GP5[13]
P4
I/O
IPU
SPI1_ENA /UART2_RXD/GP5[12]
R4
I/O
IPU
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]
T6
I/O
IPD
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]
N5
I/O
IPU
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]
P5
I/O
IPU
eQEP0, GPIO, BOOT
SPI0 data slave-inmaster-out
SPI0 data slave-outmaster-in
SPI1
UART2, GPIO
eQEP1, GPIO, BOOT
I2C1, GPIO, BOOT
(1)
(2)
18
SPI1 chip select
SPI1 enable
SPI1 clock
SPI1 data slave-inmaster-out
SPI1 data slave-outmaster-in
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
3.6.7
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2)
The eCAP Module pins function as either input captures or auxilary PWM 32-bit outputs, depending upon
how the eCAP module is programmed.
Table 3-9. Enhanced Capture Module (eCAP) Terminal Functions
PIN
No.
SIGNAL NAME
TYPE (1) PULL (2)
MUXED
DESCRIPTION
ZKB
eCAP0
ACLKX0/ECAP0/APWM0/GP2[12]
C5
I/O
IPD
McASP0, GPIO
enhanced capture
0 input or
auxiliary PWM 0
output
eCAP1
ACLKR0/ECAP1/APWM1/GP2[15]
B4
I/O
IPD
McASP0, GPIO
enhanced capture
1 input or
auxiliary PWM 1
output
L2
I/O
IPD
McASP1, GPIO
enhanced capture
2 input or
auxiliary PWM 2
output
eCAP2
ACLKR1/ECAP2/APWM2/GP4[12]
(1)
(2)
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
19
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
3.6.8
www.ti.com
Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2)
Table 3-10. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions
SIGNAL NAME
PIN
No.
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
eHRPWM0
eHRPWM0 A output
(with high-resolution)
ACLKX1/EPWM0A/GP3[15]
K3
I/O
IPD
AHCLKX1/EPWM0B/GP3[14]
K2
I/O
IPD
eHRPWM0 B output
McASP1, GPIO
AMUTE1/EPWMTZ/GP4[14]
D4
I/O
IPD
McASP1, eHRPWM1, eHRPWM0 trip zone
GPIO, eHRPWM2
input
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10]
K4
I/O
IPD
Sync input to
McASP1, eHRPWM0, eHRPWM0 module or
GPIO
sync output to
external PWM
eHRPWM1
eHRPWM1 A output
(with high-resolution)
AXR1[8]/EPWM1A/GP4[8]
M2
I/O
IPD
AXR1[7]/EPWM1B/GP4[7]
M3
I/O
IPD
eHRPWM1 B output
IPD
McASP1, eHRPWM1, eHRPWM1 trip zone
GPIO, eHRPWM2
input
AMUTE1/EPWMTZ/GP4[14]
D4
I/O
McASP1, GPIO
eHRPWM2
eHRPWM2 A output
(with high-resolution)
AXR1[6]/EPWM2A/GP4[6]
M4
I/O
IPD
AXR1[5]/EPWM2B/GP4[5]
N1
I/O
IPD
eHRPWM2 B output
AMUTE1/EPWMTZ/GP4[14]
D4
I/O
IPD
McASP1, eHRPWM1, eHRPWM2 trip zone
GPIO, eHRPWM2
input
(1)
(2)
20
McASP1, GPIO
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
3.6.9
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Enhanced Quadrature Encoder Pulse Module (eQEP)
Table 3-11. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions
PIN
No.
SIGNAL NAME
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
eQEP0
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]
R5
I
IPU
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]
N4
I
IPU
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]
R6
I
IPD
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]
P6
I
IPD
SPIO, UART0, GPIO,
BOOT
SPI1, GPIO, BOOT
EQEP0A quadrature
input
EQEP0B quadrature
input
eQEP0 index
eQEP0 strobe
eQEP1
AXR1[3]/EQEP1A/GP4[3]
P1
I
IPD
AXR1[4]/EQEP1B/GP4[4]
N2
I
IPD
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]
T5
I
IPD
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]
T6
I
IPD
McASP1, GPIO
(1)
(2)
SPI1, GPIO, BOOT
eQEP1 quadrature
input
eQEP1 quadrature
input
eQEP1 index
eQEP1 strobe
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
21
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
3.6.10
www.ti.com
Boot
Table 3-12. Boot Mode Selection Terminal Functions (1)
PIN No.
TYPE (2)
PULL (3)
P7
I
IPU
EMIFA, UHPI, GPIO
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]
M13
I
IPU
EMIFA, UHPI,
McASP0, GPIO
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]
M15
I
IPU
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]
T13
I
IPU
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]
A4
I
IPD
McASP0, EMAC,
GPIO
AFSX0/GP2[13]/BOOT[10]
D5
I
IPD
McASP0, GPIO
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]
P3
I
IPU
UART0, I2C0, Timer0,
GPIO
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]
R3
I
IPU
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]
T6
I
IPD
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]
N5
I
IPU
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]
P5
I
IPU
SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4]
N4
I
IPU
SPI0, UART0,
eQEP0, GPIO
SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3]
R5
I
IPU
SPI0, UART0,
eQEP0, GPIO
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2]
T5
I
IPD
SPIO, eQEP1, GPIO
SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1]
P6
I
IPD
SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0]
R6
I
IPD
SIGNAL NAME
ZKB
EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15]
(1)
(2)
(3)
22
MUXED
DESCRIPTION
EMIFA, MMC/SD,
UHPI, GPIO
UART0, I2C0, Timer0, Boot Mode
GPIO
Selection Pins
SPI1, eQEP1, GPIO
SPI1, I2C1, GPIO
SPI0, eQEP0, GPIO
Boot decoding will be defined in the ROM datasheet.
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
3.6.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)
Table 3-13. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions
PIN
No.
SIGNAL NAME
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
UART0
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]
R3
I
IPU
I2C0, BOOT,
Timer0, GPIO,
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]
P3
O
IPU
I2C0, Timer0, GPIO, UART0 transmit
BOOT
data
SPI0_SCS[0]/ UART0_RTS /EQEP0B/GP5[4]/BOOT[4]
N4
O
IPU
SPI0_ENA/ UART0_CTS /EQEP0A/GP5[3]/BOOT[3]
R5
I
IPU
I
IPD
UART0 receive data
UART0 ready-tosend output
SPIO, eQEP0,
GPIO, BOOT
UART0 clear-tosend input
UART1
UART1_RXD/AXR0[9]/GP3[9] (3)
C6
UART1_TXD/AXR0[10]/GP3[10] (3)
D6
O
IPD
I
IPU
UART1 receive data
McASP0, GPIO
UART1 transmit
data
UART2
SPI1_ENA/UART2_RXD/GP5[12]
R4
SPI1_SCS[0]/UART2_TXD/GP5[13]
(1)
(2)
(3)
P4
O
IPU
UART2 receive data
SPI1, GPIO
UART2 transmit
data
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
As these signals are internally pulled down while the device is in reset, it is necessary to externally pull them high with resistors if
UART1 boot mode is used.
3.6.12 Inter-Integrated Circuit Modules (I2C0, I2C1)
Table 3-14. Inter-Integrated Circuit (I2C) Terminal Functions
PIN
No.
SIGNAL NAME
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
I2C0
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]
R3
I/O
IPU
UART0, Timer0,
GPIO, BOOT
I2C0 serial data
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]
P3
I/O
IPU
UART0, Timer0,
GPIO, BOOT
I2C0 serial clock
SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6]
N5
I/O
IPU
SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5]
P5
I/O
IPU
I2C1
(1)
(2)
SPI1, GPIO, BOOT
I2C1 serial data
I2C1 serial clock
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
23
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
3.6.13 Timers
Table 3-15. Timers Terminal Functions
PIN
No.
SIGNAL NAME
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
TIMER0
UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8]
R3
I
IPU
UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9]
P3
O
IPU
UART0, I2C0,
GPIO, BOOT
Timer0 lower input
Timer0 lower
output
TIMER1 (Watchdog )
No external pins. The Timer1 peripheral signals are not pinned out as external pins.
(1)
(2)
24
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
3.6.14
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Universal Host-Port Interface (UHPI)
Table 3-16. Universal Host-Port Interface (UHPI) Terminal Functions
SIGNAL NAME
PIN
No.
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15]
M16
I/O
IPD
EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14]
N14
I/O
IPD
EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13]
N16
I/O
IPD
EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12]
P14
I/O
IPD
EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11]
P16
I/O
IPD
EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10]
R14
I/O
IPD
EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9]
T14
I/O
IPD
EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8]
N12
I/O
IPD
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/
BOOT[13]
M15
I/O
IPU
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]
N13
I/O
IPU
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]
N15
I/O
IPU
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]
P13
I/O
IPU
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]
P15
I/O
IPU
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]
R13
I/O
IPU
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]
R15
I/O
IPU
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/
BOOT[12]
T13
I/O
IPU
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]
P9
I/O
IPU
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]
R9
I/O
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13]
P8
EMIFA, LCD, GPIO
EMIFA, MMC/SD,
GPIO, BOOT
UHPI data bus
EMIFA, MMC/SD,
GPIO
EMIFA, MMC/SD,
GPIO, BOOT
IPU
EMIFA,
MMCSD_CMD,
GPIO
UHPI access control
I/O
IPU
EMIFA, LCD, GPIO
UHPI half-word
identification control
M13
I/O
IPU
EMIFA, McASP,
GPIO, BOOT
UHPI read/write
EMA_CS[2]/ UHPI_HCS /GP2[5]/BOOT[15]
P7
I/O
IPU
EMIFA, GPIO,
BOOT
UHPI chip select
EMA_WE_DQM[1]/ UHPI_HDS2 /AXR0[14]/GP2[8]
P12
I/O
IPU
EMA_OE/ UHPI_HDS1 /AXR0[13]/GP2[7]
R7
I/O
IPU
M14
I/O
IPU
EMA_WAIT[0]/ UHPI_HRDY /GP2[10]
N6
I/O
IPU
EMA_CS[0]/ UHPI_HAS /GP2[4]
T8
I/O
IPU
EMA_WE/UHPI_HRW /AXR0[12]/GP2[3]/BOOT[14]
EMA_WE_DQM[0]/ UHPI_HINT /AXR0[15]/GP2[9]
(1)
(2)
EMIFA, McASP0,
GPIO
UHPI data strobe
UHPI host interrupt
EMIFA, GPIO
UHPI ready
UHPI address strobe
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
25
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
3.6.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2)
Table 3-17. Multichannel Audio Serial Ports (McASPs) Terminal Functions
PIN
No.
SIGNAL NAME
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
McASP0
EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9]
M14
I/O
IPU
EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8]
P12
I/O
IPU
EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7]
R7
I/O
IPU
M13
I/O
IPU
EMIFA, UHPI,
GPIO, BOOT
AXR0[11]/ AXR2[0]/GP3[11]
A5
I/O
IPD
McASP2, GPIO
UART1_TXD/AXR0[10]/GP3[10]
D6
I/O
IPD
GPIO
UART1_RXD/AXR0[9]/GP3[9]
C6
I/O
IPD
GPIO
AXR0[8]/MDIO_D/GP3[8]
B6
I/O
IPU
AXR0[7]/MDIO_CLK/GP3[7]
A6
I/O
IPD
AXR0[6]/RMII_RXER/ACLKR2/GP3[6]
D7
I/O
IPD
AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5]
C7
I/O
IPD
AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4]
B7
I/O
IPD
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]
A7
I/O
IPD
AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]
D8
I/O
IPD
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]
C8
I/O
IPD
AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0]
B8
I/O
IPD
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]
B5
I/O
IPD
McASP2, USB,
GPIO
McASP1 transmit
master clock
ACLKX0/ECAP0/APWM0/GP2[12]
C5
I/O
IPD
eCAP0, GPIO
McASP0 transmit
bit clock
AFSX0/GP2[13]/BOOT[10]
D5
I/O
IPD
GPIO, BOOT
McASP0 transmit
frame sync
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]
A4
I/O
IPD
EMAC, GPIO,
BOOT
McASP0 receive
master clock
ACLKR0/ECAP1/APWM1/GP2[15]
B4
I/O
IPD
eCAP1, GPIO
McASP0 receive
bit clock
AFSR0/GP3[12]
C4
I/O
IPD
GPIO
McASP0 receive
frame sync
AMUTE0/RESETOUT
L4
I/O
IPD
RESETOUT
McASP0 mute
output
EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14]
(1)
(2)
26
EMIFA, UHPI,
GPIO
MDIO, GPIO
McASP0 serial
data
EMAC,
McASP2, GPIO
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 3-17. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)
PIN
No.
TYPE (1)
PULL (2)
T4
I/O
IPU
AXR1[10]/GP5[10]
N3
I/O
IPU
AXR1[9]/GP4[9]
M1
I/O
IPD
AXR1[8]/EPWM1A/GP4[8]
M2
I/O
IPD
eHRPWM1 A,
GPIO
AXR1[7]/EPWM1B/GP4[7]
M3
I/O
IPD
eHRPWM1 B,
GPIO
AXR1[6]/EPWM2A/GP4[6]
M4
I/O
IPD
eHRPWM2 A,
GPIO
AXR1[5]/EPWM2B/GP4[5]
N1
I/O
IPD
eHRPWM2 B,
GPIO
AXR1[4]/EQEP1B/GP4[4]
N2
I/O
IPD
AXR1[3]/EQEP1A/GP4[3]
P1
I/O
IPD
AXR1[2]/GP4[2]
P2
I/O
IPD
AXR1[1]/GP4[1]
R2
I/O
IPD
AXR1[0]/GP4[0]
T3
I/O
IPD
AHCLKX1/EPWM0B/GP3[14]
K2
I/O
IPD
eHRPWM0,
GPIO
McASP1 transmit
master clock
ACLKX1/EPWM0A/GP3[15]
K3
I/O
IPD
eHRPWM0,
GPIO
McASP1 transmit
bit clock
AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10]
K4
I/O
IPD
eHRPWM0,
GPIO
McASP1 transmit
frame sync
AHCLKR1/GP4[11]
L1
I/O
IPD
GPIO
McASP1 receive
master clock
ACLKR1/ECAP2/APWM2/GP4[12]
L2
I/O
IPD
eCAP2, GPIO
McASP1 receive
bit clock
AFSR1/GP4[13]
L3
I/O
IPD
GPIO
McASP1 receive
frame sync
eHRPWM0,
eHRPWM1,
eHRPWM2,
GPIO
McASP1 mute
output
McASP0,
EMAC, GPIO
McASP2 serial
data
SIGNAL NAME
MUXED
DESCRIPTION
ZKB
McASP1
AXR1[11]/GP5[11]
AMUTE1/EPWMTZ/GP4[14]
GPIO
McASP1 serial
data
eQEP1, GPIO
GPIO
D4
I/O
IPD
AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0]
B8
I/O
IPD
AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]
D8
I/O
IPD
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]
A7
I/O
IPD
AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4]
B7
I/O
IPD
AXR0[11]/AXR2[0]/GP3[11]
A5
I/O
IPD
AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11]
B5
I/O
IPD
McASP0, USB,
GPIO
McASP2 transmit
master clock
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]
C8
I/O
IPD
McASP0,
EMAC, GPIO
McASP2 transmit
bit clock
AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5]
C7
I/O
IPD
McASP0,
EMAC, GPIO
McASP2 transmit
frame sync
EMA_CLK/OBSCLK/AHCLKR2/GP1[15]
R12
I/O
IPU
EMIFA, GPIO,
OBSCLK
McASP2 receive
master clock
AXR0[6]/RMII_RXER/ACLKR2/GP3[6]
D7
I/O
IPD
McASP0,
EMAC, GPIO
McASP2 receive
bit clock
EMA_CS[3]/AMUTE2/GP2[6]
T7
I/O
IPU
EMIFA, GPIO
McASP2 mute
output
McASP2
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
27
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
3.6.16 Universal Serial Bus Modules (USB0, USB1)
Table 3-18. Universal Serial Bus (USB) Terminal Functions
SIGNAL NAME
PIN
No.
TYPE (1) PULL (2) MUXED
DESCRIPTION
ZKB
USB0 2.0 OTG (USB0)
USB0_DM
G4
A
NA
USB0 PHY data minus
USB0_DP
F4
A
NA
USB0 PHY data plus
USB0_VDDA33
H5
PWR
NA
USB0 PHY 3.3-V supply
USB0_VDDA18
E3
PWR
NA
USB0 PHY 1.8-V supply input
C3
PWR
NA
USB0 PHY 1.2-V LDO output for bypass cap.
For proper device operation, this pin is
recommended to be connected via a 0.22 μF
capacitor to VSS (GND), even if USB0 is not
being used.
USB0_ID
D2
A
NA
USB0 PHY identification (mini-A or mini-B plug)
USB0_VBUS
D3
A
NA
USB0 bus voltage
USB0_DRVVBUS/GP4[15]
E4
O
IPD
GPIO
USB0 controller VBUS control output.
AHCLKX0/AHCLKX2/USB_REFCLKIN/
GP2[11]
B5
I
IPD
USB0_VDDA12
(3)
USB_REFCLKIN. Optional clock input.
USB1 1.1 OHCI (USB1)
USB1_DM
B3
A
NA
USB1 PHY data minus
USB1_DP
A3
A
NA
USB1 PHY data plus
USB1_VDDA33
C1
PWR
NA
USB1 PHY 3.3-V supply
USB1_VDDA18
C2
PWR
NA
USB1 PHY 1.8-V supply
AHCLKX0/AHCLKX2/USB_REFCLKIN/
GP2[11]
B5
I
NA
USB_REFCLKIN. Optional clock input.
(1)
(2)
(3)
28
IPD
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Core power supply LDO output for USB PHY. This pin must be connected via a 0.22 uF capacitor to VSS.
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
3.6.17 Ethernet Media Access Controller (EMAC)
Table 3-19. Ethernet Media Access Controller (EMAC) Terminal Functions
SIGNAL NAME
PIN
No.
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
RMII
AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11]
A4
I/O
IPD
AXR0[6]/RMII_RXER/ACLKR2/GP3[6]
D7
I
IPD
AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5]
C7
I
IPD
AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4]
B7
I
IPD
AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3]
A7
I
IPD
AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2]
D8
O
IPD
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1]
C8
O
IPD
AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0]
B8
O
IPD
AXR0[8]/MDIO_D/GP3[8]
B6
I/O
IPU
AXR0[7]/MDIO_CLK/GP3[7]
A6
O
IPD
EMAC 50-MHz
clock input or output
McASP0, GPIO, BOOT
EMAC RMII receiver
error
EMAC RMII receive
data
EMAC RMII carrier
sense data valid
McASP0, McASP2, GPIO
EMAC RMII transmit
enable
EMAC RMII trasmit
data
MDIO
(1)
(2)
MDIO serial data
McASP0, GPIO
MDIO clock
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
3.6.18 Multimedia Card/Secure Digital (MMC/SD)
Table 3-20. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions
PIN
No.
SIGNAL NAME
TYPE (1)
PULL (2)
MUXED
DESCRIPTION
ZKB
EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1]
R9
O
IPU
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2]
P9
I/O
IPU
EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13]
M15
I/O
IPU
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6]
N13
I/O
IPU
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5]
N15
I/O
IPU
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4]
P13
I/O
IPU
EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3]
P15
I/O
IPU
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2]
R13
I/O
IPU
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1]
R15
I/O
IPU
EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12]
T13
I/O
IPU
(1)
(2)
EMIFA, UHPI, GPIO
MMCSD Clock
MMCSD Command
EMIFA, UHPI, GPIO,
BOOT
EMIFA, UHPI, GPIO
MMC/SD data
EMIFA, UHPI, GPIO,
BOOT
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
29
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
3.6.19
www.ti.com
Liquid Crystal Display Controller (LCD)
Table 3-21. Liquid Crystal Display Controller (LCD) Terminal Functions
PIN No.
SIGNAL NAME
ZKB
TYPE (1)
PULL (2)
EMA_D[15]/UHPI_HD[15]/LCD_D [15]/GP0[15]
M16
I/O
IPD
EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14]
N14
I/O
IPD
EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13]
N16
I/O
IPD
EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12]
P14
I/O
IPD
EMA_D[11]/UHPI_HD[11]/LCD_D[11 ]/GP0[11]
P16
I/O
IPD
EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10]
R14
I/O
IPD
EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9]
T14
I/O
IPD
EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8]
MUXED
DESCRIPTION
EMIFA, UHPI,
GPIO
LCD data bus
N12
I/O
IPD
EMA_A[0]/LCD_D[7]/GP1[0]
T9
I/O
IPD
EMA_A[3]/LCD_D[6]/GP1[3]
N9
I/O
IPD
EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13]
P8
I/O
IPU
EMA_BA[0]/LCD_D[4]/GP1[14]
R8
I/O
IPU
EMA_A[4]/LCD_D[3]/GP1[4]
T10
I/O
IPD
EMA_A[5]/LCD_D[2]/GP1[5]
R10
I/O
IPD
EMA_A[6]/LCD_D[1]/GP1[6]
P10
I/O
IPD
EMA_A[7]/LCD_D[0]/GP1[7]
N10
I/O
IPD
EMA_A[8]/LCD_PCLK/GP1[8]
T11
O
IPU
EMA_A[9]/LCD_HSYNC/GP1[9]
R11
O
IPU
LCD horizontal sync
EMA_A[10]/LCD_VSYNC/GP1[10]
N8
O
IPU
LCD vertical sync
EMA_A[11]/ LCD_AC_ENB_CS /GP1[11]
P11
O
IPU
LCD AC bias enable
chip select
EMA_A[12]/LCD_MCLK/GP1[12]
N11
O
IPU
LCD memory clock
(1)
(2)
EMIFA, GPIO
EMIFA, UHPI,
GPIO
LCD data bus
EMIFA, GPIO
LCD pixel clock
I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.
Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name
highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured
function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different
types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral.
IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
3.6.20 Reserved and No Connect
Table 3-22. Reserved and No Connect Terminal Functions
SIGNAL NAME
PIN No.
ZKB
TYPE (1)
DESCRIPTION
RSV1
F7
-
RSV2
B1
PWR
NC
F3
-
No Connect (leave unconnected)
H4
-
No Connect (leave unconnected)
NC
(1)
PWR = Supply voltage.
30
Device Overview
Reserved. (Leave unconnected, do not connect to power or ground.)
Reserved. For proper device operation, this pin must be tied directly to
CVDD or left unconnected [do not connect to ground VSS)].
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
3.6.21 Supply and Ground
Table 3-23. Supply and Ground Terminal Functions
SIGNAL NAME
PIN No.
TYPE (1)
ZKB
DESCRIPTION
CVDD (Core supply)
F6,G6, G7,
G10, G11, H7,
H10, H11, J6,
J7, J10, J11,
J12, K6, K7,
K10, K11,L6
PWR
Core supply voltage pins
RVDD (Internal RAM supply)
H6, H12
PWR
Internal ram supply voltage pins
DVDD (I/O supply)
B16, E5, E8,
E9, E12, F5,
F11, F12, G5,
G12, K5, K12,
L5, L11, L12,
M5, M8, M9,
M12, R1, R16
PWR
I/O supply voltage pins
VSS (Ground)
A1, A2, A15,
A16,
B2,
E6, E7, E10,
E11,
F8, F9, F10,
G8, G9,
H8, H9,
J8, J9,
K8, K9,
L7, L8, L9,
L10,
M6, M7, M10,
M11,
T1, T2, T15,
T16
GND
Ground pins
(1)
PWR = Supply voltage, GND - Ground.
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
31
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
3.6.22 Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations
If one or both USB modules on the device are not used, then some of the power supplies to those
modules may not be required. This can eliminate the requirement for a 1.8V power supply to the USB
modules. The required pin configurations for unused USB modules are shown below.
Table 3-24. Unused USB0 and USB1 Pin Configurations
SIGNAL NAME
Configuration
(When USB0 and USB1 are not used)
Configuration
(When USB0 is used
and USB1 is not used)
USB0_DM
No connect
Use as USB0 function
USB0_DP
No connect
Use as USB0 function
USB0_VDDA33
No connect
3.3V
USB0_VDDA18
No connect
1.8V
Use as USB0 function
USB0_ID
No connect
USB0_VBUS
No connect
Use as USB0 function
USB0_DRVVBUS/GP4[15]
No connect or use as alternate function
Use as USB0 or alternate function
USB0_VDDA12
32
Internal USB0 PHY output connected to an external 0.22μF filter capacitor, even if USB0 is
not used.
USB1_DM
No connect
VSS
USB1_DP
No connect
VSS
USB1_VDDA33
No connect
No connect
USB1_VDDA18
No connect
No connect
AHCLKX0/AHCLKX2/USB_REFCLKIN/
GP2[11]
No connect or use as alternate function
Use as USB0 or alternate function
Device Overview
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
4 Device Configuration
4.1
Boot Modes
This device supports a variety of boot modes through an internal ROM bootloader. This device does not
support dedicated hardware boot modes; therefore, all boot modes utilize the internal ROM. The input
states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system
configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by
the values of the BOOT pins
The following boot modes are supported:
• NAND Flash boot
– 8-bit NAND
– 16-bit NAND
• NOR Flash boot
– NOR Direct boot (8-bit or 16-bit)
– NOR Legacy boot (8-bit or 16-bit)
– NOR AIS boot (8-bit or 16-bit)
• HPI Boot
• I2C0 / I2C1 Boot
– EEPROM (Master Mode)
– External Host (Slave Mode)
• SPI0 / SPI1 Boot
– Serial Flash (Master Mode)
– SERIAL EEPROM (Master Mode)
– External Host (Slave Mode)
• UART0 / UART1 / UART2 Boot
– External Host
Device Configuration
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
33
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
4.2
www.ti.com
SYSCFG Module
The following system level features of the chip are controlled by the SYSCFG peripheral:
• Readable Device, Die, and Chip Revision ID
• Control of Pin Multiplexing
• Priority of bus accesses different bus masters in the system
• Capture at power on reset the chip BOOT[15:0] pin values and make them available to software
• Special case settings for peripherals:
– Locking of PLL controller settings
– Default burst sizes for EDMA3 TC0 and TC1
– Selection of the source for the eCAP module input capture (including on chip sources)
– McASP AMUTEIN selection and clearing of AMUTE status for the three McASP peripherals
– Control of the reference clock source and other side-band signals for both of the integrated USB
PHYs
– Clock source selection for EMIFA and EMIFB
• Selects the source of emulation suspend signal of peripherals supporting this function.
Many registers are accessible only by a host (ARM) when it is operating in its privileged mode. (ex. from
the kernel, but not from user space code).
Table 4-1. System Configuration (SYSCFG) Module Register Access
BYTE ADDRESS
ACRONYM
0x01C1 4000
REVID
Revision Identification Register
—
0x01C14008
DIEIDR0
Device Identification Register 0
—
0x01C1 400C
DIEIDR1
Device Identification Register 1
—
0x01C1 4010
DIEIDR2
Device Identification Register 2
—
0x01C1 4014
DIEIDR3
Device Identification Register 3
—
0x01C1 4018
DEVIDR0
JTAG Identification Register
—
0x01C1 4020
BOOTCFG
Boot Configuration Register
Privileged mode
0x01C1 4024
CHIPREVID
Silicon Revision Identification Register
Privileged mode
0x01C1 4038
KICK0R
Kick 0 Register
Privileged mode
0x01C1 403C
KICK1R
Kick 1 Register
Privileged mode
0x01C1 4040
HOST0CFG
Host 0 Configuration Register
0x01C1 4044
HOST1CFG
Host 1 Configuration Register
0x01C1 40E0
IRAWSTAT
Interrupt Raw Status/Set Register
Privileged mode
0x01C1 40E4
IENSTAT
Interrupt Enable Status/Clear Register
Privileged mode
0x01C1 40E8
IENSET
Interrupt Enable Register
Privileged mode
0x01C1 40EC
IENCLR
Interrupt Enable Clear Register
Privileged mode
End of Interrupt Register
Privileged mode
Fault Address Register
Privileged mode
34
REGISTER DESCRIPTION
ACCESS
—
—
0x01C1 40F0
EOI
0x01C1 40F4
FLTADDRR
0x01C1 40F8
FLTSTAT
Fault Status Register
0x01C1 4110
MSTPRI0
Master Priority 0 Register
Privileged mode
0x01C1 4114
MSTPRI1
Master Priority 1 Register
Privileged mode
0x01C1 4118
MSTPRI2
Master Priority 2 Register
Privileged mode
0x01C1 4120
PINMUX0
Pin Multiplexing Control 0 Register
Privileged mode
0x01C1 4124
PINMUX1
Pin Multiplexing Control 1 Register
Privileged mode
0x01C1 4128
PINMUX2
Pin Multiplexing Control 2 Register
Privileged mode
0x01C1 412C
PINMUX3
Pin Multiplexing Control 3 Register
Privileged mode
0x01C1 4130
PINMUX4
Pin Multiplexing Control 4 Register
Privileged mode
0x01C1 4134
PINMUX5
Pin Multiplexing Control 5 Register
Privileged mode
Device Configuration
—
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 4-1. System Configuration (SYSCFG) Module Register Access (continued)
BYTE ADDRESS
ACRONYM
0x01C1 4138
PINMUX6
Pin Multiplexing Control 6 Register
REGISTER DESCRIPTION
Privileged mode
ACCESS
0x01C1 413C
PINMUX7
Pin Multiplexing Control 7 Register
Privileged mode
0x01C1 4140
PINMUX8
Pin Multiplexing Control 8 Register
Privileged mode
0x01C1 4144
PINMUX9
Pin Multiplexing Control 9 Register
Privileged mode
0x01C1 4148
PINMUX10
Pin Multiplexing Control 10 Register
Privileged mode
0x01C1 414C
PINMUX11
Pin Multiplexing Control 11 Register
Privileged mode
0x01C1 4150
PINMUX12
Pin Multiplexing Control 12 Register
Privileged mode
0x01C1 4154
PINMUX13
Pin Multiplexing Control 13 Register
Privileged mode
0x01C1 4158
PINMUX14
Pin Multiplexing Control 14 Register
Privileged mode
0x01C1 415C
PINMUX15
Pin Multiplexing Control 15 Register
Privileged mode
0x01C1 4160
PINMUX16
Pin Multiplexing Control 16 Register
Privileged mode
0x01C1 4164
PINMUX17
Pin Multiplexing Control 17 Register
Privileged mode
0x01C1 4168
PINMUX18
Pin Multiplexing Control 18 Register
Privileged mode
0x01C1 416C
PINMUX19
Pin Multiplexing Control 19 Register
Privileged mode
0x01C1 4170
SUSPSRC
Suspend Source Register
Privileged mode
0x01C1 4174
-
Reserved
—
0x01C1 4178
-
Reserved
—
0x01C1 417C
CFGCHIP0
Chip Configuration 0 Register
Privileged mode
0x01C1 4180
CFGCHIP1
Chip Configuration 1 Register
Privileged mode
0x01C1 4184
CFGCHIP2
Chip Configuration 2 Register
Privileged mode
0x01C1 4188
CFGCHIP3
Chip Configuration 3 Register
Privileged mode
0x01C1 418C
CFGCHIP4
Chip Configuration 4 Register
Privileged mode
Device Configuration
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
35
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
4.3
www.ti.com
Pullup/Pulldown Resistors
Proper board design should ensure that input pins to the device always be at a valid logic level and not
floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and
internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external
pullup/pulldown resistors.
An external pullup/pulldown resistor needs to be used in the following situations:
• Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external
pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state.
• Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external
pullup/pulldown resistor to pull the signal to the opposite rail.
For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly
recommended that an external pullup/pulldown resistor be implemented. Although, internal
pullup/pulldown resistors exist on these pins and they may match the desired configuration value,
providing external connectivity can help ensure that valid logic levels are latched on these device boot and
configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration
pins adds convenience to the user in debugging and flexibility in switching operating modes.
Tips for choosing an external pullup/pulldown resistor:
• Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure
to include the leakage currents of all the devices connected to the net, as well as any internal pullup or
pulldown resistors.
• Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of
all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all
inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of
the limiting device; which, by definition, have margin to the VIL and VIH levels.
• Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net
will reach the target pulled value when maximum current from all devices on the net is flowing through
the resistor. The current to be considered includes leakage current plus, any other internal and
external pullup/pulldown resistors on the net.
• For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance
value of the external resistor. Verify that the resistance is small enough that the weakest output buffer
can drive the net to the opposite logic level (including margin).
• Remember to include tolerances when selecting the resistor value.
• For pullup resistors, also remember to include tolerances on the IO supply rail.
• For most systems, a 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above
criteria. Users should confirm this resistor value is correct for their specific application.
• For most systems, a 20-kΩ resistor can be used to compliment the IPU/IPD on the boot and
configuration pins while meeting the above criteria. Users should confirm this resistor value is correct
for their specific application.
• For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH)
for the device, see Section 5.3, Recommended Operating Conditions.
• For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal
functions table.
36
Device Configuration
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
5 Device Operating Conditions
5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range
(Unless Otherwise Noted) (1)
Core
(CVDD, RVDD, RTC_CVDD, PLL0_VDDA )
I/O, 1.8V
(USB0_VDDA18, USB1_VDDA18)
Supply voltage ranges
-0.5 V to 2 V
(2)
I/O, 3.3V
(DVDD, USB0_VDDA33, USB1_VDDA33)
Input voltage ranges
-0.5 V to 1.4 V
(2)
-0.5 V to 3.8V
(2)
VI I/O, 1.2V
(OSCIN, RTC_XI)
-0.3 V to CVDD + 0.3V
VI I/O, 3.3V
(Steady State)
-0.3V to DVDD + 0.35V
VI I/O, 3.3V
(Transient)
VI I/O, USB0 VBUS
5.50V (3)
-0.5 V to DVDD + 0.3V
20% of DVDD for up to
20% of the signal period
Input or Output Voltages 0.3V above or below their respective power
rails. Limit clamp current that flows through the I/O's internal diode
protection cells.
Operating Junction Temperature ranges,
TJ
5.2
5.25V (3)
VO I/O, 3.3V
(Transient Overshoot/Undershoot)
Clamp Current
(2)
(3)
VI I/O, USB 5V Tolerant Pins:
(USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP)
VO I/O, 3.3V
(Steady State)
Output voltage ranges
(1)
DVDD + 20%
up to 20% of Signal
Period
±20mA
Commercial (default)
0°C to 90°C
Industrial (D version)
-40°C to 90°C
Extended (A version)
-40°C to 105°C
Automotive (T version)
-40°C to 125°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to VSS, PLL0_VSSA, OSCVSS, RTC_VSS
Up to a max of 24 hours.
Handling Ratings
UNIT
Storage temperature
range, Tstg
ESD Stress Voltage,
VESD (1)
(1)
(2)
(3)
(default)
Human Body Model (HBM)
(2)
Charged Device Model (CDM) (3)
-55 to 150
°C
>2000
V
>500
V
Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.
Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500V HBM allows
safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary
precautions are taken. Pins listed as 1000V may actually have higher performance.
Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250V CDM allows safe
manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance.
Device Operating Conditions
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
37
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
5.3
Recommended Operating Conditions
CVDD
RVDD
DVDD
VIL
MIN
NOM
MAX
UNIT
375 MHz version
1.14
1.2
1.32
V
456 MHz version
1.25
1.3
1.35
V
375 MHz version
1.14
1.2
1.32
V
456 MHz version
1.25
1.3
1.35
V
Supply voltage, I/O, 1.8V
(USB0_VDDA18, USB1_VDDA18)
1.71
1.8
1.89
V
Supply voltage, I/O, 3.3V
(DVDD, USB0_VDDA33, USB1_VDDA33)
3.0
3.3
3.45
V
0
0
0
V
Supply voltage, Core
(CVDD, RTC_CVDD, PLL0_VDDA)
Supply Voltage, Internal RAM
Supply ground
(VSS, PLL0_VSSA, OSCVSS (1), RTC_VSS (1))
VSS
VIH
www.ti.com
(2)
(2)
High-level input voltage, I/O, 3.3V
2
V
High-level input voltage, OSCIN
0.7*CVDD
V
High-level input voltage, RTC_XI
0.7*RTC_CVDD
0.8
V
Low-level input voltage, OSCIN
0.3*CVDD
V
Low-level input voltage, RTC_XI
0.3*RTC_CVDD
VHYS
Input Hysteresis
USB
USB0_VBUS
tt
Transition time, 10%-90%, All Inputs (unless otherwise specified in
the electrical data sections)
FSYSCLK6
(1)
(2)
(3)
38
V
Low-level input voltage, I/O, 3.3V
ARM Operating Frequency (SYSCLK6)
160
4.75
5
V
mV
5.25
0.25P or 10
V
(3)
ns
Commercial (default)
0
375 (1.2V)
456 (1.3V)
MHz
Industrial (D suffix)
0
456 (1.3V)
MHz
Extended (A suffix)
0
375(1.2V)
MHz
Automotive (T suffix)
0
375 (1.2V)
MHz
When an external crystal is used, oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected
directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on
the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground.
Unless specifically indicated, these I/O specifications do not apply to USB I/Os. USB0 I/Os adhere to USB2.0 specification. USB1 I/Os
adhere to USB1.1 specification.
Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
Device Operating Conditions
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
5.4
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Notes on Recommended Power-On Hours (POH)
The information in the section below is provided solely for your convenience and does not extend or
modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products.
To avoid significant degradation, the device power-on hours (POH) must be limited to the following:
Table 5-1. Recommended Power-On Hours
(1)
Operating Junction
Temperature (Tj)
Nominal CVDD Voltage (V)
375 MHz
0 to 90 °C
1.2V
100,000
375 MHz
-40 to 105 °C
1.2V
75,000 (1)
D
375 MHz
-40 to 125 °C
1.2V
20,000
D
456 MHz
0 to 90 °C
1.3V
100,000
D
456 MHz
-40 to 90 °C
1.3V
100,000
Silicon Revision
Speed Grade
D
D
Power-On Hours [POH]
(hours)
100,000 POH can be achieved at this temperature condition if the device operation is limited to 345 MHz.
Note: Logic functions and parameter values are not assured out of the range specified in the recommended
operating conditions.
The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under
TI’s standard terms and conditions for TI semiconductor products.
Device Operating Conditions
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
39
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
5.5
Electrical Characteristics Over Recommended Ranges of Supply Voltage and
Operating Junction Temperature (Unless Otherwise Noted)
PARAMETER
VOH
VOL
II
www.ti.com
(1)
(1)
(2) (1)
High-level output voltage (3.3V I/O)
Low-level output voltage (3.3V I/O)
Input current
TEST CONDITIONS
MIN
DVDD= 3.15V, IOH = -4 mA
2.4
DVDD= 3.15V, IOH = 100 μA
2.95
TYP
MAX
UNIT
V
V
DVDD= 3.15V, IOL = 4mA
0.4
V
DVDD= 3.15V, IOL = -100 μA
0.2
V
VI = VSS to DVDD without opposing
internal resistor
±35
μA
VI = VSS to DVDD with opposing
internal pullup resistor (3)
-30
-200
μA
VI = VSS to DVDD with opposing
internal pulldown resistor (3)
50
300
μA
±40
μA
VI = VSS to USB1_VDDA33 USB1_DM and USB1_DP
IOH
(1)
High-level output current
-4
mA
IOL
(1)
Low-level output current
4
mA
IOZ
(4)
I/O Off-state output current
±35
μA
LVCMOS signals
3
pF
OSCIN and RTC_XI
2
pF
LVCMOS signals
3
pF
CI
Input capacitance
CO
Output capacitance
(1)
(2)
(3)
(4)
40
VO = VDD or VSS; Internal pull disabled
These I/O specifications apply to regular 3.3V IOs and do not apply to USB0 and USB1 unless specifically indicated. USB0 I/Os adhere
to the USB 2.0 specification. USB1 I/Os adhere to the USB 1.1 specification.
II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II
indicates the input leakage current and off-state (Hi-Z) output leakage current.
Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.
IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current.
Device Operating Conditions
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6 Peripheral Information and Electrical Specifications
6.1
Parameter Information
6.1.1
Parameter Information Device-Specific Information
Tester Pin Electronics
42 Ω
3.5 nH
Transmission Line
Z0 = 50 Ω
(see note)
4.0 pF
A.
1.85 pF
Data Sheet Timing Reference Point
Output
Under
Test
Device Pin
(see note)
The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its
transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to
produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to
add or subtract the transmission line delay (2 ns or longer) from the data sheet timings.
Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the
device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal.
Figure 6-1. Test Load Circuit for AC Timing Measurements
The load capacitance value stated is only for characterization and measurement of AC timing signals. This
load capacitance value does not indicate the maximum load the device is capable of driving.
6.1.1.1
Signal Transition Levels
All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O,
Vref = 1.65 V. For 1.8 V I/O, Vref = 0.9 V. For 1.2 V I/O, Vref = 0.6 V.
Vref
Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks,
VOLMAX and VOH MIN for output clocks.
Vref = VIH MIN (or VOH MIN)
Vref = VIL MAX (or VOL MAX)
Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
41
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.2
www.ti.com
Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic
manner.
6.3
6.3.1
Power Supplies
Power-on Sequence
The device should be powered-on in the following order:
1. RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other
supplies being applied or powered-up at the same time as CVDD. If the RTC is not used, RTC_CVDD
should be connected to CVDD. RTC_CVDD should not be left unpowered while CVDD is powered.
2. Core logic supplies:
(a) CVDD core logic supply
(b) Other 1.2V logic supplies (PLL0_VDDA). Groups 2a) and 2b) may be powered up together or 2a)
first followed by 2b).
3. All 1.8V IO supplies (USB0_VDDA18, USB1_VDDA18).
4. All digital IO and analog 3.3V PHY supplies (DVDD, USB0_VDDA33 , USB1_VDDA33).
USB0_VDDA33 and USB1_VDDA33 are not required if both USB0 and USB1 are not used) and may
be left unconnected.
Group 3) and group 4) may be powered on in either order [3 then 4, or 4 then 3] but group 4) must be
powered-on after the core logic supplies.
There is no specific required voltage ramp rate for any of the supplies.
RESET must be maintained active until all power supplies have reached their nominal values.
6.3.2
Power-off Sequence
The power supplies can be powered-off in any order as long as the 3.3V supplies do not remain powered
with the other supplies unpowered.
42
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
6.4
6.4.1
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Reset
Power-On Reset (POR)
A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On
Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal
logic to its default state. All pins are tri-stated with the exception of RESETOUT, which remains active
through the reset sequence, and RTCK/GP7[14]. If an emulator is driving TCK into the device during
reset, then RTCK/GP7[14] will drive out RTCK. If TCK is not being driven into the device during reset,
then RTCK/GP7[14] will drive low. RESETOUT is an output for use by other controllers in the system that
indicates the device is currently in reset.
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for
the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG
port interface and device's emulation logic in the reset state.
. TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or
exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by
TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted.
.RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE
correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For
maximum reliability, the device includes an internal pulldown on the TRST pin to ensure that TRST will
always be asserted upon power up and the device's internal emulation logic will always be properly
initialized.
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG
controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type
of JTAG controller, assert TRST to intialize the device after powerup and externally drive TRST high
before attempting any emulation or boundary scan operations.
RTCK/GP7[14] is maintained active through a POR.
A
•
•
•
•
•
summary of the effects of Power-On Reset is given below:
All internal logic (including emulation logic and the PLL logic) is reset to its default state
Internal memory is not maintained through a POR
RESETOUT goes active
All device pins go to a high-impedance state
The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC.
CAUTION: A watchdog reset triggers a POR.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
43
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.4.2
www.ti.com
Warm Reset
A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low
(TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their
default state while leaving others unaltered. All pins are 3-stated with the exception of RESETOUT which
remains active through the reset sequence and RTCK/GP7[14]. If an emulator is driving TCK into the
device during reset, then RTCK/GP7[14] will drive out RTCK. If TCK is not being driven into the device
during reset, then RTCK/GP7[14] will drive low. RESETOUT is an output for use by other controllers in the
system that indicates the device is currently in reset
During emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is available
during emulation debug and development.
RTCK/GP7[14] is maintained active through a warm reset.
A
•
•
•
•
•
44
summary of the effects of Warm Reset is given below:
All internal logic (except for the emulation logic and the PLL logic) is reset to its default state
Internal memory is maintained through a warm reset
RESETOUT goes active
All device pins go to a high-impedance state
The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the
RTC.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
6.4.3
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Reset Electrical Data Timings
Table 6-1 assumes testing over the recommended operating conditions.
Table 6-1. Reset Timing Requirements (1) (2)
N
o.
MIN
MAX
UNIT
1
tw(RSTL)
Pulse width, RESET/TRST low
100
ns
2
tsu(BPV-RSTH)
Setup time, boot pins valid before RESET/TRST high
20
ns
3
th(RSTH-BPV)
Hold time, boot pins valid after RESET/TRST high
20
ns
td(RSTH-RESETOUTH)
RESET high to RESETOUT high; Warm reset
4096
RESET high to RESETOUT high; Power-on Reset
6192
4
(1)
(2)
(3)
cycles (3)
RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 3-3 for details.
For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this
table refer to RESET only (TRST is held high).
OSCIN cycles.
Power
Supplies
Ramping
Power Supplies Stable
Clock Source Stable
OSCIN
1
RESET
TRST
4
RESETOUT
3
2
Boot Pins
Config
Figure 6-4. Power-On Reset (RESET and TRST active) Timing
Power Supplies Stable
OSCIN
TRST
1
RESET
4
RESETOUT
3
2
Boot Pins
Driven or Hi-Z
Config
Figure 6-5. Warm Reset (RESET active, TRST high) Timing
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
45
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.5
www.ti.com
Crystal Oscillator or External Clock Input
The device includes two choices to provide an external clock input, which is fed to the on-chip PLL to
generate high-frequency system clocks. These options are illustrated in Figure 6-6 and Figure 6-7. For
input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For
input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended.
Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1
and C2.
The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1,
the internal oscillator is disabled.
• Figure 6-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit.
• Figure 6-7 illustrates the option that uses an external 1.2V clock input.
C2
OSCIN
Clock Input
to PLL
X1
OSCOUT
C1
OSCVSS
Figure 6-6. On-Chip 1.2V Oscillator
Table 6-2. Oscillator Timing Requirements
PARAMETER
fosc
46
Oscillator frequency range (OSCIN/OSCOUT)
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
MIN
MAX
UNIT
12
30
MHz
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
OSCIN
NC
Clock
Input
to PLL
OSCOUT
OSCVSS
Figure 6-7. External 1.2V Clock Source
Table 6-3. OSCIN Timing Requirements
MIN
MAX
UNIT
fOSCIN
OSCIN frequency range (OSCIN)
PARAMETER
12
50
MHz
tc(OSCIN)
Cycle time, external clock driven on OSCIN
20
ns
tw(OSCINH)
Pulse width high, external clock on OSCIN
0.4 tc(OSCIN)
ns
tw(OSCINL)
Pulse width low, external clock on OSCIN
0.4 tc(OSCIN)
tt(OSCIN)
Transition time, OSCIN
tj(OSCIN)
Period jitter, OSCIN
(1)
ns
0.25P or 10
(1)
0.02P
ns
ns
Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
47
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.6
www.ti.com
Clock PLLs
The device has one PLL controller that provides clock to different parts of the system. PLL0 provides
clocks (though various dividers) to most of the components of the device.
The PLL controller provides the following:
• Glitch-Free Transitions (on changing clock settings)
• Domain Clocks Alignment
• Clock Gating
• PLL power down
The various clock outputs given by the controller are as follows:
• Domain Clocks: SYSCLK [1:n]
• Auxiliary Clock from reference clock source: AUXCLK
Various dividers that can be used are as follows:
• Post-PLL Divider: POSTDIV
• SYSCLK Divider: D1, ¼, Dn
Various other controls supported are as follows:
• PLL Multiplier Control: PLLM
• Software programmable PLL Bypass: PLLEN
6.6.1
PLL Device-Specific Information
The PLL requires some external filtering components to reduce power supply noise as shown in Figure 68.
1.14V - 1.32V
PLL0_VDDA
50R
0.1
µF
VSS
0.01
µF
50R
PLL0_VSSA
Ferrite Bead: Murata BLM31PG500SN1L or Equivalent
Figure 6-8. PLL External Filtering Components
The input to the PLL is either from the on-chip oscillator (OSCIN pin) or from an external clock on the
OSCIN pin. The PLL outputs seven clocks that have programmable divider options. Figure 6-9 illustrates
the PLL Topology.
The PLL is disabled by default after a device reset. It must be configured by software according to the
allowable operating conditions listed in Table 6-4 before enabling the processor to run from the PLL by
setting PLLEN = 1.
48
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
CLKMODE
OSCIN
PLLEN
Square
Wave
1
Crystal
0
Pre-Div
PLL
Post-Div
PLLM
1
PLLDIV1 (/1)
SYSCLK1
0
PLLDIV2 (/2)
SYSCLK2
PLLDIV3 (/3)
SYSCLK3
PLLDIV4 (/4)
SYSCLK4
PLLDIV5 (/3)
SYSCLK5
PLLDIV6 (/1)
SYSCLK6
PLLDIV7 (/6)
SYSCLK7
AUXCLK
0
DIV4.5
1
EMIFA
Internal
Clock
Source
CFGCHIP3[EMA_CLKSRC]
DIV4.5
1
0
EMIFB
Internal
Clock
Source
CFGCHIP3[EMB_CLKSRC]
SYSCLK1
SYSCLK2
SYSCLK3
SYSCLK4
SYSCLK5
SYSCLK6
SYSCLK7
14h
17h
18h
19h
1Ah
1Bh
1Ch
1Dh
DIV4.5
OSCDIV
OBSCLK Pin
OCSEL[OCSRC]
Figure 6-9. PLL Topology
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
49
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-4. Allowed PLL Operating Conditions
No.
PARAMETER
Default
Value
MIN
MAX
UNIT
1
PLLRST: Assertion time during
initialization
N/A
1000
N/A
ns
2
Lock time: The time that the application
has to wait for the PLL to acquire locks
before setting PLLEN, after changing
PREDIV, PLLM, or OSCIN
N/A
3
PREDIV
/1
4
PLL input frequency
( PLLREF)
5
6
7
(1)
50
PLL multiplier values (PLLM)
(1)
2000 N
m
where N = Pre-Divider Ratio
Max PLL Lock Time =
N/A
OSCIN
cycles
M = PLL Multiplier
/1
/32
12
30 (if internal oscillator is used)
50 (if external clock source is used)
x20
x4
x32
PLL output frequency. ( PLLOUT )
N/A
300
600
POSTDIV
/1
/1
/32
MHz
MHz
The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between 300 and 600 MHz, but the frequency
going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given
voltage operating point.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
6.6.2
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Device Clock Generation
PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for the
system clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software,
in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of the
chip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clock
alignment, and test points.
6.6.3
PLL Controller 0 Registers
Table 6-5. PLL Controller 0 Registers
BYTE
ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C1 1000
REVID
0x01C1 10E4
RSTYPE
Revision Identification Register
Reset Type Status Register
0x01C1 1100
PLLCTL
PLL Control Register
0x01C1 1104
OCSEL
OBSCLK Select Register
0x01C1 1110
PLLM
PLL Multiplier Control Register
0x01C1 1114
PREDIV
PLL Pre-Divider Control Register
0x01C1 1118
PLLDIV1
PLL Controller Divider 1 Register
0x01C1 111C
PLLDIV2
PLL Controller Divider 2 Register
0x01C1 1120
PLLDIV3
PLL Controller Divider 3 Register
0x01C1 1124
OSCDIV
Oscillator Divider 1 Register (OBSCLK)
0x01C1 1128
POSTDIV
PLL Post-Divider Control Register
0x01C1 1138
PLLCMD
PLL Controller Command Register
0x01C1 113C
PLLSTAT
PLL Controller Status Register
0x01C1 1140
ALNCTL
PLL Controller Clock Align Control Register
0x01C1 1144
DCHANGE
PLLDIV Ratio Change Status Register
0x01C1 1148
CKEN
0x01C1 114C
CKSTAT
Clock Enable Control Register
Clock Status Register
0x01C1 1150
SYSTAT
SYSCLK Status Register
0x01C1 1160
PLLDIV4
PLL Controller Divider 4 Register
0x01C1 1164
PLLDIV5
PLL Controller Divider 5 Register
0x01C1 1168
PLLDIV6
PLL Controller Divider 6 Register
0x01C1 116C
PLLDIV7
PLL Controller Divider 7 Register
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
51
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.7
www.ti.com
Interrupts
6.7.1
ARM CPU Interrupts
The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller extends the
number of interrupts to 100, and provides features like programmable masking, priority, hardware nesting
support, and interrupt vector generation.
6.7.1.1
ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy
The ARM Interrupt controller organizes interrupts into the following hierarchy:
• Peripheral Interrupt Requests
– Individual Interrupt Sources from Peripherals
• 100 System Interrupts
– One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a
System Interrupt.
– After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt
• 32 Interrupt Channels
– Each System Interrupt is mapped to one of the 32 Interrupt Channels
– Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31
lowest.
– If more than one system interrupt is mapped to a channel, priority within the channel is determined
by system interrupt number (0 highest priority)
• Host Interrupts (FIQ and IRQ)
– Interrupt Channels 0 and 1 generate the ARM FIQ interrupt
– Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt
• Debug Interrupts
– Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem
– Sources can be selected from any of the System Interrupts or Host Interrupts
6.7.1.2
AINTC Hardware Vector Generation
The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may
be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system
interrupts. The vector is computed in hardware as:
VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE)
Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may
dispatched to using a single instruction of type LDR PC, [PC, #-<offset_12>] at the FIQ and IRQ vector
locations (0xFFFF0018 and 0xFFFF001C respectively).
6.7.1.3
AINTC Hardware Interrupt Nesting Support
Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to
interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate
interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic
nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks
interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts;
only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing
to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with
the option of automatic nesting on a global or per host interrupt basis; or manual nesting.
6.7.1.4
AINTC System Interrupt Assignments on the device
System Interrupt assignments for the device are listed in Table 6-6
52
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-6. AINTC System Interrupt Assignments
System Interrupt
Interrupt Name
Source
0
COMMTX
ARM
1
COMMRX
ARM
2
NINT
ARM
3
PRU_EVTOUT0
PRUSS Interrupt
4
PRU_EVTOUT1
PRUSS Interrupt
5
PRU_EVTOUT2
PRUSS Interrupt
6
PRU_EVTOUT3
PRUSS Interrupt
7
PRU_EVTOUT4
PRUSS Interrupt
8
PRU_EVTOUT5
PRUSS Interrupt
9
PRU_EVTOUT6
PRUSS Interrupt
10
PRU_EVTOUT7
PRUSS Interrupt
11
EDMA3_CC0_CCINT
EDMA CC Region 0
12
EDMA3_CC0_CCERRINT
EDMA Channel Controller
13
EDMA3_TC0_TCERRINT
EDMA Transfer Controller 0
14
EMIFA_INT
EMIFA
15
IIC0_INT
I2C0
16
MMCSD_INT0
MMCSD
17
MMCSD_INT1
MMCSD
18
PSC0_ALLINT
PSC0
19
RTC_IRQS[1:0]
RTC
20
SPI0_INT
SPI0
21
T64P0_TINT12
Timer64P0 Interrupt 12
22
T64P0_TINT34
Timer64P0 Interrupt 34
23
T64P1_TINT12
Timer64P1 Interrupt 12
24
T64P1_TINT34
Timer64P1 Interrupt 34
25
UART0_INT
UART0
26
-
Reserved
27
MPU_BOOTCFG_ERR
Shared MPU and SYSCFG Address/Protection Error
Interrupt
-
Reserved
32
EDMA3_TC1_TCERRINT
EDMA Transfer Controller 1
33
EMAC_C0RXTHRESH
EMAC - Core 0 Receive Threshold Interrupt
34
EMAC_C0RX
EMAC - Core 0 Receive Interrupt
35
EMAC_C0TX
EMAC - Core 0 Transmit Interrupt
36
EMAC_C0MISC
EMAC - Core 0 Miscellaneous Interrupt
37
EMAC_C1RXTHRESH
EMAC - Core 1 Receive Threshold Interrupt
38
EMAC_C1RX
EMAC - Core 1 Receive Interrupt
39
EMAC_C1TX
EMAC - Core 1 Transmit Interrupt
40
EMAC_C1MISC
EMAC - Core 1 Miscellaneous Interrupt
41
EMIF_MEMERR
EMIFB
42
GPIO_B0INT
GPIO Bank 0 Interrupt
43
GPIO_B1INT
GPIO Bank 1 Interrupt
44
GPIO_B2INT
GPIO Bank 2 Interrupt
45
GPIO_B3INT
GPIO Bank 3 Interrupt
46
GPIO_B4INT
GPIO Bank 4 Interrupt
47
GPIO_B5INT
GPIO Bank 5 Interrupt
48
GPIO_B6INT
GPIO Bank 6 Interrupt
28 - 31
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
53
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-6. AINTC System Interrupt Assignments (continued)
System Interrupt
Source
GPIO_B7INT
GPIO Bank 7 Interrupt
50
-
Reserved
51
IIC1_INT
I2C1
52
LCDC_INT
LCD Controller
53
UART_INT1
UART1
54
MCASP_INT
McASP0, 1, 2 Combined RX / TX Interrupts
55
PSC1_ALLINT
PSC1
56
SPI1_INT
SPI1
57
UHPI_ARMINT
HPI ARM Interrupt
58
USB0_INT
USB0 Interrupt
59
USB1_HCINT
USB1 OHCI Host Controller Interrupt
60
USB1_RWAKEUP
USB1 Remote Wakeup Interrupt
61
UART2_INT
UART2
62
-
Reserved
63
EHRPWM0
HiResTimer / PWM0 Interrupt
64
EHRPWM0TZ
HiResTimer / PWM0 Trip Zone Interrupt
65
EHRPWM1
HiResTimer / PWM1 Interrupt
66
EHRPWM1TZ
HiResTimer / PWM1 Trip Zone Interrupt
67
EHRPWM2
HiResTimer / PWM2 Interrupt
68
EHRPWM2TZ
HiResTimer / PWM2 Trip Zone Interrupt
69
ECAP0
ECAP0
70
ECAP1
ECAP1
71
ECAP2
ECAP2
72
EQEP0
EQEP0
73
EQEP1
EQEP1
74
T64P0_CMPINT0
Timer64P0 - Compare 0
75
T64P0_CMPINT1
Timer64P0 - Compare 1
76
T64P0_CMPINT2
Timer64P0 - Compare 2
77
T64P0_CMPINT3
Timer64P0 - Compare 3
78
T64P0_CMPINT4
Timer64P0 - Compare 4
79
T64P0_CMPINT5
Timer64P0 - Compare 5
80
T64P0_CMPINT6
Timer64P0 - Compare 6
81
T64P0_CMPINT7
Timer64P0 - Compare 7
82
T64P1_CMPINT0
Timer64P1 - Compare 0
83
T64P1_CMPINT1
Timer64P1 - Compare 1
84
T64P1_CMPINT2
Timer64P1 - Compare 2
85
T64P1_CMPINT3
Timer64P1 - Compare 3
86
T64P1_CMPINT4
Timer64P1 - Compare 4
87
T64P1_CMPINT5
Timer64P1 - Compare 5
88
T64P1_CMPINT6
Timer64P1 - Compare 6
89
T64P1_CMPINT7
Timer64P1 - Compare 7
90
ARMCLKSTOPREQ
PSC0
-
Reserved
91 - 100
54
Interrupt Name
49
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
6.7.1.5
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
AINTC Memory Map
Table 6-7. AINTC Memory Map
BYTE ADDRESS
ACRONYM
0xFFFE E000
REV
Revision Register
Control Register
0xFFFE E004
CR
0xFFFE E008 - 0xFFFE E00F
-
0xFFFE E010
GER
REGISTER DESCRIPTION
Reserved
Global Enable Register
0xFFFE E014 - 0xFFFE E01B
-
0xFFFE E01C
GNLR
Reserved
Global Nesting Level Register
0xFFFE E020
SISR
System Interrupt Status Indexed Set Register
0xFFFE E024
SICR
System Interrupt Status Indexed Clear Register
0xFFFE E028
EISR
System Interrupt Enable Indexed Set Register
0xFFFE E02C
EICR
System Interrupt Enable Indexed Clear Register
0xFFFE E030
-
Reserved
0xFFFE E034
HIEISR
Host Interrupt Enable Indexed Set Register
0xFFFE E038
HIEICR
Host Interrupt Enable Indexed Clear Register
0xFFFE E03C - 0xFFFE E04F
-
0xFFFE E050
VBR
Vector Base Register
0xFFFE E054
VSR
Vector Size Register
0xFFFE E058
VNR
Vector Null Register
0xFFFE E05C - 0xFFFE E07F
-
Reserved
Reserved
0xFFFE E080
GPIR
Global Prioritized Index Register
0xFFFE E084
GPVR
Global Prioritized Vector Register
0xFFFE E088 - 0xFFFE E1FF
-
0xFFFE E200 - 0xFFFE E20B
SRSR[1] - SRSR[3]
0xFFFE E20C- 0xFFFE E27F
-
0xFFFE E280 - 0xFFFE E28B
SECR[1] - SECR[3]
0xFFFE E28C - 0xFFFE E2FF
-
0xFFFE E300 - 0xFFFE E30B
ESR[1] - ESR[3]
0xFFFE E30C - 0xFFFE E37F
-
0xFFFE E380 - 0xFFFE E38B
ECR[1] - ECR[3]
Reserved
System Interrupt Status Raw / Set Registers
Reserved
System Interrupt Status Enabled / Clear Registers
Reserved
System Interrupt Enable Set Registers
Reserved
System Interrupt Enable Clear Registers
0xFFFE E38C - 0xFFFE E3FF
-
0xFFFE E400 - 0xFFFE E458
CMR[0] - CMR[22]
Reserved
0xFFFE E459 - 0xFFFE E7FF
-
Reserved
Channel Map Registers (Byte Wide Registers)
0xFFFE E800 - 0xFFFE E81F
-
Reserved
0xFFFE E820 - 0xFFFE E8FF
-
Reserved
0xFFFE E900 - 0xFFFE E904
HIPIR[1] - HIPIR[2]
0xFFFE E908 - 0xFFFE EEFF
-
Reserved
0xFFFE EF00 - 0xFFFE EF04
-
Reserved
0xFFFE EF08 - 0xFFFE F0FF
-
Reserved
0xFFFE F100 - 0xFFFE F104
HINLR[1] - HINLR[2]
0xFFFE F108 - 0xFFFE F4FF
-
0xFFFE F500
HIER
0xFFFE F504 - 0xFFFE F5FF
-
0xFFFE F600
HIPVR[1] - HIPVR[2]
0xFFFE F608 - 0xFFFE FFFF
-
Copyright © 2010–2014, Texas Instruments Incorporated
Host Interrupt Prioritized Index Registers
Host Interrupt Nesting Level Registers
Reserved
Host Interrupt Enable Register
Reserved
Host Interrupt Prioritized Vector Registers
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
55
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.8
www.ti.com
General-Purpose Input/Output (GPIO)
The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs.
When configured as an output, a write to an internal register can control the state driven on the output pin.
When configured as an input, the state of the input is detectable by reading the state of an internal
register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different
interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices.
The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]).
The device GPIO peripheral supports the following:
• Up to 128 Pins on ZKB package configurable as GPIO
• External Interrupt and DMA request Capability
– Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or
falling edges on the pin.
– The interrupt requests within each bank are combined (logical or) to create eight unique bank level
interrupt requests.
– The bank level interrupt service routine may poll the INTSTATx register for its bank to determine
which pin(s) have triggered the interrupt.
– GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to ARM INTC Interrupt Requests 42, 43,
44, 45, 46, 47, 48, and 49 respectively
– Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28,
and 29 respectively.
• Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO
signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section
protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to
anther process during GPIO programming).
• Separate Input/Output registers
• Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can
be toggled by direct write to the output register(s).
• Output register, when read, reflects output drive status. This, in addition to the input register reflecting
pin status and open-drain I/O cell, allows wired logic be implemented.
The memory map for the GPIO registers is shown in Table 6-8.
56
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
6.8.1
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
GPIO Register Description(s)
Table 6-8. GPIO Registers
BYTE ADDRESS
ACRONYM
0x01E2 6000
REV
0x01E2 6004
-
0x01E2 6008
BINTEN
REGISTER DESCRIPTION
Peripheral Revision Register
Reserved
GPIO Interrupt Per-Bank Enable Register
GPIO BANKS 0 AND 1
0x01E2 6010
DIR01
0x01E2 6014
OUT_DATA01
GPIO Banks 0 and 1 Direction Register
GPIO Banks 0 and 1 Output Data Register
0x01E2 6018
SET_DATA01
GPIO Banks 0 and 1 Set Data Register
0x01E2 601C
CLR_DATA01
GPIO Banks 0 and 1 Clear Data Register
0x01E2 6020
IN_DATA01
GPIO Banks 0 and 1 Input Data Register
0x01E2 6024
SET_RIS_TRIG01
GPIO Banks 0 and 1 Set Rising Edge Interrupt Register
0x01E2 6028
CLR_RIS_TRIG01
GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register
0x01E2 602C
SET_FAL_TRIG01
GPIO Banks 0 and 1 Set Falling Edge Interrupt Register
0x01E2 6030
CLR_FAL_TRIG01
GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register
0x01E2 6034
INTSTAT01
0x01E2 6038
DIR23
0x01E2 603C
OUT_DATA23
GPIO Banks 2 and 3 Output Data Register
0x01E2 6040
SET_DATA23
GPIO Banks 2 and 3 Set Data Register
0x01E2 6044
CLR_DATA23
GPIO Banks 2 and 3 Clear Data Register
0x01E2 6048
IN_DATA23
GPIO Banks 2 and 3 Input Data Register
GPIO Banks 0 and 1 Interrupt Status Register
GPIO BANKS 2 AND 3
GPIO Banks 2 and 3 Direction Register
0x01E2 604C
SET_RIS_TRIG23
GPIO Banks 2 and 3 Set Rising Edge Interrupt Register
0x01E2 6050
CLR_RIS_TRIG23
GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register
0x01E2 6054
SET_FAL_TRIG23
GPIO Banks 2 and 3 Set Falling Edge Interrupt Register
0x01E2 6058
CLR_FAL_TRIG23
GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register
0x01E2 605C
INTSTAT23
GPIO Banks 2 and 3 Interrupt Status Register
GPIO BANKS 4 AND 5
0x01E2 6060
DIR45
GPIO Banks 4 and 5 Direction Register
0x01E2 6064
OUT_DATA45
GPIO Banks 4 and 5 Output Data Register
0x01E2 6068
SET_DATA45
GPIO Banks 4 and 5 Set Data Register
0x01E2 606C
CLR_DATA45
GPIO Banks 4 and 5 Clear Data Register
0x01E2 6070
IN_DATA45
GPIO Banks 4 and 5 Input Data Register
0x01E2 6074
SET_RIS_TRIG45
GPIO Banks 4 and 5 Set Rising Edge Interrupt Register
0x01E2 6078
CLR_RIS_TRIG45
GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register
0x01E2 607C
SET_FAL_TRIG45
GPIO Banks 4 and 5 Set Falling Edge Interrupt Register
0x01E2 6080
CLR_FAL_TRIG45
GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register
0x01E2 6084
INTSTAT45
GPIO Banks 4 and 5 Interrupt Status Register
GPIO BANKS 6 AND 7
0x01E2 6088
DIR67
0x01E2 608C
OUT_DATA67
GPIO Banks 6 and 7 Output Data Register
0x01E2 6090
SET_DATA67
GPIO Banks 6 and 7 Set Data Register
0x01E2 6094
CLR_DATA67
GPIO Banks 6 and 7 Clear Data Register
0x01E2 6098
IN_DATA67
GPIO Banks 6 and 7 Input Data Register
0x01E2 609C
SET_RIS_TRIG67
GPIO Banks 6 and 7 Set Rising Edge Interrupt Register
0x01E2 60A0
CLR_RIS_TRIG67
GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register
0x01E2 60A4
SET_FAL_TRIG67
GPIO Banks 6 and 7 Set Falling Edge Interrupt Register
Copyright © 2010–2014, Texas Instruments Incorporated
GPIO Banks 6 and 7 Direction Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
57
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-8. GPIO Registers (continued)
6.8.2
BYTE ADDRESS
ACRONYM
0x01E2 60A8
CLR_FAL_TRIG67
0x01E2 60AC
INTSTAT67
REGISTER DESCRIPTION
GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register
GPIO Banks 6 and 7 Interrupt Status Register
GPIO Peripheral Input/Output Electrical Data/Timing
Table 6-9. Timing Requirements for GPIO Inputs (1) (see Figure 6-10)
No.
PARAMETER
MIN
MAX
UNIT
1
tw(GPIH)
Pulse duration, GPn[m] as input high
2C (1)
(2)
ns
2
tw(GPIL)
Pulse duration, GPn[m] as input low
2C (1)
(2)
ns
(1)
The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device
recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device
enough time to access the GPIO register through the internal bus.
C=SYSCLK4 period in ns.
(2)
Table 6-10. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs
(see Figure 6-10)
No.
PARAMETER
MIN
MAX
UNIT
3
tw(GPOH)
Pulse duration, GPn[m] as output high
2C (1)
(2)
ns
4
tw(GPOL)
Pulse duration, GPn[m] as output low
2C (1)
(2)
ns
(1)
This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the
GPIO is dependent upon internal bus activity.
C=SYSCLK4 period in ns.
(2)
2
1
GPn[m] as input
4
3
GPn[m] as output
Figure 6-10. GPIO Port Timing
6.8.3
GPIO Peripheral External Interrupts Electrical Data/Timing
Table 6-11. Timing Requirements for External Interrupts (1) (see Figure 6-11)
No.
(1)
(2)
PARAMETER
MIN
1
tw(ILOW)
Width of the external interrupt pulse low
2C
2
tw(IHIGH)
Width of the external interrupt pulse high
2C
MAX
UNIT
(1) (2)
ns
(1) (2)
ns
The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have device recognize the
GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to
access the GPIO register through the internal bus.
C=SYSCLK4 period in ns.
2
1
GPn[m] as input
Figure 6-11. GPIO External Interrupt Timing
58
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
6.9
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
EDMA
Table 6-12 is the list of EDMA3 Channel Contoller Registers and Table 6-13 is the list of EDMA3 Transfer
Controller registers.
Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers
BYTE ADDRESS
ACRONYM
0x01C0 0000
PID
REGISTER DESCRIPTION
0x01C0 0004
CCCFG
0x01C0 0200
QCHMAP0
QDMA Channel 0 Mapping Register
0x01C0 0204
QCHMAP1
QDMA Channel 1 Mapping Register
Peripheral Identification Register
EDMA3CC Configuration Register
GLOBAL REGISTERS
0x01C0 0208
QCHMAP2
QDMA Channel 2 Mapping Register
0x01C0 020C
QCHMAP3
QDMA Channel 3 Mapping Register
0x01C0 0210
QCHMAP4
QDMA Channel 4 Mapping Register
0x01C0 0214
QCHMAP5
QDMA Channel 5 Mapping Register
0x01C0 0218
QCHMAP6
QDMA Channel 6 Mapping Register
0x01C0 021C
QCHMAP7
QDMA Channel 7 Mapping Register
0x01C0 0240
DMAQNUM0
DMA Channel Queue Number Register 0
0x01C0 0244
DMAQNUM1
DMA Channel Queue Number Register 1
0x01C0 0248
DMAQNUM2
DMA Channel Queue Number Register 2
0x01C0 024C
DMAQNUM3
DMA Channel Queue Number Register 3
0x01C0 0260
QDMAQNUM
QDMA Channel Queue Number Register
0x01C0 0284
QUEPRI
Queue Priority Register (1)
0x01C0 0300
EMR
0x01C0 0308
EMCR
Event Missed Register
Event Missed Clear Register
0x01C0 0310
QEMR
QDMA Event Missed Register
0x01C0 0314
QEMCR
QDMA Event Missed Clear Register
0x01C0 0318
CCERR
EDMA3CC Error Register
0x01C0 031C
CCERRCLR
0x01C0 0320
EEVAL
Error Evaluate Register
0x01C0 0340
DRAE0
DMA Region Access Enable Register for Region 0
0x01C0 0348
DRAE1
DMA Region Access Enable Register for Region 1
0x01C0 0350
DRAE2
DMA Region Access Enable Register for Region 2
0x01C0 0358
DRAE3
DMA Region Access Enable Register for Region 3
0x01C0 0380
QRAE0
QDMA Region Access Enable Register for Region 0
0x01C0 0384
QRAE1
QDMA Region Access Enable Register for Region 1
0x01C0 0388
QRAE2
QDMA Region Access Enable Register for Region 2
0x01C0 038C
QRAE3
QDMA Region Access Enable Register for Region 3
0x01C0 0400 - 0x01C0 043C
Q0E0-Q0E15
Event Queue Entry Registers Q0E0-Q0E15
0x01C0 0440 - 0x01C0 047C
Q1E0-Q1E15
Event Queue Entry Registers Q1E0-Q1E15
0x01C0 0600
QSTAT0
Queue 0 Status Register
0x01C0 0604
QSTAT1
Queue 1 Status Register
0x01C0 0620
QWMTHRA
0x01C0 0640
CCSTAT
EDMA3CC Error Clear Register
Queue Watermark Threshold A Register
EDMA3CC Status Register
GLOBAL CHANNEL REGISTERS
(1)
0x01C0 1000
ER
0x01C0 1008
ECR
Event Register
Event Clear Register
On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memorymap. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System
Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
59
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01C0 1010
ESR
Event Set Register
REGISTER DESCRIPTION
0x01C0 1018
CER
Chained Event Register
0x01C0 1020
EER
Event Enable Register
0x01C0 1028
EECR
Event Enable Clear Register
0x01C0 1030
EESR
Event Enable Set Register
0x01C0 1038
SER
Secondary Event Register
0x01C0 1040
SECR
Secondary Event Clear Register
0x01C0 1050
IER
0x01C0 1058
IECR
Interrupt Enable Register
Interrupt Enable Clear Register
0x01C0 1060
IESR
Interrupt Enable Set Register
0x01C0 1068
IPR
Interrupt Pending Register
0x01C0 1070
ICR
Interrupt Clear Register
0x01C0 1078
IEVAL
0x01C0 1080
QER
Interrupt Evaluate Register
QDMA Event Register
0x01C0 1084
QEER
0x01C0 1088
QEECR
QDMA Event Enable Register
QDMA Event Enable Clear Register
0x01C0 108C
QEESR
QDMA Event Enable Set Register
0x01C0 1090
QSER
QDMA Secondary Event Register
0x01C0 1094
QSECR
QDMA Secondary Event Clear Register
SHADOW REGION 0 CHANNEL REGISTERS
0x01C0 2000
ER
Event Register
0x01C0 2008
ECR
Event Clear Register
0x01C0 2010
ESR
Event Set Register
0x01C0 2018
CER
Chained Event Register
0x01C0 2020
EER
Event Enable Register
0x01C0 2028
EECR
Event Enable Clear Register
0x01C0 2030
EESR
Event Enable Set Register
0x01C0 2038
SER
Secondary Event Register
0x01C0 2040
SECR
0x01C0 2050
IER
0x01C0 2058
IECR
Interrupt Enable Clear Register
0x01C0 2060
IESR
Interrupt Enable Set Register
0x01C0 2068
IPR
Interrupt Pending Register
0x01C0 2070
ICR
Interrupt Clear Register
0x01C0 2078
IEVAL
0x01C0 2080
QER
0x01C0 2084
QEER
Secondary Event Clear Register
Interrupt Enable Register
Interrupt Evaluate Register
QDMA Event Register
QDMA Event Enable Register
0x01C0 2088
QEECR
QDMA Event Enable Clear Register
0x01C0 208C
QEESR
QDMA Event Enable Set Register
0x01C0 2090
QSER
QDMA Secondary Event Register
0x01C0 2094
QSECR
0x01C0 2200
ER
0x01C0 2208
ECR
Event Clear Register
0x01C0 2210
ESR
Event Set Register
0x01C0 2218
CER
Chained Event Register
0x01C0 2220
EER
Event Enable Register
QDMA Secondary Event Clear Register
SHADOW REGION 1 CHANNEL REGISTERS
60
Event Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01C0 2228
EECR
Event Enable Clear Register
REGISTER DESCRIPTION
0x01C0 2230
EESR
Event Enable Set Register
0x01C0 2238
SER
Secondary Event Register
0x01C0 2240
SECR
Secondary Event Clear Register
0x01C0 2250
IER
0x01C0 2258
IECR
Interrupt Enable Register
Interrupt Enable Clear Register
0x01C0 2260
IESR
Interrupt Enable Set Register
0x01C0 2268
IPR
Interrupt Pending Register
0x01C0 2270
ICR
Interrupt Clear Register
0x01C0 2278
IEVAL
0x01C0 2280
QER
Interrupt Evaluate Register
QDMA Event Register
0x01C0 2284
QEER
0x01C0 2288
QEECR
QDMA Event Enable Register
QDMA Event Enable Clear Register
0x01C0 228C
QEESR
QDMA Event Enable Set Register
0x01C0 2290
QSER
QDMA Secondary Event Register
0x01C0 2294
QSECR
0x01C0 4000 - 0x01C0 4FFF
—
QDMA Secondary Event Clear Register
Parameter RAM (PaRAM)
Table 6-13. EDMA3 Transfer Controller (EDMA3TC) Registers
TRANSFER
CONTROLLER 0
BYTE ADDRESS
TRANSFER
CONTROLLER 1
BYTE ADDRESS
0x01C0 8000
0x01C0 8400
PID
Peripheral Identification Register
0x01C0 8004
0x01C0 8404
TCCFG
EDMA3TC Configuration Register
0x01C0 8100
0x01C0 8500
TCSTAT
EDMA3TC Channel Status Register
0x01C0 8120
0x01C0 8520
ERRSTAT
Error Status Register
0x01C0 8124
0x01C0 8524
ERREN
Error Enable Register
0x01C0 8128
0x01C0 8528
ERRCLR
Error Clear Register
0x01C0 812C
0x01C0 852C
ERRDET
Error Details Register
0x01C0 8130
0x01C0 8530
ERRCMD
Error Interrupt Command Register
0x01C0 8140
0x01C0 8540
RDRATE
Read Command Rate Register
0x01C0 8240
0x01C0 8640
SAOPT
Source Active Options Register
0x01C0 8244
0x01C0 8644
SASRC
Source Active Source Address Register
0x01C0 8248
0x01C0 8648
SACNT
Source Active Count Register
0x01C0 824C
0x01C0 864C
SADST
Source Active Destination Address Register
0x01C0 8250
0x01C0 8650
SABIDX
Source Active B-Index Register
0x01C0 8254
0x01C0 8654
SAMPPRXY
Source Active Memory Protection Proxy Register
0x01C0 8258
0x01C0 8658
SACNTRLD
Source Active Count Reload Register
0x01C0 825C
0x01C0 865C
SASRCBREF
Source Active Source Address B-Reference Register
0x01C0 8260
0x01C0 8660
SADSTBREF
Source Active Destination Address B-Reference Register
0x01C0 8280
0x01C0 8680
DFCNTRLD
0x01C0 8284
0x01C0 8684
DFSRCBREF
Destination FIFO Set Source Address B-Reference Register
0x01C0 8288
0x01C0 8688
DFDSTBREF
Destination FIFO Set Destination Address B-Reference Register
0x01C0 8300
0x01C0 8700
DFOPT0
Destination FIFO Options Register 0
0x01C0 8304
0x01C0 8704
DFSRC0
Destination FIFO Source Address Register 0
0x01C0 8308
0x01C0 8708
DFCNT0
Destination FIFO Count Register 0
0x01C0 830C
0x01C0 870C
DFDST0
Destination FIFO Destination Address Register 0
0x01C0 8310
0x01C0 8710
DFBIDX0
Destination FIFO B-Index Register 0
Copyright © 2010–2014, Texas Instruments Incorporated
ACRONYM
REGISTER DESCRIPTION
Destination FIFO Set Count Reload Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
61
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-13. EDMA3 Transfer Controller (EDMA3TC) Registers (continued)
TRANSFER
CONTROLLER 0
BYTE ADDRESS
TRANSFER
CONTROLLER 1
BYTE ADDRESS
ACRONYM
0x01C0 8314
0x01C0 8714
DFMPPRXY0
0x01C0 8340
0x01C0 8740
DFOPT1
Destination FIFO Options Register 1
0x01C0 8344
0x01C0 8744
DFSRC1
Destination FIFO Source Address Register 1
0x01C0 8348
0x01C0 8748
DFCNT1
Destination FIFO Count Register 1
0x01C0 834C
0x01C0 874C
DFDST1
Destination FIFO Destination Address Register 1
0x01C0 8350
0x01C0 8750
DFBIDX1
Destination FIFO B-Index Register 1
0x01C0 8354
0x01C0 8754
DFMPPRXY1
0x01C0 8380
0x01C0 8780
DFOPT2
Destination FIFO Options Register 2
0x01C0 8384
0x01C0 8784
DFSRC2
Destination FIFO Source Address Register 2
REGISTER DESCRIPTION
Destination FIFO Memory Protection Proxy Register 0
Destination FIFO Memory Protection Proxy Register 1
0x01C0 8388
0x01C0 8788
DFCNT2
Destination FIFO Count Register 2
0x01C0 838C
0x01C0 878C
DFDST2
Destination FIFO Destination Address Register 2
0x01C0 8390
0x01C0 8790
DFBIDX2
Destination FIFO B-Index Register 2
0x01C0 8394
0x01C0 8794
DFMPPRXY2
0x01C0 83C0
0x01C0 87C0
DFOPT3
Destination FIFO Memory Protection Proxy Register 2
Destination FIFO Options Register 3
0x01C0 83C4
0x01C0 87C4
DFSRC3
Destination FIFO Source Address Register 3
0x01C0 83C8
0x01C0 87C8
DFCNT3
Destination FIFO Count Register 3
0x01C0 83CC
0x01C0 87CC
DFDST3
Destination FIFO Destination Address Register 3
0x01C0 83D0
0x01C0 87D0
DFBIDX3
Destination FIFO B-Index Register 3
0x01C0 83D4
0x01C0 87D4
DFMPPRXY3
Destination FIFO Memory Protection Proxy Register 3
Table 6-14 shows an abbreviation of the set of registers which make up the parameter set for each of 128
EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-15 shows the
parameter set entry registers with relative memory address locations within each of the parameter sets.
Table 6-14. EDMA Parameter Set RAM
BYTE ADDRESS
DESCRIPTION
0x01C0 4000 - 0x01C0 401F
Parameters Set 0 (8 32-bit words)
0x01C0 4020 - 0x01C0 403F
Parameters Set 1 (8 32-bit words)
0x01C0 4040 - 0x01C0 405F
Parameters Set 2 (8 32-bit words)
0x01C0 4060 - 0x01C0 407F
Parameters Set 3 (8 32-bit words)
0x01C0 4080 - 0x01C0 409F
Parameters Set 4 (8 32-bit words)
0x01C0 40A0 - 0x01C0 40BF
Parameters Set 5 (8 32-bit words)
...
...
0x01C0 4FC0 - 0x01C0 4FDF
Parameters Set 126 (8 32-bit words)
0x01C0 4FE0 - 0x01C0 4FFF
Parameters Set 127 (8 32-bit words)
Table 6-15. Parameter Set Entries
BYTE OFFSET ADDRESS
WITHIN THE PARAMETER SET
62
ACRONYM
PARAMETER ENTRY
0x0000
OPT
Option
0x0004
SRC
Source Address
0x0008
A_B_CNT
A Count, B Count
0x000C
DST
0x0010
SRC_DST_BIDX
Source B Index, Destination B Index
0x0014
LINK_BCNTRLD
Link Address, B Count Reload
0x0018
SRC_DST_CIDX
Source C Index, Destination C Index
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Destination Address
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-15. Parameter Set Entries (continued)
BYTE OFFSET ADDRESS
WITHIN THE PARAMETER SET
ACRONYM
0x001C
CCNT
PARAMETER ENTRY
C Count
Table 6-16. EDMA Events
Event
Event Name / Source
Event
0
McASP0 Receive
16
Event Name / Source
MMCSD Receive
1
McASP0 Transmit
17
MMCSD Transmit
2
McASP1 Receive
18
SPI1 Receive
3
McASP1 Transmit
19
SPI1 Transmit
4
McASP2 Receive
20
PRU_EVTOUT6
5
McASP2 Transmit
21
PRU_EVTOUT7
6
GPIO Bank 0 Interrupt
22
GPIO Bank 2 Interrupt
7
GPIO Bank 1 Interrupt
23
GPIO Bank 3 Interrupt
8
UART0 Receive
24
I2C0 Receive
I2C0 Transmit
9
UART0 Transmit
25
10
Timer64P0 Event Out 12
26
I2C1 Receive
11
Timer64P0 Event Out 34
27
I2C1 Transmit
12
UART1 Receive
28
GPIO Bank 4 Interrupt
13
UART1 Transmit
29
GPIO Bank 5 Interrupt
14
SPI0 Receive
30
UART2 Receive
15
SPI0 Transmit
31
UART2 Transmit
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
63
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.10 External Memory Interface A (EMIFA)
EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to
support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However
the EMIFA also provides a secondary interface to SDRAM.
6.10.1 EMIFA Asynchronous Memory Support
EMIFA supports asynchronous:
• SRAM memories
• NAND Flash memories
• NOR Flash memories
The EMIFA data bus width is up to 16-bits on the ZKB package. The device supports up to fifteen address
lines and an external wait/interrupt input. Up to four asynchronous chip selects are supported by EMIFA
(EMA_CS[5:2]) .
All four chip selects are available on the ZKB package.
Each chip select has the following individually programmable attributes:
• Data Bus Width
• Read cycle timings: setup, hold, strobe
• Write cycle timings: setup, hold, strobe
• Bus turn around time
• Extended Wait Option With Programmable Timeout
• Select Strobe Option
• NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.
6.10.2 EMIFA Synchronous DRAM Memory Support
The device ZKB package supports 16-bit SDRAM in addition to the asynchronous memories listed in
Section 6.10.1. It has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are
supported are:
• One, Two, and Four Bank SDRAM devices
• Devices with Eight, Nine, Ten, and Eleven Column Address
• CAS Latency of two or three clock cycles
• Sixteen Bit Data Bus Width
• 3.3V LVCMOS Interface
Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown
Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory
contents. Powerdown mode achieves even lower power, except the processor must periodically wake the
SDRAM up and issue refreshes if data retention is required.
Finally, note that the EMIFA does not support Mobile SDRAM devices. Table 6-17 below shows the
supported SDRAM configurations for EMIFA.
64
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-17. EMIFA Supported SDRAM Configurations (1)
SDRAM
Memory
Data Bus
Width
(bits)
16
8
(1)
Number of
Memories
EMIFB Data
Bus Size
Rows
Columns
Banks
Total Memory
(Mbits)
Total Memory
(Mbytes)
Memory
Density
(Mbits)
1
16
13
8
1
32
4
32
1
16
13
8
2
64
8
64
1
16
13
8
4
128
16
128
1
16
13
9
1
64
8
64
1
16
13
9
2
128
16
128
1
16
13
9
4
256
32
256
1
16
13
10
1
128
16
128
1
16
13
10
2
256
32
256
1
16
13
10
4
512
64
512
1
16
13
11
1
256
32
256
1
16
13
11
2
512
64
512
1
16
13
11
4
1024
128
1024
2
16
13
8
1
32
4
16
2
16
13
8
2
64
8
32
2
16
13
8
4
128
16
64
2
16
13
9
1
64
8
32
2
16
13
9
2
128
16
64
2
16
13
9
4
256
32
128
2
16
13
10
1
128
16
64
2
16
13
10
2
256
32
128
2
16
13
10
4
512
64
256
2
16
13
11
1
256
32
128
2
16
13
11
2
512
64
256
2
16
13
11
4
1024
128
512
The shaded cells indicate configurations that are possible on the EMIFA interface but as of this writing SDRAM memories capable of
supporting these densities are not available in the market.
6.10.3 EMIFA SDRAM Loading Limitations
EMIFA supports SDRAM up to 100 MHz with up to two SDRAM or asynchronous memory loads.
Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be
confirmed by board simulation using IBIS models.
6.10.4 EMIFA Connection Examples
Figure 6-12 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to
EMIFA of a AM1707 device simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that the
NOR flash is connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this example.
Note that any type of asynchronous memory may be connected to EMA_CS[5:2].
The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and
this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be
stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is
stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects,
but this must be supported by second stage boot code stored in the external flash.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
65
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 6-13.
This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the
EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND
area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions
selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to
bootload it.
RESET
CE
CAS
RAS
WE
SDRAM
2M x 16 x 4
CLK
Bank
CKE
BA[1:0]
A[11:0]
LDQM
UDQM
DQ[15:0]
EMA_BA[1]
EMA_CS[0]
EMA_CAS
EMIFA
EMA_RAS
EMA_WE
EMA_CLK
EMA_SDCKE
EMA_BA[1:0]
EMA_A[12:0]
EMA_WE_DQM[0]
EMA_WE_DQM[1]
EMA_D[15:0]
EMA_CS[2]
EMA_CS[3]
EMA_WAIT
EMA_OE
A[0]
A[12:1]
DQ[15:0]
NOR
CE
FLASH
WE
512K x 16
OE
RESET
A[18:13]
GPIO
(6 Pins)
RESET
...
RY/BY
EMA_A[1]
EMA_A[2]
DVDD
ALE
CLE
DQ[15:0]
NAND
FLASH
CE
1Gb x 16
WE
RE
RB
Figure 6-12. AM1707 Connection Diagram: SDRAM, NOR, NAND
66
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
EMA_A[1]
EMA_A[2]
EMA_D[7:0]
EMA_CS[2]
EMA_CS[3]
EMA_WE
EMA_OE
EMIFA
EMA_WAIT
EMA_CS[4]
EMA_CS[5]
ALE
CLE
DQ[7:0]
CE1
CE2
WE
RE
R/B1
R/B2
NAND
FLASH
x8,
MultiPlane
ALE
CLE
DQ[7:0]
CE1
CE2
WE
RE
R/B1
R/B2
NAND
FLASH
x8,
MultiPlane
DVDD
Figure 6-13. AM1707 EMIFA Connection Diagram: Multiple NAND Flash Planes
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
67
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.10.5 External Memory Interface A (EMIFA) Registers
Table 6-18 is a list of the EMIF registers.
Table 6-18. External Memory Interface (EMIFA) Registers
68
BYTE ADDRESS
ACRONYM
0x6800 0000
MIDR
Module ID Register
REGISTER DESCRIPTION
0x6800 0004
AWCC
Asynchronous Wait Cycle Configuration Register
SDRAM Configuration Register
0x6800 0008
SDCR
0x6800 000C
SDRCR
SDRAM Refresh Control Register
0x6800 0010
CE2CFG
Asynchronous 1 Configuration Register
0x6800 0014
CE3CFG
Asynchronous 2 Configuration Register
0x6800 0018
CE4CFG
Asynchronous 3 Configuration Register
0x6800 001C
CE5CFG
Asynchronous 4 Configuration Register
0x6800 0020
SDTIMR
SDRAM Timing Register
0x6800 003C
SDSRETR
0x6800 0040
INTRAW
EMIFA Interrupt Raw Register
0x6800 0044
INTMSK
EMIFA Interrupt Mask Register
SDRAM Self Refresh Exit Timing Register
0x6800 0048
INTMSKSET
EMIFA Interrupt Mask Set Register
0x6800 004C
INTMSKCLR
EMIFA Interrupt Mask Clear Register
0x6800 0060
NANDFCR
NAND Flash Control Register
0x6800 0064
NANDFSR
NAND Flash Status Register
0x6800 0070
NANDF1ECC
NAND Flash 1 ECC Register (CS2 Space)
0x6800 0074
NANDF2ECC
NAND Flash 2 ECC Register (CS3 Space)
0x6800 0078
NANDF3ECC
NAND Flash 3 ECC Register (CS4 Space)
NAND Flash 4 ECC Register (CS5 Space)
0x6800 007C
NANDF4ECC
0x6800 00BC
NAND4BITECCLOAD
0x6800 00C0
NAND4BITECC1
NAND Flash 4-Bit ECC Register 1
0x6800 00C4
NAND4BITECC2
NAND Flash 4-Bit ECC Register 2
0x6800 00C8
NAND4BITECC3
NAND Flash 4-Bit ECC Register 3
0x6800 00CC
NAND4BITECC4
NAND Flash 4-Bit ECC Register 4
0x6800 00D0
NANDERRADD1
NAND Flash 4-Bit ECC Error Address Register 1
0x6800 00D4
NANDERRADD2
NAND Flash 4-Bit ECC Error Address Register 2
0x6800 00D8
NANDERRVAL1
NAND Flash 4-Bit ECC Error Value Register 1
0x6800 00DC
NANDERRVAL2
NAND Flash 4-Bit ECC Error Value Register 2
NAND Flash 4-Bit ECC Load Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.10.6 EMIFA Electrical Data/Timing
The following assume testing over recommended operating conditions.
Table 6-19. EMIFA SDRAM Interface Timing Requirements
No.
PARAMETER
MIN
MAX
UNIT
19
tsu(DV-CLKH)
Input setup time, read data valid on EMA_D[15:0] before EMA_CLK rising
1.3
ns
20
th(CLKH-DIV)
Input hold time, read data valid on EMA_D[15:0] after EMA_CLK rising
1.5
ns
Table 6-20. EMIFA SDRAM Interface Switching Characteristics
No.
PARAMETER
MIN
1
tc(CLK)
Cycle time, EMIF clock EMA_CLK
10
2
tw(CLK)
Pulse width, EMIF clock EMA_CLK high or low
3
3
td(CLKH-CSV)
Delay time, EMA_CLK rising to EMA_CS[0] valid
4
toh(CLKH-CSIV)
Output hold time, EMA_CLK rising to EMA_CS[0] invalid
5
td(CLKH-DQMV)
Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid
6
toh(CLKH-DQMIV)
Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0] invalid
7
td(CLKH-AV)
Delay time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] valid
8
toh(CLKH-AIV)
Output hold time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0]
invalid
9
td(CLKH-DV)
Delay time, EMA_CLK rising to EMA_D[15:0] valid
10
toh(CLKH-DIV)
Output hold time, EMA_CLK rising to EMA_D[15:0] invalid
11
td(CLKH-RASV)
Delay time, EMA_CLK rising to EMA_RAS valid
12
toh(CLKH-RASIV)
Output hold time, EMA_CLK rising to EMA_RAS invalid
13
td(CLKH-CASV)
Delay time, EMA_CLK rising to EMA_CAS valid
14
toh(CLKH-CASIV)
Output hold time, EMA_CLK rising to EMA_CAS invalid
15
td(CLKH-WEV)
Delay time, EMA_CLK rising to EMA_WE valid
16
toh(CLKH-WEIV)
Output hold time, EMA_CLK rising to EMA_WE invalid
17
tdis(CLKH-DHZ)
Delay time, EMA_CLK rising to EMA_D[15:0] 3-stated
18
tena(CLKH-DLZ)
Output hold time, EMA_CLK rising to EMA_D[15:0] driving
MAX
UNIT
ns
ns
7
1
ns
ns
7
1
ns
ns
7
1
ns
ns
7
1
ns
ns
7
1
ns
ns
7
1
ns
ns
7
1
ns
ns
7
1
ns
ns
Table 6-21. EMIFA Asynchronous Memory Timing Requirements (1)
No.
PARAMETER
MIN
NOM
MAX
UNIT
READS and WRITES
E
tc(CLK)
Cycle time, EMIFA module clock
10
ns
2
tw(EM_WAIT)
Pulse duration, EM_WAIT assertion and deassertion
2E
ns
READS
12
tsu(EMDV-EMOEH)
Setup time, EM_D[15:0] valid before EM_OE high
3
ns
13
th(EMOEH-EMDIV)
Hold time, EM_D[15:0] valid after EM_OE high
0
ns
14
tsu (EMOEL-EMWAIT)
Setup Time, EM_WAIT asserted before end of Strobe Phase (2)
4E+3
ns
4E+3
ns
WRITES
28
(1)
(2)
tsu (EMWEL-EMWAIT)
Setup Time, EM_WAIT asserted before end of Strobe Phase (2)
E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns.
Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended
wait states. Figure 6-18 and Figure 6-19 describe EMIF transactions that include extended wait states inserted during the STROBE
phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where
the HOLD phase would begin if there were no extended wait cycles.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
69
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-22. EMIFA Asynchronous Memory Switching Characteristics (1)
No.
PARAMETER
MIN
NOM
(2) (3)
MAX
UNIT
READS and WRITES
1
td(TURNAROUND)
Turn around time
(TA)*E - 3
(TA)*E
(TA)*E + 3
ns
EMIF read cycle time (EW = 0)
(RS+RST+RH)*E
-3
(RS+RST+RH)*E
(RS+RST+RH)*E
+3
ns
EMIF read cycle time (EW = 1)
(RS+RST+RH+E (RS+RST+RH+EWC (RS+RST+RH+E
WC)*E - 3
)*E
WC)*E + 3
ns
READS
3
tc(EMRCYCLE)
4
tsu(EMCEL-EMOEL)
5
th(EMOEH-EMCEH)
Output setup time, EMA_CE[5:2] low to
EMA_OE low (SS = 0)
(RS)*E-3
(RS)*E
(RS)*E+3
ns
Output setup time, EMA_CE[5:2] low to
EMA_OE low (SS = 1)
-3
0
+3
ns
Output hold time, EMA_OE high to
EMA_CE[5:2] high (SS = 0)
(RH)*E - 3
(RH)*E
(RH)*E + 3
ns
Output hold time, EMA_OE high to
EMA_CE[5:2] high (SS = 1)
-3
0
+3
ns
6
tsu(EMBAV-EMOEL)
Output setup time, EMA_BA[1:0] valid to
EMA_OE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
7
th(EMOEH-EMBAIV)
Output hold time, EMA_OE high to
EMA_BA[1:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
8
tsu(EMBAV-EMOEL)
Output setup time, EMA_A[13:0] valid to
EMA_OE low
(RS)*E-3
(RS)*E
(RS)*E+3
ns
9
th(EMOEH-EMAIV)
Output hold time, EMA_OE high to
EMA_A[13:0] invalid
(RH)*E-3
(RH)*E
(RH)*E+3
ns
EMA_OE active low width (EW = 0)
(RST)*E-3
(RST)*E
(RST)*E+3
ns
10
tw(EMOEL)
(RST+EWC)*E-3
(RST+EWC)*E
(RST+EWC)*E+
3
ns
11
td(EMWAITH-
3E-3
4E
4E+3
ns
(WS+WST+WH)*
E-3
(WS+WST+WH)*E
(WS+WST+WH)*
E+3
ns
(WS+WST+WH+E (WS+WST+WH+EW (WS+WST+WH+
WC)*E - 3
C)*E
EWC)*E + 3
ns
EMOEH)
EMA_OE active low width (EW = 1)
Delay time from EMA_WAIT deasserted to
EMA_OE high
WRITES
EMIF write cycle time (EW = 0)
15
tc(EMWCYCLE)
EMIF write cycle time (EW = 1)
16
17
18
tsu(EMCEL-EMWEL)
th(EMWEH-EMCEH)
tsu(EMDQMVEMWEL)
19
th(EMWEHEMDQMIV)
20
tsu(EMBAVEMWEL)
21
(1)
(2)
(3)
70
th(EMWEH-EMBAIV)
Output setup time, EMA_CE[5:2] low to
EMA_WE low (SS = 0)
(WS)*E - 3
(WS)*E
(WS)*E + 3
ns
Output setup time, EMA_CE[5:2] low to
EMA_WE low (SS = 1)
-3
0
+3
ns
Output hold time, EMA_WE high to
EMA_CE[5:2] high (SS = 0)
(WH)*E-3
(WH)*E
(WH)*E+3
ns
Output hold time, EMA_WE high to
EMA_CE[5:2] high (SS = 1)
-3
0
+3
ns
Output setup time, EMA_BA[1:0] valid to
EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
Output hold time, EMA_WE high to
EMA_BA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
Output setup time, EMA_BA[1:0] valid to
EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
Output hold time, EMA_WE high to
EMA_BA[1:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,
MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle
Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1],
WH[8-1], and MEW[1-256].
E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when
SYSCLK3 is selected and set to 100MHz, E=10ns.
EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that
the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-22. EMIFA Asynchronous Memory Switching Characteristics(1)
No.
PARAMETER
MIN
(2) (3)
(continued)
NOM
MAX
UNIT
22
tsu(EMAV-EMWEL)
Output setup time, EMA_A[13:0] valid to
EMA_WE low
23
th(EMWEH-EMAIV)
Output hold time, EMA_WE high to
EMA_A[13:0] invalid
(WH)*E-3
(WH)*E
EMA_WE active low width (EW = 0)
(WST)*E-3
(WST)*E
(WST)*E+3
ns
24
tw(EMWEL)
(WST+EWC)*E-3
(WST+EWC)*E
(WST+EWC)*E+
3
ns
25
td(EMWAITH-
3E-3
4E
4E+3
ns
EMWEH)
EMA_WE active low width (EW = 1)
(WS)*E-3
(WS)*E
(WS)*E+3
ns
(WH)*E+3
ns
Delay time from EMA_WAIT deasserted to
EMA_WE high
26
tsu(EMDV-EMWEL)
Output setup time, EMA_D[15:0] valid to
EMA_WE low
(WS)*E-3
(WS)*E
(WS)*E+3
ns
27
th(EMWEH-EMDIV)
Output hold time, EMA_WE high to
EMA_D[15:0] invalid
(WH)*E-3
(WH)*E
(WH)*E+3
ns
BASIC SDRAM
WRITE OPERATION
1
2
2
EMA_CLK
3
4
EMA_CS[0]
5
6
EMA_WE_DQM[1:0]
7
8
7
8
EMA_BA[1:0]
EMA_A[12:0]
9
10
EMA_D[15:0]
11
12
EMA_RAS
13
EMA_CAS
15
16
EMA_WE
Figure 6-14. EMIFA Basic SDRAM Write Operation
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
71
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
BASIC SDRAM
READ OPERATION
1
2
2
EMA_CLK
3
4
EMA_CS[0]
5
6
EMA_WE_DQM[1:0]
7
8
7
8
EMA_BA[1:0]
EMA_A[12:0]
19
17
2 EM_CLK Delay
20
18
EMA_D[15:0]
11
12
EMA_RAS
13
14
EMA_CAS
EMA_WE
Figure 6-15. EMIFA Basic SDRAM Read Operation
3
1
EMA_CS[5:2]
EMA_BA[1:0]
EMA_A[12:0]
EMA_WE_DQM[1:0]
4
8
5
9
6
7
10
EMA_OE
13
12
EMA_D[15:0]
EMA_WE
Figure 6-16. Asynchronous Memory Read Timing for EMIFA
72
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
15
1
EMA_CS[5:2]
EMA_BA[1:0]
EMA_A[12:0]
EMA_WE_DQM[1:0]
16
17
18
19
20
21
22
23
24
EMA_WE
26
27
EMA_D[15:0]
EMA_OE
Figure 6-17. Asynchronous Memory Write Timing for EMIFA
EMA_CS[5:2]
SETUP
STROBE
Extended Due to EMA_WAIT
STROBE HOLD
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
14
11
EMA_OE
2
EMA_WAIT
Asserted
2
Deasserted
Figure 6-18. EMA_WAIT Read Timing Requirements
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
73
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Figure 6-19. EMA_WAIT Write Timing Requirements
74
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.11 External Memory Interface B (EMIFB)
The following EMIFB Functional Block Diagram illustrates a high-level view of the EMIFB and its
connections within the device. Multiple requesters have access to EMIFB through a switched central
resource (indicated as an overbar in the figure). The EMIFB implements a split transaction internal bus,
allowing concurrence between reads and writes from the various requesters.
EMIFB
Registers
CPU
EDMA
Crossbar
MPU2
Master
Peripherals
(USB, UHPI...)
EMB_CS
EMB_CAS
Cmd/Write
EMB_RAS
FIFO
EMB_WE
EMB_CLK
EMB_SDCKE
Read
EMB_BA[1:0]
FIFO
EMB_A[x:0]
EMB_D[x:0]
EMB_WE_DQM[x:0]
SDRAM
Interface
Figure 6-20. EMIFB Functional Block Diagram
EMIFB supports a 3.3V LVCMOS Interface.
6.11.1 EMIFB SDRAM Loading Limitations
EMIFB supports SDRAM up to 152 MHz with up to two SDRAM or asynchronous memory loads.
Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be
confirmed by board simulation using IBIS models.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
75
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.11.2 Interfacing to SDRAM
The EMIFB supports a glueless interface to SDRAM devices with the following characteristics:
• Pre-charge bit is A[10]
• Supports 8, 9, 10 or 11 column address bits
• Supports up to 13 row address bits
• Supports 1, 2 or 4 internal banks
Table 6-23 shows the supported SDRAM configurations for EMIFB.
Table 6-23. EMIFB Supported SDRAM Configurations (1)
SDRAM
Memory
Data Bus
Width
(bits)
32
16
(1)
Total Memory
(Mbits)
Total Memory
(Mbytes)
Memory
Density
(Mbits)
Number of
Memories
EMIFB Data
Bus Size
Rows
Columns
Banks
1
32
13
8
1
64
8
64
1
32
13
8
2
128
16
128
1
32
13
8
4
256
32
256
1
32
13
9
1
128
16
128
1
32
13
9
2
256
32
256
1
32
13
9
4
512
64
512
1
32
13
10
1
256
32
256
1
32
13
10
2
512
64
512
1
32
13
10
4
1024
128
1024
1
32
13
11
1
512
64
512
1
32
13
11
2
1024
128
1024
1
32
13
11
4
2048
256
2048
2
32
13
8
1
64
8
32
2
32
13
8
2
128
16
64
2
32
13
8
4
256
32
128
2
32
13
9
1
128
16
64
2
32
13
9
2
256
32
128
2
32
13
9
4
512
64
256
2
32
13
10
1
256
32
128
2
32
13
10
2
512
64
256
2
32
13
10
4
1024
128
512
2
32
13
11
1
512
64
256
2
32
13
11
2
1024
128
512
2
32
13
11
4
2048
256
1024
The shaded cells indicate configurations that are possible on the EMIFB interface but as of this writing SDRAM memories capable of
supporting these densities are not available in the market.
Figure 6-21 shows an interface between the EMIFB and a 2M × 16 × 4 bank SDRAM device. In addition,
Figure 6-22 shows an interface between the EMIFB and a 2M × 32 × 4 bank SDRAM device and Figure 623 shows an interface between the EMIFB and two 4M × 16 × 4 bank SDRAM devices. Refer to Table 624 , as an example that shows additional list of commonly-supported SDRAM devices and the required
connections for the address pins. Note that in Table 6-24, page size/column size (not indicated in the
table) is varied to get the required addressability range.
76
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
EMIFB
EMB_CS
EMB_CAS
EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE
EMB_BA[1:0]
EMB_A[11:0]
EMB_WE_DQM[0]
EMB_WE_DQM[1]
EMB_D[15:0]
SDRAM
2M x 16 x 4
Bank
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[11:0]
LDQM
UDQM
DQ[15:0]
Figure 6-21. EMIFB to 2M × 16 × 4 bank SDRAM Interface
SDRAM
2M x 32 x 4
Bank
EMIFB
EMB_CS
EMB_CAS
EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE
EMB_BA[1:0]
EMB_A[11:0]
EMB_WE_DQM[3:0]
EMB_D[31:0]
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[11:0]
DQM[3:0]
DQ[31:0]
Figure 6-22. EMIFB to 2M × 32 × 4 bank SDRAM Interface
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
77
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
SDRAM
4M x 16 x 4
Bank
EMIFB
EMB_CS
EMB_CAS
EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE
EMB_BA[1:0]
EMB_A[12:0]
EMB_WE_DQM[0]
EMB_WE_DQM[1]
EMB_D[15:0]
EMB_WE_DQM[2]
EMB_WE_DQM[3]
EMB_D[31:16]
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[12:0]
LDQM
UDQM
DQ[15:0]
SDRAM
4M x 16 x 4
Bank
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[12:0]
LDQM
UDQM
DQ[15:0]
Figure 6-23. EMIFB to Dual 4M × 16 × 4 bank SDRAM Interface
Table 6-24. Example of 16/32-bit EMIFB Address Pin Connections
SDRAM Size
Width
Banks
64M bits
×16
4
×32
128M bits
256M bits
×16
4
SDRAM
A[11:0]
EMIFB
EMB_A[11:0]
SDRAM
A[10:0]
EMIFB
EMB_A[10:0]
SDRAM
A[11:0]
EMIFB
EMB_A[11:0]
×32
4
SDRAM
A[11:0]
EMIFB
EMB_A[11:0]
×16
4
SDRAM
A[12:0]
EMIFB
EMB_A[12:0]
×32
512M bits
4
Address Pins
×16
×32
4
4
4
SDRAM
A[11:0]
EMIFB
EMB_A[11:0]
SDRAM
A[12:0]
EMIFB
EMB_A[12:0]
SDRAM
A[12:0]
EMIFB
EMB_A[12:0]
6.11.3 EMIFB Registers
Table 6-25 is a list of the EMIFB registers.
78
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-25. EMIFB Controller Registers
BYTE ADDRESS
ACRONYM
0xB000 0000
MIDR
REGISTER DESCRIPTION
Module ID Register
0xB000 0008
SDCFG
SDRAM Configuration Register
0xB000 000C
SDRFC
SDRAM Refresh Control Register
0xB000 0010
SDTIM1
SDRAM Timing Register 1
0xB000 0014
SDTIM2
SDRAM Timing Register 2
0xB000 001C
SDCFG2
SDRAM Configuration 2 Register
0xB000 0020
BPRIO
0xB000 0040
PC1
Performance Counter 1 Register
0xB000 0044
PC2
Performance Counter 2 Register
Performance Counter Configuration Register
Peripheral Bus Burst Priority Register
0xB000 0048
PCC
0xB000 004C
PCMRS
0xB000 0050
PCT
Performance Counter Time Register
0xB000 00C0
IRR
Interrupt Raw Register
0xB000 00C4
IMR
Interrupt Mask Register
0xB000 00C8
IMSR
Interrupt Mask Set Register
0xB000 00CC
IMCR
Interrupt Mask Clear Register
Performance Counter Master Region Select Register
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
79
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.11.4 EMIFB Electrical Data/Timing
Table 6-26. EMIFB SDRAM Interface Timing Requirements
CVDD = 1.3 V (1)
NO.
MIN
MAX
CVDD = 1.2V (2)
MIN
MAX
UNI
T
19
t(DV-CLKH)
Input setup time, read data valid on EMB_D[31:0] before
EMB_CLK rising
0.59
0.8
ns
20
th(CLKH-DIV)
Input hold time, read data valid on EMB_D[31:0] after
EMB_CLK rising
1.25
1.5
ns
(1)
Commercial (default), Industrial and Extended temperature range rated devices for 456 MHz max CPU operating frequency as
applicable to the device
Commercial (default), Industrial, Extended and Automotive temperature range rated devices for 400/375/300/266/200 MHz max CPU
operating frequencies as applicable to the device
(2)
Table 6-27. EMIFB SDRAM Interface Switching Characteristics for Commercial (Default) Temperature
Range
NO.
PARAMETER
1
tc(CLK)
Cycle time, EMIF clock EMB_CLK
2
tw(CLK)
Pulse width, EMIF clock EMB_CLK high or low
3
td(CLKH-CSV)
Delay time, EMB_CLK rising to EMB_CS[0] valid
4
toh(CLKH-CSIV)
Output hold time, EMB_CLK rising to EMB_CS[0] invalid
5
td(CLKH-DQMV)
Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid
6
toh(CLKH-DQMIV)
Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0]
invalid
7
td(CLKH-AV)
Delay time, EMB_CLK rising to EMB_A[12:0] and
EMB_BA[1:0] valid
8
toh(CLKH-AIV)
Output hold time, EMB_CLK rising to EMB_A[12:0] and
EMB_BA[1:0] invalid
9
td(CLKH-DV)
Delay time, EMB_CLK rising to EMB_D[31:0] valid
10
toh(CLKH-DIV)
Output hold time, EMB_CLK rising to EMB_D[31:0] invalid
11
td(CLKH-RASV)
Delay time, EMB_CLK rising to EMB_RAS valid
12
toh(CLKH-RASIV)
Output hold time, EMB_CLK rising to EMB_RAS invalid
13
td(CLKH-CASV)
Delay time, EMB_CLK rising to EMB_CAS valid
14
toh(CLKH-CASIV)
Output hold time, EMB_CLK rising to EMB_CAS invalid
15
td(CLKH-WEV)
Delay time, EMB_CLK rising to EMB_WE valid
16
toh(CLKH-WEIV)
Output hold time, EMB_CLK rising to EMB_WE invalid
17
tdis(CLKH-DHZ)
Delay time, EMB_CLK rising to EMB_D[31:0] tri-stated
t(CLKH-DLZ)
Output hold time, EMB_CLK rising to EMB_D[31:0] driving
18
(1)
(2)
CVDD = 1.3 V (1)
MIN
MAX
CVDD = 1.2V (2)
MIN
6.579
7.5
2.63
3
4.25
1.1
MAX
ns
ns
5.1
1.1
4.25
1.1
1.1
1.1
5.1
4.25
5.1
4.25
1.1
5.1
1.1
1.1
1.1
1.1
ns
ns
5.1
4.25
ns
ns
5.1
4.25
ns
ns
1.1
4.25
ns
ns
1.1
1.1
ns
ns
1.1
1.1
ns
ns
5.1
4.25
UNI
T
ns
ns
5.1
1.1
ns
ns
Commercial (default) temperature range rated devices for 456 MHz max CPU operating frequency as applicable to the device
Commercial (default) temperature range rated devices for 400/375/300/266/200 MHz max CPU operating frequencies as applicable to
the device
Table 6-28. EMIFB SDRAM Interface Switching Characteristics for Industrial, Extended, and Automotive
Temperature Ranges
NO.
(1)
(2)
80
PARAMETER
1
tc(CLK)
Cycle time, EMIF clock EMB_CLK
2
tw(CLK)
Pulse width, EMIF clock EMB_CLK high or low
3
td(CLKH-CSV)
Delay time, EMB_CLK rising to EMB_CS[0] valid
4
toh(CLKH-CSIV)
Output hold time, EMB_CLK rising to EMB_CS[0] invalid
CVDD = 1.3 V (1)
MIN
MAX
6.579
CVDD = 1.2V (2)
MIN
7.5
2.63
ns
5.1
0.9
UNI
T
ns
3
4.25
1.1
MAX
ns
ns
Industrial temperature range rated devices for 456 MHz max CPU operating frequency as applicable to the device
Industrial, Extended and Automotive temperature range rated devices for 400/375/300/266/200 MHz max CPU operating frequencies as
applicable to the device
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-28. EMIFB SDRAM Interface Switching Characteristics for Industrial, Extended, and Automotive
Temperature Ranges (continued)
NO.
CVDD = 1.3 V (1)
PARAMETER
MIN
5
td(CLKH-DQMV)
Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid
6
toh(CLKH-DQMIV)
Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0]
invalid
7
td(CLKH-AV)
Delay time, EMB_CLK rising to EMB_A[12:0] and
EMB_BA[1:0] valid
8
toh(CLKH-AIV)
Output hold time, EMB_CLK rising to EMB_A[12:0] and
EMB_BA[1:0] invalid
9
td(CLKH-DV)
Delay time, EMB_CLK rising to EMB_D[31:0] valid
10
toh(CLKH-DIV)
Output hold time, EMB_CLK rising to EMB_D[31:0] invalid
11
td(CLKH-RASV)
Delay time, EMB_CLK rising to EMB_RAS valid
12
toh(CLKH-RASIV)
Output hold time, EMB_CLK rising to EMB_RAS invalid
13
td(CLKH-CASV)
Delay time, EMB_CLK rising to EMB_CAS valid
14
toh(CLKH-CASIV)
Output hold time, EMB_CLK rising to EMB_CAS invalid
15
td(CLKH-WEV)
Delay time, EMB_CLK rising to EMB_WE valid
16
toh(CLKH-WEIV)
Output hold time, EMB_CLK rising to EMB_WE invalid
17
tdis(CLKH-DHZ)
Delay time, EMB_CLK rising to EMB_D[31:0] tri-stated
18
t(CLKH-DLZ)
Output hold time, EMB_CLK rising to EMB_D[31:0] driving
BASIC SDRAM
WRITE OPERATION
CVDD = 1.2V (2)
MAX
MIN
4.25
MAX
5.1
1.1
0.9
4.25
0.9
4.25
0.9
4.25
0.9
4.25
0.9
4.25
0.9
4.25
ns
ns
5.1
1.1
ns
ns
5.1
1.1
ns
ns
5.1
1.1
ns
ns
5.1
1.1
ns
ns
5.1
1.1
ns
ns
5.1
1.1
UNI
T
0.9
ns
ns
1
2
2
EMB_CLK
3
4
EMB_CS[0]
5
6
EMB_WE_DQM[3:0]
7
8
7
8
EMB_BA[1:0]
EMB_A[12:0]
9
10
EMB_D[31:0]
11
12
EMB_RAS
13
EMB_CAS
15
16
EMB_WE
Figure 6-24. EMIFB Basic SDRAM Write Operation
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
81
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
BASIC SDRAM
READ OPERATION
1
2
2
EMB_CLK
3
4
EMB_CS[0]
5
6
EMB_WE_DQM[3:0]
7
8
7
8
EMB_BA[1:0]
EMB_A[12:0]
19
17
2 EM_CLK Delay
20
18
EMB_D[31:0]
11
12
EMB_RAS
13
14
EMB_CAS
EMB_WE
Figure 6-25. EMIFB Basic SDRAM Read Operation
82
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.12 Memory Protection Units
The MPU performs memory protection checking. It receives requests from a bus master in the system and
checks the address against the fixed and programmable regions to see if the access is allowed. If allowed,
the transfer is passed unmodified to its output bus (to the targeted address). If the transfer is illegal (fails
the protection check) then the MPU does not pass the transfer to the output bus but rather services the
transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as
well as generating an interrupt about the fault. The following features are supported by the MPU:
• Provides memory protection for fixed and programmable address ranges
• Supports multiple programmable address region
• Supports secure and debug access privileges
• Supports read, write, and execute access privileges
• Supports privid(8) associations with ranges
• Generates an interrupt when there is a protection violation, and saves violating transfer parameters
• MMR access is also protected
Table 6-29. MPU1 Configuration Registers
MPU1
BYTE ADDRESS
ACRONYM
0x01E1 4000
REVID
0x01E1 4004
CONFIG
0x01E1 4010
IRAWSTAT
0x01E1 4014
IENSTAT
REGISTER DESCRIPTION
Revision ID
Configuration
Interrupt raw status/set
Interrupt enable status/clear
0x01E1 4018
IENSET
Interrupt enable
0x01E1 401C
IENCLR
Interrupt enable clear
0x01E1 4020 - 0x01E1 41FF
-
0x01E1 4200
PROG1_MPSAR
Programmable range 1, start address
0x01E1 4204
PROG1_MPEAR
Programmable range 1, end address
0x01E1 4208
PROG1_MPPA
Reserved
Programmable range 1, memory page protection attributes
0x01E1 420C - 0x01E1 420F
-
0x01E1 4210
PROG2_MPSAR
Reserved
Programmable range 2, start address
0x01E1 4214
PROG2_MPEAR
Programmable range 2, end address
0x01E1 4218
PROG2_MPPA
Programmable range 2, memory page protection attributes
0x01E1 421C - 0x01E1 421F
-
0x01E1 4220
PROG3_MPSAR
Reserved
Programmable range 3, start address
0x01E1 4224
PROG3_MPEAR
Programmable range 3, end address
0x01E1 4228
PROG3_MPPA
0x01E1 422C - 0x01E1 422F
-
0x01E1 4230
PROG4_MPSAR
Programmable range 4, start address
0x01E1 4234
PROG4_MPEAR
Programmable range 4, end address
0x01E1 4238
PROG4_MPPA
0x01E1 423C - 0x01E1 423F
-
0x01E1 4240
PROG5_MPSAR
Programmable range 5, start address
0x01E1 4244
PROG5_MPEAR
Programmable range 5, end address
0x01E1 4248
PROG5_MPPA
0x01E1 424C - 0x01E1 424F
-
0x01E1 4250
PROG6_MPSAR
Programmable range 6, start address
0x01E1 4254
PROG6_MPEAR
Programmable range 6, end address
0x01E1 4258
PROG6_MPPA
0x01E1 425C - 0x01E1 42FF
-
Copyright © 2010–2014, Texas Instruments Incorporated
Programmable range 3, memory page protection attributes
Reserved
Programmable range 4, memory page protection attributes
Reserved
Programmable range 5, memory page protection attributes
Reserved
Programmable range 6, memory page protection attributes
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
83
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-29. MPU1 Configuration Registers (continued)
MPU1
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E14300
FLTADDRR
0x01E1 4304
FLTSTAT
Fault address
Fault status
0x01E1 4308
FLTCLR
Fault clear
0x01E1 430C - 0x01E1 4FFF
-
Reserved
Table 6-30. MPU2 Configuration Registers
MPU2
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E1 5000
REVID
0x01E1 5004
CONFIG
Revision ID
0x01E1 5010
IRAWSTAT
0x01E1 5014
IENSTAT
0x01E1 5018
IENSET
Interrupt enable
Interrupt enable clear
Configuration
Interrupt raw status/set
Interrupt enable status/clear
0x01E1 501C
IENCLR
0x01E1 5020 - 0x01E1 50FF
-
0x01E1 5100
FXD_MPSAR
Fixed range start address
0x01E1 5104
FXD_MPEAR
Fixed range end start address
Reserved
0x01E1 5108
FXD_MPPA
0x01E1 510C - 0x01E1 51FF
-
Fixed range memory page protection attributes
0x01E1 5200
PROG1_MPSAR
Programmable range 1, start address
0x01E1 5204
PROG1_MPEAR
Programmable range 1, end address
0x01E1 5208
PROG1_MPPA
0x01E1 520C - 0x01E1 520F
-
0x01E1 5210
PROG2_MPSAR
Programmable range 2, start address
0x01E1 5214
PROG2_MPEAR
Programmable range 2, end address
0x01E1 5218
PROG2_MPPA
0x01E1 521C - 0x01E1 521F
-
0x01E1 5220
PROG3_MPSAR
Programmable range 3, start address
0x01E1 5224
PROG3_MPEAR
Programmable range 3, end address
0x01E1 5228
PROG3_MPPA
Reserved
Programmable range 1, memory page protection attributes
Reserved
Programmable range 2, memory page protection attributes
Reserved
Programmable range 3, memory page protection attributes
0x01E1 522C - 0x01E1 522F
-
0x01E1 5230
PROG4_MPSAR
Reserved
Programmable range 4, start address
0x01E1 5234
PROG4_MPEAR
Programmable range 4, end address
0x01E1 5238
PROG4_MPPA
0x01E1 523C - 0x01E1 523F
-
Programmable range 4, memory page protection attributes
0x01E1 5240
PROG5_MPSAR
Programmable range 5, start address
0x01E1 5244
PROG5_MPEAR
Programmable range 5, end address
Reserved
0x01E1 5248
PROG5_MPPA
0x01E1 524C - 0x01E1 524F
-
0x01E1 5250
PROG6_MPSAR
Programmable range 6, start address
0x01E1 5254
PROG6_MPEAR
Programmable range 6, end address
0x01E1 5258
PROG6_MPPA
0x01E1 525C - 0x01E1 525F
-
0x01E1 5260
PROG7_MPSAR
Programmable range 7, start address
0x01E1 5264
PROG7_MPEAR
Programmable range 7, end address
0x01E1 5268
PROG7_MPPA
0x01E1 526C - 0x01E1 526F
-
84
Programmable range 5, memory page protection attributes
Reserved
Programmable range 6, memory page protection attributes
Reserved
Programmable range 7, memory page protection attributes
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-30. MPU2 Configuration Registers (continued)
MPU2
BYTE ADDRESS
ACRONYM
0x01E1 5270
PROG8_MPSAR
Programmable range 8, start address
0x01E1 5274
PROG8_MPEAR
Programmable range 8, end address
0x01E1 5278
PROG8_MPPA
REGISTER DESCRIPTION
Programmable range 8, memory page protection attributes
0x01E1 527C - 0x01E1 527F
-
0x01E1 5280
PROG9_MPSAR
Reserved
Programmable range 9, start address
0x01E1 5284
PROG9_MPEAR
Programmable range 9, end address
0x01E1 5288
PROG9_MPPA
Programmable range 9, memory page protection attributes
0x01E1 528C - 0x01E1 528F
-
0x01E1 5290
PROG10_MPSAR
Reserved
Programmable range 10, start address
0x01E1 5294
PROG10_MPEAR
Programmable range 10, end address
0x01E1 5298
PROG10_MPPA
0x01E1 529C - 0x01E1 529F
-
0x01E1 52A0
PROG11_MPSAR
Programmable range 11, start address
0x01E1 52A4
PROG11_MPEAR
Programmable range 11, end address
0x01E1 52A8
PROG11_MPPA
0x01E1 52AC - 0x01E1 52AF
-
0x01E1 52B0
PROG12_MPSAR
Programmable range 12, start address
0x01E1 52B4
PROG12_MPEAR
Programmable range 12, end address
0x01E1 52B8
PROG12_MPPA
0x01E1 52BC - 0x01E1 52FF
-
0x01E1 5300
FLTADDRR
0x01E1 5304
FLTSTAT
Fault status
0x01E1 5308
FLTCLR
Fault clear
0x01E1 530C - 0x01E1 5FFF
-
Reserved
Copyright © 2010–2014, Texas Instruments Incorporated
Programmable range 10, memory page protection attributes
Reserved
Programmable range 11, memory page protection attributes
Reserved
Programmable range 12, memory page protection attributes
Reserved
Fault address
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
85
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.13 MMC / SD / SDIO (MMCSD)
6.13.1 MMCSD Peripheral Description
The device includes an MMCSD controller which is compliant with MMC V4.0, Secure Digital Part 1
Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications.
The MMC/SD Controller has following features:
• MultiMediaCard (MMC) support
• Secure Digital (SD) Memory Card support
• MMC/SD protocol support
• SD high capacity support
• SDIO protocol support
• Programmable clock frequency
• 512 bit Read/Write FIFO to lower system overhead
• Slave EDMA transfer capability
The device MMC/SD Controller does not support SPI mode.
6.13.2
MMCSD Peripheral Register Description(s)
Table 6-31. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers
BYTE
ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C4 0000
MMCCTL
MMC Control Register
0x01C4 0004
MMCCLK
MMC Memory Clock Control Register
0x01C4 0008
MMCST0
MMC Status Register 0
0x01C4 000C
MMCST1
MMC Status Register 1
0x01C4 0010
MMCIM
0x01C4 0014
MMCTOR
MMC Response Time-Out Register
0x01C4 0018
MMCTOD
MMC Data Read Time-Out Register
0x01C4 001C
MMCBLEN
MMC Block Length Register
0x01C4 0020
MMCNBLK
MMC Number of Blocks Register
0x01C4 0024
MMCNBLC
MMC Number of Blocks Counter Register
0x01C4 0028
MMCDRR
MMC Data Receive Register
0x01C4 002C
MMCDXR
MMC Data Transmit Register
0x01C4 0030
MMCCMD
MMC Command Register
0x01C4 0034
MMCARGHL
MMC Argument Register
0x01C4 0038
MMCRSP01
MMC Response Register 0 and 1
0x01C4 003C
MMCRSP23
MMC Response Register 2 and 3
0x01C4 0040
MMCRSP45
MMC Response Register 4 and 5
0x01C4 0044
MMCRSP67
MMC Response Register 6 and 7
0x01C4 0048
MMCDRSP
MMC Data Response Register
0x01C4 0050
MMCCIDX
MMC Command Index Register
0x01C4 0064
SDIOCTL
SDIO Control Register
0x01C4 0068
SDIOST0
SDIO Status Register 0
0x01C4 006C
SDIOIEN
SDIO Interrupt Enable Register
0x01C4 0070
SDIOIST
SDIO Interrupt Status Register
0x01C4 0074
MMCFIFOCTLπ
86
MMC Interrupt Mask Register
MMC FIFO Control Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.13.3 MMC/SD Electrical Data/Timing
Table 6-32. Timing Requirements for MMC/SD Module
(see Figure 6-27 and Figure 6-29)
No.
PARAMETER
MIN
MAX
UNIT
1
tsu(CMDV-CLKH)
Setup time, MMCSD_CMD valid before MMCSD_CLK high
3.2
ns
2
th(CLKH-CMDV)
Hold time, MMCSD_CMD valid after MMCSD_CLK high
1.5
ns
3
tsu(DATV-CLKH)
Setup time, MMCSD_DATx valid before MMCSD_CLK high
3.2
ns
4
th(CLKH-DATV)
Hold time, MMCSD_DATx valid after MMCSD_CLK high
1.5
ns
Table 6-33. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module
(see Figure 6-26 through Figure 6-29)
No.
PARAMETER
MIN
MAX
UNIT
0
52
MHz
0
400
KHz
7
f(CLK)
Operating frequency, MMCSD_CLK
8
f(CLK_ID)
Identification mode frequency, MMCSD_CLK
9
tW(CLKL)
Pulse width, MMCSD_CLK low
6.5
ns
10
tW(CLKH)
Pulse width, MMCSD_CLK high
6.5
ns
11
tr(CLK)
Rise time, MMCSD_CLK
3
ns
12
tf(CLK)
Fall time, MMCSD_CLK
3
ns
13
td(CLKL-CMD)
Delay time, MMCSD_CLK low to MMCSD_CMD transition
-4.5
2.5
ns
14
td(CLKL-DAT)
Delay time, MMCSD_CLK low to MMCSD_DATx transition
-4.5
2.5
ns
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
87
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
10
9
7
MMCSD_CLK
13
13
START
MMCSD_CMD
13
XMIT
Valid
Valid
13
Valid
END
Figure 6-26. MMC/SD Host Command Timing
9
7
10
MMCSD_CLK
1
2
START
MMCSD_CMD
XMIT
Valid
Valid
Valid
END
Figure 6-27. MMC/SD Card Response Timing
10
9
7
MMCSD_CLK
14
14
START
MMCSD_DATx
14
D0
D1
14
Dx
END
Figure 6-28. MMC/SD Host Write Timing
9
10
7
MMCSD_CLK
4
4
3
MMCSD_DATx
Start
3
D0
D1
Dx
End
Figure 6-29. MMC/SD Host Read and Card CRC Status Timing
88
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.14 Ethernet Media Access Controller (EMAC)
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and the
network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps
in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.
The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY
configuration and status monitoring.
Both the EMAC and the MDIO modules interface to the device through a custom interface that allows
efficient data transmission and reception. This custom interface is referred to as the EMAC control
module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to
multiplex and control interrupts.
6.14.1
EMAC Peripheral Register Description(s)
Table 6-34. Ethernet Media Access Controller (EMAC) Registers
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E2 3000
TXREV
0x01E2 3004
TXCONTROL
Transmit Revision Register
0x01E2 3008
TXTEARDOWN
Transmit Control Register
Transmit Teardown Register
0x01E2 3010
RXREV
0x01E2 3014
RXCONTROL
Receive Revision Register
0x01E2 3018
RXTEARDOWN
Receive Teardown Register
0x01E2 3080
TXINTSTATRAW
Transmit Interrupt Status (Unmasked) Register
0x01E2 3084
TXINTSTATMASKED
0x01E2 3088
TXINTMASKSET
0x01E2 308C
TXINTMASKCLEAR
Receive Control Register
Transmit Interrupt Status (Masked) Register
Transmit Interrupt Mask Set Register
Transmit Interrupt Clear Register
0x01E2 3090
MACINVECTOR
0x01E2 3094
MACEOIVECTOR
MAC Input Vector Register
MAC End Of Interrupt Vector Register
0x01E2 30A0
RXINTSTATRAW
Receive Interrupt Status (Unmasked) Register
0x01E2 30A4
RXINTSTATMASKED
0x01E2 30A8
RXINTMASKSET
0x01E2 30AC
RXINTMASKCLEAR
Receive Interrupt Mask Clear Register
0x01E2 30B0
MACINTSTATRAW
MAC Interrupt Status (Unmasked) Register
0x01E2 30B4
MACINTSTATMASKED
0x01E2 30B8
MACINTMASKSET
0x01E2 30BC
MACINTMASKCLEAR
Receive Interrupt Status (Masked) Register
Receive Interrupt Mask Set Register
MAC Interrupt Status (Masked) Register
MAC Interrupt Mask Set Register
MAC Interrupt Mask Clear Register
0x01E2 3100
RXMBPENABLE
Receive Multicast/Broadcast/Promiscuous Channel Enable Register
0x01E2 3104
RXUNICASTSET
Receive Unicast Enable Set Register
0x01E2 3108
RXUNICASTCLEAR
Receive Unicast Clear Register
0x01E2 310C
RXMAXLEN
0x01E2 3110
RXBUFFEROFFSET
0x01E2 3114
RXFILTERLOWTHRESH
Receive Filter Low Priority Frame Threshold Register
0x01E2 3120
RX0FLOWTHRESH
Receive Channel 0 Flow Control Threshold Register
0x01E2 3124
RX1FLOWTHRESH
Receive Channel 1 Flow Control Threshold Register
0x01E2 3128
RX2FLOWTHRESH
Receive Channel 2 Flow Control Threshold Register
0x01E2 312C
RX3FLOWTHRESH
Receive Channel 3 Flow Control Threshold Register
0x01E2 3130
RX4FLOWTHRESH
Receive Channel 4 Flow Control Threshold Register
0x01E2 3134
RX5FLOWTHRESH
Receive Channel 5 Flow Control Threshold Register
0x01E2 3138
RX6FLOWTHRESH
Receive Channel 6 Flow Control Threshold Register
0x01E2 313C
RX7FLOWTHRESH
Receive Channel 7 Flow Control Threshold Register
Copyright © 2010–2014, Texas Instruments Incorporated
Receive Maximum Length Register
Receive Buffer Offset Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
89
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-34. Ethernet Media Access Controller (EMAC) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E2 3140
RX0FREEBUFFER
Receive Channel 0 Free Buffer Count Register
REGISTER DESCRIPTION
0x01E2 3144
RX1FREEBUFFER
Receive Channel 1 Free Buffer Count Register
0x01E2 3148
RX2FREEBUFFER
Receive Channel 2 Free Buffer Count Register
0x01E2 314C
RX3FREEBUFFER
Receive Channel 3 Free Buffer Count Register
0x01E2 3150
RX4FREEBUFFER
Receive Channel 4 Free Buffer Count Register
0x01E2 3154
RX5FREEBUFFER
Receive Channel 5 Free Buffer Count Register
0x01E2 3158
RX6FREEBUFFER
Receive Channel 6 Free Buffer Count Register
0x01E2 315C
RX7FREEBUFFER
Receive Channel 7 Free Buffer Count Register
0x01E2 3160
MACCONTROL
MAC Control Register
0x01E2 3164
MACSTATUS
MAC Status Register
0x01E2 3168
EMCONTROL
Emulation Control Register
0x01E2 316C
FIFOCONTROL
0x01E2 3170
MACCONFIG
MAC Configuration Register
0x01E2 3174
SOFTRESET
Soft Reset Register
0x01E2 31D0
MACSRCADDRLO
MAC Source Address Low Bytes Register
0x01E2 31D4
MACSRCADDRHI
MAC Source Address High Bytes Register
0x01E2 31D8
MACHASH1
MAC Hash Address Register 1
0x01E2 31DC
MACHASH2
MAC Hash Address Register 2
0x01E2 31E0
BOFFTEST
Back Off Test Register
0x01E2 31E4
TPACETEST
0x01E2 31E8
RXPAUSE
Receive Pause Timer Register
Transmit Pause Timer Register
FIFO Control Register
Transmit Pacing Algorithm Test Register
0x01E2 31EC
TXPAUSE
0x01E2 3200 - 0x01E2 32FC
(see Table 6-35)
0x01E2 3500
MACADDRLO
MAC Address Low Bytes Register, Used in Receive Address Matching
0x01E2 3504
MACADDRHI
MAC Address High Bytes Register, Used in Receive Address Matching
0x01E2 3508
MACINDEX
0x01E2 3600
TX0HDP
Transmit Channel 0 DMA Head Descriptor Pointer Register
0x01E2 3604
TX1HDP
Transmit Channel 1 DMA Head Descriptor Pointer Register
0x01E2 3608
TX2HDP
Transmit Channel 2 DMA Head Descriptor Pointer Register
0x01E2 360C
TX3HDP
Transmit Channel 3 DMA Head Descriptor Pointer Register
0x01E2 3610
TX4HDP
Transmit Channel 4 DMA Head Descriptor Pointer Register
0x01E2 3614
TX5HDP
Transmit Channel 5 DMA Head Descriptor Pointer Register
0x01E2 3618
TX6HDP
Transmit Channel 6 DMA Head Descriptor Pointer Register
0x01E2 361C
TX7HDP
Transmit Channel 7 DMA Head Descriptor Pointer Register
0x01E2 3620
RX0HDP
Receive Channel 0 DMA Head Descriptor Pointer Register
0x01E2 3624
RX1HDP
Receive Channel 1 DMA Head Descriptor Pointer Register
0x01E2 3628
RX2HDP
Receive Channel 2 DMA Head Descriptor Pointer Register
0x01E2 362C
RX3HDP
Receive Channel 3 DMA Head Descriptor Pointer Register
0x01E2 3630
RX4HDP
Receive Channel 4 DMA Head Descriptor Pointer Register
0x01E2 3634
RX5HDP
Receive Channel 5 DMA Head Descriptor Pointer Register
0x01E2 3638
RX6HDP
Receive Channel 6 DMA Head Descriptor Pointer Register
0x01E2 363C
RX7HDP
Receive Channel 7 DMA Head Descriptor Pointer Register
0x01E2 3640
TX0CP
Transmit Channel 0 Completion Pointer Register
0x01E2 3644
TX1CP
Transmit Channel 1 Completion Pointer Register
90
EMAC Statistics Registers
MAC Index Register
0x01E2 3648
TX2CP
Transmit Channel 2 Completion Pointer Register
0x01E2 364C
TX3CP
Transmit Channel 3 Completion Pointer Register
0x01E2 3650
TX4CP
Transmit Channel 4 Completion Pointer Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-34. Ethernet Media Access Controller (EMAC) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E2 3654
TX5CP
Transmit Channel 5 Completion Pointer Register
REGISTER DESCRIPTION
0x01E2 3658
TX6CP
Transmit Channel 6 Completion Pointer Register
0x01E2 365C
TX7CP
Transmit Channel 7 Completion Pointer Register
0x01E2 3660
RX0CP
Receive Channel 0 Completion Pointer Register
0x01E2 3664
RX1CP
Receive Channel 1 Completion Pointer Register
0x01E2 3668
RX2CP
Receive Channel 2 Completion Pointer Register
0x01E2 366C
RX3CP
Receive Channel 3 Completion Pointer Register
0x01E2 3670
RX4CP
Receive Channel 4 Completion Pointer Register
0x01E2 3674
RX5CP
Receive Channel 5 Completion Pointer Register
0x01E2 3678
RX6CP
Receive Channel 6 Completion Pointer Register
0x01E2 367C
RX7CP
Receive Channel 7 Completion Pointer Register
Table 6-35. EMAC Statistics Registers
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E2 3200
RXGOODFRAMES
Good Receive Frames Register
0x01E2 3204
RXBCASTFRAMES
Broadcast Receive Frames Register
(Total number of good broadcast frames received)
0x01E2 3208
RXMCASTFRAMES
Multicast Receive Frames Register
(Total number of good multicast frames received)
0x01E2 320C
RXPAUSEFRAMES
Pause Receive Frames Register
0x01E2 3210
RXCRCERRORS
0x01E2 3214
RXALIGNCODEERRORS
0x01E2 3218
RXOVERSIZED
0x01E2 321C
RXJABBER
0x01E2 3220
RXUNDERSIZED
Receive Undersized Frames Register
(Total number of undersized frames received)
0x01E2 3224
RXFRAGMENTS
Receive Frame Fragments Register
0x01E2 3228
RXFILTERED
0x01E2 322C
RXQOSFILTERED
0x01E2 3230
RXOCTETS
0x01E2 3234
TXGOODFRAMES
Good Transmit Frames Register
(Total number of good frames transmitted)
Receive CRC Errors Register
(Total number of frames received with CRC errors)
Receive Alignment/Code Errors Register
(Total number of frames received with alignment/code errors)
Receive Oversized Frames Register
(Total number of oversized frames received)
Receive Jabber Frames Register
(Total number of jabber frames received)
Filtered Receive Frames Register
Received QOS Filtered Frames Register
Receive Octet Frames Register
(Total number of received bytes in good frames)
0x01E2 3238
TXBCASTFRAMES
Broadcast Transmit Frames Register
0x01E2 323C
TXMCASTFRAMES
Multicast Transmit Frames Register
0x01E2 3240
TXPAUSEFRAMES
Pause Transmit Frames Register
0x01E2 3244
TXDEFERRED
Deferred Transmit Frames Register
0x01E2 3248
TXCOLLISION
Transmit Collision Frames Register
0x01E2 324C
TXSINGLECOLL
0x01E2 3250
TXMULTICOLL
0x01E2 3254
TXEXCESSIVECOLL
0x01E2 3258
TXLATECOLL
0x01E2 325C
TXUNDERRUN
0x01E2 3260
TXCARRIERSENSE
0x01E2 3264
TXOCTETS
0x01E2 3268
FRAME64
Copyright © 2010–2014, Texas Instruments Incorporated
Transmit Single Collision Frames Register
Transmit Multiple Collision Frames Register
Transmit Excessive Collision Frames Register
Transmit Late Collision Frames Register
Transmit Underrun Error Register
Transmit Carrier Sense Errors Register
Transmit Octet Frames Register
Transmit and Receive 64 Octet Frames Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
91
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-35. EMAC Statistics Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E2 326C
FRAME65T127
REGISTER DESCRIPTION
Transmit and Receive 65 to 127 Octet Frames Register
0x01E2 3270
FRAME128T255
Transmit and Receive 128 to 255 Octet Frames Register
0x01E2 3274
FRAME256T511
Transmit and Receive 256 to 511 Octet Frames Register
0x01E2 3278
FRAME512T1023
Transmit and Receive 512 to 1023 Octet Frames Register
0x01E2 327C
FRAME1024TUP
Transmit and Receive 1024 to 1518 Octet Frames Register
0x01E2 3280
NETOCTETS
0x01E2 3284
RXSOFOVERRUNS
Receive FIFO or DMA Start of Frame Overruns Register
0x01E2 3288
RXMOFOVERRUNS
Receive FIFO or DMA Middle of Frame Overruns Register
0x01E2 328C
RXDMAOVERRUNS
Receive DMA Start of Frame and Middle of Frame Overruns Register
Network Octet Frames Register
Table 6-36. EMAC Control Module Registers
92
BYTE ADDRESS
ACRONYM
0x01E2 2000
REV
REGISTER DESCRIPTION
0x01E2 2004
SOFTRESET
EMAC Control Module Software Reset Register
0x01E2 200C
INTCONTROL
EMAC Control Module Interrupt Control Register
0x01E2 2010
C0RXTHRESHEN
0x01E2 2014
C0RXEN
EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register
EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register
EMAC Control Module Revision Register
EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register
0x01E2 2018
C0TXEN
0x01E2 201C
C0MISCEN
0x01E2 2020
C1RXTHRESHEN
0x01E2 2024
C1RXEN
EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register
EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register
EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register
EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register
0x01E2 2028
C1TXEN
0x01E2 202C
C1MISCEN
0x01E2 2030
C2RXTHRESHEN
0x01E2 2034
C2RXEN
EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register
0x01E2 2038
C2TXEN
EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register
0x01E2 203C
C2MISCEN
0x01E2 2040
C0RXTHRESHSTAT
0x01E2 2044
C0RXSTAT
EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register
0x01E2 2048
C0TXSTAT
EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register
0x01E2 204C
C0MISCSTAT
0x01E2 2050
C1RXTHRESHSTAT
0x01E2 2054
C1RXSTAT
EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register
0x01E2 2058
C1TXSTAT
EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register
EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register
EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register
EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register
EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register
EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register
EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register
0x01E2 205C
C1MISCSTAT
0x01E2 2060
C2RXTHRESHSTAT
EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register
0x01E2 2064
C2RXSTAT
EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register
EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register
EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register
0x01E2 2068
C2TXSTAT
0x01E2 206C
C2MISCSTAT
0x01E2 2070
C0RXIMAX
EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register
0x01E2 2074
C0TXIMAX
EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register
EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register
0x01E2 2078
C1RXIMAX
EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register
0x01E2 207C
C1TXIMAX
EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register
0x01E2 2080
C2RXIMAX
EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register
0x01E2 2084
C2TXIMAX
EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-37. EMAC Control Module RAM
HEX ADDRESS RANGE
0x01E2 0000 - 0x01E2 1FFF
EMAC Local Buffer Descriptor Memory
Table 6-38. RMII Timing Requirements
No.
PARAMETER
MIN
TYP
MAX
UNIT
1
tc(REFCLK)
Cycle Time, RMII_MHZ_50_CLK (1)
2
tw(REFCLKH)
Pulse Width, RMII_MHZ_50_CLK High
7
13
ns
3
tw(REFCLKL)
Pulse Width, RMII_MHZ_50_CLK Low
7
13
ns
6
tsu(RXD-REFCLK)
Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High
4
ns
7
th(REFCLK-RXD)
Input Hold Time, RXD Valid after RMII_MHZ_50_CLK High
2
ns
8
tsu(CRSDV-REFCLK)
Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High
4
ns
9
th(REFCLK-CRSDV)
Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High
2
ns
10
tsu(RXER-REFCLK)
Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High
4
ns
11
th(REFCLKR-RXER)
Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High
2
ns
(1)
20
ns
Per the RMII industry specification, the RMII reference clock (RMII_MHZ_50_CLK) must have jitter tolerance of 50 ppm or less.
Table 6-39. RMII Switching Characteristics
No.
MAX
UNIT
4
td(REFCLK-TXD)
Output Delay Time, RMII_MHZ_50_CLK High to TXD Valid
PARAMETER
MIN
2.5
TYP
13
ns
5
td(REFCLK-TXEN)
Output Delay Time, RMII_MHZ_50_CLK High to TXEN Valid
2.5
13
ns
1
2
3
RMII_MHz_50_CLK
5
5
RMII_TXEN
4
RMII_TXD[1:0]
6
7
RMII_RXD[1:0]
8
9
RMII_CRS_DV
10
11
RMII_RXER
Figure 6-30. RMII Timing Diagram
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
93
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.15 Management Data Input/Output (MDIO)
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to
enumerate all PHY devices in the system.
The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to
interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO
module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the
negotiation results, and configure required parameters in the EMAC module for correct operation. The
module is designed to allow almost transparent operation of the MDIO interface, with very little
maintenance from the core processor. Only one PHY may be connected at any given time.
6.15.1 MDIO Registers
For a list of supported MDIO registers see Table 6-40 [MDIO Registers].
Table 6-40. MDIO Register Memory Map
BYTE ADDRESS
94
ACRONYM
REGISTER DESCRIPTION
0x01E2 4000
REV
0x01E2 4004
CONTROL
Revision Identification Register
0x01E2 4008
ALIVE
MDIO PHY Alive Status Register
0x01E2 400C
LINK
MDIO PHY Link Status Register
0x01E2 4010
LINKINTRAW
0x01E2 4014
LINKINTMASKED
MDIO Control Register
MDIO Link Status Change Interrupt (Unmasked) Register
MDIO Link Status Change Interrupt (Masked) Register
0x01E2 4018
–
0x01E2 4020
USERINTRAW
Reserved
0x01E2 4024
USERINTMASKED
MDIO User Command Complete Interrupt (Masked) Register
0x01E2 4028
USERINTMASKSET
MDIO User Command Complete Interrupt Mask Set Register
MDIO User Command Complete Interrupt (Unmasked) Register
0x01E2 402C
USERINTMASKCLEAR
0x01E2 4030 - 0x01E2 407C
–
MDIO User Command Complete Interrupt Mask Clear Register
0x01E2 4080
USERACCESS0
MDIO User Access Register 0
0x01E2 4084
USERPHYSEL0
MDIO User PHY Select Register 0
0x01E2 4088
USERACCESS1
MDIO User Access Register 1
0x01E2 408C
USERPHYSEL1
MDIO User PHY Select Register 1
0x01E2 4090 - 0x01E2 47FF
–
Reserved
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.15.2 Management Data Input/Output (MDIO) Electrical Data/Timing
Table 6-41. Timing Requirements for MDIO Input (see Figure 6-31 and Figure 6-32)
No.
PARAMETER
MIN
MAX
UNIT
1
tc(MDIO_CLK)
Cycle time, MDIO_CLK
400
2
tw(MDIO_CLK)
Pulse duration, MDIO_CLK high/low
180
ns
3
tt(MDIO_CLK)
Transition time, MDIO_CLK
4
tsu(MDIO-MDIO_CLKH) Setup time, MDIO_D data input valid before MDIO_CLK high
10
ns
5
th(MDIO_CLKH-MDIO)
0
ns
ns
5
Hold time, MDIO_D data input valid after MDIO_CLK high
ns
1
3
3
MDIO_CLK
4
5
MDIO_D
(input)
Figure 6-31. MDIO Input Timing
Table 6-42. Switching Characteristics Over Recommended Operating Conditions for MDIO Output
(see Figure 6-32)
No.
7
PARAMETER
td(MDIO_CLKL-MDIO)
Delay time, MDIO_CLK low to MDIO_D data output valid
MIN
MAX
UNIT
0
100
ns
1
MDIO_CLK
7
MDIO_D
(output)
Figure 6-32. MDIO Output Timing
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
95
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.16 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2)
The McASP serial port is specifically designed for multichannel audio applications. Its key features are:
• Flexible clock and frame sync generation logic and on-chip dividers
• Up to sixteen transmit or receive data pins and serializers
• Large number of serial data format options, including:
– TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst)
– Time slots of 8,12,16, 20, 24, 28, and 32 bits
– First bit delay 0, 1, or 2 clocks
– MSB or LSB first bit order
– Left- or right-aligned data words within time slots
• DIT Mode (optional) with 384-bit Channel Status and 384-bit User Data registers
• Extensive error checking and mute generation logic
• All unused pins GPIO-capable
• Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher sample
rate by making it more tolerant to DMA latency.
• Dynamic Adjustment of Clock Dividers
– Clock Divider Value may be changed without resetting the McASP
The McASPs on the device are configured with the following options:
Table 6-43. McASP Configurations (1)
Module
Serializers
AFIFO
DIT
Pins
McASP0
16
64 Word RX
64 Word TX
N
AXR0[15:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0, AFSX0, AMUTE0
McASP1
12
64 Word RX
64 Word TX
N
AXR1[11:10], AHCLKR1, ACLKR1, AFSR1, AHCLKX1, ACLKX1, AFSX1, AMUTE1
McASP2
4
16 Word RX
16 Word TX
Y
AXR2[3:0], AHCLKR2, ACLKR2, AFSR2, AHCLKX2, ACLKX2, AFSX2, AMUTE2
(1)
Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing.
Pins
Peripheral
Configuration
Bus
GIO
Control
DIT RAM
384 C
384 U
Optional
McASP
DMA Bus
(Dedicated)
Transmit
Formatter
Receive
Formatter
Function
Receive Logic
Clock/Frame Generator
State Machine
AHCLKRx
ACLKRx
AFSRx
Receive Master Clock
Receive Bit Clock
Receive Left/Right Clock or Frame Sync
Clock Check and
Error Detection
AMUTEINx
AMUTEx
The McASPs DO NOT have
dedicated AMUTEINx pins.
Transmit Logic
Clock/Frame Generator
State Machine
AFSXx
ACLKXx
AHCLKXx
Transmit Left/Right Clock or Frame Sync
Transmit Bit Clock
Transmit Master Clock
Serializer 0
AXRx[0]
Transmit/Receive Serial Data Pin
Serializer 1
AXRx[1]
Transmit/Receive Serial Data Pin
Serializer y
AXRx[y]
Transmit/Receive Serial Data Pin
McASPx (x = 0, 1, 2)
Figure 6-33. McASP Block Diagram
96
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.16.1 McASP Peripheral Registers Description(s)
Registers for the McASP are summarized in Table 6-44. The registers are accessed through the
peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can
also be accessed through the DMA port, as listed in Table 6-45
Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 6-46. Note that the AFIFO Write
FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control
registers are accessed through the peripheral configuration port.
Table 6-44. McASP Registers Accessed Through Peripheral Configuration Port
McASP0
BYTE
ADDRESS
McASP1
BYTE
ADDRESS
McASP2
BYTE
ADDRESS
ACRONYM
0x01D0 0000
0x01D0 4000
0x01D0 8000
REV
0x01D0 0010
0x01D0 4010
0x01D0 8010
PFUNC
Pin function register
0x01D0 0014
0x01D0 4014
0x01D0 8014
PDIR
Pin direction register
0x01D0 0018
0x01D0 4018
0x01D0 8018
PDOUT
0x01D0 001C 0x01D0 401C 0x01D0 801C
PDIN
REGISTER DESCRIPTION
Revision identification register
Pin data output register
Read returns: Pin data input register
0x01D0 001C 0x01D0 401C 0x01D0 801C
PDSET
Writes affect: Pin data set register (alternate write address: PDOUT)
0x01D0 0020
0x01D0 4020
0x01D0 8020
PDCLR
Pin data clear register (alternate write address: PDOUT)
0x01D0 0044
0x01D0 4044
0x01D0 8044
GBLCTL
Global control register
0x01D0 0048
0x01D0 4048
0x01D0 8048
AMUTE
Audio mute control register
0x01D0 004C 0x01D0 404C 0x01D0 804C
DLBCTL
Digital loopback control register
0x01D0 0050
0x01D0 4050
0x01D0 8050
DITCTL
DIT mode control register
0x01D0 0060
0x01D0 4060
0x01D0 8060
RGBLCTL
0x01D0 0064
0x01D0 4064
0x01D0 8064
RMASK
0x01D0 0068
0x01D0 4068
0x01D0 8068
RFMT
0x01D0 006C 0x01D0 406C 0x01D0 806C
0x01D0 0070
0x01D0 4070
0x01D0 8070
0x01D0 0074
0x01D0 4074
0x01D0 8074
0x01D0 0078
0x01D0 4078
0x01D0 8078
AFSRCTL
ACLKRCTL
Receiver global control register: Alias of GBLCTL, only receive bits are
affected - allows receiver to be reset independently from transmitter
Receive format unit bit mask register
Receive bit stream format register
Receive frame sync control register
Receive clock control register
AHCLKRCTL Receive high-frequency clock control register
RTDM
0x01D0 007C 0x01D0 407C 0x01D0 807C
RINTCTL
Receive TDM time slot 0-31 register
Receiver interrupt control register
0x01D0 0080
0x01D0 4080
0x01D0 8080
RSTAT
Receiver status register
0x01D0 0084
0x01D0 4084
0x01D0 8084
RSLOT
Current receive TDM time slot register
0x01D0 0088
0x01D0 4088
0x01D0 8088
RCLKCHK
Receive clock check control register
0x01D0 008C 0x01D0 408C 0x01D0 808C
REVTCTL
Receiver DMA event control register
0x01D0 00A0
0x01D0 40A0
0x01D0 80A0
XGBLCTL
Transmitter global control register. Alias of GBLCTL, only transmit bits are
affected - allows transmitter to be reset independently from receiver
0x01D0 00A4
0x01D0 40A4
0x01D0 80A4
XMASK
0x01D0 00A8
0x01D0 40A8
0x01D0 80A8
XFMT
0x01D0 00AC 0x01D0 40AC 0x01D0 80AC
0x01D0 00B0
0x01D0 40B0
0x01D0 80B0
0x01D0 00B4
0x01D0 40B4
0x01D0 80B4
0x01D0 00B8
0x01D0 40B8
0x01D0 80B8
AFSXCTL
ACLKXCTL
Transmit format unit bit mask register
Transmit bit stream format register
Transmit frame sync control register
Transmit clock control register
AHCLKXCTL Transmit high-frequency clock control register
XTDM
Transmit TDM time slot 0-31 register
0x01D0 00BC 0x01D0 40BC 0x01D0 80BC
XINTCTL
Transmitter interrupt control register
0x01D0 00C0 0x01D0 40C0 0x01D0 80C0
XSTAT
Transmitter status register
0x01D0 00C4 0x01D0 40C4 0x01D0 80C4
XSLOT
Current transmit TDM time slot register
0x01D0 00C8 0x01D0 40C8 0x01D0 80C8
XCLKCHK
Transmit clock check control register
0x01D0 00CC 0x01D0 40CC 0x01D0 80CC
XEVTCTL
Transmitter DMA event control register
0x01D0 0100
DITCSRA0
Left (even TDM time slot) channel status register (DIT mode) 0
0x01D0 4100
0x01D0 8100
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
97
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-44. McASP Registers Accessed Through Peripheral Configuration Port (continued)
McASP0
BYTE
ADDRESS
McASP1
BYTE
ADDRESS
McASP2
BYTE
ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01D0 0104
0x01D0 4104
0x01D0 8104
DITCSRA1
Left (even TDM time slot) channel status register (DIT mode) 1
0x01D0 0108
0x01D0 4108
0x01D0 8108
DITCSRA2
Left (even TDM time slot) channel status register (DIT mode) 2
0x01D0 010C 0x01D0 410C 0x01D0 810C
DITCSRA3
Left (even TDM time slot) channel status register (DIT mode) 3
0x01D0 0110
0x01D0 4110
0x01D0 8110
DITCSRA4
Left (even TDM time slot) channel status register (DIT mode) 4
0x01D0 0114
0x01D0 4114
0x01D0 8114
DITCSRA5
Left (even TDM time slot) channel status register (DIT mode) 5
0x01D0 0118
0x01D0 4118
0x01D0 8118
DITCSRB0
Right (odd TDM time slot) channel status register (DIT mode) 0
0x01D0 011C 0x01D0 411C 0x01D0 811C
DITCSRB1
Right (odd TDM time slot) channel status register (DIT mode) 1
0x01D0 0120
0x01D0 4120
0x01D0 8120
DITCSRB2
Right (odd TDM time slot) channel status register (DIT mode) 2
0x01D0 0124
0x01D0 4124
0x01D0 8124
DITCSRB3
Right (odd TDM time slot) channel status register (DIT mode) 3
0x01D0 0128
0x01D0 4128
0x01D0 8128
DITCSRB4
Right (odd TDM time slot) channel status register (DIT mode) 4
0x01D0 012C 0x01D0 412C 0x01D0 812C
DITCSRB5
Right (odd TDM time slot) channel status register (DIT mode) 5
0x01D0 0130
0x01D0 4130
0x01D0 8130
DITUDRA0
Left (even TDM time slot) channel user data register (DIT mode) 0
0x01D0 0134
0x01D0 4134
0x01D0 8134
DITUDRA1
Left (even TDM time slot) channel user data register (DIT mode) 1
0x01D0 0138
0x01D0 4138
0x01D0 8138
DITUDRA2
Left (even TDM time slot) channel user data register (DIT mode) 2
0x01D0 013C 0x01D0 413C 0x01D0 813C
DITUDRA3
Left (even TDM time slot) channel user data register (DIT mode) 3
0x01D0 0140
0x01D0 4140
0x01D0 8140
DITUDRA4
Left (even TDM time slot) channel user data register (DIT mode) 4
0x01D0 0144
0x01D0 4144
0x01D0 8144
DITUDRA5
Left (even TDM time slot) channel user data register (DIT mode) 5
0x01D0 0148
0x01D0 4148
0x01D0 8148
DITUDRB0
Right (odd TDM time slot) channel user data register (DIT mode) 0
0x01D0 014C 0x01D0 414C 0x01D0 814C
DITUDRB1
Right (odd TDM time slot) channel user data register (DIT mode) 1
0x01D0 0150
0x01D0 4150
0x01D0 8150
DITUDRB2
Right (odd TDM time slot) channel user data register (DIT mode) 2
0x01D0 0154
0x01D0 4154
0x01D0 8154
DITUDRB3
Right (odd TDM time slot) channel user data register (DIT mode) 3
0x01D0 0158
0x01D0 4158
0x01D0 8158
DITUDRB4
Right (odd TDM time slot) channel user data register (DIT mode) 4
0x01D0 015C 0x01D0 415C 0x01D0 815C
DITUDRB5
Right (odd TDM time slot) channel user data register (DIT mode) 5
0x01D0 0180
0x01D0 4180
0x01D0 8180
SRCTL0
Serializer control register 0
0x01D0 0184
0x01D0 4184
0x01D0 8184
SRCTL1
Serializer control register 1
0x01D0 0188
0x01D0 4188
0x01D0 8188
SRCTL2
Serializer control register 2
0x01D0 018C 0x01D0 418C 0x01D0 818C
SRCTL3
Serializer control register 3
0x01D0 0190
0x01D0 4190
0x01D0 8190
SRCTL4
Serializer control register 4
0x01D0 0194
0x01D0 4194
0x01D0 8194
SRCTL5
Serializer control register 5
0x01D0 0198
0x01D0 4198
0x01D0 8198
SRCTL6
Serializer control register 6
0x01D0 019C 0x01D0 419C 0x01D0 819C
SRCTL7
Serializer control register 7
0x01D0 01A0
0x01D0 41A0
0x01D0 81A0
SRCTL8
Serializer control register 8
0x01D0 01A4
0x01D0 41A4
0x01D0 81A4
SRCTL9
Serializer control register 9
0x01D0 01A8
0x01D0 41A8
0x01D0 81A8
SRCTL10
Serializer control register 10
0x01D0 01AC 0x01D0 41AC 0x01D0 81AC
SRCTL11
Serializer control register 11
0x01D0 01B0
0x01D0 41B0
0x01D0 81B0
SRCTL12
Serializer control register 12
0x01D0 01B4
0x01D0 41B4
0x01D0 81B4
SRCTL13
Serializer control register 13
0x01D0 01B8
0x01D0 41B8
0x01D0 81B8
SRCTL14
Serializer control register 14
0x01D0 01BC 0x01D0 41BC 0x01D0 81BC
SRCTL15
Serializer control register 15
(1)
Transmit buffer register for serializer 0
0x01D0 0200
0x01D0 4200
0x01D0 8200
XBUF0
0x01D0 0204
0x01D0 4204
0x01D0 8204
XBUF1 (1)
Transmit buffer register for serializer 1
0x01D0 0208
0x01D0 4208
0x01D0 8208
XBUF2 (1)
Transmit buffer register for serializer 2
0x01D0 020C 0x01D0 420C 0x01D0 820C
XBUF3
(1)
Transmit buffer register for serializer 3
0x01D0 0210
0x01D0 4210
0x01D0 8210
XBUF4 (1)
Transmit buffer register for serializer 4
0x01D0 0214
0x01D0 4214
0x01D0 8214
XBUF5 (1)
Transmit buffer register for serializer 5
(1)
98
Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-44. McASP Registers Accessed Through Peripheral Configuration Port (continued)
McASP0
BYTE
ADDRESS
McASP1
BYTE
ADDRESS
McASP2
BYTE
ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01D0 0218
0x01D0 4218
0x01D0 8218
XBUF6 (1)
Transmit buffer register for serializer 6
0x01D0 021C 0x01D0 421C 0x01D0 821C
XBUF7 (1)
Transmit buffer register for serializer 7
(1)
Transmit buffer register for serializer 8
0x01D0 0220
0x01D0 4220
0x01D0 8220
XBUF8
0x01D0 0224
0x01D0 4224
0x01D0 8224
XBUF9 (1)
Transmit buffer register for serializer 9
0x01D0 0228
0x01D0 4228
0x01D0 8228
XBUF10 (1)
Transmit buffer register for serializer 10
0x01D0 022C 0x01D0 422C 0x01D0 822C
XBUF11 (1)
Transmit buffer register for serializer 11
(1)
Transmit buffer register for serializer 12
0x01D0 0230
0x01D0 4230
0x01D0 8230
XBUF12
0x01D0 0234
0x01D0 4234
0x01D0 8234
XBUF13 (1)
Transmit buffer register for serializer 13
0x01D0 0238
0x01D0 4238
0x01D0 8238
XBUF14 (1)
Transmit buffer register for serializer 14
0x01D0 023C 0x01D0 423C 0x01D0 823C
XBUF15
(1)
Transmit buffer register for serializer 15
0x01D0 0280
0x01D0 4280
0x01D0 8280
RBUF0 (2)
Receive buffer register for serializer 0
0x01D0 0284
0x01D0 4284
0x01D0 8284
RBUF1 (2)
Receive buffer register for serializer 1
0x01D0 8288
(2)
Receive buffer register for serializer 2
0x01D0 028C 0x01D0 428C 0x01D0 828C
RBUF3 (2)
Receive buffer register for serializer 3
0x01D0 0290
0x01D0 4290
0x01D0 8290
RBUF4 (3)
Receive buffer register for serializer 4
0x01D0 0294
0x01D0 4294
0x01D0 8294
RBUF5 (3)
Receive buffer register for serializer 5
0x01D0 8298
(3)
Receive buffer register for serializer 6
0x01D0 029C 0x01D0 429C 0x01D0 829C
RBUF7 (3)
Receive buffer register for serializer 7
0x01D0 02A0
0x01D0 82A0
RBUF8 (3)
Receive buffer register for serializer 8
(3)
Receive buffer register for serializer 9
0x01D0 0288
0x01D0 0298
0x01D0 4288
0x01D0 4298
0x01D0 42A0
RBUF2
RBUF6
0x01D0 02A4
0x01D0 42A4
0x01D0 82A4
RBUF9
0x01D0 02A8
0x01D0 42A8
0x01D0 82A8
RBUF10 (3)
Receive buffer register for serializer 10
0x01D0 02AC 0x01D0 42AC 0x01D0 82AC
RBUF11 (3)
Receive buffer register for serializer 11
(3)
Receive buffer register for serializer 12
0x01D0 02B0
0x01D0 42B0
0x01D0 82B0
RBUF12
0x01D0 02B4
0x01D0 42B4
0x01D0 82B4
RBUF13 (3)
Receive buffer register for serializer 13
0x01D0 02B8
0x01D0 42B8 0x01D0 82BB
RBUF14 (3)
Receive buffer register for serializer 14
0x01D0 02BC 0x01D0 42BC 0x01D0 82BC
RBUF15 (3)
Receive buffer register for serializer 15
(2)
(3)
Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.
Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
99
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-45. McASP Registers Accessed Through DMA Port
McASP0
BYTE
ADDRESS
McASP1
BYTE
ADDRESS
McASP2
BYTE
ADDRESS
ACRONYM
REGISTER DESCRIPTION
Read
Accesses
01D0 2000
01D0 6000
01D0 A000
RBUF
Receive buffer DMA port address. Cycles through receive
serializers, skipping over transmit serializers and inactive
serializers. Starts at the lowest serializer at the beginning of
each time slot. Reads from DMA port only if RBUSEL = 0 in
RFMT.
Write
Accesses
01D0 2000
01D0 6000
01D0 A000
XBUF
Transmit buffer DMA port address. Cycles through transmit
serializers, skipping over receive and inactive serializers.
Starts at the lowest serializer at the beginning of each time
slot. Writes to DMA port only if XBUSEL = 0 in XFMT.
Table 6-46. McASP AFIFO Registers Accessed Through Peripheral Configuration Port
100
McASP0
BYTE ADDRESS
McASP1
BYTE ADDRESS
McASP2
BYTE ADDRESS
ACRONYM
0x01D0 1000
0x01D0 5000
0x01D0 9000
AFIFOREV
AFIFO revision identification register
0x01D0 1010
0x01D0 5010
0x01D0 9010
WFIFOCTL
Write FIFO control register
0x01D0 1014
0x01D0 5014
0x01D0 9014
WFIFOSTS
Write FIFO status register
0x01D0 1018
0x01D0 5018
0x01D0 9018
RFIFOCTL
Read FIFO control register
0x01D0 101C
0x01D0 501C
0x01D0 901C
RFIFOSTS
Read FIFO status register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
REGISTER DESCRIPTION
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.16.2 McASP Electrical Data/Timing
6.16.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing
Table 6-47 and Table 6-48 assume testing over recommended operating conditions (see Figure 6-34 and
Figure 6-35).
Table 6-47. McASP0 Timing Requirements (1)
No.
1
tc(AHCLKRX)
2
tw(AHCLKRX)
3
tc(ACLKRX)
4
tw(ACLKRX)
5
tsu(AFSRX-ACLKRX)
PARAMETER
MIN
Cycle time, AHCLKR0 external, AHCLKR0 input
25
Cycle time, AHCLKX0 external, AHCLKX0 input
25
Pulse duration, AHCLKR0 external, AHCLKR0 input
12.5
Pulse duration, AHCLKX0 external, AHCLKX0 input
12.5
Cycle time, ACLKR0 external, ACLKR0 input
greater of 2P or 25
Cycle time, ACLKX0 external, ACLKX0 input
greater of 2P or 25
Pulse duration, ACLKR0 external, ACLKR0 input
12.5
Pulse duration, ACLKX0 external, ACLKX0 input
12.5
Setup time, AFSR0 input to ACLKR0 internal (3)
9.4
Setup time, AFSX0 input to ACLKX0 internal
9.4
Setup time, AFSR0 input to ACLKR0 external input (3)
2.9
Setup time, AFSX0 input to ACLKX0 external input
2.9
Setup time, AFSR0 input to ACLKR0 external output (3)
2.9
Setup time, AFSX0 input to ACLKX0 external output
2.9
Hold time, AFSR0 input after ACLKR0 internal (3)
-1.2
Hold time, AFSX0 input after ACLKX0 internal
6
th(ACLKRX-AFSRX)
tsu(AXR-ACLKRX)
Hold time, AFSR0 input after ACLKR0 external input
8
(1)
(2)
(3)
(4)
th(ACLKRX-AXR)
0.9
Hold time, AFSX0 input after ACLKX0 external input
0.9
Hold time, AFSR0 input after ACLKR0 external output (3)
0.9
Hold time, AFSX0 input after ACLKX0 external output
0.9
Setup time, AXR0[n] input to ACLKR0 internal (3)
9.4
UNIT
ns
ns
ns
ns
ns
2.9
Setup time, AXR0[n] input to ACLKX0 external input (4)
2.9
Setup time, AXR0[n] input to ACLKR0 external output (3)
2.9
Setup time, AXR0[n] input to ACLKX0 external output (4)
2.9
Setup time, AXR0[n] input to ACLKR0 external input
ns
9.4
(3)
(3)
-1.3
Hold time, AXR0[n] input after ACLKX0 internal (4)
-1.3
Hold time, AXR0[n] input after ACLKR0 internal
MAX
-1.2
(3)
Setup time, AXR0[n] input to ACLKX0 internal (4)
7
(2)
Hold time, AXR0[n] input after ACLKR0 external input (3)
0.5
(4)
0.5
Hold time, AXR0[n] input after ACLKX0 external input
Hold time, AXR0[n] input after ACLKR0 external output (3)
0.5
Hold time, AXR0[n] input after ACLKX0 external output (4)
0.5
ns
ns
ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
101
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-48. McASP0 Switching Characteristics (1)
No.
9
PARAMETER
tc(AHCLKRX)
MIN
Cycle time, AHCLKR0 internal, AHCLKR0 output
25
Cycle time, AHCLKR0 external, AHCLKR0 output
25
Cycle time, AHCLKX0 internal, AHCLKX0 output
25
Cycle time, AHCLKX0 external, AHCLKX0 output
10
11
12
tw(AHCLKRX)
tc(ACLKRX)
tw(ACLKRX)
(AHR/2) – 2.5 (2)
Pulse duration, AHCLKR0 external, AHCLKR0 output
(AHR/2) – 2.5 (2)
Pulse duration, AHCLKX0 internal, AHCLKX0 output
(AHX/2) – 2.5 (3)
Pulse duration, AHCLKX0 external, AHCLKX0 output
(AHX/2) – 2.5 (3)
Cycle time, ACLKR0 internal, ACLKR0 output
greater of 2P or 25 ns (4)
Cycle time, ACLKR0 external, ACLKR0 output
greater of 2P or 25 ns (4)
Cycle time, ACLKX0 internal, ACLKX0 output
greater of 2P or 25 ns (4)
Cycle time, ACLKX0 external, ACLKX0 output
greater of 2P or 25 ns (4)
Pulse duration, ACLKR0 internal, ACLKR0 output
(AR/2) – 2.5 (5)
Pulse duration, ACLKR0 external, ACLKR0 output
(AR/2) – 2.5 (5)
Pulse duration, ACLKX0 internal, ACLKX0 output
(AX/2) – 2.5 (6)
Pulse duration, ACLKX0 external, ACLKX0 output
(AX/2) – 2.5 (6)
(7)
Delay time, ACLKX0 internal, AFSX output
13
td(ACLKRX-AFSRX)
Delay time, ACLKR0 external input, AFSR output
(7)
15
(1)
(2)
(3)
(4)
(5)
(6)
(7)
102
td(ACLKX-AXRV)
tdis(ACLKX-AXRHZ)
ns
ns
ns
ns
0
5.8
0
5.8
2.5
11.6
Delay time, ACLKX0 external input, AFSX output
2.5
11.6
Delay time, ACLKR0 external output, AFSR output (7)
2.5
11.6
Delay time, ACLKX0 external output, AFSX output
2.5
11.6
Delay time, ACLKX0 internal, AXR0[n] output
14
UNIT
25
Pulse duration, AHCLKR0 internal, AHCLKR0 output
Delay time, ACLKR0 internal, AFSR output
MAX
0
5.8
Delay time, ACLKX0 external input, AXR0[n] output
2.5
11.6
Delay time, ACLKX0 external output, AXR0[n] output
2.5
11.6
Disable time, ACLKX0 internal, AXR0[n] output
0
5.8
Disable time, ACLKX0 external input, AXR0[n] output
3
11.6
Disable time, ACLKX0 external output, AXR0[n] output
3
11.6
ns
ns
ns
McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
AHR - Cycle time, AHCLKR0.
AHX - Cycle time, AHCLKX0.
P = SYSCLK2 period
AR - ACLKR0 period.
AX - ACLKX0 period.
McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.16.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing
Table 6-49 and Table 6-50 assume testing over recommended operating conditions (see Figure 6-34 and
Figure 6-35).
Table 6-49. McASP1 Timing Requirements (1)
No.
PARAMETER
1
tc(AHCLKRX)
2
tw(AHCLKRX)
3
tc(ACLKRX)
4
tw(ACLKRX)
5
6
7
tsu(AFSRX-ACLKRX)
th(ACLKRX-AFSRX)
tsu(AXR-ACLKRX)
MIN
Cycle time, AHCLKR1 external, AHCLKR1 input
25
Cycle time, AHCLKX1 external, AHCLKX1 input
25
Pulse duration, AHCLKR1 external, AHCLKR1 input
12.5
Pulse duration, AHCLKX1 external, AHCLKX1 input
12.5
Cycle time, ACLKR1 external, ACLKR1 input
greater of 2P or 25
Cycle time, ACLKX1 external, ACLKX1 input
greater of 2P or 25
Pulse duration, ACLKR1 external, ACLKR1 input
12.5
Pulse duration, ACLKX1 external, ACLKX1 input
12.5
Setup time, AFSR1 input to ACLKR1 internal (3)
10.4
Setup time, AFSX1 input to ACLKX1 internal
10.4
Setup time, AFSR1 input to ACLKR1 external input (3)
2.6
Setup time, AFSX1 input to ACLKX1 external input
2.6
Setup time, AFSR1 input to ACLKR1 external output (3)
2.6
Setup time, AFSX1 input to ACLKX1 external output
2.6
Hold time, AFSR1 input after ACLKR1 internal (3)
-1.9
Hold time, AFSX1 input after ACLKX1 internal
-1.9
Hold time, AFSR1 input after ACLKR1 external input (3)
0.7
Hold time, AFSX1 input after ACLKX1 external input
0.7
Hold time, AFSR1 input after ACLKR1 external output (3)
0.7
Hold time, AFSX1 input after ACLKX1 external output
0.7
Setup time, AXR1[n] input to ACLKR1 internal (3)
10.4
Setup time, AXR1[n] input to ACLKX1 internal (4)
10.4
Setup time, AXR1[n] input to ACLKR1 external input (3)
2.6
Setup time, AXR1[n] input to ACLKX1 external input (4)
2.6
Setup time, AXR1[n] input to ACLKR1 external output (3)
2.6
Setup time, AXR1[n] input to ACLKX1 external output
(4)
Hold time, AXR1[n] input after ACLKR1 internal (3)
th(ACLKRX-AXR)
(2)
(3)
(4)
ns
ns
ns
ns
ns
ns
ns
-1.8
0.5
Hold time, AXR1[n] input after ACLKX1 external input (4)
0.5
Hold time, AXR1[n] input after ACLKR1 external output (3)
0.5
(4)
0.5
Hold time, AXR1[n] input after ACLKX1 external output
(1)
UNIT
2.6
(3)
Hold time, AXR1[n] input after ACLKR1 external input
MAX
-1.8
Hold time, AXR1[n] input after ACLKX1 internal (4)
8
(2)
ns
ACLKX1 internal – McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX1 external input – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX1 external output – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR1 internal – McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR1 external input – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR1 external output – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1
McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
103
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-50. McASP1 Switching Characteristics (1)
No.
9
PARAMETER
tc(AHCLKRX)
MIN
Cycle time, AHCLKR1 internal, AHCLKR1 output
25
Cycle time, AHCLKR1 external, AHCLKR1 output
25
Cycle time, AHCLKX1 internal, AHCLKX1 output
25
Cycle time, AHCLKX1 external, AHCLKX1 output
10
11
12
tw(AHCLKRX)
tc(ACLKRX)
tw(ACLKRX)
(AHR/2) – 2.5 (2)
Pulse duration, AHCLKR1 external, AHCLKR1 output
(AHR/2) – 2.5 (2)
Pulse duration, AHCLKX1 internal, AHCLKX1 output
(AHX/2) – 2.5 (3)
Pulse duration, AHCLKX1 external, AHCLKX1 output
(AHX/2) – 2.5 (3)
Cycle time, ACLKR1 internal, ACLKR1 output
greater of 2P or 25 ns (4)
Cycle time, ACLKR1 external, ACLKR1 output
greater of 2P or 25 ns (4)
Cycle time, ACLKX1 internal, ACLKX1 output
greater of 2P or 25 ns (4)
Cycle time, ACLKX1 external, ACLKX1 output
greater of 2P or 25 ns (4)
Pulse duration, ACLKR1 internal, ACLKR1 output
(AR/2) – 2.5 (5)
Pulse duration, ACLKR1 external, ACLKR1 output
(AR/2) – 2.5 (5)
Pulse duration, ACLKX1 internal, ACLKX1 output
(AX/2) – 2.5 (6)
Pulse duration, ACLKX1 external, ACLKX1 output
(AX/2) – 2.5 (6)
(7)
Delay time, ACLKX1 internal, AFSX output
13
14
15
(1)
(2)
(3)
(4)
(5)
(6)
(7)
104
td(ACLKRX-AFSRX)
td(ACLKX-AXRV)
tdis(ACLKX-AXRHZ)
Delay time, ACLKR1 external input, AFSR output
UNIT
ns
25
Pulse duration, AHCLKR1 internal, AHCLKR1 output
Delay time, ACLKR1 internal, AFSR output
MAX
(7)
ns
ns
ns
0.5
6.7
0.5
6.7
3.4
13.8
Delay time, ACLKX1 external input, AFSX output
3.4
13.8
Delay time, ACLKR1 external output, AFSR output (7)
3.4
13.8
Delay time, ACLKX1 external output, AFSX output
3.4
13.8
Delay time, ACLKX1 internal, AXR1[n] output
0.5
6.7
Delay time, ACLKX1 external input, AXR1[n] output
3.4
13.8
Delay time, ACLKX1 external output, AXR1[n] output
3.4
13.8
Disable time, ACLKX1 internal, AXR1[n] output
0.5
6.7
Disable time, ACLKX1 external input, AXR1[n] output
3.9
13.8
Disable time, ACLKX1 external output, AXR1[n] output
3.9
13.8
ns
ns
ns
McASP1 ACLKX1 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
McASP1 ACLKX1 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
McASP1 ACLKX1 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
McASP1 ACLKR1 internal – ACLKR1CTL.CLKRM = 1, PDIR.ACLKR =1
McASP1 ACLKR1 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
McASP1 ACLKR1 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
AHR - Cycle time, AHCLKR1.
AHX - Cycle time, AHCLKX1.
P = SYSCLK2 period
AR - ACLKR1 period.
AX - ACLKX1 period.
McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
2
1
2
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
4
3
4
ACLKR/X (CLKRP = CLKXP = 0)(A)
ACLKR/X (CLKRP = CLKXP = 1)(B)
6
5
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
8
7
AXR[n] (Data In/Receive)
A.
B.
For CLKRP = CLKXP =
receiver is configured for
For CLKRP = CLKXP =
receiver is configured for
A0 A1
A30 A31 B0 B1
B30 B31 C0 C1 C2 C3
C31
0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
falling edge (to shift data in).
1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
rising edge (to shift data in).
Figure 6-34. McASP Input Timings
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
105
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
10
10
9
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
12
11
12
ACLKR/X (CLKRP = CLKXP = 1)(A)
ACLKR/X (CLKRP = CLKXP = 0)(B)
13
13
13
13
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
13
13
13
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
14
15
AXR[n] (Data Out/Transmit)
A0
A.
B.
For CLKRP = CLKXP =
receiver is configured for
For CLKRP = CLKXP =
receiver is configured for
A1
A30 A31 B0 B1
B30 B31 C0
C1 C2 C3
C31
1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
rising edge (to shift data in).
0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
falling edge (to shift data in).
Figure 6-35. McASP Output Timings
106
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.16.2.3 Multichannel Audio Serial Port 2 (McASP2) Timing
Table 6-51 and Table 6-52 assume testing over recommended operating conditions (see Figure 6-34 and
Figure 6-35).
Table 6-51. McASP2 Timing Requirements (1)
No.
PARAMETER
1
tc(AHCLKRX)
2
tw(AHCLKRX)
3
tc(ACLKRX)
4
tw(ACLKRX)
5
6
tsu(AFSRX-ACLKRX)
th(ACLKRX-AFSRX)
tsu(AXR-ACLKRX)
MIN
Cycle time, AHCLKR2 external, AHCLKR2 input
15
Cycle time, AHCLKX2 external, AHCLKX2 input
15
Pulse duration, AHCLKR2 external, AHCLKR2 input
7.5
Pulse duration, AHCLKX2 external, AHCLKX2 input
7.5
Cycle time, ACLKR2 external, ACLKR2 input
greater of 2P or 15
Cycle time, ACLKX2 external, ACLKX2 input
greater of 2P or 15
Pulse duration, ACLKR2 external, ACLKR2 input
7.5
Pulse duration, ACLKX2 external, ACLKX2 input
7.5
Setup time, AFSR2 input to ACLKR2 internal (3)
10
Setup time, AFSX2 input to ACLKX2 internal
10
Setup time, AFSR2 input to ACLKR2 external input (3)
1.6
Setup time, AFSX2 input to ACLKX2 external input
1.6
Setup time, AFSR2 input to ACLKR2 external output (3)
1.6
Setup time, AFSX2 input to ACLKX2 external output
1.6
Hold time, AFSR2 input after ACLKR2 internal (3)
-1.7
Hold time, AFSX2 input after ACLKX2 internal
-1.7
Hold time, AFSR2 input after ACLKR2 external input (3)
1.3
Hold time, AFSX2 input after ACLKX2 external input
1.3
Hold time, AFSR2 input after ACLKR2 external output (3)
1.3
Hold time, AFSX2 input after ACLKX2 external output
1.3
Setup time, AXR2[n] input to ACLKR2 internal (3)
10
Setup time, AXR2[n] input to ACLKX2 internal
7
(4)
1.6
Setup time, AXR2[n] input to ACLKX2 external input (4)
1.6
Setup time, AXR2[n] input to ACLKR2 external output (3)
1.6
(4)
Hold time, AXR2[n] input after ACLKR2 internal (3)
(2)
(3)
(4)
ns
ns
ns
ns
ns
ns
-1.7
1.3
Hold time, AXR2[n] input after ACLKX2 external input (4)
1.3
Hold time, AXR2[n] input after ACLKR2 external output (3)
1.3
(4)
1.3
Hold time, AXR2[n] input after ACLKX2 external output
(1)
ns
1.6
(3)
Hold time, AXR2[n] input after ACLKR2 external input
UNIT
-1.7
Hold time, AXR2[n] input after ACLKX2 internal (4)
th(ACLKRX-AXR)
MAX
10
Setup time, AXR2[n] input to ACLKR2 external input (3)
Setup time, AXR2[n] input to ACLKX2 external output
8
(2)
ns
ACLKX2 internal – McASP2 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX2 external input – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX2 external output – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
ACLKR2 internal – McASP2 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1
ACLKR2 external input – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR2 external output – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
P = SYSCLK2 period
McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2
McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
107
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-52. McASP2 Switching Characteristics (1)
No.
9
PARAMETER
tc(AHCLKRX)
MIN
Cycle time, AHCLKR2 internal, AHCLKR2 output
15
Cycle time, AHCLKR2 external, AHCLKR2 output
15
Cycle time, AHCLKX2 internal, AHCLKX2 output
15
Cycle time, AHCLKX2 external, AHCLKX2 output
10
11
12
tw(AHCLKRX)
tc(ACLKRX)
tw(ACLKRX)
(AHR/2) – 2.5 (2)
Pulse duration, AHCLKR2 external, AHCLKR2 output
(AHR/2) – 2.5 (2)
Pulse duration, AHCLKX2 internal, AHCLKX2 output
(AHX/2) – 2.5 (3)
Pulse duration, AHCLKX2 external, AHCLKX2 output
(AHX/2) – 2.5 (3)
Cycle time, ACLKR2 internal, ACLKR2 output
greater of 2P or 15 ns (4)
Cycle time, ACLKR2 external, ACLKR2 output
greater of 2P or 15 ns (4)
Cycle time, ACLKX2 internal, ACLKX2 output
greater of 2P or 15 ns (4)
Cycle time, ACLKX2 external, ACLKX2 output
greater of 2P or 15 ns (4)
Pulse duration, ACLKR2 internal, ACLKR2 output
(AR/2) – 2.5 (5)
Pulse duration, ACLKR2 external, ACLKR2 output
(AR/2) – 2.5 (5)
Pulse duration, ACLKX2 internal, ACLKX2 output
(AX/2) – 2.5 (6)
Pulse duration, ACLKX2 external, ACLKX2 output
(AX/2) – 2.5 (6)
(7)
Delay time, ACLKX2 internal, AFSX output
13
14
15
(1)
(2)
(3)
(4)
(5)
(6)
(7)
108
td(ACLKRX-AFSRX)
td(ACLKX-AXRV)
tdis(ACLKX-AXRHZ)
Delay time, ACLKR2 external input, AFSR output
UNIT
ns
15
Pulse duration, AHCLKR2 internal, AHCLKR2 output
Delay time, ACLKR2 internal, AFSR output
MAX
(7)
ns
ns
ns
-1.4
2.8
-1.4
2.8
2.1
10
Delay time, ACLKX2 external input, AFSX output
2.1
10
Delay time, ACLKR2 external output, AFSR output (7)
2.1
10
Delay time, ACLKX2 external output, AFSX output
2.1
10
Delay time, ACLKX2 internal, AXR2[n] output
-1.4
2.8
Delay time, ACLKX2 external input, AXR2[n] output
2.1
10
Delay time, ACLKX2 external output, AXR2[n] output
2.1
10
Disable time, ACLKX2 internal, AXR2[n] output
-1.4
2.8
Disable time, ACLKX2 external input, AXR2[n] output
2.9
10
Disable time, ACLKX2 external output, AXR2[n] output
2.9
10
ns
ns
ns
McASP2 ACLKX2 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
McASP2 ACLKX2 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
McASP2 ACLKX2 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
McASP2 ACLKR2 internal – ACLKR2CTL.CLKRM = 1, PDIR.ACLKR =1
McASP2 ACLKR2 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
McASP2 ACLKR2 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
AHR - Cycle time, AHCLKR2.
AHX - Cycle time, AHCLKX2.
P = SYSCLK2 period
AR - ACLKR2 period.
AX - ACLKX2 period.
McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.17 Serial Peripheral Interface Ports (SPI0, SPI1)
Figure 6-36 is a block diagram of the SPI module, which is a simple shift register and buffer plus control
logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end
of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives
the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many
data formatting options.
SPIx_SIMO
SPIx_SOMI
Peripheral
Configuration Bus
Interrupt and
DMA Requests
16-Bit Shift Register
16-Bit Buffer
SPIx_ENA
GPIO
Control
(all pins)
State
Machine
SPIx_SCS
Clock
Control
SPIx_CLK
Figure 6-36. Block Diagram of SPI Module
The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and
SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA).
The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are
other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin
when SPIx_SCS is held low.
In slave mode, SPIx_ENA is an optional output. The SPIx_ENA output provides the status of the internal
transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only
when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin
mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single
handshake line to be shared by multiple slaves on the same SPI bus.
In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start
of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI
communications and, on average, increases SPI bus throughput since the master does not need to delay
each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer
can begin as soon as both the master and slave have actually serviced the previous SPI transfer.
Although the SPI module supports two interrupt outputs, SPIx_INT1 is the only interrupt connected on this
device.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
109
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Optional − Slave Chip Select
SPIx_SCS
SPIx_SCS
Optional Enable (Ready)
SPIx_ENA
SPIx_ENA
SPIx_CLK
SPIx_CLK
SPIx_SOMI
SPIx_SOMI
SPIx_SIMO
SPIx_SIMO
MASTER SPI
SLAVE SPI
Figure 6-37. Illustration of SPI Master-to-SPI Slave Connection
110
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.17.1 SPI Peripheral Registers Description(s)
Table 6-53 is a list of the SPI registers.
Table 6-53. SPIx Configuration Registers
SPI0
BYTE ADDRESS
SPI1
BYTE ADDRESS
ACRONYM
0x01C4 1000
0x01E1 2000
SPIGCR0
Global Control Register 0
0x01C4 1004
0x01E1 2004
SPIGCR1
Global Control Register 1
0x01C4 1008
0x01E1 2008
SPIINT0
Interrupt Register
0x01C4 100C
0x01E1 200C
SPILVL
Interrupt Level Register
0x01C4 1010
0x01E1 2010
SPIFLG
Flag Register
0x01C4 1014
0x01E1 2014
SPIPC0
Pin Control Register 0 (Pin Function)
0x01C4 1018
0x01E1 2018
SPIPC1
Pin Control Register 1 (Pin Direction)
0x01C4 101C
0x01E1 201C
SPIPC2
Pin Control Register 2 (Pin Data In)
0x01C4 1020
0x01E1 2020
SPIPC3
Pin Control Register 3 (Pin Data Out)
0x01C4 1024
0x01E1 2024
SPIPC4
Pin Control Register 4 (Pin Data Set)
0x01C4 1028
0x01E1 2028
SPIPC5
Pin Control Register 5 (Pin Data Clear)
0x01C4 102C
0x01E1 202C
Reserved
Reserved - Do not write to this register
0x01C4 1030
0x01E1 2030
Reserved
Reserved - Do not write to this register
0x01C4 1034
0x01E1 2034
Reserved
Reserved - Do not write to this register
REGISTER DESCRIPTION
0x01C4 1038
0x01E1 2038
SPIDAT0
Shift Register 0 (without format select)
0x01C4 103C
0x01E1 203C
SPIDAT1
Shift Register 1 (with format select)
0x01C4 1040
0x01E1 2040
SPIBUF
Buffer Register
0x01C4 1044
0x01E1 2044
SPIEMU
Emulation Register
0x01C4 1048
0x01E1 2048
SPIDELAY
0x01C4 104C
0x01E1 204C
SPIDEF
Default Chip Select Register
0x01C4 1050
0x01E1 2050
SPIFMT0
Format Register 0
0x01C4 1054
0x01E1 2054
SPIFMT1
Format Register 1
0x01C4 1058
0x01E1 2058
SPIFMT2
Format Register 2
0x01C4 105C
0x01E1 205C
SPIFMT3
Format Register 3
0x01C4 1060
0x01E1 2060
Reserved
Reserved - Do not write to this register
0x01C4 1064
0x01E1 2064
INTVEC1
Interrupt Vector for SPI INT1
Copyright © 2010–2014, Texas Instruments Incorporated
Delay Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
111
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.17.2 SPI Electrical Data/Timing
6.17.2.1 Serial Peripheral Interface (SPI) Timing
Table 6-54 through Table 6-69 assume testing over recommended operating conditions (see Figure 6-38
through Figure 6-41).
Table 6-54. General Timing Requirements for SPI0 Master Modes (1)
No.
PARAMETER
MIN
UNIT
tc(SPC)M
Cycle Time, SPI0_CLK, All Master Modes
2
tw(SPCH)M
Pulse Width High, SPI0_CLK, All Master Modes
0.5tc(SPC)M - 1
ns
3
tw(SPCL)M
Pulse Width Low, SPI0_CLK, All Master Modes
0.5tc(SPC)M - 1
ns
4
5
6
td(SIMO_SPC)M
td(SPC_SIMO)M
toh(SPC_SIMO)M
Delay, initial data bit valid on
SPI0_SIMO after initial edge
on SPI0_CLK (2)
Delay, subsequent bits valid
on SPI0_SIMO after transmit
edge of SPI0_CLK
Output hold time, SPI0_SIMO
valid afterreceive edge of
SPI0_CLK
8
(1)
(2)
112
tsu(SOMI_SPC)M
5
Polarity = 0, Phase = 1,
to SPI0_CLK rising
- 0.5tc(SPC)M + 5
Polarity = 1, Phase = 0,
to SPI0_CLK falling
5
Polarity = 1, Phase = 1,
to SPI0_CLK falling
- 0.5tc(SPC)M + 5
Polarity = 0, Phase = 0,
from SPI0_CLK rising
5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
5
Polarity = 1, Phase = 0,
from SPI0_CLK falling
5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
5
tih(SPC_SOMI)M
ns
ns
ns
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)M - 3
Polarity = 0, Phase = 1,
from SPI0_CLK rising
0.5tc(SPC)M - 3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M - 3
Polarity = 1, Phase = 1,
from SPI0_CLK falling
0.5tc(SPC)M - 3
Polarity = 0, Phase = 1,
Input Setup Time, SPI0_SOMI to SPI0_CLK rising
valid beforereceive edge of
Polarity = 1, Phase = 0,
SPI0_CLK
to SPI0_CLK rising
Input Hold Time, SPI0_SOMI
valid after
receive edge of SPI0_CLK
256P
Polarity = 0, Phase = 0,
to SPI0_CLK rising
Polarity = 0, Phase = 0,
to SPI0_CLK falling
7
greater of 3P or 20
MAX
1
ns
0
0
ns
0
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0
Polarity = 0, Phase = 0,
from SPI0_CLK falling
5
Polarity = 0, Phase = 1,
from SPI0_CLK rising
5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
5
Polarity = 1, Phase = 1,
from SPI0_CLK falling
5
ns
P = SYSCLK2 period
First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-55. General Timing Requirements for SPI0 Slave Modes (1)
No.
MAX
10
tw(SPCH)S
Pulse Width High, SPI0_CLK, All Slave Modes
18
ns
11
tw(SPCL)S
Pulse Width Low, SPI0_CLK, All Slave Modes
18
ns
14
15
16
tsu(SOMI_SPC)S
td(SPC_SOMI)S
toh(SPC_SOMI)S
tsu(SIMO_SPC)S
tih(SPC_SIMO)S
Setup time, transmit data written to
SPI before initial clock edge from
master. (2) (3)
Delay, subsequent bits valid on
SPI0_SOMI after transmit edge of
SPI0_CLK
Output hold time, SPI0_SOMI valid
afte receive edge of SPI0_CLK
Input Setup Time, SPI0_SIMO valid
before receive edge of SPI0_CLK
Input Hold Time, SPI0_SIMO valid
after receive edge of SPI0_CLK
greater of 3P or 40
UNIT
Cycle Time, SPI0_CLK, All Slave Modes
13
(3)
MIN
tc(SPC)S
12
(1)
(2)
PARAMETER
9
Polarity = 0, Phase = 0,
to SPI0_CLK rising
2P
Polarity = 0, Phase = 1,
to SPI0_CLK rising
2P
Polarity = 1, Phase = 0,
to SPI0_CLK falling
2P
Polarity = 1, Phase = 1,
to SPI0_CLK falling
2P
ns
ns
Polarity = 0, Phase = 0,
from SPI0_CLK rising
18.5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
18.5
Polarity = 1, Phase = 0,
from SPI0_CLK falling
18.5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
18.5
ns
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)S - 3
Polarity = 0, Phase = 1,
from SPI0_CLK rising
0.5tc(SPC)S - 3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)S - 3
Polarity = 1, Phase = 1,
from SPI0_CLK falling
0.5tc(SPC)S - 3
Polarity = 0, Phase = 0,
to SPI0_CLK falling
0
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0
Polarity = 1, Phase = 0,
to SPI0_CLK rising
0
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0
Polarity = 0, Phase = 0,
from SPI0_CLK falling
5
Polarity = 0, Phase = 1,
from SPI0_CLK rising
5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
5
Polarity = 1, Phase = 1,
from SPI0_CLK falling
5
ns
ns
ns
P = SYSCLK2 period
First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO.
Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by the CPU.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
113
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-56. Additional (1) SPI0 Master Timings, 4-Pin Enable Option (2)
No.
17
18
(1)
(2)
(3)
(4)
(5)
PARAMETER
td(ENA_SPC)M
td(SPC_ENA)M
Delay from slave assertion of
SPI0_ENA active to first SPI0_CLK
from master. (4)
Max delay for slave to deassert
SPI0_ENA after final SPI0_CLK edge
to ensure master does not begin the
next transfer. (5)
MIN
(3)
MAX
UNIT
Polarity = 0, Phase = 0,
to SPI0_CLK rising
3P + 3.6
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5tc(SPC)M + 3P + 3.6
Polarity = 1, Phase = 0,
to SPI0_CLK falling
3P + 3.6
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5tc(SPC)M + 3P + 3.6
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)M + P + 5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P+5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M + P + 5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P+5
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-54).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_ENA assertion.
In the case where the master SPI is ready with new data before SPI0_EN A deassertion.
Table 6-57. Additional (1) SPI0 Master Timings, 4-Pin Chip Select Option (2)
No.
19
20
(1)
(2)
(3)
(4)
(5)
(6)
(7)
114
PARAMETER
td(SCS_SPC)M
td(SPC_SCS)M
Delay from SPI0_SCS active to first
SPI0_CLK (4) (5)
Delay from final SPI0_CLK edge to
master deasserting SPI0_SCS (6) (7)
(3)
MIN
MAX
Polarity = 0, Phase = 0,
to SPI0_CLK rising
2P - 5
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5tc(SPC)M + 2P - 5
Polarity = 1, Phase = 0,
to SPI0_CLK falling
2P - 5
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5tc(SPC)M + 2P - 5
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)M + P - 3
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P-3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M + P - 3
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P-3
UNIT
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-54).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain
asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-58. Additional (1) SPI0 Master Timings, 5-Pin Option (2)
No.
18
20
21
PARAMETER
td(SPC_ENA)M
td(SPC_SCS)M
td(SCSL_ENAL)M
MIN
Max delay for slave to
deassert SPI0_ENA after
final SPI0_CLK edge to
ensure master does not
begin the next transfer. (4)
Delay from final SPI0_CLK
edge to
master deasserting
SPI0_SCS (5) (6)
td(SCS_SPC)M
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P+5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M + P + 5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P+5
td(ENA_SPC)M
ns
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)M + P - 3
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P-3
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M + P - 3
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P-3
ns
Max delay for slave SPI to drive SPI0_ENA valid after
master asserts SPI0_SCS to delay the
master from beginning the next transfer,
Polarity = 0, Phase = 1,
Delay from SPI0_SCS active to SPI0_CLK rising
to first SPI0_CLK (7) (8) (9)
Polarity = 1, Phase = 0,
to SPI0_CLK falling
Delay from assertion of
SPI0_ENA low to first
SPI0_CLK edge. (10)
UNIT
0.5tc(SPC)M + P + 5
Polarity = 1, Phase = 1,
to SPI0_CLK falling
23
MAX
Polarity = 0, Phase = 0,
from SPI0_CLK falling
Polarity = 0, Phase = 0,
to SPI0_CLK rising
22
(3)
C2TDELAY + P
ns
2P - 5
0.5tc(SPC)M + 2P - 5
ns
2P - 5
0.5tc(SPC)M + 2P - 5
Polarity = 0, Phase = 0,
to SPI0_CLK rising
3P + 3.6
Polarity = 0, Phase = 1,
to SPI0_CLK rising
0.5tc(SPC)M + 3P + 3.6
Polarity = 1, Phase = 0,
to SPI0_CLK falling
3P + 3.6
Polarity = 1, Phase = 1,
to SPI0_CLK falling
0.5tc(SPC)M + 3P + 3.6
ns
(1)
(2)
(3)
(4)
(5)
These parameters are in addition to the general timings for SPI master modes (Table 6-55).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI0_ENA deassertion.
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain
asserted.
(6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
(7) If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA.
(8) In the case where the master SPI is ready with new data before SPI0_SCS assertion.
(9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
(10) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
115
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-59. Additional (1) SPI0 Slave Timings, 4-Pin Enable Option (2)
No.
24
(1)
(2)
(3)
PARAMETER
td(SPC_ENAH)S
Delay from final
SPI0_CLK edge to
slave deasserting
SPI0_ENA.
MIN
(3)
MAX
UNIT
Polarity = 0, Phase = 0,
from SPI0_CLK falling
1.5 P - 3
2.5 P + 18.5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
– 0.5tc(SPC)M + 1.5 P - 3
– 0.5tc(SPC)M + 2.5 P + 18.5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
1.5 P - 3
2.5 P + 18.5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
– 0.5tc(SPC)M + 1.5 P - 3
– 0.5tc(SPC)M + 2.5 P + 18.5
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-55).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Table 6-60. Additional (1) SPI0 Slave Timings, 4-Pin Chip Select Option (2)
No.
25
26
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
MIN
Required delay from SPI0_SCS asserted at slave to first
SPI0_CLK edge at slave.
Required delay from final
SPI0_CLK edge before
SPI0_SCS is deasserted.
(3)
MAX
2P
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)M + P + 5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P+5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M + P + 5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P+5
UNIT
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI0_SCS to slave driving
SPI0_SOMI valid
P + 18.5
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI0_SCS to slave 3-stating
SPI0_SOMI
P + 18.5
ns
(1)
(2)
(3)
116
These parameters are in addition to the general timings for SPI slave modes (Table 6-55).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-61. Additional (1) SPI0 Slave Timings, 5-Pin Option (2)
No.
25
26
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
(3)
MIN
Required delay from SPI0_SCS asserted at slave to first
SPI0_CLK edge at slave.
Required delay from final SPI0_CLK
edge before SPI0_SCS is
deasserted.
MAX
UNIT
2P
Polarity = 0, Phase = 0,
from SPI0_CLK falling
0.5tc(SPC)M + P +
5
Polarity = 0, Phase = 1,
from SPI0_CLK falling
P+5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
0.5tc(SPC)M + P +
5
Polarity = 1, Phase = 1,
from SPI0_CLK rising
P+5
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI0_SCS to slave driving
SPI0_SOMI valid
P + 18.5
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI0_SCS to slave 3-stating
SPI0_SOMI
P + 18.5
ns
29
tena(SCSL_ENA)S
Delay from master deasserting SPI0_SCS to slave driving
SPI0_ENA valid
18.5
ns
30
(1)
(2)
(3)
(4)
tdis(SPC_ENA)S
Delay from final clock receive edge
on SPI0_CLK to slave 3-stating or
driving high SPI0_ENA. (4)
Polarity = 0, Phase = 0,
from SPI0_CLK falling
2.5 P + 18.5
Polarity = 0, Phase = 1,
from SPI0_CLK rising
2.5 P + 18.5
Polarity = 1, Phase = 0,
from SPI0_CLK rising
2.5 P + 18.5
Polarity = 1, Phase = 1,
from SPI0_CLK falling
2.5 P + 18.5
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-55).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is 3stated. If 3-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying
several SPI slave devices to a single master.
Table 6-62. General Timing Requirements for SPI1 Master Modes (1)
No.
MIN
UNIT
Cycle Time, SPI1_CLK, All Master Modes
2
tw(SPCH)M
Pulse Width High, SPI1_CLK, All Master Modes
0.5tc(SPC)M - 1
ns
3
tw(SPCL)M
Pulse Width Low, SPI1_CLK, All Master Modes
0.5tc(SPC)M - 1
ns
5
td(SIMO_SPC)M
td(SPC_SIMO)M
Delay, initial data bit valid on
SPI1_SIMO to initial edge on
SPI1_CLK (2)
Delay, subsequent bits valid
on SPI1_SIMO after transmit
edge of SPI1_CLK
greater of 3P or 20
MAX
tc(SPC)M
4
(1)
(2)
PARAMETER
1
256P
Polarity = 0, Phase = 0,
to SPI1_CLK rising
5
Polarity = 0, Phase = 1,
to SPI1_CLK rising
- 0.5tc(SPC)M + 5
Polarity = 1, Phase = 0,
to SPI1_CLK falling
5
Polarity = 1, Phase = 1,
to SPI1_CLK falling
- 0.5tc(SPC)M + 5
Polarity = 0, Phase = 0,
from SPI1_CLK rising
5
Polarity = 0, Phase = 1,
from SPI1_CLK falling
5
Polarity = 1, Phase = 0,
from SPI1_CLK falling
5
Polarity = 1, Phase = 1,
from SPI1_CLK rising
5
ns
ns
ns
P = SYSCLK2 period
First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on
SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
117
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-62. General Timing Requirements for SPI1 Master Modes(1) (continued)
No.
6
PARAMETER
toh(SPC_SIMO)M
7
tsu(SOMI_SPC)M
8
tih(SPC_SOMI)M
Output hold time, SPI1_SIMO
valid after
receive edge of SPI1_CLK
MIN
0.5tc(SPC)M - 3
Polarity = 0, Phase = 1,
from SPI1_CLK rising
0.5tc(SPC)M - 3
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M - 3
Polarity = 1, Phase = 1,
from SPI1_CLK falling
0.5tc(SPC)M - 3
Polarity = 0, Phase = 0,
to SPI1_CLK falling
0
UNIT
ns
Polarity = 0, Phase = 1,
Input Setup Time, SPI1_SOMI to SPI1_CLK rising
valid before receive edge of
Polarity = 1, Phase = 0,
SPI1_CLK
to SPI1_CLK rising
Input Hold Time, SPI1_SOMI
valid after receive edge of
SPI1_CLK
MAX
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0
ns
0
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0
Polarity = 0, Phase = 0,
from SPI1_CLK falling
5
Polarity = 0, Phase = 1,
from SPI1_CLK rising
5
Polarity = 1, Phase = 0,
from SPI1_CLK rising
5
Polarity = 1, Phase = 1,
from SPI1_CLK falling
5
ns
Table 6-63. General Timing Requirements for SPI1 Slave Modes (1)
No.
PARAMETER
MIN
9
tc(SPC)S
Cycle Time, SPI1_CLK, All Slave Modes
10
tw(SPCH)S
11
tw(SPCL)S
12
13
(1)
(2)
(3)
118
tsu(SOMI_SPC)S
td(SPC_SOMI)S
MAX
UNIT
greater of 3P or 40
ns
Pulse Width High, SPI1_CLK, All Slave Modes
18
ns
Pulse Width Low, SPI1_CLK, All Slave Modes
18
ns
Setup time, transmit data written to
SPI before initial clock edge from
master. (2) (3)
Delay, subsequent bits valid on
SPI1_SOMI after transmit edge of
SPI1_CLK
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P
Polarity = 0, Phase = 1,
to SPI1_CLK rising
2P
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P
Polarity = 1, Phase = 1,
to SPI1_CLK falling
2P
ns
Polarity = 0, Phase = 0,
from SPI1_CLK rising
19
Polarity = 0, Phase = 1,
from SPI1_CLK falling
19
Polarity = 1, Phase = 0,
from SPI1_CLK falling
19
Polarity = 1, Phase = 1,
from SPI1_CLK rising
19
ns
P = SYSCLK2 period
First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on
SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO.
Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus
cycles must be accounted for to allow data to be written to the SPI module by the CPU.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-63. General Timing Requirements for SPI1 Slave Modes(1) (continued)
No.
14
15
16
PARAMETER
toh(SPC_SOMI)S
tsu(SIMO_SPC)S
tih(SPC_SIMO)S
Output hold time, SPI1_SOMI valid
after receive edge of SPI1_CLK
Input Setup Time, SPI1_SIMO valid
before receive edge of SPI1_CLK
Input Hold Time, SPI1_SIMO valid
after receive edge of SPI1_CLK
MIN
MAX
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)S - 3
Polarity = 0, Phase = 1,
from SPI1_CLK rising
0.5tc(SPC)S - 3
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)S - 3
Polarity = 1, Phase = 1,
from SPI1_CLK falling
0.5tc(SPC)S - 3
Polarity = 0, Phase = 0,
to SPI1_CLK falling
0
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0
Polarity = 1, Phase = 0,
to SPI1_CLK rising
0
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0
Polarity = 0, Phase = 0,
from SPI1_CLK falling
5
Polarity = 0, Phase = 1,
from SPI1_CLK rising
5
Polarity = 1, Phase = 0,
from SPI1_CLK rising
5
Polarity = 1, Phase = 1,
from SPI1_CLK falling
5
ns
ns
ns
Table 6-64. Additional (1) SPI1 Master Timings, 4-Pin Enable Option (2)
No.
17
18
(1)
(2)
(3)
(4)
(5)
PARAMETER
td(EN A_SPC)M
td(SPC_ENA)M
Delay from slave assertion of
SPI1_ENA active to first SPI1_CLK
from master. (4)
Max delay for slave to deassert
SPI1_ENA after final SPI1_CLK edge
to ensure master does not begin the
next transfer. (5)
UNIT
MIN
(3)
MAX
UNIT
Polarity = 0, Phase = 0,
to SPI1_CLK rising
3P + 3
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5tc(SPC)M + 3P + 3
Polarity = 1, Phase = 0,
to SPI1_CLK falling
3P + 3
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5tc(SPC)M + 3P + 3
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)M + P + 5
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+5
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M + P + 5
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+5
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-62).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_ENA assertion.
In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
119
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-65. Additional (1) SPI1 Master Timings, 4-Pin Chip Select Option (2)
No.
19
20
(1)
(2)
(3)
(4)
(5)
(6)
PARAMETER
td(SCS_SPC)M
td(SPC_SCS)M
(3)
MIN
Delay from SPI1_SCS active to first
SPI1_CLK (4) (5)
Delay from final SPI1_CLK edge to
master deasserting SPI1_SCS (6) (7)
MAX
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P - 5
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5tc(SPC)M + 2P - 5
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P - 5
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5tc(SPC)M + 2P - 5
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)M + P - 3
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P-3
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M + P -3
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P-3
UNIT
ns
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-62).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain
asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
(7)
Table 6-66. Additional (1) SPI1 Master Timings, 5-Pin Option (2)
No.
18
20
21
(1)
(2)
(3)
(4)
(5)
(6)
120
PARAMETER
td(SPC_ENA)M
td(SPC_SCS)M
td(SCSL_ENAL)M
Max delay for slave to
deassert SPI1_ENA after final
SPI1_CLK edge to ensure
master does not begin the
next transfer. (4)
Delay from final SPI1_CLK
edge to master deasserting
SPI1_SCS (5) (6)
MIN
(3)
MAX
UNIT
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)M + P + 5
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+5
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M + P + 5
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+5
ns
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)M + P - 3
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P-3
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M + P - 3
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P-3
Max delay for slave SPI to drive SPI1_ENA valid after
master asserts SPI1_SCS to delay the master from
beginning the next transfer.
ns
C2TDELAY + P
ns
These parameters are in addition to the general timings for SPI master modes (Table 6-63).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.
In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain
asserted.
This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-66. Additional(1) SPI1 Master Timings, 5-Pin Option(2)
No.
22
23
(7)
(8)
(9)
(10)
PARAMETER
Delay from SPI1_SCS active
to first SPI1_CLK (7) (8) (9)
td(SCS_SPC)M
Delay from assertion of
SPI1_ENA low to first
SPI1_CLK edge. (10)
td(ENA_SPC)M
(3)
(continued)
MIN
MAX
Polarity = 0, Phase = 0,
to SPI1_CLK rising
2P - 5
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5tc(SPC)M + 2P - 5
Polarity = 1, Phase = 0,
to SPI1_CLK falling
2P - 5
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5tc(SPC)M + 2P - 5
ns
Polarity = 0, Phase = 0,
to SPI1_CLK rising
3P + 3
Polarity = 0, Phase = 1,
to SPI1_CLK rising
0.5tc(SPC)M + 3P + 3
Polarity = 1, Phase = 0,
to SPI1_CLK falling
3P + 3
Polarity = 1, Phase = 1,
to SPI1_CLK falling
0.5tc(SPC)M + 3P + 3
ns
If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA.
In the case where the master SPI is ready with new data before SPI1_SCS assertion.
This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].
If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed.
Table 6-67. Additional (1) SPI1 Slave Timings, 4-Pin Enable Option (2)
No.
24
(1)
(2)
(3)
PARAMETER
td(SPC_ENAH)S
Delay from final
SPI1_CLK edge to
slave deasserting
SPI1_ENA.
MIN
(3)
MAX
UNIT
Polarity = 0, Phase = 0,
from SPI1_CLK falling
1.5 P - 3
2.5 P + 19
Polarity = 0, Phase = 1,
from SPI1_CLK falling
– 0.5tc(SPC)M + 1.5 P - 3
– 0.5tc(SPC)M + 2.5 P + 19
Polarity = 1, Phase = 0,
from SPI1_CLK rising
1.5 P - 3
2.5 P + 19
Polarity = 1, Phase = 1,
from SPI1_CLK rising
– 0.5tc(SPC)M + 1.5 P - 3
– 0.5tc(SPC)M + 2.5 P + 19
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-63).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Table 6-68. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2)
No.
25
26
(1)
(2)
(3)
UNIT
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
MIN
Required delay from SPI1_SCS asserted at slave to first
SPI1_CLK edge at slave.
Required delay from final
SPI1_CLK edge before
SPI1_SCS is deasserted.
(3)
MAX
2P
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)M + P + 5
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+5
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M + P + 5
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+5
UNIT
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI1_SCS to slave driving
SPI1_SOMI valid
P + 19
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI1_SCS to slave 3-stating
SPI1_SOMI
P + 19
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-63).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
121
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-69. Additional (1) SPI1 Slave Timings, 5-Pin Option (2)
No.
25
26
PARAMETER
td(SCSL_SPC)S
td(SPC_SCSH)S
MIN
Required delay from SPI1_SCS asserted at slave to first
SPI1_CLK edge at slave.
Required delay from final SPI1_CLK
edge before SPI1_SCS is
deasserted.
(3)
MAX
UNIT
2P
Polarity = 0, Phase = 0,
from SPI1_CLK falling
0.5tc(SPC)M + P +
5
Polarity = 0, Phase = 1,
from SPI1_CLK falling
P+5
Polarity = 1, Phase = 0,
from SPI1_CLK rising
0.5tc(SPC)M + P +
5
Polarity = 1, Phase = 1,
from SPI1_CLK rising
P+5
ns
ns
27
tena(SCSL_SOMI)S
Delay from master asserting SPI1_SCS to slave driving
SPI1_SOMI valid
P + 19
ns
28
tdis(SCSH_SOMI)S
Delay from master deasserting SPI1_SCS to slave 3-stating
SPI1_SOMI
P + 19
ns
29
tena(SCSL_ENA)S
Delay from master deasserting SPI1_SCS to slave driving
SPI1_ENA valid
19
ns
30
(1)
(2)
(3)
(4)
122
tdis(SPC_ENA)S
Delay from final clock receive edge
on SPI1_CLK to slave 3-stating or
driving high SPI1_ENA. (4)
Polarity = 0, Phase = 0,
from SPI1_CLK falling
2.5 P + 19
Polarity = 0, Phase = 1,
from SPI1_CLK rising
2.5 P + 19
Polarity = 1, Phase = 0,
from SPI1_CLK rising
2.5 P + 19
Polarity = 1, Phase = 1,
from SPI1_CLK falling
2.5 P + 19
ns
These parameters are in addition to the general timings for SPI slave modes (Table 6-63).
P = SYSCLK2 period
Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is 3stated. If 3-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying
several SPI slave devices to a single master.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
1
2
MASTER MODE
POLARITY = 0 PHASE = 0
3
SPIx_CLK
5
4
SPIx_SIMO
MO(0)
7
SPIx_SOMI
6
MO(1)
MO(n−1)
MO(n)
8
MI(0)
MI(1)
MI(n−1)
MI(n)
MASTER MODE
POLARITY = 0 PHASE = 1
4
SPIx_CLK
6
5
SPIx_SIMO
MO(0)
7
SPIx_SOMI
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
8
MI(0)
MI(n)
4
MASTER MODE
POLARITY = 1 PHASE = 0
SPIx_CLK
5
SPIx_SIMO
6
MO(0)
7
SPIx_SOMI
MO(1)
MO(n−1)
MO(n)
8
MI(0)
MI(1)
MI(n−1)
MI(n)
MASTER MODE
POLARITY = 1 PHASE = 1
SPIx_CLK
5
4
SPIx_SIMO
MO(0)
7
SPIx_SOMI
MI(0)
6
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
8
MI(n)
Figure 6-38. SPI Timings—Master Mode
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
123
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
9
12
10
SLAVE MODE
POLARITY = 0 PHASE = 0
11
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
SI(n−1)
13
SPIx_SOMI
SO(0)
SI(n)
14
SO(1)
SO(n−1)
12
SO(n)
SLAVE MODE
POLARITY = 0 PHASE = 1
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
13
SPIx_SOMI
SO(0)
SI(n−1)
SI(n)
SO(n−1)
SO(n)
14
SO(1)
SLAVE MODE
POLARITY = 1 PHASE = 0
12
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
SI(n−1)
13
SPIx_SOMI
SO(0)
SO(1)
SI(n)
14
SO(n−1)
SO(n)
SLAVE MODE
POLARITY = 1 PHASE = 1
12
SPIx_CLK
15
SPIx_SIMO
16
SI(0)
SI(1)
13
SPIx_SOMI
SO(0)
SI(n−1)
SI(n)
14
SO(1)
SO(n−1)
SO(n)
Figure 6-39. SPI Timings—Slave Mode
124
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
MASTER MODE 4 PIN WITH ENABLE
17
18
SPIx_CLK
SPIx_SIMO
MO(0)
SPIx_SOMI
MI(0)
MO(1)
MO(n−1)
MI(1)
MI(n−1)
MO(n)
MI(n)
SPIx_ENA
MASTER MODE 4 PIN WITH CHIP SELECT
19
20
SPIx_CLK
SPIx_SIMO
MO(0)
SPIx_SOMI
MI(0)
MO(1)
MO(n−1)
MO(n)
MI(1)
MI(n−1)
MI(n)
SPIx_SCS
MASTER MODE 5 PIN
22
20
MO(1)
23
18
SPIx_CLK
SPIx_SIMO
MO(0)
MO(n−1)
MO(n)
SPIx_SOMI
21
SPIx_ENA
MI(0)
MI(1)
MI(n−1)
MI(n)
DESEL(A)
DESEL(A)
SPIx_SCS
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
Figure 6-40. SPI Timings—Master Mode (4-Pin and 5-Pin)
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
125
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
SLAVE MODE 4 PIN WITH ENABLE
24
SPIx_CLK
SPIx_SOMI
SO(0)
SO(1)
SO(n−1)
SO(n)
SPIx_SIMO
SI(0)
SPIx_ENA
SI(1)
SI(n−1) SI(n)
SLAVE MODE 4 PIN WITH CHIP SELECT
26
25
SPIx_CLK
27
SPIx_SOMI
28
SO(n−1)
SO(0)
SO(1)
SO(n)
SPIx_SIMO
SI(0)
SPIx_SCS
SI(1)
SI(n−1)
SI(n)
SLAVE MODE 5 PIN
26
30
25
SPIx_CLK
27
SPIx_SOMI
28
SO(1)
SO(0)
SO(n−1)
SO(n)
SPIx_SIMO
29
SPIx_ENA
SI(0)
SI(1)
SI(n−1)
SI(n)
DESEL(A)
DESEL(A)
SPIx_SCS
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
Figure 6-41. SPI Timings—Slave Mode (4-Pin and 5-Pin)
126
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.18 Enhanced Capture (eCAP) Peripheral
The device contains up to three enhanced capture (eCAP) modules. Figure 6-42 shows a functional block
diagram of a module.
Uses for ECAP include:
• Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors)
• Elapsed time measurements between position sensor triggers
• Period and duty cycle measurements of Pulse train signals
• Decoding current or voltage amplitude derived from cuty cycle encoded current/voltage sensors
The ECAP module described in this specification includes the following features:
• 32 bit time base
• 4 event time-stamp registers (each 32 bits)
• Edge polarity selection for up to 4 sequenced time-stamp capture events
• Interrupt on either of the 4 events
• Single shot capture of up to 4 event time-stamps
• Continuous mode capture of time-stamps in a 4 deep circular buffer
• Absolute time-stamp capture
• Difference mode time-stamp capture
• All the above resources are dedicated to a single input pin
The eCAP modules are clocked at the SYSCLK2 rate.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
127
AM1707
SYNC
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
SYNCIn
SYNCOut
www.ti.com
CTRPHS
(phase register−32 bit)
TSCTR
(counter−32 bit)
APWM mode
OVF
RST
CTR_OVF
Delta−mode
CTR [0−31]
PWM
compare
logic
PRD [0−31]
CMP [0−31]
32
CTR=PRD
CTR [0−31]
CTR=CMP
32
32
CAP1
(APRD active)
APRD
shadow
32
32
LD
LD1
MODE SELECT
PRD [0−31]
Polarity
select
32
CMP [0−31]
CAP2
(ACMP active)
32
LD
LD2
32
CAP3
(APRD shadow)
LD
32
CAP4
(ACMP shadow)
LD
Polarity
select
Event
qualifier
ACMP
shadow
eCAPx
Event
Pre-scale
Polarity
select
LD3
LD4
4
Capture events
Polarity
select
4
CEVT[1:4]
to Interrupt
Controller
Interrupt
Trigger
and
Flag
control
CTR_OVF
Continuous /
Oneshot
Capture Control
CTR=PRD
CTR=CMP
Figure 6-42. eCAP Functional Block Diagram
Table 6-70 is the list of the ECAP registers.
128
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-70. ECAPx Configuration Registers
ECAP0
BYTE ADDRESS
ECAP1
BYTE ADDRESS
ECAP2
BYTE ADDRESS
0x01F0 6000
0x01F0 7000
0x01F0 8000
TSCTR
0x01F0 6004
0x01F0 7004
0x01F0 8004
CTRPHS
ACRONYM
REGISTER DESCRIPTION
Time-Stamp Counter
Counter Phase Offset Value Register
0x01F0 6008
0x01F0 7008
0x01F0 8008
CAP1
Capture 1 Register
0x01F0 600C
0x01F0 700C
0x01F0 800C
CAP2
Capture 2 Register
0x01F0 6010
0x01F0 7010
0x01F0 8010
CAP3
Capture 3 Register
0x01F0 6014
0x01F0 7014
0x01F0 8014
CAP4
Capture 4 Register
0x01F0 6028
0x01F0 7028
0x01F0 8028
ECCTL1
Capture Control Register 1
0x01F0 602A
0x01F0 702A
0x01F0 802A
ECCTL2
Capture Control Register 2
0x01F0 602C
0x01F0 702C
0x01F0 802C
ECEINT
Capture Interrupt Enable Register
0x01F0 602E
0x01F0 702E
0x01F0 802E
ECFLG
Capture Interrupt Flag Register
0x01F0 6030
0x01F0 7030
0x01F0 8030
ECCLR
Capture Interrupt Clear Register
0x01F0 6032
0x01F0 7032
0x01F0 8032
ECFRC
Capture Interrupt Force Register
0x01F0 605C
0x01F0 705C
0x01F0 805C
REVID
Revision ID
Table 6-71 shows the eCAP timing requirement and Table 6-72 shows the eCAP switching characteristics.
Table 6-71. Enhanced Capture (eCAP) Timing Requirement
PARAMETER
tw(CAP)
TEST CONDITIONS
Capture input pulse width
MIN
MAX
UNIT
Asynchronous
2tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Table 6-72. eCAP Switching Characteristics
PARAMETER
tw(APWM)
MIN
Pulse duration, APWMx output high/low
Copyright © 2010–2014, Texas Instruments Incorporated
20
MAX
UNIT
ns
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
129
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.19 Enhanced Quadrature Encoder (eQEP) Peripheral
The device contains up to two enhanced quadrature encoder (eQEP) modules.
System
control registers
To CPU
EQEPxENCLK
Data bus
SYSCLK2
QCPRD
QCTMR
QCAPCTL
16
16
16
Quadrature
capture unit
(QCAP)
QCTMRLAT
QCPRDLAT
Registers
used by
multiple units
QUTMR
QWDTMR
QUPRD
QWDPRD
32
16
QEPCTL
QEPSTS
UTIME
Interrupt Controller
QFLG
UTOUT
QWDOG
QDECCTL
16
WDTOUT
EQEPxAIN
QCLK
EQEPxINT
16
QPOSLAT
EQEPxIIN
QI
Position counter/
control unit
(PCCU)
EQEPxIOUT
QS Quadrature
decoder
PHE
(QDU)
QPOSSLAT
PCSOUT
EQEPxIOE
EQEPxSIN
EQEPxSOE
32
QPOSCNT
QPOSINIT
QPOSMAX
QPOSCMP
EQEPxB/XDIR
GPIO
MUX
EQEPxI
EQEPxSOUT
QPOSILAT
32
EQEPxA/XCLK
EQEPxBIN
QDIR
EQEPxS
16
QEINT
QFRC
QCLR
QPOSCTL
Enhanced QEP (eQEP) Peripheral
Figure 6-43. eQEP Functional Block Diagram
130
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-73 is the list of the EQEP registers.
Table 6-74 shows the eQEP timing requirement and Table 6-75 shows the eQEP switching
characteristics.
Table 6-73. EQEP Registers
EQEP0
BYTE ADDRESS
EQEP1
BYTE ADDRESS
ACRONYM
0x01F0 9000
0x01F0 A000
QPOSCNT
eQEP Position Counter
0x01F0 9004
0x01F0 A004
QPOSINIT
eQEP Initialization Position Count
0x01F0 9008
0x01F0 A008
QPOSMAX
eQEP Maximum Position Count
0x01F0 900C
0x01F0 A00C
QPOSCMP
eQEP Position-compare
0x01F0 9010
0x01F0 A010
QPOSILAT
eQEP Index Position Latch
0x01F0 9014
0x01F0 A014
QPOSSLAT
eQEP Strobe Position Latch
0x01F0 9018
0x01F0 A018
QPOSLAT
0x01F0 901C
0x01F0 A01C
QUTMR
eQEP Unit Timer
0x01F0 9020
0x01F0 A020
QUPRD
eQEP Unit Period Register
0x01F0 9024
0x01F0 A024
QWDTMR
eQEP Watchdog Timer
0x01F0 9026
0x01F0 A026
QWDPRD
eQEP Watchdog Period Register
0x01F0 9028
0x01F0 A028
QDECCTL
eQEP Decoder Control Register
0x01F0 902A
0x01F0 A02A
QEPCTL
0x01F0 902C
0x01F0 A02C
QCAPCTL
eQEP Capture Control Register
0x01F0 902E
0x01F0 A02E
QPOSCTL
eQEP Position-compare Control Register
0x01F0 9030
0x01F0 A030
QEINT
eQEP Interrupt Enable Register
0x01F0 9032
0x01F0 A032
QFLG
eQEP Interrupt Flag Register
0x01F0 9034
0x01F0 A034
QCLR
eQEP Interrupt Clear Register
0x01F0 9036
0x01F0 A036
QFRC
eQEP Interrupt Force Register
0x01F0 9038
0x01F0 A038
QEPSTS
eQEP Status Register
REGISTER DESCRIPTION
eQEP Position Latch
eQEP Control Register
0x01F0 903A
0x01F0 A03A
QCTMR
eQEP Capture Timer
0x01F0 903C
0x01F0 A03C
QCPRD
eQEP Capture Period Register
0x01F0 903E
0x01F0 A03E
QCTMRLAT
eQEP Capture Timer Latch
0x01F0 9040
0x01F0 A040
QCPRDLAT
eQEP Capture Period Latch
0x01F0 905C
0x01F0 A05C
REVID
eQEP Revision ID
Table 6-74. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements
PARAMETER
TEST CONDITIONS
tw(QEPP)
QEP input period
Asynchronous/synchronous
2tc(SCO)
MIN
MAX
cycles
UNIT
tw(INDEXH)
QEP Index Input High time
Asynchronous/synchronous
2tc(SCO)
cycles
tw(INDEXL)
QEP Index Input Low time
Asynchronous/synchronous
2tc(SCO)
cycles
tw(STROBH)
QEP Strobe High time
Asynchronous/synchronous
2tc(SCO)
cycles
tw(STROBL)
QEP Strobe Input Low time
Asynchronous/synchronous
2tc(SCO)
cycles
Table 6-75. eQEP Switching Characteristics
MAX
UNIT
td(CNTR)xin
Delay time, external clock to counter increment
PARAMETER
4tc(SCO)
cycles
td(PCS-OUT)QEP
Delay time, QEP input edge to position compare sync output
6tc(SCO)
cycles
Copyright © 2010–2014, Texas Instruments Incorporated
MIN
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
131
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.20 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM)
The device contains up to three enhanced PWM Modules (eHRPWM). Figure 6-44 shows a block diagram
of multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with the eHRPWM.
EPWMSYNCI
EPWM0INT
EPWM0SYNCI
EPWM0A
eHRPWM0 module
EPWM0B
EPWMTZ
EPWM0SYNCO
EPWM1SYNCI
Interrupt
Controllers
EPWM1INT
EPWM1A
eHRPWM1 module
EPWM1SYNCO
EPWM1B
GPIO
MUX
EPWMTZ
EPWM2SYNCI
EPWM2INT
EPWM2A
eHRPWM2 module
EPWM2SYNCO
To eCAP0
module
(sync in)
EPWM2B
EPWMTZ
EPWMSYNCO
Peripheral Bus
Figure 6-44. Multiple PWM Modules in the System
132
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Time−base (TB)
Sync
in/out
control
Mux
CTR=ZERO
CTR=CMPB
Disabled
TBPRD shadow (16)
TBPRD active (16)
CTR=PRD
EPWMSYNCO
TBCTL[SYNCOSEL]
TBCTL[CNTLDE]
EPWMSYNCI
Counter
up/down
(16 bit)
CTR=ZERO
CTR_Dir
TBCNT
active (16)
TBPHSHR (8)
16
8
TBPHS active (24)
CTR = PRD
CTR = ZERO
CTR = CMPA
CTR = CMPB
CTR_Dir
Phase
control
Counter compare (CC)
CTR=CMPA
CMPAHR (8)
16
TBCTL[SWFSYNC]
(software forced sync)
Action
qualifier
(AQ)
8
Event
trigger
and
interrupt
(ET)
EPWMxINT
HiRes PWM (HRPWM)
CMPA active (24)
EPWMA
EPWMxA
CMPA shadow (24)
CTR=CMPB
Dead
band
(DB)
16
PWM
chopper
(PC)
Trip
zone
(TZ)
EPWMB
EPWMxB
CMPB active (16)
EPWMxTZINT
CMPB shadow (16)
CTR = ZERO
TZ
Figure 6-45. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections
Table 6-76. eHRPWM Module Control and Status Registers Grouped by Submodule
eHRPWM0
BYTE
ADDRESS
eHRPWM1
BYTE
ADDRESS
eHRPWM2
BYTE
ADDRESS
0x01F0 0000
0x01F0 2000
0x01F0 4000
0x01F0 0002
0x01F0 2002
0x01F0 0004
0x01F0 2004
0x01F0 0006
0x01F0 2006
ACRONYM
SIZE
SHADOW
(×16)
REGISTER DESCRIPTION
TIME-BASE SUBMODULE REGISTERS
TBCTL
1
No
Time-Base Control Register
0x01F0 4002
TBSTS
1
No
Time-Base Status Register
0x01F0 4004
TBPHSHR
1
No
Extension for HRPWM Phase Register
0x01F0 4006
TBPHS
1
No
Time-Base Phase Register
0x01F0 0008
0x01F0 2008
0x01F0 4008
TBCNT
1
No
Time-Base Counter Register
0x01F0 000A
0x01F0 200A
0x01F0 400A
TBPRD
1
Yes
Time-Base Period Register
(1)
COUNTER-COMPARE SUBMODULE REGISTER
0x01F0 000E
0x01F0 200E
0x01F0 400E
CMPCTL
1
No
Counter-Compare Control Register
0x01F0 0010
0x01F0 2010
0x01F0 4010
CMPAHR
1
No
Extension for HRPWM Counter-Compare A Register
0x01F0 0012
0x01F0 2012
0x01F0 4012
CMPA
1
Yes
Counter-Compare A Register
0x01F0 0014
0x01F0 2014
0x01F0 4014
CMPB
1
Yes
Counter-Compare B Register
(1)
ACTION-QUALIFIER SUBMODULE REGISTER
(1)
These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these
locations are reserved.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
133
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-76. eHRPWM Module Control and Status Registers Grouped by Submodule (continued)
eHRPWM0
BYTE
ADDRESS
eHRPWM1
BYTE
ADDRESS
eHRPWM2
BYTE
ADDRESS
0x01F0 0016
0x01F0 2016
0x01F0 4016
0x01F0 0018
0x01F0 2018
0x01F0 4018
ACRONYM
SIZE
SHADOW
(×16)
REGISTER DESCRIPTION
AQCTLA
1
No
Action-Qualifier Control Register for Output A
(eHRPWMxA)
AQCTLB
1
No
Action-Qualifier Control Register for Output B
(eHRPWMxB)
0x01F0 001A
0x01F0 201A
0x01F0 401A
AQSFRC
1
No
Action-Qualifier Software Force Register
0x01F0 001C
0x01F0 201C
0x01F0 401C
AQCSFRC
1
Yes
Action-Qualifier Continuous S/W Force Register Set
0x01F0 001E
0x01F0 201E
0x01F0 401E
DEAD-BAND GENERATOR SUBMODULE REGISTER
0x01F0 0020
0x01F0 2020
0x01F0 4020
0x01F0 0022
0x01F0 2022
0x01F0 4022
DBCTL
1
No
Dead-Band Generator Control Register
DBRED
1
No
Dead-Band Generator Rising Edge Delay Count
Register
DBFED
1
No
Dead-Band Generator Falling Edge Delay Count
Register
PWM-CHOPPER SUBMODULE REGISTER
0x01F0 003C
0x01F0 203C
0x01F0 403C
PCCTL
1
No
PWM-Chopper Control Register
TRIP-ZONE SUBMODULE REGISTER
0x01F0 0024
0x01F0 2024
0x01F0 4024
TZSEL
1
No
Trip-Zone Select Register
0x01F0 0028
0x01F0 2028
0x01F0 4028
TZCTL
1
No
Trip-Zone Control Register
0x01F0 002A
0x01F0 202A
0x01F0 402A
TZEINT
1
No
Trip-Zone Enable Interrupt Register
0x01F0 002C
0x01F0 202C
0x01F0 402C
TZFLG
1
No
Trip-Zone Flag Register
0x01F0 002E
0x01F0 202E
0x01F0 402E
TZCLR
1
No
Trip-Zone Clear Register
0x01F0 0030
0x01F0 2030
0x01F0 4030
TZFRC
1
No
Trip-Zone Force Register
EVENT-TRIGGER SUBMODULE REGISTER
0x01F0 0032
0x01F0 2032
0x01F0 4032
ETSEL
1
No
Event-Trigger Selection Register
0x01F0 0034
0x01F0 2034
0x01F0 0036
0x01F0 2036
0x01F0 4034
ETPS
1
No
Event-Trigger Pre-Scale Register
0x01F0 4036
ETFLG
1
No
0x01F0 0038
Event-Trigger Flag Register
0x01F0 2038
0x01F0 4038
ETCLR
1
No
Event-Trigger Clear Register
0x01F0 003A
0x01F0 203A
0x01F0 403A
ETFRC
1
No
Event-Trigger Force Register
HIGH-RESOLUTION PWM (HRPWM) SUBMODULE
0x01F0 1040
(2)
134
0x01F0 3040
0x01F0 5040
HRCNFG
1
No
HRPWM Configuration Register
(2)
These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these
locations are reserved.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.20.1 Enhanced Pulse Width Modulator (eHRPWM) Timing
PWM refers to PWM outputs on eHRPWM1-6. Table 6-77 shows the PWM timing requirements and
Table 6-78, switching characteristics.
Table 6-77. eHRPWM Timing Requirements
PARAMETER
tw(SYNCIN)
TEST CONDITIONS
Sync input pulse width
MIN
MAX
UNIT
Asynchronous
2tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Table 6-78. eHRPWM Switching Characteristics
PARAMETER
TEST CONDITIONS
MIN
MAX
tw(PWM)
Pulse duration, PWMx output high/low
tw(SYNCOUT)
Sync output pulse width
td(PWM)TZA
Delay time, trip input active to PWM forced high
Delay time, trip input active to PWM forced low
no pin load;
no additional programmable
delay
25
Delay time, trip input active to PWM Hi-Z
no additional programmable
delay
20
td(TZ-PWM)HZ
UNIT
20
ns
8tc(SCO)
cycles
ns
ns
6.20.2 Trip-Zone Input Timing
tw(TZ)
TZ
td(TZ_PWM)HZ
PWM (A)
A.
PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM
recovery software.
Figure 6-46. PWM Hi-Z Characteristics
Table 6-79. Trip-Zone input Timing Requirements
PARAMETER
tw(TZ)
MIN
Pulse duration, TZx input low
MAX
UNIT
Asynchronous
1tc(SCO)
cycles
Synchronous
2tc(SCO)
cycles
Table 6-80 shows the high-resolution PWM switching characteristics.
Table 6-80. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz)
PARAMETER
Micro Edge Positioning (MEP) step size
(1)
MIN
(1)
TYP
MAX
200
UNIT
ps
MEP step size will increase with low voltage and high temperature and decrease with high voltage and cold temperature.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
135
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.21 LCD Controller
The LCD controller consists of two independent controllers, the Raster Controller and the LCD Interface
Display Driver (LIDD) controller. Each controller operates independently from the other and only one of
them is active at any given time.
• The Raster Controller handles the synchronous LCD interface. It provides timing and data for constant
graphics refresh to a passive display. It supports a wide variety of monochrome and full-color display
types and sizes by use of programmable timing controls, a built-in palette, and a gray-scale/serializer.
Graphics data is processed and stored in frame buffers. A frame buffer is a contiguous memory block
in the system. A built-in DMA engine supplies the graphics data to the Raster engine which, in turn,
outputs to the external LCD device.
• The LIDD Controller supports the asynchronous LCD interface. It provides full-timing programmability
of control signals (CS, WE, OE, ALE) and output data.
The maximum resolution for the LCD controller is 1024 x 1024 pixels. The maximum frame rate is
determined by the image size in combination with the pixel clock rate. OMAP-L1x/C674x/AM1x SOC
Architecture and Throughput Overview (SPRAB93).
Table 6-81 lists the LCD Controller registers.
Table 6-81. LCD Controller (LCDC) Registers
BYTE
ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01E1 3000
REVID
0x01E1 3004
LCD_CTRL
LCD Revision Identification Register
LCD Control Register
0x01E1 3008
LCD_STAT
LCD Status Register
0x01E1 300C
LIDD_CTRL
LCD LIDD Control Register
0x01E1 3010
LIDD_CS0_CONF
LCD LIDD CS0 Configuration Register
0x01E1 3014
LIDD_CS0_ADDR
LCD LIDD CS0 Address Read/Write Register
0x01E1 3018
LIDD_CS0_DATA
LCD LIDD CS0 Data Read/Write Register
0x01E1 301C
LIDD_CS1_CONF
LCD LIDD CS1 Configuration Register
0x01E1 3020
LIDD_CS1_ADDR
LCD LIDD CS1 Address Read/Write Register
0x01E1 3024
LIDD_CS1_DATA
LCD LIDD CS1 Data Read/Write Register
0x01E1 3028
RASTER_CTRL
0x01E1 302C
RASTER_TIMING_0
LCD Raster Timing 0 Register
0x01E1 3030
RASTER_TIMING_1
LCD Raster Timing 1 Register
0x01E1 3034
RASTER_TIMING_2
LCD Raster Timing 2 Register
0x01E1 3038
RASTER_SUBPANEL
0x01E1 3040
LCDDMA_CTRL
0x01E1 3044
LCDDMA_FB0_BASE
0x01E1 3048
LCDDMA_FB0_CEILING
0x01E1 304C
LCDDMA_FB1_BASE
0x01E1 3050
LCDDMA_FB1_CEILING
136
LCD Raster Control Register
LCD Raster Subpanel Display Register
LCD DMA Control Register
LCD DMA Frame Buffer 0 Base Address Register
LCD DMA Frame Buffer 0 Ceiling Address Register
LCD DMA Frame Buffer 1 Base Address Register
LCD DMA Frame Buffer 1 Ceiling Address Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.21.1 LCD Interface Display Driver (LIDD Mode)
Table 6-82. LCD LIDD Mode Timing Requirements
No.
PARAMETER
MIN
16
tsu(LCD_D)
Setup time, LCD_D[15:0] valid before LCD_MCLK high
17
th(LCD_D)
Hold time, LCD_D[15:0] valid after LCD_MCLK high
MAX
UNIT
7
ns
0.5
ns
Table 6-83. LCD LIDD Mode Timing Characteristics
No.
MIN
MAX
UNIT
4
td(LCD_D_V)
Delay time, LCD_MCLK high to LCD_D[15:0] valid (write)
PARAMETER
-0.5
10
ns
5
td(LCD_D_I)
Delay time, LCD_MCLK high to LCD_D[15:0] invalid (write)
-0.5
10
ns
6
td(LCD_E_A)
Delay time, LCD_MCLK high to LCD_AC_ENB_CS low
-0.5
7
ns
7
td(LCD_E_I)
Delay time, LCD_MCLK high to LCD_AC_ENB_CS high
-0.5
7
ns
8
td(LCD_A_A)
Delay time, LCD_MCLK high to LCD_VSYNC low
-0.5
8
ns
9
td(LCD_A_I)
Delay time, LCD_MCLK high to LCD_VSYNC high
-0.5
8
ns
10
td(LCD_W_A)
Delay time, LCD_MCLK high to LCD_HSYNC low
-0.5
8
ns
11
td(LCD_W_I)
Delay time, LCD_MCLK high to LCD_HSYNC high
-0.5
8
ns
12
td(LCD_STRB_A)
Delay time, LCD_MCLK high to LCD_PCLK active
-0.5
12
ns
13
td(LCD_STRB_I)
Delay time, LCD_MCLK high to LCD_PCLK inactive
-0.5
12
ns
14
td(LCD_D_Z)
Delay time, LCD_MCLK high to LCD_D[15:0] in 3-state
-0.5
12
ns
15
td(Z_LCD_D)
Delay time, LCD_MCLK high to LCD_D[15:0] (valid from 3-state)
-0.5
12
ns
CS_DELA Y
1
W_SU
(0 to 31)
2
3
W_STROBE
(1 to 63)
R_SU
(0 to 31)
R_HOLD
(1 to 15)
R_STROBE
(1 to 63)
W_HOLD
(1 to 15)
CS_DELA Y
LCD_MCLK
4
5
14
17
16
LCD_D[15:0]
15
Data[7:0]
Write Data
Read Status
LCD_PCLK
Not Used
8
9
LCD_VSYNC
RS
10
11
LCD_HSYNC
R/W
12
12
13
13
E0
E1
LCD_AC_ENB_CS
Figure 6-47. Character Display HD44780 Write
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
137
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
W_HOLD
(1–15)
R_SU
(0–31)
1
2
R_STROBE
R_HOLD
(1–63)
(1–5)
CS_DELAY
W_SU
W_STROBE
(0–31)
CS_DELAY
(1–63)
Not
Used
3
LCD_MCLK
14
16
17
15
4
LCD_D[7:0]
5
Data[7:0]
Write Instruction
Read
Data
LCD_PCLK
Not
Used
8
9
RS
LCD_VSYNC
10
11
LCD_HSYNC
R/W
12
12
13
LCD_AC_ENB_CS
13
E0
E1
Figure 6-48. Character Display HD44780 Read
138
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
W_HOLD
(1−15)
W_HOLD
(1−15)
1
2
W_SU
W_STROBE
(0−31)
(1−63)
CS_DELAY
W_SU
W_STROBE
(0−31)
(1−63)
CS_DELAY
3
Clock
LCD_MCLK
4
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
5
5
4
Write Address
Write Data
7
6
Data[15:0]
6
7
CS0
CS1
9
8
A0
LCD_VSYNC
10
11
11
10
R/W
LCD_HSYNC
12
13
12
13
E
LCD_PCLK
Figure 6-49. Micro-Interface Graphic Display 6800 Write
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
139
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
W_HOLD
(1−15)
1
2
W_SU
W_STROBE
(0−31)
(1−63)
R_SU
(0−31)
CS_DELAY
R_STROBE
R_HOLD
(1−63
CS_DELAY
(1−15)
3
Clock
LCD_MCLK
4
LCD_D[15:0]
5
14
16
17
15
Write Address
Data[15:0]
6
7
Read
Data
6
LCD_AC_ENB_CS
(async mode)
7
CS0
CS1
9
8
LCD_VSYNC
A0
11
10
LCD_HSYNC
R/W
12
13
12
LCD_PCLK
13
E
Figure 6-50. Micro-Interface Graphic Display 6800 Read
140
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
R_SU
(0−31)
R_SU
(0−31)
R_STROBE R_HOLD CS_DELAY
R_STROBE
R_HOLD CS_DELAY
1
2
(1−63)
3
(1−15)
(1−63)
(1−15)
Clock
LCD_MCLK
14
16
17
15
14
17
16
15
LCD_D[15:0]
Data[15:0]
Read
Data
6
LCD_AC_ENB_CS
(async mode)
7
Read
Status
6
7
CS0
CS1
8
9
LCD_VSYNC
A0
R/W
LCD_HSYNC
12
13
12
13
E
LCD_PCLK
Figure 6-51. Micro-Interface Graphic Display 6800 Status
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
141
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
W_HOLD
(1−15)
W_HOLD
(1−15)
1
2
W_SU
W_STROBE
(0−31)
3
(1−63)
CS_DELAY
W_SU
W_STROBE
(0−31)
(1−63)
CS_DELAY
Clock
LCD_MCLK
4
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
5
4
Write Address
5
DATA[15:0]
Write Data
7
6
6
7
CS0
CS1
8
9
LCD_VSYNC
A0
10
11
10
LCD_HSYNC
11
WR
RD
LCD_PCLK
Figure 6-52. Micro-Interface Graphic Display 8080 Write
142
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
W_HOLD
(1−15)
W_SU
W_STROBE
R_SU
(0−31)
CS_DELAY
R_STROBE
R_HOLD
CS_DELAY
1
2
3
(0−31)
(1−63)
(1−63)
(1−15)
16
17
Clock
LCD_MCLK
4
LCD_D[15:0]
5
14
15
Data[15:0]
Write Address
6
7
LCD_AC_ENB_CS
(async mode)
6
Read
Data
7
CS0
CS1
9
8
LCD_VSYNC
A0
10
11
WR
LCD_HSYNC
12
13
RD
LCD_PCLK
Figure 6-53. Micro-Interface Graphic Display 8080 Read
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
143
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
R_SU
(0−31)
R_SU
(0−31)
R_STROBE
1
2
(1−63)
R_HOLD
CS_DELAY
R_STROBE R_HOLD
(1−15)
(1−63)
CS_DELAY
(1−15)
3
Clock
LCD_MCLK
14
16
17
15
14
16
17
15
Data[15:0]
LCD_D[15:0]
Read Data
Read Status
7
6
6
7
LCD_AC_ENB_CS
CS0
CS1
8
9
A0
LCD_VSYNC
WR
LCD_HSYNC
12
13
12
13
RD
LCD_PCLK
Figure 6-54. Micro-Interface Graphic Display 8080 Status
144
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.21.2 LCD Raster Mode
Table 6-84. LCD Raster Mode Timing
See Figure 6-55 through Figure 6-59
No.
(1)
(2)
PARAMETER
MIN
MAX
1
tc(PIXEL_CLK)
Cycle time, pixel clock
2
tw(PIXEL_CLK_H)
Pulse duration, pixel clock high
3
tw(PIXEL_CLK_L)
Pulse duration, pixel clock low
4
td(LCD_D_V)
Delay time, LCD_PCLK high to LCD_D[15:0] valid (write)
-0.5
9
5
td(LCD_D_IV)
Delay time, LCD_PCLK high to LCD_D[15:0] invalid (write)
-0.5
9
UNIT
26.6
ns
10
ns
10
ns
(1)
ns
(1)
ns
6
td(LCD_AC_ENB_CS_A)
Delay time, LCD_PCLK low to LCD_AC_ENB_CS high
S2 - 0.5
7
td(LCD_AC_ENB_CS_I)
Delay time, LCD_PCLK low to LCD_AC_ENB_CS low
S2 - 0.5 (1)
S2 + 9 (1)
ns
8
td(LCD_VSYNC_A)
Delay time, LCD_PCLK low to LCD_VSYNC high (2)
-0.5
12
ns
9
td(LCD_VSYNC_I)
Delay time, LCD_PCLK low to LCD_VSYNC low (2)
-0.5
12
ns
--0.5
12
ns
-0.5
12
ns
(2)
10
td(LCD_HSYNC_A)
Delay time, LCD_PCLK high to LCD_HSYNC high
11
td(LCD_HSYNC_I)
Delay time, LCD_PCLK high to LCD_HSYNC low (2)
S2 + 9
ns
S2 = SYSCLK2 cycle time in ns
The activation edge of the control signals LCD_VSYNC and LCD_HSYNC may be programmed to either the rising or falling edge of the
pixel clock through the LCD (RASTER_TIMING_2) register. In Figure 6-56 through Figure 6-59, all signal polarity and activation edges
are based on the default LCD (RASTER_TIMING_2) register settings.
Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1)
register:
• Vertical front porch (VFP)
• Vertical sync pulse width (VSW)
• Vertical back porch (VBP)
• Lines per panel (LPP)
Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register:
• Horizontal front porch (HFP)
• Horizontal sync pulse width (HSW)
• Horizontal back porch (HBP)
• Pixels per panel (PPL)
.LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2)
register:
• AC bias frequency (ACB)
The display format produced in raster mode is shown in Figure 6-55. An entire frame is delivered one line
at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line
delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is
denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the
activation of I/O signal LCD_HSYNC.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
145
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Data Pixels (From 1 to P)
1, 1
2, 1
1, 2
2, 2
P−2,
1
3, 1
P−1,
1
P, 1
P−1,
2
P, 2
P, 3
Data Lines (From 1 to L)
1, 3
LCD
P,
L−2
1,
L−2
1,
L−1
2,
L−1
1, L
2, L
P−2,
L
3, L
P−1,
L−1
P,
L−1
P−1,
L
P, L
Figure 6-55. LCD Raster-Mode Display Format
146
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Frame Time ~ 70Hz
Active TFT
VSW
(1 to 64)
VBP
(0 to 255)
Line
Time
LPP
VFP
(1 to 1024)
(0 to 255)
VSW
(1 to 64)
Hsync
LCD_HSYNC
LCD_VSYNC
Vsync
Data
LCD_D[15:0]
1, 1
P, 1
1, L−1
P, L−1
1, 2
P, 2
1, L
P, L
Enable
LCD_AC_ENB_CS
ACB
ACB
(0 to 255)
(0 to 255)
10
11
Hsync
LCD_HSYNC
CLK
LCD_PCLK
Data
LCD_D[15:0]
1, 1
2, 1
PLL
16
1, 2
P, 1
(1 to 1024)
HFP
HSW
HBP
(1 to 256)
(1 to 64)
(1 to 256)
Line 1
2, 2
P, 2
PLL
16
(1 to 1024)
Line 2
Figure 6-56. LCD Raster-Mode Active
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
147
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Frame Time ~ 70Hz
VBP = 0
VFP = 0
VBP = 0
VFP = 0
Passive STN VSW = 1
(1 to 64)
VSW = 1
(1 to 64)
LPP
(1 to 1024)
Line
Time
LCD_HSYNC
LP
LCD_VSYNC
FP
1, L
Data
LCD_D[7:0]
1, 1:
P, 1
1, L:
P, L
1, 2:
P, 2
1, 3:
P, 3
1, 4:
P, 4
1, 5:
P, 5
1, L
P, L
1, 6:
P, 6
1, L−1
P, L−1
1, L−4
P, L−4
1, 1
P, 1
1, 2
P, 2
1, L−3 1, L−2 1, L−1
P, L−3 P, L−2 P, L−1
M
LCD_AC_ENB_CS
ACB
ACB
(0 to 255)
(0 to 255)
11
10
LCD_HSYNC
LP
LCD_PCLK
CP
Data
LCD_D[7:0]
1, 5
2, 5
P, 5
PPL
16
1, 6
(1 to 1024)
HFP
HSW
HBP
(1 to 256)
(1 to 64)
(1 to 256)
2, 6
P, 6
PPL
16
(1 to 2024)
Line 6
Line 5
Figure 6-57. LCD Raster-Mode Passive
148
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6
LCD_AC_ENB_CS
8
LCD_VSYNC
10
11
LCD_HSYNC
1
2
3
LCD_PCLK
(passive mode)
5
4
LCD_D[7:0]
(passive mode)
1, L
2, L
P, L
1, 1
2, 1
P, 1
1
2
3
LCD_PCLK
(active mode)
4
LCD_D[15:0]
(active mode)
VBP = 0
VFP = 0
VSW = 1
1, L
2, L
PPL
16 × (1 to 1024)
Line L
5
P, L
HFP
(1 to 256
HSW
(1 to 64)
HBP
(1 to 256)
PPL
16 ×(1 to 1024)
Line 1 (Passive Only)
Figure 6-58. LCD Raster-Mode Control Signal Activation
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
149
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
7
LCD_AC_ENB_CS
9
LCD_VSYNC
10
11
LCD_HSYNC
1
3
4
LCD_PCLK
(passive mode)
5
4
LCD_D[7:0]
(passive mode)
1, 1
2, 1
P, 1
1, 2
2, 2
P, 2
1
2
3
LCD_PCLK
(active mode)
4
LCD_D[15:0]
(active mode)
VBP = 0
VFP = 0
VSW = 1
5
1, 1
PPL
16 × (1 to 1024)
HFP
(1 to 256
HSW
(1 to 64)
HBP
(1 to 256)
Line 1 for passive
2, 1
P, 1
PPL
16 ×(1 to 1024)
Line 1 for active
Line 2 for passive
Figure 6-59. LCD Raster-Mode Control Signal Deactivation
150
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.22 Timers
The timers support the following features:
• Configurable as single 64-bit timer or two 32-bit timers
• Period timeouts generate interrupts, DMA events or external pin events
• 8 32-bit compare registers
• Compare matches generate interrupt events
• Capture capability
• 64-bit Watchdog capability (Timer64P1 only)
Table 6-85 lists the timer registers.
Table 6-85. Timer Registers
Timer64P 0
Timer64P 1
0x01C2 0000
0x01C2 1000
REV
0x01C2 0004
0x01C2 1004
EMUMGT
0x01C2 0008
0x01C2 1008
GPINTGPEN
0x01C2 000C
0x01C2 100C
GPDATGPDIR
0x01C2 0010
0x01C2 1010
TIM12
Timer Counter Register 12
0x01C2 0014
0x01C2 1014
TIM34
Timer Counter Register 34
0x01C2 0018
0x01C2 1018
PRD12
Timer Period Register 12
0x01C2 001C
0x01C2 101C
PRD34
Timer Period Register 34
0x01C2 0020
0x01C2 1020
TCR
0x01C2 0024
0x01C2 1024
TGCR
0x01C2 0028
0x01C2 1028
WDTCR
0x01C2 0034
0x01C2 1034
REL12
Timer Reload Register 12
0x01C2 0038
0x01C2 1038
REL34
Timer Reload Register 34
0x01C2 003C
0x01C2 103C
CAP12
Timer Capture Register 12
0x01C2 0040
0x01C2 1040
CAP34
Timer Capture Register 34
0x01C2 0044
0x01C2 1044
INTCTLSTAT
0x01C2 0060
0x01C2 1060
CMP0
Compare Register 0
0x01C2 0064
0x01C2 1064
CMP1
Compare Register 1
0x01C2 0068
0x01C2 1068
CMP2
Compare Register 2
0x01C2 006C
0x01C2 106C
CMP3
Compare Register 3
0x01C2 0070
0x01C2 1070
CMP4
Compare Register 4
0x01C2 0074
0x01C2 1074
CMP5
Compare Register 5
0x01C2 0078
0x01C2 1078
CMP6
Compare Register 6
0x01C2 007C
0x01C2 107C
CMP7
Compare Register 7
Copyright © 2010–2014, Texas Instruments Incorporated
ACRONYM
REGISTER DESCRIPTION
Revision Register
Emulation Management Register
GPIO Interrupt and GPIO Enable Register
GPIO Data and GPIO Direction Register
Timer Control Register
Timer Global Control Register
Watchdog Timer Control Register
Timer Interrupt Control and Status Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
151
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.22.1
www.ti.com
Timer Electrical Data/Timing
Table 6-86. Timing Requirements for Timer Input (1)
No.
(2)
(see Figure 6-60)
PARAMETER
MIN
MAX
1
tc(TM64Px_IN12)
Cycle time, TM64Px_IN12
2
tw(TINPH)
Pulse duration, TM64Px_IN12 high
0.45C
0.55C
3
tw(TINPL)
Pulse duration, TM64Px_IN12 low
0.45C
0.55C
4
(1)
(2)
(3)
tt(TM64Px_IN12)
UNIT
4P
Transition time, TM64Px_IN12
ns
0.25P or 10
ns
ns
(3)
ns
P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns.
C = TM64P0_IN12 cycle time in ns. For example, when TM64Px_IN12 frequency is 27 MHz, use C = 37.037 ns
Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve
noise immunity on input signals.
1
2
4
3
4
TM64P0_IN12
Figure 6-60. Timer Timing
Table 6-87. Switching Characteristics Over Recommended Operating Conditions for Timer Output
No.
PARAMETER
MIN
MAX
(1)
UNIT
5
tw(TOUTH)
Pulse duration, TM64P0_OUT12 high
4P
ns
6
tw(TOUTL)
Pulse duration, TM64P0_OUT12 low
4P
ns
(1)
P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns.
5
6
TM64P0_OUT12
Figure 6-61. Timer Timing
152
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.23 Inter-Integrated Circuit Serial Ports (I2C0, I2C1)
6.23.1 I2C Device-Specific Information
Having two I2C modules on the device simplifies system architecture. Figure 6-62 is block diagram of the
I2C Module.
Each I2C port supports:
• Compatible with Philips® I2C Specification Revision 2.1 (January 2000)
• Fast Mode up to 400 Kbps (no fail-safe I/O buffers)
• Noise Filter to Remove Noise 50 ns or less
• Seven- and Ten-Bit Device Addressing Modes
• Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality
• Events: DMA, Interrupt, or Polling
• General-Purpose I/O Capability if not used as I2C
Clock Prescaler
I2CPSCx
Control
Prescaler
Register
Bit Clock Generator
I2Cx_SCL
Noise
Filter
I2CCOARx
Own Address
Register
I2CSARx
Slave Address
Register
I2CCLKHx
Clock Divide
High Register
I2CCMDRx
Mode Register
I2CCLKLx
Clock Divide
Low Register
I2CEMDRx
Extended Mode
Register
I2CCNTx
Data Count
Register
I2CPID1
Peripheral ID
Register 1
I2CPID2
Peripheral ID
Register 2
Transmit
I2Cx_SDA
Noise
Filter
I2CXSRx
Transmit Shift
Register
I2CDXRx
Transmit Buffer
Interrupt/DMA
Receive
I2CIERx
I2CDRRx
Receive Buffer
I2CRSRx
Receive Shift
Register
I2CSRCx
I2CPFUNC
Pin Function
Register
I2CPDOUT
I2CSTRx
Interrupt Enable
Register
Interrupt Status
Register
Interrupt Source
Register
Peripheral
Configuration
Bus
Interrupt DMA
Requests
Control
I2CPDIR
I2CPDIN
Pin Direction
Register
Pin Data In
Register
I2CPDSET
I2CPDCLR
Pin Data Out
Register
Pin Data Set
Register
Pin Data Clear
Register
Figure 6-62. I2C Module Block Diagram
6.23.2 I2C Peripheral Registers Description(s)
Table 6-88 is the list of the I2C registers.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
153
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-88. Inter-Integrated Circuit (I2C) Registers
154
I2C0
BYTE ADDRESS
I2C1
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
0x01C2 2000
0x01E2 8000
ICOAR
I2C Own Address Register
0x01C2 2004
0x01E2 8004
ICIMR
I2C Interrupt Mask Register
0x01C2 2008
0x01E2 8008
ICSTR
I2C Interrupt Status Register
0x01C2 200C
0x01E2 800C
ICCLKL
I2C Clock Low-Time Divider Register
0x01C2 2010
0x01E2 8010
ICCLKH
I2C Clock High-Time Divider Register
0x01C2 2014
0x01E2 8014
ICCNT
I2C Data Count Register
0x01C2 2018
0x01E2 8018
ICDRR
I2C Data Receive Register
0x01C2 201C
0x01E2 801C
ICSAR
I2C Slave Address Register
0x01C2 2020
0x01E2 8020
ICDXR
I2C Data Transmit Register
0x01C2 2024
0x01E2 8024
ICMDR
I2C Mode Register
0x01C2 2028
0x01E2 8028
ICIVR
I2C Interrupt Vector Register
0x01C2 202C
0x01E2 802C
ICEMDR
I2C Extended Mode Register
0x01C2 2030
0x01E2 8030
ICPSC
I2C Prescaler Register
0x01C2 2034
0x01E2 8034
REVID1
I2C Revision Identification Register 1
0x01C2 2038
0x01E2 8038
REVID2
I2C Revision Identification Register 2
0x01C2 2048
0x01E2 8048
ICPFUNC
I2C Pin Function Register
0x01C2 204C
0x01E2 804C
ICPDIR
I2C Pin Direction Register
0x01C2 2050
0x01E2 8050
ICPDIN
I2C Pin Data In Register
0x01C2 2054
0x01E2 8054
ICPDOUT
I2C Pin Data Out Register
0x01C2 2058
0x01E2 8058
ICPDSET
I2C Pin Data Set Register
0x01C2 205C
0x01E2 805C
ICPDCLR
I2C Pin Data Clear Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.23.3 I2C Electrical Data/Timing
6.23.3.1 Inter-Integrated Circuit (I2C) Timing
Table 6-89 and Table 6-90 assume testing over recommended operating conditions (see Figure 6-63 and
Figure 6-64).
Table 6-89. I2C Input Timing Requirements
No.
PARAMETER
1
tc(SCL)
Cycle time, I2Cx_SCL
2
tsu(SCLH-SDAL)
Setup time, I2Cx_SCL high before I2Cx_SDA low
3
th(SCLL-SDAL)
Hold time, I2Cx_SCL low after I2Cx_SDA low
4
tw(SCLL)
Pulse duration, I2Cx_SCL low
5
tw(SCLH)
Pulse duration, I2Cx_SCL high
6
tsu(SDA-SCLH)
Setup time, I2Cx_SDA before I2Cx_SCL high
7
th(SDA-SCLL)
Hold time, I2Cx_SDA after I2Cx_SCL low
8
tw(SDAH)
Pulse duration, I2Cx_SDA high
9
tr(SDA)
Rise time, I2Cx_SDA
10
tr(SCL)
Rise time, I2Cx_SCL
11
tf(SDA)
Fall time, I2Cx_SDA
12
tf(SCL)
Fall time, I2Cx_SCL
13
tsu(SCLH-SDAH)
Setup time, I2Cx_SCL high before I2Cx_SDA high
14
tw(SP)
Pulse duration, spike (must be suppressed)
15
Cb
Capacitive load for each bus line
Copyright © 2010–2014, Texas Instruments Incorporated
MIN
Standard Mode
10
Fast Mode
2.5
Standard Mode
4.7
Fast Mode
0.6
Standard Mode
0.6
Standard Mode
4.7
Fast Mode
1.3
0.6
Standard Mode
250
Fast Mode
100
Standard Mode
0
Fast Mode
0
Standard Mode
4.7
Fast Mode
1.3
Standard Mode
Fast Mode
20 + 0.1Cb
Standard Mode
ns
0.9
300
300
300
300
4
0.6
Standard Mode
N/A
0
μs
μs
300
20 + 0.1Cb
Fast Mode
Fast Mode
μs
300
20 + 0.1Cb
Standard Mode
Fast Mode
μs
1000
Standard Mode
Fast Mode
μs
1000
20 + 0.1Cb
Standard Mode
Fast Mode
μs
4
Fast Mode
UNIT
μs
4
Fast Mode
Standard Mode
MAX
ns
ns
ns
ns
μs
50
Standard Mode
400
Fast Mode
400
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
ns
pF
155
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-90. I2C Switching Characteristics (1)
No.
PARAMETER
MIN
16
tc(SCL)
Cycle time, I2Cx_SCL
17
tsu(SCLH-SDAL)
Setup time, I2Cx_SCL high before I2Cx_SDA low
18
th(SDAL-SCLL)
Hold time, I2Cx_SCL low after I2Cx_SDA low
19
tw(SCLL)
Pulse duration, I2Cx_SCL low
20
tw(SCLH)
Pulse duration, I2Cx_SCL high
21
tsu(SDAV-SCLH)
Setup time, I2Cx_SDA valid before I2Cx_SCL high
22
th(SCLL-SDAV)
Hold time, I2Cx_SDA valid after I2Cx_SCL low
23
tw(SDAH)
Pulse duration, I2Cx_SDA high
28
tsu(SCLH-SDAH)
Setup time, I2Cx_SCL high before I2Cx_SDA high
(1)
Standard Mode
10
Fast Mode
2.5
Standard Mode
4.7
Fast Mode
0.6
Standard Mode
MAX
UNIT
μs
μs
4
Fast Mode
0.6
Standard Mode
4.7
Fast Mode
1.3
Standard Mode
μs
μs
4
Fast Mode
0.6
Standard Mode
250
Fast Mode
100
Standard Mode
0
Fast Mode
0
Standard Mode
4.7
Fast Mode
1.3
Standard Mode
μs
ns
μs
0.9
μs
4
Fast Mode
μs
0.6
I2C must be configured correctly to meet the timings in Table 6-90.
11
9
I2Cx_SDA
6
8
14
4
13
5
10
I2Cx_SCL
1
12
3
2
7
3
Stop
Start
Repeated
Start
Stop
Figure 6-63. I2C Receive Timings
156
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
26
24
I2Cx_SDA
21
23
19
28
20
25
I2Cx_SCL
16
27
18
17
22
18
Stop
Start
Repeated
Start
Stop
Figure 6-64. I2C Transmit Timings
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
157
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.24
www.ti.com
Universal Asynchronous Receiver/Transmitter (UART)
The device has 3 UART peripherals. Each UART has the following features:
• 16-byte storage space for both the transmitter and receiver FIFOs
• 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA
• Autoflow control signals (CTS, RTS) on UART0 only
• DMA signaling capability for both received and transmitted data
• Programmable auto-rts and auto-cts for autoflow control
• Programmable Baud Rate up to 3MBaud
• Programmable Oversampling Options of x13 and x16
• Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates
• Prioritized interrupts
• Programmable serial data formats
– 5, 6, 7, or 8-bit characters
– Even, odd, or no parity bit generation and detection
– 1, 1.5, or 2 stop bit generation
• False start bit detection
• Line break generation and detection
• Internal diagnostic capabilities
– Loopback controls for communications link fault isolation
– Break, parity, overrun, and framing error simulation
The UART registers are listed in Section 6.24.1
6.24.1 UART Peripheral Registers Description(s)
Table 6-91 is the list of UART registers.
Table 6-91. UART Registers
UART0
BYTE ADDRESS
UART1
BYTE ADDRESS
UART2
BYTE ADDRESS
ACRONYM
0x01C4 2000
0x01D0 C000
0x01D0 D000
RBR
Receiver Buffer Register (read only)
0x01C4 2000
0x01D0 C000
0x01D0 D000
THR
Transmitter Holding Register (write only)
0x01C4 2004
0x01D0 C004
0x01D0 D004
IER
Interrupt Enable Register
0x01C4 2008
0x01D0 C008
0x01D0 D008
IIR
Interrupt Identification Register (read only)
0x01C4 2008
0x01D0 C008
0x01D0 D008
FCR
FIFO Control Register (write only)
0x01C4 200C
0x01D0 C00C
0x01D0 D00C
LCR
Line Control Register
0x01C4 2010
0x01D0 C010
0x01D0 D010
MCR
Modem Control Register
0x01C4 2014
0x01D0 C014
0x01D0 D014
LSR
Line Status Register
0x01C4 2018
0x01D0 C018
0x01D0 D018
MSR
Modem Status Register
0x01C4 201C
0x01D0 C01C
0x01D0 D01C
SCR
Scratchpad Register
0x01C4 2020
0x01D0 C020
0x01D0 D020
DLL
Divisor LSB Latch
0x01C4 2024
0x01D0 C024
0x01D0 D024
DLH
Divisor MSB Latch
0x01C4 2028
0x01D0 C028
0x01D0 D028
REVID1
0x01C4 2030
0x01D0 C030
0x01D0 D030
PWREMU_MGMT
0x01C4 2034
0x01D0 C034
0x01D0 D034
MDR
158
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
REGISTER DESCRIPTION
Revision Identification Register 1
Power and Emulation Management Register
Mode Definition Register
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.24.2 UART Electrical Data/Timing
Table 6-92. Timing Requirements for UARTx Receive (1) (see Figure 6-65)
No.
4
5
(1)
MIN
MAX
UNIT
tw(URXDB)
Pulse duration, receive data bit (RXDn)
PARAMETER
0.96U
1.05U
ns
tw(URXSB)
Pulse duration, receive start bit
0.96U
1.05U
ns
U = UART baud time = 1/programmed baud rate.
Table 6-93. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1)
(see Figure 6-65)
No.
(1)
(2)
(3)
(4)
PARAMETER
MIN
MAX
D/E
(2) (3)
UNIT
MBaud (4)
1
f(baud)
Maximum programmable baud rate
2
tw(UTXDB)
Pulse duration, transmit data bit (TXDn)
U-2
U+2
ns
3
tw(UTXSB)
Pulse duration, transmit start bit
U-2
U+2
ns
U = UART baud time = 1/programmed baud rate.
D = UART input clock in MHz. The UART(s) input clock source is PLL0_SYSCLK2.
E = UART divisor x UART sampling rate. The UART divisor is set through the UART divisor latch registers (DLL and DLH). The UART
sampling rate is set through the over-sampling mode select bit (OSM_SEL) of the UART mode definition register (MDR).
Baud rate is not indicative of data rate. Actual data rate will be limited by system factors such as EDMA loading, EMIF loading, system
frequency, etc.
3
2
UART_TXDn
Start
Bit
Data Bits
5
4
UART_RXDn
Start
Bit
Data Bits
Figure 6-65. UART Transmit/Receive Timing
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
159
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.25 USB1 Host Controller Registers (USB1.1 OHCI)
All the device USB interfaces are compliant with Universal Serial Bus Specification, Revision 1.1.
Table 6-94 is the list of USB1 Host Controller registers.
Table 6-94. USB1 Host Controller Registers
USB 1
BYTE ADDRESS
(1)
(2)
(3)
ACRONYM
REGISTER DESCRIPTION
0x01E2 5000
HCREVISION
OHCI Revision Number Register
0x01E2 5004
HCCONTROL
HC Operating Mode Register
0x01E2 5008
HCCOMMANDSTATUS
HC Command and Status Register
0x01E2 500C
HCINTERRUPTSTATUS
HC Interrupt and Status Register
0x01E2 5010
HCINTERRUPTENABLE
HC Interrupt Enable Register
0x01E2 5014
HCINTERRUPTDISABLE
HC Interrupt Disable Register
0x01E2 5018
HCHCCA
HC HCAA Address Register (1)
0x01E2 501C
HCPERIODCURRENTED
HC Current Periodic Register (1)
0x01E2 5020
HCCONTROLHEADED
0x01E2 5024
HCCONTROLCURRENTED
0x01E2 5028
HCBULKHEADED
0x01E2 502C
HCBULKCURRENTED
HC Current Bulk Register (1)
0x01E2 5030
HCDONEHEAD
HC Head Done Register (1)
0x01E2 5034
HCFMINTERVAL
HC Frame Interval Register
0x01E2 5038
HCFMREMAINING
0x01E2 503C
HCFMNUMBER
0x01E2 5040
HCPERIODICSTART
0x01E2 5044
HCLSTHRESHOLD
0x01E2 5048
HCRHDESCRIPTORA
HC Root Hub A Register
0x01E2 504C
HCRHDESCRIPTORB
HC Root Hub B Register
0x01E2 5050
HCRHSTATUS
0x01E2 5054
HCRHPORTSTATUS1
HC Port 1 Status and Control Register (2)
0x01E2 5058
HCRHPORTSTATUS2
HC Port 2 Status and Control Register (3)
HC Head Control Register (1)
HC Current Control Register (1)
HC Head Bulk Register (1)
HC Frame Remaining Register
HC Frame Number Register
HC Periodic Start Register
HC Low-Speed Threshold Register
HC Root Hub Status Register
Restrictions apply to the physical addresses used in these registers.
Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP).
Although the controller implements two ports, the second port cannot be used.
Table 6-95. Switching Characteristics Over Recommended Operating Conditions for USB1
No.
U1
LOW SPEED
PARAMETER
tr
Rise time, USB1_DP and USB1_DM signals (1)
(1)
FULL SPEED
UNIT
MIN
MAX
MAX
MAX
75 (1)
300 (1)
4 (1)
20 (1)
ns
(1)
(1)
(1)
20 (1)
ns
U2
tf
Fall time, USB1_DP and USB1_DM signals
U3
tRFM
Rise/Fall time matching (2)
80 (2)
120 (2)
90 (2)
110 (2)
%
U4
VCRS
Output signal cross-over voltage (1)
1.3 (1)
2 (1)
1.3 (1)
2 (1)
V
U5
tj
Differential propagation jitter
U6
fop
Operating frequency (4)
(1)
(2)
(3)
(4)
160
(3)
75
-25
(3)
300
25
(3)
1.5
4
-2
(3)
2
(3)
12
ns
MHz
Low Speed: CL = 200 pF. High Speed: CL = 50pF
tRFM =( tr/tf ) x 100
t jr = t px(1) - tpx(0)
fop = 1/tper
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.25.1 USB1 Unused Signal Configuration
If USB1 is unused, then the USB1 signals should be configured as shown in Section 3.6.22.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
161
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.26 USB0 OTG (USB2.0 OTG)
The device USB2.0 peripheral supports the following features:
• USB 2.0 peripheral at high-speed (HS: 480 Mb/s) and full-speed (FS: 12 Mb/s)
• USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s)
• All transfer modes (control, bulk, interrupt, and isochronous)
• 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0
• FIFO RAM
– 4K endpoint
– Programmable size
• Integrated USB 2.0 High Speed PHY
• Connects to a standard Charge Pump for VBUS 5 V generation
• RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB
Important Notice: On the original device pinout (marked "A" in the lower right corner of the package),
pins USB0_VSSA33 (H4) and USB0_VSSA (F3) were connected to ground outside the package. For
more robust ESD performance, the USB0 ground references are now connected inside the package on
packages marked "B" and the package pins are unconnected. This change will require that any external
filter circuits previously referenced to ground at these pins will need to reference the board ground instead.
Important Notice: The USB0 controller module clock (PLL0_SYSCLK2) must be greater than 30 MHz for
proper operation of the USB controller. A clock rate of 60 MHz or greater is recommended to avoid da`ta
throughput reduction.
Table 6-96 is the list of USB OTG registers.
Table 6-96. Universal Serial Bus OTG (USB0) Registers
162
BYTE ADDRESS
ACRONYM
0x01E0 0000
REVID
Revision Register
REGISTER DESCRIPTION
0x01E0 0004
CTRLR
Control Register
0x01E0 0008
STATR
Status Register
0x01E0 000C
EMUR
Emulation Register
0x01E0 0010
MODE
Mode Register
0x01E0 0014
AUTOREQ
0x01E0 0018
SRPFIXTIME
Autorequest Register
SRP Fix Time Register
0x01E0 001C
TEARDOWN
Teardown Register
0x01E0 0020
INTSRCR
USB Interrupt Source Register
0x01E0 0024
INTSETR
USB Interrupt Source Set Register
0x01E0 0028
INTCLRR
USB Interrupt Source Clear Register
0x01E0 002C
INTMSKR
USB Interrupt Mask Register
0x01E0 0030
INTMSKSETR
USB Interrupt Mask Set Register
0x01E0 0034
INTMSKCLRR
USB Interrupt Mask Clear Register
0x01E0 0038
INTMASKEDR
USB Interrupt Source Masked Register
0x01E0 003C
EOIR
0x01E0 0040
-
0x01E0 0050
GENRNDISSZ1
Generic RNDIS Size EP1
0x01E0 0054
GENRNDISSZ2
Generic RNDIS Size EP2
0x01E0 0058
GENRNDISSZ3
Generic RNDIS Size EP3
0x01E0 005C
GENRNDISSZ4
Generic RNDIS Size EP4
0x01E0 0400
FADDR
Function Address Register
0x01E0 0401
POWER
Power Management Register
0x01E0 0402
INTRTX
Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4
USB End of Interrupt Register
Reserved
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E0 0404
INTRRX
Interrupt Register for Receive Endpoints 1 to 4
REGISTER DESCRIPTION
0x01E0 0406
INTRTXE
Interrupt Enable Register for INTRTX
0x01E0 0408
INTRRXE
Interrupt Enable Register for INTRRX
0x01E0 040A
INTRUSB
Interrupt Register for Common USB Interrupts
0x01E0 040B
INTRUSBE
0x01E0 040C
FRAME
Interrupt Enable Register for INTRUSB
Frame Number Register
0x01E0 040E
INDEX
Index Register for Selecting the Endpoint Status and Control Registers
0x01E0 040F
TESTMODE
Register to Enable the USB 2.0 Test Modes
INDEXED REGISTERS
These registers operate on the endpoint selected by the INDEX register
0x01E0 0410
TXMAXP
Maximum Packet Size for Peripheral/Host Transmit Endpoint
(Index register set to select Endpoints 1-4 only)
0x01E0 0412
PERI_CSR0
Control Status Register for Endpoint 0 in Peripheral Mode.
(Index register set to select Endpoint 0)
HOST_CSR0
Control Status Register for Endpoint 0 in Host Mode.
(Index register set to select Endpoint 0)
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint.
(Index register set to select Endpoints 1-4)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint.
(Index register set to select Endpoints 1-4)
0x01E0 0414
RXMAXP
0x01E0 0416
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint.
(Index register set to select Endpoints 1-4)
HOST_RXCSR
Control Status Register for Host Receive Endpoint.
(Index register set to select Endpoints 1-4)
0x01E0 0418
COUNT0
RXCOUNT
0x01E0 041A
HOST_TYPE0
HOST_TXTYPE
0x01E0 041B
HOST_NAKLIMIT0
HOST_TXINTERVAL
Maximum Packet Size for Peripheral/Host Receive Endpoint
(Index register set to select Endpoints 1-4 only)
Number of Received Bytes in Endpoint 0 FIFO.
(Index register set to select Endpoint 0)
Number of Bytes in Host Receive Endpoint FIFO.
(Index register set to select Endpoints 1- 4)
Defines the speed of Endpoint 0
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
(Index register set to select Endpoints 1-4 only)
Sets the NAK response timeout on Endpoint 0.
(Index register set to select Endpoint 0)
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint. (Index register set to
select Endpoints 1-4 only)
0x01E0 041C
HOST_RXTYPE
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
(Index register set to select Endpoints 1-4 only)
0x01E0 041D
HOST_RXINTERVAL
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint. (Index register set to select
Endpoints 1-4 only)
0x01E0 041F
CONFIGDATA
Returns details of core configuration.
(Index register set to select Endpoint 0)
FIFO
0x01E0 0420
FIFO0
Transmit and Receive FIFO Register for Endpoint 0
0x01E0 0424
FIFO1
Transmit and Receive FIFO Register for Endpoint 1
0x01E0 0428
FIFO2
Transmit and Receive FIFO Register for Endpoint 2
0x01E0 042C
FIFO3
Transmit and Receive FIFO Register for Endpoint 3
0x01E0 0430
FIFO4
Transmit and Receive FIFO Register for Endpoint 4
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
163
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
OTG DEVICE CONTROL
0x01E0 0460
DEVCTL
Device Control Register
DYNAMIC FIFO CONTROL
0x01E0 0462
TXFIFOSZ
Transmit Endpoint FIFO Size
(Index register set to select Endpoints 1-4 only)
0x01E0 0463
RXFIFOSZ
Receive Endpoint FIFO Size
(Index register set to select Endpoints 1-4 only)
0x01E0 0464
TXFIFOADDR
Transmit Endpoint FIFO Address
(Index register set to select Endpoints 1-4 only)
0x01E0 0466
RXFIFOADDR
Receive Endpoint FIFO Address
(Index register set to select Endpoints 1-4 only)
0x01E0 046C
HWVERS
Hardware Version Register
TARGET ENDPOINT 0 CONTROL REGISTERS, VALID ONLY IN HOST MODE
0x01E0 0480
TXFUNCADDR
Address of the target function that has to be accessed through the associated
Transmit Endpoint.
0x01E0 0482
TXHUBADDR
Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0483
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 0484
RXFUNCADDR
0x01E0 0486
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0487
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
Address of the target function that has to be accessed through the associated
Receive Endpoint.
TARGET ENDPOINT 1 CONTROL REGISTERS, VALID ONLY IN HOST MODE
164
0x01E0 0488
TXFUNCADDR
Address of the target function that has to be accessed through the associated
Transmit Endpoint.
0x01E0 048A
TXHUBADDR
Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 048B
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 048C
RXFUNCADDR
0x01E0 048E
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 048F
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
Address of the target function that has to be accessed through the associated
Receive Endpoint.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
TARGET ENDPOINT 2 CONTROL REGISTERS, VALID ONLY IN HOST MODE
0x01E0 0490
TXFUNCADDR
Address of the target function that has to be accessed through the associated
Transmit Endpoint.
0x01E0 0492
TXHUBADDR
Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0493
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 0494
RXFUNCADDR
0x01E0 0496
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 0497
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
Address of the target function that has to be accessed through the associated
Receive Endpoint.
TARGET ENDPOINT 3 CONTROL REGISTERS, VALID ONLY IN HOST MODE
0x01E0 0498
TXFUNCADDR
Address of the target function that has to be accessed through the associated
Transmit Endpoint.
0x01E0 049A
TXHUBADDR
Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 049B
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 049C
RXFUNCADDR
0x01E0 049E
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 049F
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
Address of the target function that has to be accessed through the associated
Receive Endpoint.
TARGET ENDPOINT 4 CONTROL REGISTERS, VALID ONLY IN HOST MODE
0x01E0 04A0
TXFUNCADDR
0x01E0 04A2
TXHUBADDR
Address of the hub that has to be accessed through the associated Transmit
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 04A3
TXHUBPORT
Port of the hub that has to be accessed through the associated Transmit Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
0x01E0 04A4
RXFUNCADDR
0x01E0 04A6
RXHUBADDR
Address of the hub that has to be accessed through the associated Receive
Endpoint. This is used only when full speed or low speed device is connected via a
USB2.0 high-speed hub.
0x01E0 04A7
RXHUBPORT
Port of the hub that has to be accessed through the associated Receive Endpoint.
This is used only when full speed or low speed device is connected via a USB2.0
high-speed hub.
Copyright © 2010–2014, Texas Instruments Incorporated
Address of the target function that has to be accessed through the associated
Transmit Endpoint.
Address of the target function that has to be accessed through the associated
Receive Endpoint.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
165
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
CONTROL AND STATUS REGISTER FOR ENDPOINT 0
0x01E0 0502
0x01E0 0508
PERI_CSR0
Control Status Register for Endpoint 0 in Peripheral Mode
HOST_CSR0
Control Status Register for Endpoint 0 in Host Mode
COUNT0
Number of Received Bytes in Endpoint 0 FIFO
0x01E0 050A
HOST_TYPE0
0x01E0 050B
HOST_NAKLIMIT0
Defines the Speed of Endpoint 0
0x01E0 050F
CONFIGDATA
0x01E0 0510
TXMAXP
0x01E0 0512
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint
(peripheral mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint
(host mode)
Sets the NAK Response Timeout on Endpoint 0
Returns details of core configuration.
CONTROL AND STATUS REGISTER FOR ENDPOINT 1
Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0514
RXMAXP
Maximum Packet Size for Peripheral/Host Receive Endpoint
0x01E0 0516
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint
(peripheral mode)
HOST_RXCSR
Control Status Register for Host Receive Endpoint
(host mode)
0x01E0 0518
RXCOUNT
0x01E0 051A
HOST_TXTYPE
Number of Bytes in Host Receive endpoint FIFO
0x01E0 051B
HOST_TXINTERVAL
0x01E0 051C
HOST_RXTYPE
0x01E0 051D
HOST_RXINTERVAL
0x01E0 0520
TXMAXP
0x01E0 0522
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint
(peripheral mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint
(host mode)
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
CONTROL AND STATUS REGISTER FOR ENDPOINT 2
166
Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0524
RXMAXP
0x01E0 0526
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint
(peripheral mode)
HOST_RXCSR
Control Status Register for Host Receive Endpoint
(host mode)
0x01E0 0528
RXCOUNT
0x01E0 052A
HOST_TXTYPE
0x01E0 052B
HOST_TXINTERVAL
0x01E0 052C
HOST_RXTYPE
0x01E0 052D
HOST_RXINTERVAL
Maximum Packet Size for Peripheral/Host Receive Endpoint
Number of Bytes in Host Receive endpoint FIFO
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
REGISTER DESCRIPTION
CONTROL AND STATUS REGISTER FOR ENDPOINT 3
0x01E0 0530
TXMAXP
0x01E0 0532
PERI_TXCSR
Maximum Packet Size for Peripheral/Host Transmit Endpoint
Control Status Register for Peripheral Transmit Endpoint
(peripheral mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint
(host mode)
0x01E0 0534
RXMAXP
0x01E0 0536
PERI_RXCSR
Maximum Packet Size for Peripheral/Host Receive Endpoint
Control Status Register for Peripheral Receive Endpoint
(peripheral mode)
HOST_RXCSR
Control Status Register for Host Receive Endpoint
(host mode)
0x01E0 0538
RXCOUNT
0x01E0 053A
HOST_TXTYPE
Number of Bytes in Host Receive endpoint FIFO
0x01E0 053B
HOST_TXINTERVAL
0x01E0 053C
HOST_RXTYPE
0x01E0 053D
HOST_RXINTERVAL
0x01E0 0540
TXMAXP
0x01E0 0542
PERI_TXCSR
Control Status Register for Peripheral Transmit Endpoint
(peripheral mode)
HOST_TXCSR
Control Status Register for Host Transmit Endpoint
(host mode)
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
CONTROL AND STATUS REGISTER FOR ENDPOINT 4
Maximum Packet Size for Peripheral/Host Transmit Endpoint
0x01E0 0544
RXMAXP
0x01E0 0546
PERI_RXCSR
Control Status Register for Peripheral Receive Endpoint
(peripheral mode)
HOST_RXCSR
Control Status Register for Host Receive Endpoint
(host mode)
0x01E0 0548
RXCOUNT
0x01E0 054A
HOST_TXTYPE
0x01E0 054B
HOST_TXINTERVAL
0x01E0 054C
HOST_RXTYPE
0x01E0 054D
HOST_RXINTERVAL
0x01E0 1000
DMAREVID
0x01E0 1004
TDFDQ
Maximum Packet Size for Peripheral/Host Receive Endpoint
Number of Bytes in Host Receive endpoint FIFO
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Transmit endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Transmit endpoint.
Sets the operating speed, transaction protocol and peripheral endpoint number for
the host Receive endpoint.
Sets the polling interval for Interrupt/ISOC transactions or the NAK response
timeout on Bulk transactions for host Receive endpoint.
DMA REGISTERS
DMA Revision Register
DMA Teardown Free Descriptor Queue Control Register
0x01E0 1008
DMAEMU
DMA Emulation Control Register
0x01E0 1800
TXGCR[0]
Transmit Channel 0 Global Configuration Register
0x01E0 1808
RXGCR[0]
Receive Channel 0 Global Configuration Register
0x01E0 180C
RXHPCRA[0]
Receive Channel 0 Host Packet Configuration Register A
0x01E0 1810
RXHPCRB[0]
Receive Channel 0 Host Packet Configuration Register B
0x01E0 1820
TXGCR[1]
Transmit Channel 1 Global Configuration Register
0x01E0 1828
RXGCR[1]
Receive Channel 1 Global Configuration Register
0x01E0 182C
RXHPCRA[1]
Receive Channel 1 Host Packet Configuration Register A
0x01E0 1830
RXHPCRB[1]
Receive Channel 1 Host Packet Configuration Register B
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
167
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS
ACRONYM
0x01E0 1840
TXGCR[2]
Transmit Channel 2 Global Configuration Register
REGISTER DESCRIPTION
Receive Channel 2 Global Configuration Register
0x01E0 1848
RXGCR[2]
0x01E0 184C
RXHPCRA[2]
Receive Channel 2 Host Packet Configuration Register A
0x01E0 1850
RXHPCRB[2]
Receive Channel 2 Host Packet Configuration Register B
0x01E0 1860
TXGCR[3]
Transmit Channel 3 Global Configuration Register
0x01E0 1868
RXGCR[3]
Receive Channel 3 Global Configuration Register
0x01E0 186C
RXHPCRA[3]
Receive Channel 3 Host Packet Configuration Register A
0x01E0 1870
RXHPCRB[3]
Receive Channel 3 Host Packet Configuration Register B
0x01E0 2000
DMA_SCHED_CTRL
0x01E0 2800
WORD[0]
DMA Scheduler Table Word 0
0x01E0 2804
WORD[1]
DMA Scheduler Table Word 1
...
...
0x01E0 28FC
WORD[63]
DMA Scheduler Control Register
...
DMA Scheduler Table Word 63
QUEUE MANAGER REGISTERS
168
0x01E0 4000
QMGRREVID
0x01E0 4008
DIVERSION
Queue Manager Revision Register
0x01E0 4020
FDBSC0
Free Descriptor/Buffer Starvation Count Register 0
0x01E0 4024
FDBSC1
Free Descriptor/Buffer Starvation Count Register 1
0x01E0 4028
FDBSC2
Free Descriptor/Buffer Starvation Count Register 2
0x01E0 402C
FDBSC3
Free Descriptor/Buffer Starvation Count Register 3
0x01E0 4080
LRAM0BASE
Linking RAM Region 0 Base Address Register
0x01E0 4084
LRAM0SIZE
Linking RAM Region 0 Size Register
0x01E0 4088
LRAM1BASE
Linking RAM Region 1 Base Address Register
0x01E0 4090
PEND0
Queue Pending Register 0
0x01E0 4094
PEND1
Queue Pending Register 1
0x01E0 5000
QMEMRBASE[0]
Memory Region 0 Base Address Register
0x01E0 5004
QMEMRCTRL[0]
Memory Region 0 Control Register
0x01E0 5010
QMEMRBASE[1]
Memory Region 1 Base Address Register
0x01E0 5014
QMEMRCTRL[1]
Memory Region 1 Control Register
...
...
0x01E0 50F0
QMEMRBASE[15]
Memory Region 15 Base Address Register
Memory Region 15 Control Register
Queue Diversion Register
...
0x01E0 50F4
QMEMRCTRL[15]
0x01E0 600C
CTRLD[0]
Queue Manager Queue 0 Control Register D
0x01E0 601C
CTRLD[1]
Queue Manager Queue 1 Control Register D
...
...
0x01E0 63FC
CTRLD[63]
...
Queue Manager Queue 63 Status Register D
0x01E0 6800
QSTATA[0]
Queue Manager Queue 0 Status Register A
0x01E0 6804
QSTATB[0]
Queue Manager Queue 0 Status Register B
0x01E0 6808
QSTATC[0]
Queue Manager Queue 0 Status Register C
0x01E0 6810
QSTATA[1]
Queue Manager Queue 1 Status Register A
0x01E0 6814
QSTATB[1]
Queue Manager Queue 1 Status Register B
0x01E0 6818
QSTATC[1]
Queue Manager Queue 1 Status Register C
...
...
0x01E0 6BF0
QSTATA[63]
Queue Manager Queue 63 Status Register A
0x01E0 6BF4
QSTATB[63]
Queue Manager Queue 63 Status Register B
0x01E0 6BF8
QSTATC[63]
Queue Manager Queue 63 Status Register C
...
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.26.1 USB2.0 (USB0) Electrical Data/Timing
The USB PHY PLL can support input clock of the following frequencies: 12.0 MHz, 13.0 MHz, 19.2 MHz,
20.0 MHz, 24.0 MHz, 26.0 MHz, 38.4 MHz, 40.0 MHz or 48.0 MHz. USB_REFCLKIN jitter tolerance is 50
ppm maximum.
Table 6-97. Switching Characteristics Over Recommended Operating Conditions for USB2.0 [USB0] (see
Figure 6-66)
No.
PARAMETER
LOW SPEED
1.5 Mbps
FULL SPEED
12 Mbps
HIGH SPEED
480 Mbps
MIN
MAX
MIN
MAX
MIN
1
tr(D)
Rise time, USB0_DP and USB0_DM signals (1)
75
300
4
20
0.5
2
tf(D)
Fall time, USB0_DP and USB0_DM signals (1)
75
300
4
20
0.5
3
trfM
Rise/Fall time, matching (2)
80
120
90
111
–
–
4
VCRS
Output signal cross-over voltage (1)
1.3
2
1.3
2
–
–
5
6
ns
ns
%
V
(3)
tjr(source)NT
Source (Host) Driver jitter, next transition
2
2
tjr(FUNC)NT
Function Driver jitter, next transition
25
2
(3)
ns
tjr(source)PT
Source (Host) Driver jitter, paired transition (4)
1
1
(3)
ns
1
(3)
ns
–
ns
tjr(FUNC)PT
Function Driver jitter, paired transition
7
tw(EOPT)
Pulse duration, EOP transmitter
8
tw(EOPR)
Pulse duration, EOP receiver
10
(5)
1250
(5)
1500
670
9
t(DRATE)
Data Rate
10
ZDRV
Driver Output Resistance
–
11
ZINP
Receiver Input Impedance
100k
(1)
(2)
(3)
(4)
(5)
UNIT
MAX
160
175
82
1.5
–
ns
–
–
12
40.5
49.5
100k
ns
480
Mb/s
40.5
49.5
Ω
-
-
Ω
Low Speed: CL = 200 pF, Full Speed: CL = 50 pF, High Speed: CL = 50 pF
tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.]
For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical.
tjr = tpx(1) - tpx(0)
Must accept as valid EOP
USB0_DM
VCRS
USB0_DP
tper - tjr
90% VOH
10% VOL
tr
tf
Figure 6-66. USB0 Integrated Transceiver Interface Timing
6.26.2 USB0 Unused Signal Configuration
If USB0 is unused, then the USB0 signals should be configured as shown in Section 3.6.22.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
169
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.27 Host-Port Interface (UHPI)
6.27.1 HPI Device-Specific Information
The device includes a user-configurable 16-bit Host-port interface (HPI16).
6.27.2 HPI Peripheral Register Description(s)
Table 6-98. HPI Control Registers
BYTE
ADDRESS
ACRONYM
0x01E1 0000
PID
0x01E1 0004
PWREMU_MGMT
REGISTER DESCRIPTION
Peripheral Identification Register
HPI power and emulation management
register
0x01E1 0008
-
0x01E1 000C
GPIO_EN
0x01E1 0010
GPIO_DIR1
General Purpose IO Direction Register 1
0x01E1 0014
GPIO_DAT1
General Purpose IO Data Register 1
General Purpose IO Enable Register
0x01E1 0018
GPIO_DIR2
General Purpose IO Direction Register 2
GPIO_DAT2
General Purpose IO Data Register 2
0x01E1 0020
GPIO_DIR3
General Purpose IO Direction Register 3
0x01E1 0024
GPIO_DAT3
General Purpose IO Data Register 3
0x01E1 0028
-
Reserved
0x01E1 002C
-
Reserved
0x01E1 0030
HPIC
HPI control register
0x01E1 0034
HPIA
(HPIAW) (1)
HPI address register
(Write)
0x01E1 0038
HPIA
(HPIAR) (1)
HPI address register
(Read)
0x01E1 000C0x01E1 07FF
-
170
The CPU has read/write access to the
PWREMU_MGMT register.
Reserved
0x01E1 001C
(1)
COMMENTS
The Host and the CPU both have read/write access
to the HPIC register.
The Host has read/write access to the HPIA
registers. The CPU has only read access to the
HPIA registers.
Reserved
There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that
HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the
perspective of the Host. The CPU can access HPIAW and HPIAR independently.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.27.3 HPI Electrical Data/Timing
Table 6-99. Timing Requirements for Host-Port Interface Cycles (1)
No.
1
(2)
PARAMETER
tsu(SELV-HSTBL)
Setup time, select signals (3) valid before UHPI_HSTROBE low
(3)
valid after UHPI_HSTROBE low
MIN
MAX
UNIT
5
ns
2
th(HSTBL-SELV)
Hold time, select signals
2
ns
3
tw(HSTBL)
Pulse duration, UHPI_HSTROBE active low
15
ns
4
tw(HSTBH)
Pulse duration, UHPI_HSTROBE inactive high between consecutive accesses
2M
ns
9
tsu(SELV-HASL)
Setup time, selects signals valid before UHPI_HAS low
5
ns
10
th(HASL-SELV)
Hold time, select signals valid after UHPI_HAS low
2
ns
11
tsu(HDV-HSTBH)
Setup time, host data valid before UHPI_HSTROBE high
5
ns
12
th(HSTBH-HDV)
Hold time, host data valid after UHPI_HSTROBE high
2
ns
13
th(HRDYL-HSTBH)
Hold time, UHPI_HSTROBE high after UHPI_HRDY low. UHPI_HSTROBE should
not be inactivated until UHPI_HRDY is active (low); otherwise, HPI writes will not
complete properly.
2
ns
16
tsu(HASL-HSTBL)
Setup time, UHPI_HAS low before UHPI_HSTROBE low
2
ns
17
th(HSTBL-HASH)
Hold time, UHPI_HAS low after UHPI_HSTROBE low
2
ns
(1)
(2)
(3)
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR
UHPI_HDS2)] OR UHPI_HCS.
M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns.
Select signals include: UHPI_HCNTL[1:0], UHPI_HRW and UHPI_HHWIL.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
171
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-100. Switching Characteristics for Host-Port Interface Cycles (1)
No.
(2) (3)
PARAMETER
MIN
MAX
UNIT
12
ns
For HPI Write, UHPI_HRDY can go high (not
ready) for these HPI Write conditions;
otherwise, UHPI_HRDY stays low (ready):
Case 1: Back-to-back HPIA writes (can be
either first or second half-word)
Case 2: HPIA write following a PREFETCH
command (can be either first or second halfword)
Case 3: HPID write when FIFO is full or
flushing (can be either first or second halfword)
Case 4: HPIA write and Write FIFO not empty
For HPI Read, UHPI_HRDY can go high (not
ready) for these HPI Read conditions:
Case 1: HPID read (with auto-increment) and
data not in Read FIFO (can only happen to
first half-word of HPID access)
Case 2: First half-word access of HPID Read
without auto-increment
For HPI Read, UHPI_HRDY stays low (ready)
for these HPI Read conditions:
Case 1: HPID read with auto-increment and
data is already in Read FIFO (applies to either
half-word of HPID access)
Case 2: HPID read without auto-increment
and data is already in Read FIFO (always
applies to second half-word of HPID access)
Case 3: HPIC or HPIA read (applies to either
half-word access)
5
td(HSTBL-HRDYV)
Delay time,
UHPI_HSTROBE low to
UHPI_HRDY valid
5a
td(HASL-HRDYV)
Delay time, UHPI_HAS low to UHPI_HRDY valid
6
ten(HSTBL-HDLZ)
Enable time, HD driven from UHPI_HSTROBE low
7
td(HRDYL-HDV)
Delay time, UHPI_HRDY low to HD valid
8
toh(HSTBH-HDV)
Output hold time, HD valid after UHPI_HSTROBE high
14
tdis(HSTBH-HDHZ)
Disable time, HD high-impedance from UHPI_ HSTROBE high
15
18
(1)
(2)
(3)
172
td(HSTBL-HDV)
td(HSTBH-HRDYV)
13
2
ns
0
1.5
ns
ns
12
ns
Delay time,
UHPI_HSTROBE low to HD valid
For HPI Read. Applies to conditions where
data is already residing in HPID/FIFO:
Case 1: HPIC or HPIA read
Case 2: First half-word of HPID read with
auto-increment and data is already in Read
FIFO
Case 3: Second half-word of HPID read with
or without auto-increment
15
ns
Delay time,
UHPI_HSTROBE high to
UHPI_HRDY valid
For HPI Write, UHPI_HRDY can go high (not
ready) for these HPI Write conditions;
otherwise, UHPI_HRDY stays low (ready):
Case 1: HPID write when Write FIFO is full
(can happen to either half-word)
Case 2: HPIA write (can happen to either halfword)
Case 3: HPID write without auto-increment
(only happens to second half-word)
12
ns
M=SYSCLK2 period (CPU clock frequency)/2 in ns.
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR
UHPI_HDS2)] OR UHPI_HCS.
By design, whenever UHPI_HCS is driven inactive (high), HPI will drive UHPI_HRDY active (low).
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
UHPI_HCS
UHPI_HAS (D)
2
2
1
1
UHPI_HCNTL[1:0]
2
1
2
1
UHPI_HR/W
2
2
1
1
UHPI_HHWIL
4
3
3
UHPI_HSTROBE (A)(C)
15
15
14
14
6
8
UHPI_HD[15:0]
(output)
5
13
7
6
1st Half-Word
8
2nd Half-Word
UHPI_HRDY (B)
A.
B.
C.
D.
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.
Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with autoincrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur.
UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or
UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE.
The diagram above assumes UHPI_HAS has been pulled high.
Figure 6-67. UHPI Read Timing (UHPI_HAS Not Used, Tied High)
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
173
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
UHPI_HAS(A)
17
10
17
9
10
9
UHPI_HCNTL[1:0]
10
10
9
9
UHPI_HR/W
10
10
9
9
UHPI_HHWIL
4
3
UHPI_HSTROBE(B)
16
16
UHPI_HCS
14
UHPI_HD[15:0]
6
(output)
5a
8
1st Half-Word
14
15
7
8
2nd Half-Word
UHPI_HRDY
A.
B.
For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle.
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.
Figure 6-68. UHPI Read Timing (UHPI_HAS Used)
174
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
UHPI_HCS
UHPI_HAS (D)
1
1
2
2
UHPI_HCNTL[1:0]
1
1
2
2
UHPI_HR/W
1
1
2
2
UHPI_HHWIL
3
3
4
UHPI_HSTROBE(A)(C)
11
UHPI_HD[15:0]
(input)
11
12
12
1st Half-Word
5
13
2nd Half-Word
18
13
18
5
UHPI_HRDY (B)
A.
B.
C.
D.
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.
Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with autoincrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur.
UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or
UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE.
he diagram above assumes UHPI_HAS has been pulled high.
Figure 6-69. UHPI Write Timing (UHPI_HAS Not Used, Tied High)
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
175
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
17
17
UHPI_HAS(A)
10
10
9
9
UHPI_HCNTL[1:0]
10
10
9
9
UHPI_HR/W
10
10
9
9
UHPI_HHWIL
3
4
UHPI_HSTROBE(B)
16
16
UHPI_HCS
11
UHPI_HD[15:0]
(input)
12
1st Half-Word
5a
11
12
2nd Half-Word
13
UHPI_HRDY
A.
B.
For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle.
UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2:
[NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS.
Figure 6-70. UHPI Write Timing (UHPI_HAS Used)
176
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.28 Power and Sleep Controller (PSC)
The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off,
clock on/off, resets (device level and module level). It is used primarily to provide granular power control
for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of
Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for
each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC
and provides clock and reset control.
The PSC includes the following features:
• Provides a software interface to:
– Control module clock enable/disable
– Control module reset
– Control CPU local reset
• Supports ICEPick TAP Router power, clock and reset features. For details on ICEPick features see
http://tiexpressdsp.com/wiki/index.php?title=ICEPick.
Table 6-101. Power and Sleep Controller (PSC) Registers
PSC0
BYTE ADDRESS
PSC1
BYTE ADDRESS
ACRONYM
0x01C1 0000
0x01E2 7000
REVID
0x01C1 0018
0x01E2 7018
INTEVAL
0x01C1 0040
0x01E2 7040
MERRPR0
DESCRIPTION
Peripheral Revision and Class Information Register
Interrupt Evaluation Register
Module Error Pending Register 0 (module 0-15)
(PSC0)
Module Error Pending Register 0 (module 0-31)
(PSC1)
0x01C1 0050
0x01E2 7050
MERRCR0
Module Error Clear Register 0 (module 0-15) (PSC0)
Module Error Clear Register 0 (module 0-31) (PSC1)
0x01C1 0060
0x01E2 7060
PERRPR
Power Error Pending Register
0x01C1 0068
0x01E2 7068
PERRCR
Power Error Clear Register
0x01C1 0120
0x01E2 7120
PTCMD
Power Domain Transition Command Register
0x01C1 0128
0x01E2 7128
PTSTAT
Power Domain Transition Status Register
0x01C1 0200
0x01E2 7200
PDSTAT0
Power Domain 0 Status Register
0x01C1 0204
0x01E2 7204
PDSTAT1
Power Domain 1 Status Register
0x01C1 0300
0x01E2 7300
PDCTL0
Power Domain 0 Control Register
0x01C1 0304
0x01E2 7304
PDCTL1
Power Domain 1 Control Register
0x01C1 0400
0x01E2 7400
PDCFG0
Power Domain 0 Configuration Register
0x01C1 0404
0x01E2 7404
PDCFG1
Power Domain 1 Configuration Register
0x01C1 08000x01C1 083C
0x01E2 78000x01E2 787C
0x01C1 0A000x01C1 0A3C
0x01E2 7A000x01E2 7A7C
MDSTAT0-MDSTAT15 Module Status n Register (modules 0-15) (PSC0)
MDSTAT0-MDSTAT31 Module Status n Register (modules 0-31) (PSC1)
MDCTL0-MDCTL15
Module Control n Register (modules 0-15) (PSC0)
MDCTL0-MDCTL31
Module Control n Register (modules 0-31) (PSC1)
6.28.1 Power Domain and Module Topology
The device includes two PSC modules.
Each PSC module controls clock states for several of the on chip modules, controllers and interconnect
components. Table 6-102 and Table 6-103 lists the set of peripherals/modules that are controlled by the
PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset)
module states. See the device-specific data manual for the peripherals available on a given device. The
module states and terminology are defined in Section 6.28.1.2.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
177
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-102. PSC0 Default Module Configuration
LPSC Number
Module Name
Power Domain
Default Module State
Auto Sleep/Wake Only
0
EDMA3 Channel Controller
AlwaysON (PD0)
SwRstDisable
—
1
EDMA3 Transfer Controller 0
AlwaysON (PD0)
SwRstDisable
—
2
EDMA3 Transfer Controller 1
AlwaysON (PD0)
SwRstDisable
—
3
EMIFA (BR7)
AlwaysON (PD0)
SwRstDisable
—
4
SPI 0
AlwaysON (PD0)
SwRstDisable
—
5
MMC/SD 0
AlwaysON (PD0)
SwRstDisable
—
6
ARM Interrupt Controller
AlwaysON (PD0)
SwRstDisable
—
7
ARM RAM/ROM
AlwaysON (PD0)
Enable
Yes
8
-
-
-
-
9
UART 0
AlwaysON (PD0)
SwRstDisable
—
10
SCR0 (Br 0, Br 1, Br 2, Br 8)
AlwaysON (PD0)
Enable
Yes
11
SCR1 (Br 4)
AlwaysON (PD0)
Enable
Yes
12
SCR2 (Br 3, Br 5, Br 6)
AlwaysON (PD0)
Enable
Yes
13
PRUSS
AlwaysON (PD0)
SwRstDisable
—
14
ARM
AlwaysON (PD0)
SwRstDisable
—
15
-
-
-
—
Table 6-103. PSC1 Default Module Configuration
LPSC Number
Module Name
Power Domain
Default Module State
Auto Sleep/Wake Only
0
Not Used
—
—
—
1
USB0 (USB2.0)
AlwaysON (PD0)
SwRstDisable
—
2
USB1 (USB1.1)
AlwaysON (PD0)
SwRstDisable
—
3
GPIO
AlwaysON (PD0)
SwRstDisable
—
4
UHPI
AlwaysON (PD0)
SwRstDisable
—
5
EMAC
AlwaysON (PD0)
SwRstDisable
—
6
EMIFB (Br 20)
AlwaysON (PD0)
SwRstDisable
—
7
McASP0 ( + McASP0 FIFO)
AlwaysON (PD0)
SwRstDisable
—
8
McASP1 ( + McASP1 FIFO)
AlwaysON (PD0)
SwRstDisable
—
9
McASP2( + McASP2 FIFO)
AlwaysON (PD0)
SwRstDisable
—
10
SPI 1
AlwaysON (PD0)
SwRstDisable
—
11
I2C 1
AlwaysON (PD0)
SwRstDisable
—
12
UART 1
AlwaysON (PD0)
SwRstDisable
—
13
UART 2
AlwaysON (PD0)
SwRstDisable
—
14-15
Not Used
—
—
—
16
LCDC
AlwaysON (PD0)
SwRstDisable
—
17
eHRPWM0/1/2
AlwaysON (PD0)
SwRstDisable
—
18-19
Not Used
—
—
—
20
ECAP0/1/2
AlwaysON (PD0)
SwRstDisable
—
21
EQEP0/1
AlwaysON (PD0)
SwRstDisable
—
22-23
Not Used
—
—
—
24
SCR8 (Br 15)
AlwaysON (PD0)
Enable
Yes
25
SCR7 (Br 12)
AlwaysON (PD0)
Enable
Yes
26
SCR12 (Br 18)
AlwaysON (PD0)
Enable
Yes
27-30
Not Used
—
—
—
31
On-chip RAM (Br 13)
PD_SHRAM
Enable
Yes
178
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.28.1.1 Power Domain States
A power domain can only be in one of the two states: ON or OFF, defined as follows:
• ON: power to the domain is on
• OFF: power to the domain is off
In the device, for both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the
ON state when the chip is powered-on. This domain is not programmable to OFF state.
• On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM
6.28.1.2 Module States
The PSC defines several possible states for a module. This states are essentially a combination of the
module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are
defined in Table 6-104.
Table 6-104. Module States
Module State
Module Reset
Module Clock
Module State Definition
Enable
De-asserted
On
A module in the enable state has its module reset de-asserted and it has its
clock on. This is the normal operational state for a given module
Disable
De-asserted
Off
A module in the disabled state has its module reset de-asserted and it has its
module clock off. This state is typically used for disabling a module clock to
save power. The device is designed in full static CMOS, so when you stop a
module clock, it retains the module’s state. When the clock is restarted, the
module resumes operating from the stopping point.
SyncReset
Asserted
On
A module state in the SyncReset state has its module reset asserted and it has
its clock on. Generally, software is not expected to initiate this state
SwRstDisable
Asserted
Off
A module in the SwResetDisable state has its module reset asserted and it has
its clock disabled. After initial power-on, several modules come up in the
SwRstDisable state. Generally, software is not expected to initiate this state
Auto Sleep
De-asserted
Off
A module in the Auto Sleep state also has its module reset de-asserted and its
module clock disabled, similar to the Disable state. However this is a special
state, once a module is configured in this state by software, it can
“automatically” transition to “Enable” state whenever there is an internal
read/write request made to it, and after servicing the request it will
“automatically” transition into the sleep state (with module reset re de-asserted
and module clock disabled), without any software intervention. The transition
from sleep to enabled and back to sleep state has some cycle latency
associated with it. It is not envisioned to use this mode when peripherals are
fully operational and moving data.
Auto Wake
De-asserted
Off
A module in the Auto Wake state also has its module reset de-asserted and its
module clock disabled, similar to the Disable state. However this is a special
state, once a module is configured in this state by software, it will
“automatically” transition to “Enable” state whenever there is an internal
read/write request made to it, and will remain in the “Enabled” state from then
on (with module reset re de-asserted and module clock on), without any
software intervention. The transition from sleep to enabled state has some
cycle latency associated with it. It is not envisioned to use this mode when
peripherals are fully operational and moving data.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
179
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.29 Programmable Real-Time Unit Subsystem (PRUSS)
The Programmable Real-Time Unit Subsystem (PRUSS) consists of
• Two Programmable Real-Time Units (PRU0 and PRU1) and their associated memories
• An Interrupt Controller (INTC) for handling system interrupt events. The INTC also supports posting
events back to the device level host CPU.
• A Switched Central Resource (SCR) for connecting the various internal and external masters to the
resources inside the PRUSS.
The two PRUs can operate completely independently or in coordination with each other. The PRUs can
also work in coordination with the device level host CPU. This is determined by the nature of the program
which is loaded into the PRUs instruction memory. Several different signaling mechanisms are available
between the two PRUs and the device level host CPU.
The PRUs are optimized for performing embedded tasks that require manipulation of packed memory
mapped data structures, handling of system events that have tight realtime constraints and interfacing with
systems external to the device.
The PRUSS comprises various distinct addressable regions. Externally the subsystem presents a single
64Kbyte range of addresses. The internal interconnect bus (also called switched central resource, or SCR)
of the PRUSS decodes accesses for each of the individual regions. The PRUSS memory map is
documented in Table 6-105 and in Table 6-106. Note that these two memory maps are implemented
inside the PRUSS and are local to the components of the PRUSS.
Table 6-105. Programmable Real-Time Unit Subsystem (PRUSS) Local Instruction Space Memory Map
BYTE ADDRESS
PRU0
PRU1
0x0000 0000 - 0x0000 0FFF
PRU0 Instruction RAM
PRU1 Instruction RAM
Table 6-106. Programmable Real-Time Unit Subsystem (PRUSS) Local Data Space Memory Map
BYTE ADDRESS
0x0000 0000 - 0x0000 01FF
(1)
PRU0
Data RAM 0
0x0000 0200 - 0x0000 1FFF
Reserved
0x0000 2000 - 0x0000 21FF
Data RAM 1
0x0000 2200 - 0x0000 3FFF
Reserved
PRU1
(1)
Data RAM 1
(1)
Data RAM 0
(1)
Reserved
(1)
Reserved
0x0000 4000 - 0x0000 6FFF
INTC Registers
INTC Registers
0x0000 7000 - 0x0000 73FF
PRU0 Control Registers
PRU0 Control Registers
0x0000 7400 - 0x0000 77FF
Reserved
Reserved
0x0000 7800 - 0x0000 7BFF
PRU1 Control Registers
PRU1 Control Registers
0x0000 7C00 - 0xFFFF FFFF
Reserved
Reserved
Note that PRU0 accesses Data RAM0 at address 0x0000 0000, also PRU1 accesses Data RAM1 at address 0x0000 0000. Data RAM0
is intended to be the primary data memory for PRU0 and Data RAM1 is intended to be the primary data memory for PRU1. However for
passing information between PRUs, each PRU can access the data ram of the ‘other’ PRU through address 0x0000 2000.
The global view of the PRUSS internal memories and control ports is documented in Table 6-107. The
offset addresses of each region are implemented inside the PRUSS but the global device memory
mapping places the PRUSS slave port in the address range 0x01C3 0000-0x01C3 FFFF. The PRU0 and
PRU1 can use either the local or global addresses to access their internal memories, but using the local
addresses will provide access time several cycles faster than using the global addresses. This is because
when accessing via the global address the access needs to be routed through the switch fabric outside
PRUSS and back in through the PRUSS slave port.
180
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Table 6-107. Programmable Real-Time Unit Subsystem (PRUSS) Global Memory Map
BYTE ADDRESS
REGION
0x01C3 0000 - 0x01C3 01FF
Data RAM 0
0x01C3 0200 - 0x01C3 1FFF
Reserved
0x01C3 2000 - 0x01C3 21FF
Data RAM 1
0x01C3 2200 - 0x01C3 3FFF
Reserved
0x01C3 4000 - 0x01C3 6FFF
INTC Registers
0x01C3 7000 - 0x01C3 73FF
PRU0 Control Registers
0x01C3 7400 - 0x01C3 77FF
PRU0 Debug Registers
0x01C3 7800 - 0x01C3 7BFF
PRU1 Control Registers
0x01C3 7C00 - 0x01C3 7FFF
PRU1 Debug Registers
0x01C3 8000 - 0x01C3 8FFF
PRU0 Instruction RAM
0x01C3 9000 - 0x01C3 BFFF
Reserved
0x01C3 C000 - 0x01C3 CFFF
PRU1 Instruction RAM
0x01C3 D000 - 0x01C3 FFFF
Reserved
Each of the PRUs can access the rest of the device memory (including memory mapped peripheral and
configuration registers) using the global memory space addresses.
6.29.1 PRUSS Register Descriptions
Table 6-108. Programmable Real-Time Unit Subsystem (PRUSS) Control / Status Registers
PRU0 BYTE ADDRESS
PRU1 BYTE ADDRESS
ACRONYM
0x01C3 7000
0x01C3 7800
CONTROL
PRU Control Register
0x01C3 7004
0x01C3 7804
STATUS
PRU Status Register
0x01C3 7008
0x01C3 7808
WAKEUP
PRU Wakeup Enable Register
0x01C3 700C
0x01C3 780C
CYCLCNT
PRU Cycle Count
0x01C3 7010
0x01C3 7810
STALLCNT
PRU Stall Count
0x01C3 7020
0x01C3 7820
CONTABBLKIDX0
0x01C3 7028
0x01C3 7828
CONTABPROPTR0
PRU Constant Table Programmable
Pointer Register 0
0x01C3 702C
0x01C3 782C
CONTABPROPTR1
PRU Constant Table Programmable
Pointer Register 1
0x01C37400 - 0x01C3747C
0x01C3 7C00 - 0x01C3 7C7C
INTGPR0 – INTGPR31
PRU Internal General Purpose
Registers (for Debug)
0x01C37480 - 0x01C374FC
0x01C3 7C80 - 0x01C3 7CFC
INTCTER0 – INTCTER31
PRU Internal Constants Table
Registers (for Debug)
Copyright © 2010–2014, Texas Instruments Incorporated
REGISTER DESCRIPTION
PRU Constant Table Block Index
Register 0
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
181
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-109. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers
182
BYTE ADDRESS
ACRONYM
0x01C3 4000
REVID
REGISTER DESCRIPTION
0x01C3 4004
CONTROL
0x01C3 4010
GLBLEN
0x01C3 401C
GLBLNSTLVL
Global Nesting Level Register
0x01C3 4020
STATIDXSET
System Interrupt Status Indexed Set Register
0x01C3 4024
STATIDXCLR
System Interrupt Status Indexed Clear Register
Revision ID Register
Control Register
Global Enable Register
0x01C3 4028
ENIDXSET
System Interrupt Enable Indexed Set Register
0x01C3 402C
ENIDXCLR
System Interrupt Enable Indexed Clear Register
0x01C3 4034
HSTINTENIDXSET
Host Interrupt Enable Indexed Set Register
0x01C3 4038
HSTINTENIDXCLR
Host Interrupt Enable Indexed Clear Register
0x01C3 4080
GLBLPRIIDX
0x01C3 4200
STATSETINT0
System Interrupt Status Raw/Set Register 0
0x01C3 4204
STATSETINT1
System Interrupt Status Raw/Set Register 1
0x01C3 4280
STATCLRINT0
System Interrupt Status Enabled/Clear Register 0
0x01C3 4284
STATCLRINT1
System Interrupt Status Enabled/Clear Register 1
0x01C3 4300
ENABLESET0
System Interrupt Enable Set Register 0
0x01C3 4304
ENABLESET1
System Interrupt Enable Set Register 1
0x01C3 4380
ENABLECLR0
System Interrupt Enable Clear Register 0
0x01C3 4384
ENABLECLR1
System Interrupt Enable Clear Register 1
0x01C3 4400 - 0x01C3 4440
CHANMAP0 - CHANMAP15
0x01C3 4800 - 0x01C3 4808
HOSTMAP0 - HOSTMAP2
0x01C3 4900 - 0x01C3 4928
HOSTINTPRIIDX0 HOSTINTPRIIDX9
0x01C3 4D00
POLARITY0
System Interrupt Polarity Register 0
0x01C3 4D04
POLARITY1
System Interrupt Polarity Register 1
0x01C3 4D80
TYPE0
System Interrupt Type Register 0
0x01C3 4D84
TYPE1
System Interrupt Type Register 1
0x01C3 5100 - 0x01C3 5128
HOSTINTNSTLVL0HOSTINTNSTLVL9
0x01C3 5500
HOSTINTEN
Global Prioritized Index Register
Channel Map Registers 0-15
Host Map Register 0-2
Host Interrupt Prioritized Index Registers 0-9
Host Interrupt Nesting Level Registers 0-9
Host Interrupt Enable Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.30 Emulation Logic
This section describes the steps to use a third party debugger. The debug capabilities and features for
ARM are as shown below.
For TI’s latest debug and emulation information see :
http://tiexpressdsp.com/wiki/index.php?title=Category:Emulation
ARM:
• Basic Debug
– Execution Control
– System Visibility
• Advanced Debug
– Global Start
– Global Stop
• Advanced System Control
– Subsystem reset via debug
– Peripheral notification of debug events
– Cache-coherent debug accesses
• Program Trace
– Program flow corruption
– Code coverage
– Path coverage
– Thread/interrupt synchronization problems
• Data Trace
– Memory corruption
• Timing Trace
– Profiling
• Analysis Actions
– Stop program execution
– Control trace streams
– Generate debug interrupt
– Benchmarking with counters
– External trigger generation
– Debug state machine state transition
– Combinational and Sequential event generation
• Analysis Events
– Program event detection
– Data event detection
– External trigger Detection
– System event detection (i.e. cache miss)
– Debug state machine state detection
• Analysis Configuration
– Application access
– Debugger access
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
183
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-110. ARM Debug Features
Category
Hardware Feature
Availability
Software breakpoint
Unlimited
Up to 14 HWBPs, including:
Basic Debug
2 precise (1) HWBP inside ARM core which are shared
with watch points.
Hardware breakpoint
8 imprecise (1) HWBPs from ETM’s address comparators,
which are shared with trace function, and can be used
as watch point too.
4 imprecise (1) HWBPs from ICECrusher.
Up to 6 watch points, including:
Watch point
2 from ARM core which is shared with HWBPs and can
be associated with a data.
8 from ETM’s address comparators, which are shared
with trace function, and HWBPs.
2 from ARM core which is shared with HWBPs.
Analysis
Trace Control
On-chip Trace
Capture
(1)
184
Watch point with Data
8 watch points from ETM can be associated with a data
comparator, and ETM has total 4 data comparators.
Counters/timers
3x32-bit (1 cycle ; 2 event)
External Event Trigger In
1
External Event Trigger Out
1
Address range for trace
4
Data qualification for trace
2
System events for trace control
20
Counters/Timers for trace control
2x16-bit
State Machines/Sequencers
1x3-State State Machine
Context/Thread ID Comparator
1
Independent trigger control units
12
Capture depth PC
4k bytes ETB
Capture depth PC + Timing
4k bytes ETB
Application accessible
Y
Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints
will halt the processor some number of cycles after the selected instruction depending on device conditions.
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.30.1 JTAG Port Description
The device target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS,
TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and EMU0 .
TRST holds the debug and boundary scan logic in reset when pulled low (its default state). Since TRST
has an internal pull-down resistor, this ensures that at power up the device functions in its normal (nontest) operation mode if TRST is not connected. Otherwise, TRST should be driven inactive by the
emulator or boundary scan controller. Boundary scan test cannot be performed while the TRST pin is
pulled low.
Table 6-111. JTAG Port Description
PIN
TYPE
NAME
DESCRIPTION
TRST
I
Test Logic Reset
When asserted (active low) causes all test and debug logic in the device to be reset along
with the IEEE 1149.1 interface
TCK
I
Test Clock
RTCK
O
Returned Test Clock
TMS
I
Test Mode Select
TDI
I
Test Data Input
TDO
O
Test Data Output
EMU0
I/O
Emulation 0
This is the test clock used to drive an IEEE 1149.1 TAP state machine and logic.
Depending on the emulator attached to , this is a free running clock or a gated clock
depending on RTCK monitoring.
Synchronized TCK. Depending on the emulator attached to, the JTAG signals are clocked
from RTCK or RTCK is monitored by the emulator to gate TCK.
Directs the next state of the IEEE 1149.1 test access port state machine
Scan data input to the device
Scan data output of the device
Channel 0 trigger + HSRTDX
6.30.2 Scan Chain Configuration Parameters
Table 6-112 shows the TAP configuration details required to configure the router/emulator for this device.
Table 6-112. JTAG Port Description
Router Port ID
Default TAP
TAP Name
Tap IR Length
17
No
Reserved
38
18
No
ARM926
4
19
No
ETB
4
The router is ICEPick revision C and has a 6-bit IR length.
6.30.3 Initial Scan Chain Configuration
The first level of debug interface that sees the scan controller is the TAP router module. The debugger
can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of
the TAP controllers without disrupting the IR state of the other TAPs.
6.30.3.1 Adding TAPS to the Scan Chain
The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans
must be completed to add the ARM926EJ-S to the scan chain.
A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only
the router’s TAP.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
185
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Router
TDO
TDI
CLK
Steps
TMS
Router
ARM926EJ-S/ETM
Figure 6-71. Adding ARM926EJ-S to the scan chain
Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file.
This device is a pre-amble for all the other devices. This device has the lowest device ID.
Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file.
This device is a post-amble for all the other devices. This device has the highest device ID.
• Function : Update the JTAG preamble and post-amble counts.
– Parameter : The IR pre-amble count is '0'.
– Parameter : The IR post-amble count is '0'.
– Parameter : The DR pre-amble count is '0'.
– Parameter : The DR post-amble count is '0'.
– Parameter : The IR main count is '6'.
– Parameter : The DR main count is '1'.
• Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000007'.
– Parameter : The actual receive data is 'discarded'.
• Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '8'.
– Parameter : The send data value is '0x00000089'.
– Parameter : The actual receive data is 'discarded'.
• Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000002'.
– Parameter : The actual receive data is 'discarded'.
• Function : Embed the port address in next command.
– Parameter : The port address field is '0x0f000000'.
– Parameter : The port address value is '3'.
186
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
•
•
•
•
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '32'.
– Parameter : The send data value is '0xa2002108'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only all-ones JTAG IR/DR scan.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'run-test/idle'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is 'all-ones'.
– Parameter : The actual receive data is 'discarded'.
Function : Wait for a minimum number of TCLK pulses.
– Parameter : The count of TCLK pulses is '10'.
Function : Update the JTAG preamble and post-amble counts.
– Parameter : The IR pre-amble count is '0'.
– Parameter : The IR post-amble count is '6'.
– Parameter : The DR pre-amble count is '0'.
– Parameter : The DR post-amble count is '1'.
– Parameter : The IR main count is '4'.
– Parameter : The DR main count is '1'.
The initial scan chain contains only the TAP router module. The following steps must be completed in
order to add ETB TAP to the scan chain.
Router
TDI
ARM926EJ-S/ETM
TDO
CLK
Steps
TMS
Router
•
ARM926EJ-S/ETM
ETB
Figure 6-72. Adding ETB to the scan chain
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000007'.
– Parameter : The actual receive data is 'discarded'.
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
187
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
•
•
•
•
•
•
•
www.ti.com
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '8'.
– Parameter : The send data value is '0x00000089'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'pause-ir'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is '0x00000002'.
– Parameter : The actual receive data is 'discarded'.
Function : Embed the port address in next command.
– Parameter : The port address field is '0x0f000000'.
– Parameter : The port address value is '3'.
Function : Do a send-only JTAG IR/DR scan.
– Parameter : The route to JTAG shift state is 'shortest transition'.
– Parameter : The JTAG shift state is 'shift-dr'.
– Parameter : The JTAG destination state is 'pause-dr'.
– Parameter : The bit length of the command is '32'.
– Parameter : The send data value is '0xa3302108'.
– Parameter : The actual receive data is 'discarded'.
Function : Do a send-only all-ones JTAG IR/DR scan.
– Parameter : The JTAG shift state is 'shift-ir'.
– Parameter : The JTAG destination state is 'run-test/idle'.
– Parameter : The bit length of the command is '6'.
– Parameter : The send data value is 'all-ones'.
– Parameter : The actual receive data is 'discarded'.
Function : Wait for a minimum number of TCLK pulses.
– Parameter : The count of TCLK pulses is '10'.
Function : Update the JTAG preamble and post-amble counts.
– Parameter : The IR pre-amble count is '0'.
– Parameter : The IR post-amble count is '6 + 4'.
– Parameter : The DR pre-amble count is '0'.
– Parameter : The DR post-amble count is '1 + 1'.
– Parameter : The IR main count is '4'.
– Parameter : The DR main count is '1'.
6.30.4 JTAG 1149.1 Boundary Scan Considerations
To
•
•
•
use boundary scan, the following sequence should be followed:
Execute a valid reset sequence and exit reset
Wait at least 6000 OSCIN clock cycles
Enter boundary scan mode using the JTAG pins
No specific value is required on the EMU0 pin for boundary scan testing. If TRST is not driven by the
boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing.
188
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.31 IEEE 1149.1 JTAG
The JTAG
(1)
interface is used for BSDL testing and emulation of the device.
The device requires that both TRST and RESET be asserted upon power up to be properly initialized.
While RESET initializes the device, TRST initializes the device's emulation logic. Both resets are required
for proper operation.
While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for
the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG
port interface and device's emulation logic in the reset state.
. TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or
exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by
TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted.
. RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE
correctly. Other boundary-scan instructions work correctly independent of current state of RESET.
For maximum reliability, the device includes an internal pulldown (IPD) on the TRST pin to ensure that
TRST will always be asserted upon power up and the device's internal emulation logic will always be
properly initialized.
JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG
controllers may not drive TRST high but expect the use of a pullup resistor on TRST.
When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally
drive TRST high before attempting any emulation or boundary scan operations.
6.31.1
JTAG Peripheral Register Description(s) – JTAG ID Register (DEVIDR0)
Table 6-113. DEVIDR0 Register
BYTE ADDRESS
ACRONYM
0x01C1 4018
DEVIDR0
(1)
REGISTER DESCRIPTION
JTAG Identification Register
COMMENTS
Read-only. Provides 32-bit JTAG ID of the device.
IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.
The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the
device, the JTAG ID register resides at address location 0x01C1 4018. The register hex value for each
silicon revision is:
• 0x8B7D F02F for silicon revision 1.1
• 0x9B7D F02F for silicon revisions 3.0, 2.1, and 2.0
For the actual register bit names and their associated bit field descriptions, see Figure 6-73 and Table 6114.
Figure 6-73. JTAG ID (DEVIDR0) Register Description - Register Value
31
28 27
VARIANT
(4-bit)
R-xxxx
12 11
1
0
PART NUMBER (16-bit)
MANUFACTURER (11-bit)
LSB
R-1011 0111 1101 1111
R-0000 0010 111
R-1
LEGEND: R = Read, W = Write, n = value at reset
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
189
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
Table 6-114. JTAG ID Register Selection Bit Descriptions
BIT
NAME
31:28
VARIANT
DESCRIPTION
Variant (4-Bit) value
27:12
PART NUMBER
Part Number (16-Bit) value
11-1
MANUFACTURER
Manufacturer (11-Bit) value
0
LSB
6.31.2
LSB. This bit is read as a "1".
JTAG Test-Port Electrical Data/Timing
Table 6-115. Timing Requirements for JTAG Test Port (see Figure 6-74)
No.
PARAMETER
MIN
MAX
UNIT
1
tc(TCK)
Cycle time, TCK
40
ns
2
tw(TCKH)
Pulse duration, TCK high
16
ns
3
tw(TCKL)
Pulse duration, TCK low
16
ns
4
tc(RTCK)
Cycle time, RTCK
40
ns
5
tw(RTCKH)
Pulse duration, RTCK high
16
ns
6
tw(RTCKL)
Pulse duration, RTCK low
16
ns
7
tsu(TDIV-RTCKH)
Setup time, TDI/TMS/TRST valid before RTCK high
4
ns
8
th(RTCKH-TDIV)
Hold time, TDI/TMS/TRST valid after RTCK high
4
ns
Table 6-116. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port
(see Figure 6-74)
No.
9
PARAMETER
td(RTCKL-TDOV)
MIN
Delay time, RTCK low to TDO valid
MAX
UNIT
15
ns
1
2
3
TCK
4
5
6
RTCK
9
TDO
8
7
TDI/TMS/TRST
Figure 6-74. JTAG Test-Port Timing
190
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.32 Real Time Clock (RTC)
The RTC provides a time reference to an application running on the device. The current date and time is
tracked in a set of counter registers that update once per second. The time can be represented in 12-hour
or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do
not interfere with the accuracy of the time and date.
Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once
per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time
registers are updated, or at programmable periodic intervals.
The real-time clock (RTC) provides the following features:
• 100-year calendar (xx00 to xx99)
• Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation
• Binary-coded-decimal (BCD) representation of time, calendar, and alarm
• 12-hour clock mode (with AM and PM) or 24-hour clock mode
• Alarm interrupt
• Periodic interrupt
• Single interrupt to the CPU
• Supports external 32.768-kHz crystal or external clock source of the same frequency
• Separate isolated power supply
Figure 6-75 shows a block diagram of the RTC.
RTC_XI
Counter
32 kHz
Oscillator
Compensation
Seconds
Minutes
Week
Days
XTAL
RTC_XO
Hours
Days
Months
Years
Oscillator
Alarm
Alarm
Interrupts
Timer
Periodic
Interrupts
Figure 6-75. Real-Time Clock Block Diagram
Copyright © 2010–2014, Texas Instruments Incorporated
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
191
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
6.32.1 Clock Source
The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same
frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When
the CPU and other peripherals are without power, the RTC can remain powered to preserve the current
time and calendar information.
The source for the RTC reference clock may be provided by a crystal or by an external clock source. The
RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected
between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the
output from the oscillator back to the crystal. A crystal with 70k-ohm max ESR is recommended. Typical
load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and
C2.
An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is
connected to RTC_XI, and RTC_XO is left unconnected.
If the RTC is not used, the RTC_XI pin should be static held high or low and RTC_XO should be left
unconnected.
RTC
Power
Source
Real Time Clock
C2
XTAL
32.768
kHz
RTC_CVDD
RTC_XI
RTC_XO
32K
OSC
C1
Real
Time
Clock
(RTC)
Module
RTC_VSS
Isolated RTC
Power Domain
Figure 6-76. Clock Source
192
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
6.32.2 Registers
Table 6-117 lists the memory-mapped registers for the RTC.
Table 6-117. Real-Time Clock (RTC) Registers
BYTE ADDRESS
ACRONYM
0x01C2 3000
SECOND
Seconds Register
0x01C2 3004
MINUTE
Minutes Register
0x01C2 3008
HOUR
0x01C2 300C
DAY
0x01C2 3010
MONTH
0x01C2 3014
YEAR
Year Register
0x01C2 3018
DOTW
Day of the Week Register
0x01C2 3020
ALARMSECOND
Alarm Seconds Register
0x01C2 3024
ALARMMINUTE
Alarm Minutes Register
0x01C2 3028
ALARMHOUR
Alarm Hours Register
0x01C2 302C
ALARMDAY
Alarm Days Register
0x01C2 3030
ALARMMONTH
0x01C2 3034
ALARMYEAR
0x01C2 3040
CTRL
Control Register
0x01C2 3044
STATUS
Status Register
0x01C2 3048
INTERRUPT
0x01C2 304C
COMPLSB
Compensation (LSB) Register
0x01C2 3050
COMPMSB
Compensation (MSB) Register
0x01C2 3054
OSC
0x01C2 3060
SCRATCH0
Scratch 0 (General-Purpose) Register
0x01C2 3064
SCRATCH1
Scratch 1 (General-Purpose) Register
0x01C2 3068
SCRATCH2
Scratch 2 (General-Purpose) Register
0x01C2 306C
KICK0
Kick 0 (Write Protect) Register
0x01C2 3070
KICK1
Kick 1 (Write Protect) Register
Copyright © 2010–2014, Texas Instruments Incorporated
REGISTER DESCRIPTION
Hours Register
Day of the Month Register
Month Register
Alarm Months Register
Alarm Years Register
Interrupt Enable Register
Oscillator Register
Peripheral Information and Electrical Specifications
Submit Documentation Feedback
Product Folder Links: AM1707
193
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
7 Device and Documentation Support
7.1
7.1.1
Device Support
Development Support
TI offers an extensive line of development tools for the device platform, including tools to evaluate the
performance of the processors, generate code, develop algorithm implementations, and fully integrate and
debug software and hardware modules. The tool's support documentation is electronically available within
the Code Composer Studio™ Integrated Development Environment (IDE).
The following products support development of the device applications:
Software Development Tools:
Code Composer Studio™ Integrated Development Environment (IDE): including Editor
C/C++/Assembly Code Generation, and Debug plus additional development tools
Hardware Development Tools:
Extended Development System (XDS™) Emulator
For a complete listing of development-support tools for the device, visit the Texas Instruments web site
on the Worldwide Web at www.ti.com uniform resource locator (URL). For information on pricing and
availability, contact the nearest TI field sales office or authorized distributor.
7.1.2
Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
AM1xxx processors and support tools. Each commercial AM1xxx platform member has one of three
prefixes: X, P, or null (no prefix). Texas Instruments recommends two of three possible prefix designators
for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product
development from engineering prototypes (TMDX) through fully qualified production devices/tools (TMDS).
Device development evolutionary flow:
X
Experimental device that is not necessarily representative of the final device's electrical
specifications.
P
Final silicon die that conforms to the device's electrical specifications but has not completed
quality and reliability verification.
NULL
Fully-qualified production device.
Support tool development evolutionary flow:
TMDX
Development-support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS
Fully qualified development-support product.
X and P devices and TMDX development-support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
NULL devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to be
used.
Figure 7-1 provides a legend for reading the device.
194
Device and Documentation Support
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
AM1707
www.ti.com
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
X
( )
AM1707
ZKB
( )
3
DEVICE SPEED RANGE
3 = 375 MHZ
4 = 456 MHz
PREFIX
X = Experimental Device
P = Prototype Device
Blank = Production Device
TEMPERATURE RANGE (JUNCTION)
Blank = 0°C to 90°C (Commercial Grade)
D = -40°C to 90°C (Industrial Grade)
A = -40°C to 105°C (Extended Grade)
T = -40°C to 125°C (Automotive Grade)
DEVICE
SILICON REVISION
B = Silicon Revision 2.0
C = Silicon Revision 2.1
D = Silicon Revision 3.0
PACKAGE TYPE
ZKB = 256 Pin Plastic BGA, with Pb-free
Soldered Balls [Green]
Figure 7-1. Device Nomenclature
7.2
Documentation Support
The following documents describe the device. Copies of these documents are available on the Internet at
www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com.
Reference Guides
SPRUGR6 AM1707 ARM Microprocessor System Reference Guide
SPRUFU0
7.3
AM17x/AM18x ARM Microprocessor Peripherals Overview Reference Guide
Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,
explore ideas and help solve problems with fellow engineers.
TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help
developers get started with Embedded Processors from Texas Instruments and to foster
innovation and growth of general knowledge about the hardware and software surrounding
these devices.
7.4
Trademarks
E2E is a trademark of Texas Instruments.
ARM9 is a trademark of ARM.
ETM9, CoreSight are trademarks of ARM Limited.
All other trademarks are the property of their respective owners.
7.5
Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
7.6
Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
Device and Documentation Support
Copyright © 2010–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: AM1707
195
AM1707
SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014
www.ti.com
8 Mechanical Packaging and Orderable Information
This section describes the device orderable part numbers, packaging options, materials, thermal and
mechanical parameters.
8.1
Thermal Data for ZKB
The following table(s) show the thermal resistance characteristics for the PBGA–ZKB mechanical
package.
Table 8-1. Thermal Resistance Characteristics (PBGA Package) [ZKB]
PARAMETER
°C/W (1)
°C/W (2)
AIR FLOW (m/s) (3)
Junction-to-case
12.8
13.5
N/A
RΘJB
Junction-to-board
15.1
19.7
N/A
RΘJA
Junction-to-free air
24.5
33.8
0.00
21.9
30
0.50
21.1
28.7
1.00
20.4
27.4
2.00
19.6
26
4.00
0.6
0.8
0.00
0.8
1
0.50
0.9
1.2
1.00
1.1
1.4
2.00
RΘJC
RΘJMA
PsiJT
PsiJB
(1)
(2)
(3)
8.2
Junction-to-moving air
Junction-to-package top
Junction-to-board
1.3
1.8
4.00
14.9
19.1
0.00
14.4
18.2
0.50
14.4
18
1.00
14.3
17.7
2.00
14.1
17.4
4.00
These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application.
For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment
Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount
Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and
1.5oz (50um) inner copper thickness
Simulation data, using the same model but with 1oz (35um) top and bottom copper thickness and 0.5oz (18um) inner copper thickness.
Power dissipation of 1W and ambient temp of 70C assumed.
m/s = meters per second
Packaging Information
The following packaging information and addendum reflect the most current data available for the
designated device(s). This data is subject to change without notice and without revision of this document.
196
Mechanical Packaging and Orderable Information
Submit Documentation Feedback
Product Folder Links: AM1707
Copyright © 2010–2014, Texas Instruments Incorporated
PACKAGE OPTION ADDENDUM
www.ti.com
28-Jun-2016
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
AM1707BZKB3
NRND
BGA
ZKB
256
TBD
Call TI
Call TI
0 to 90
AM1707BZKB3
AM1707BZKB4
NRND
BGA
ZKB
256
TBD
Call TI
Call TI
0 to 90
AM1707BZKB4
AM1707BZKBA3
NRND
BGA
ZKB
256
TBD
Call TI
Call TI
-40 to 105
AM1707BZKBA3
AM1707BZKBD4
NRND
BGA
ZKB
256
TBD
Call TI
Call TI
-40 to 90
AM1707BZKBD4
AM1707BZKBT3
NRND
BGA
ZKB
256
TBD
Call TI
Call TI
-40 to 125
AM1707BZKBT3
AM1707CZKB3
OBSOLETE
BGA
ZKB
256
TBD
Call TI
Call TI
0 to 90
AM1707CZKB3
AM1707CZKB4
OBSOLETE
BGA
ZKB
256
TBD
Call TI
Call TI
0 to 90
AM1707CZKB4
AM1707CZKBA3
OBSOLETE
BGA
ZKB
256
TBD
Call TI
Call TI
-40 to 105
AM1707CZKBA3
AM1707CZKBD4
OBSOLETE
BGA
ZKB
256
TBD
Call TI
Call TI
-40 to 90
AM1707CZKBD4
AM1707CZKBT3
OBSOLETE
BGA
ZKB
256
TBD
Call TI
Call TI
-40 to 125
AM1707CZKBT3
AM1707DZKB3
ACTIVE
BGA
ZKB
256
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
0 to 90
AM1707DZKB3
AM1707DZKB4
ACTIVE
BGA
ZKB
256
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
0 to 90
AM1707DZKB4
AM1707DZKBA3
ACTIVE
BGA
ZKB
256
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 105
AM1707DZKBA3
AM1707DZKBD4
ACTIVE
BGA
ZKB
256
90
Green (RoHS
& no Sb/Br)
SNAGCU
Level-3-260C-168 HR
-40 to 90
AM1707DZKBD4
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
28-Jun-2016
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
Similar pages