High Voltage IGBT IXGF20N300 VCES = 3000V = 22A IC25 VCE(sat) ≤ 3.2V For Capacitor Discharge Applications ( Electrically Isolated Tab) ISOPLUS i4-PakTM Symbol Test Conditions VCES TJ = 25°C to 150°C 3000 V VCGR TJ = 25°C to 150°C, RGE = 1MΩ 3000 V VGES Continuous ± 20 V VGEM Transient ± 30 V IC25 TC = 25°C 22 A IC90 TC = 90°C ICM TC = 25°C, VGE = 20V, 1ms SSOA VGE = 20V, TVJ = 125°C, RG = 10Ω (RBSOA) Clamped Inductive Load PC TC = 25°C Maximum Ratings 14 A 103 A ICM = 200 A @0.8 • VCES 100 W -55 ... +150 °C TJM 150 °C Tstg -55 ... +150 °C 300 260 °C °C 20..120/4.5..27 Nm/lb-in. 4000 V~ 6 g TJ TL TSOLD 1.6 mm (0.062 in.) from Case for 10s Plastic Body for 10s FC Mounting Force VISOL 50/60Hz, 1 Minute Weight Symbol Test Conditions (TJ = 25°C, Unless Otherwise Specified) IC = 250μA, VGE = 0V 3000 VGE(th) IC = 250μA, VCE = VGE 3.0 ICES VCE = 0.8 • VCES, VGE = 0V Note 2, TJ = 125°C IGES VCE = 0V, VGE = ±20V VCE(sat) IC = 20A, VGE = 15V, Note 1 © 2009 IXYS CORPORATION, All Rights Reserved 2 Isolated Tab 5 1 = Gate 2 = Emitter 5 = Collector Features Silicon Chip on Direct-Copper Bond (DCB) Substrate Isolated Mounting Surface 4000V Electrical Isolation High Peak Current Capability Low Saturation Voltage Molding Epoxies Meet UL 94 V-0 Flammability Classification Applications Capacitor Discharge Pulser Circuits Characteristic Values Min. Typ. Max. BVCES 1 V 5.0 V 25 μA 2 mA ±100 nA 3.2 V Advantages High Power Density Easy to Mount DS100099B(11/09) IXGF20N300 Symbol Test Conditions (TJ = 25°C, Unless Otherwise Specified) gfs IC = 20A, VCE = 10V, Note 1 IC(ON) VGE = 20V, VCE = 20V, Note 1 Characteristic Values Min. Typ. Max. 8 ISOPLUS i4-PakTM (HV) Outline 12 S 180 A 1125 pF 48 pF Cres 16 pF Qg 31 nC 5.8 nC 12 nC 38 ns 486 145 ns ns 210 ns 0.15 30 1.25 °C/W °C/W °C/W Cies Coes Qge VCE = 25V, VGE = 0V, f = 1MHz IC = 20A, VGE = 15V, VCE = 600V Qgc td(on) tr td(off) tf Resistive Switching Times IC = 20A, VGE = 15V VCE = 960V, RG = 10Ω RthJC RthCS RthJA Pin 1 = Gate Pin 2 = Emitter Pin 3 = Collector Tab 4 = Isolated Notes: 1. Pulse test, t < 300μs, duty cycle, d < 2%. 2. Device must be heatsunk for high-temperature leakage current measurements to avoid thermal runaway. IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or more of the following U.S. patents: 4,850,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 IXGF20N300 Fig. 1. Output Characteristics @ T J = 25ºC Fig. 2. Extended Output Characteristics @ T J = 25ºC 80 220 VGE = 25V 20V 70 VGE = 25V 200 180 20V 160 15V IC - Amperes IC - Amperes 60 50 40 10V 30 140 120 15V 100 80 10V 60 20 40 10 20 5V 5V 0 0 0 1 2 3 4 5 0 6 2 4 6 8 10 80 16 18 20 22 24 3.8 VGE = 25V 20V 70 VGE = 15V 3.4 VCE(sat) - Normalized 60 15V IC - Amperes 14 Fig. 4. Dependence of VCE(sat) on Junction Temperature Fig. 3. Output Characteristics @ T J = 125ºC 50 40 10V 30 20 3.0 I C = 80A I C = 40A I C = 20A 2.6 2.2 1.8 1.4 10 1.0 5V 0 0.6 0 1 2 3 4 5 6 7 8 -50 -25 0 VCE - Volts 25 50 75 100 125 150 12 13 TJ - Degrees Centigrade Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage Fig. 6. Input Admittance 80 10 VGE = 15V 9 TJ = - 40ºC 25ºC 125ºC 70 60 I 7 C IC - Amperes 8 VCE - Volts 12 VCE - Volts VCE - Volts = 80A 6 5 50 40 30 40A 20 4 10 3 20A 0 2 7 8 9 10 11 12 13 14 15 VGE - Volts © 2009 IXYS CORPORATION, All Rights Reserved 16 17 18 19 4 5 6 7 8 VGE - Volts 9 10 11 IXGF20N300 Fig. 7. Transconductance Fig. 8. Gate Charge 16 18 TJ = - 40ºC 16 125ºC 10 I C = 20A I G = 10mA 12 25ºC VGE - Volts g f s - Siemens 14 12 VCE = 600V 14 8 10 8 6 6 4 4 2 2 0 0 0 10 20 30 40 50 60 70 80 0 90 4 8 12 IC - Amperes 16 20 24 28 32 30 35 40 QG - NanoCoulombs Fig. 9. Reverse-Bias Safe Operating Area Fig. 10. Capacitance 10,000 220 f = 1 MHz 200 Capacitance - PicoFarads 180 IC - Amperes 160 140 120 100 80 60 40 20 0 600 TJ = 125ºC 1,000 Cies Coes 100 RG = 10Ω dv / dt < 10V / ns Cres 10 900 1200 1500 1800 2100 2400 2700 3000 0 5 10 15 20 25 VCE - Volts VCE - Volts Fig. 11. Maximum Transient Thermal Impedance Z ( t h ) JC - ºC / W 10.0 1.0 0.1 0.0 0.0001 0.001 0.01 0.1 Pulse Width - Seconds IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. 1 10 IXGF20N300 Fig. 13. Resistive Turn-on Rise Time vs. Collector Current Fig. 12. Resistive Turn-on Rise Time vs. Junction Temperature 1000 1100 RG = 10Ω , VGE = 15V 1000 900 VCE = 960V t r - Nanoseconds C TJ = 125ºC = 40A t r - Nanoseconds I 900 800 I 700 C = 20A 600 800 RG = 10Ω , VGE = 15V 700 VCE = 960V 600 500 500 TJ = 25ºC 400 400 300 300 25 35 45 55 65 75 85 95 105 115 125 20 30 40 50 TJ - Degrees Centigrade 2,000 td(on) - - - - 300 1,400 200 1,200 150 I C = 20A, 40A 1,000 100 800 170 230 tf 220 RG = 10Ω, VGE = 15V td(off) - - - - 165 160 VCE = 960V 210 200 155 150 I C = 20A 190 145 180 140 170 135 160 130 I C = 40A 150 50 125 140 600 10 120 130 0 1000 100 25 35 45 RG - Ohms 200 75 td(off) - - - - 900 85 95 105 115 115 125 2700 tr 800 180 RG = 10Ω, VGE = 15V 180 140 160 120 TJ = 125ºC 140 2400 2100 VCE = 960V 600 1800 500 1500 400 1200 300 900 I C = 20A, 40A 200 600 100 300 t d(off) - Nanoseconds 160 t d(off) - Nanoseconds TJ = 25ºC td(on) - - - - TJ = 125ºC, VGE = 15V 700 t f - Nanoseconds tf VCE = 960V t f - Nanoseconds 65 Fig. 17. Resistive Turn-off Switching Times vs. Gate Resistance 240 200 55 TJ - Degrees Centigrade Fig. 16. Resistive Turn-off Switching Times vs. Collector Current 220 80 t d(off) - Nanoseconds 250 t d(on) - Nanoseconds VCE = 960V t f - Nanoseconds TJ = 125ºC, VGE = 15V 1,600 t r - Nanoseconds 240 350 tr 70 Fig. 15. Resistive Turn-off Switching Times vs. Junction Temperature Fig. 14. Resistive Turn-on Switching Times vs. Gate Resistance 1,800 60 IC - Amperes 100 120 80 20 30 40 50 60 IC - Amperes © 2009 IXYS CORPORATION, All Rights Reserved 70 80 0 10 100 0 1000 RG - Ohms IXYS REF: G_20N250(4P-P528)11-18-09-B