MGCHIP MDP7N60 N-channel mosfet 600v, 7a, 1.15(ohm) Datasheet

N-Channel MOSFET 600V, 7A, 1.15Ω
General Description
Features
The MDP7N60 uses advanced MagnaChip’s MOSFET
Technology, which provides low on-state resistance, high
switching performance and excellent quality.
MDP7N60 is suitable device for SMPS, high Speed switching
and general purpose applications.




VDS = 600V
VDS = 660V
ID = 7.0A
RDS(ON) ≤ 1.15Ω
@ Tjmax
@ VGS = 10V
@ VGS = 10V
Applications



Power Supply
PFC
High Current, High Speed Switching
Absolute Maximum Ratings (Ta = 25oC)
Characteristics
Drain-Source Voltage
Drain-Source Voltage @ Tjmax
Gate-Source Voltage
Symbol
Rating
Unit
VDSS
600
V
VDSS @ Tjmax
660
V
VGSS
±30
V
7.0
A
4.4
A
28
A
131
W
W/ oC
o
TC=25 C
Continuous Drain Current (※)
ID
o
TC=100 C
Pulsed Drain Current(1)
IDM
o
TC=25 C
Power Dissipation
o
Derate above 25 C
Repetitive Avalanche Energy EAR(1)
Peak Diode Recovery dv/dt(3)
Single Pulse Avalanche Energy(4)
Junction and Storage Temperature Range
PD
1.05
EAR
13.1
mJ
Dv/dt
4.5
V/ns
EAS
220
mJ
TJ, Tstg
-55~150
Symbol
Rating
RθJA
62.5
RθJC
0.95
o
C
※ Id limited by maximum junction temperature
Thermal Characteristics
Characteristics
Thermal Resistance, Junction-to-Ambient
Thermal Resistance, Junction-to-Case
Dec. 2014 Version 2.2
(1)
Unit
o
C/W
(1)
1
MagnaChip Semiconductor Ltd.
MDP7N60 N-channel MOSFET 600V
MDP7N60
Part Number
Temp. Range
Package
Packing
RoHS Status
MDP7N60TH
-55~150oC
TO-220
Tube
Halogen Free
Electrical Characteristics (Ta =25oC)
Characteristics
Symbol
Test Condition
Min
Typ
Max
Unit
Static Characteristics
Drain-Source Breakdown Voltage
BVDSS
ID = 250μA, VGS = 0V
600
-
-
Gate Threshold Voltage
VGS(th)
VDS = VGS, ID = 250μA
3.0
-
5.0
IDSS
VDS = 600V, VGS = 0V
-
-
1
μA
IGSS
VGS = ±30V, VDS = 0V
-
Drain Cut-Off Current
Gate Leakage Current
Drain-Source ON Resistance
RDS(ON)
VGS = 10V, ID = 3.5A
gfs
VDS = 30V, ID = 3.5A
Forward Transconductance
V
-
100
nA
1.0
1.15
Ω
-
8.5
-
S
-
17.8
-
-
4.9
-
Dynamic Characteristics
Total Gate Charge
Qg
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
-
7.3
Input Capacitance
Ciss
-
750
VDS = 480V, ID = 7.0A, VGS = 10V(3)
Reverse Transfer Capacitance
Crss
-
5
Output Capacitance
Coss
-
95
Turn-On Delay Time
td(on)
-
22
-
36
-
35
tf
-
25
IS
-
7.0
Rise Time
Turn-Off Delay Time
Fall Time
tr
td(off)
VDS = 25V, VGS = 0V, f = 1.0MHz
VGS = 10V, VDS = 300V, ID = 7.0A,
RG = 25Ω(3)
nC
pF
ns
Drain-Source Body Diode Characteristics
Maximum Continuous Drain to
Source Diode Forward Current
Source-Drain Diode Forward
Voltage
Body Diode Reverse Recovery
Time
Body Diode Reverse Recovery
Charge
VSD
IS = 7.0A, VGS = 0V
trr
-
-
A
1.4
V
-
345
ns
-
3.2
μC
IF = 7.0A, dl/dt = 100A/μs(3)
Qrr
Note :
1. Pulse width is based on RθJC & RθJA and the maximum allowed junction temperature of 150°C.
2. Pulse test: pulse width ≤300us, duty cycle≤2%, pulse width limited by junction temperature TJ(MAX)=150°C.
3. ISD ≤7.0A, di/dt≤200A/us, VDD=50V, Rg =25Ω, Starting TJ=25°C
4. L=8.2mH, IAS=7.0A, VDD=50V, Rg =25Ω, Starting TJ=25°C
Dec. 2014 Version 2.2
2
MagnaChip Semiconductor Ltd.
MDP7N60 N-channel MOSFET 600V
Ordering Information
3.0
14
Vgs=5.5V
=6.0V
=6.5V
=7.0V
=8.0V
=10.0V
=15.0V
12
ID,Drain Current [A]
11
10
2.5
RDS(ON) [Ω ]
13
9
8
7
6
2.0
VGS=10.0V
VGS=20V
1.5
5
4
1.0
Notes
1. 250㎲ Pulse Test
2. TC=25℃
3
2
0.5
1
5
10
15
20
0
5
10
VDS,Drain-Source Voltage [V]
ID,Drain Current [A]
1.2
3.0
※ Notes :
BVDSS, (Normalized)
Drain-Source Breakdown Voltage
※ Notes :
RDS(ON), (Normalized)
Drain-Source On-Resistance
20
Fig.2 On-Resistance Variation with
Drain Current and Gate Voltage
Fig.1 On-Region Characteristics
2.5
15
1. VGS = 10 V
2. ID = 3.5A
2.0
1.5
1.0
0.5
0.0
-50
0
50
100
150
1. VGS = 0 V
2. 250 s Pulse Test
1.1
1.0
0.9
0.8
-50
200
0
o
IDR
Reverse Drain Current [A]
150℃
ID(A)
200
※ Notes :
10
10
25℃
-55℃
1
0.1
6
8
1. VGS = 0 V
2.250s Pulse test
150℃
25℃
1
0.1
0.0
10
0.2
0.4
0.6
0.8
1.0
1.2
VSD, Source-Drain Voltage [V]
VGS [V]
Fig.5 Transfer Characteristics
Dec. 2014 Version 2.2
150
Fig.4 Breakdown Voltage Variation vs.
Temperature
* Notes ;
1. Vds=30V
4
100
TJ, Junction Temperature [ C]
Fig.3 On-Resistance Variation with
Temperature
2
50
o
TJ, Junction Temperature [ C]
Fig.6 Body Diode Forward Voltage
Variation with Source Current and
Temperature
3
MagnaChip Semiconductor Ltd.
MDP7N60 N-channel MOSFET 600V
15
Ciss = Cgs + Cgd (Cds = shorted)
Coss = Cds + Cgd
Crss = Cgd
Coss
120V
1400
VGS, Gate-Source Voltage [V]
300V
480V
1200
Capacitance [pF]
8
6
4
1000
Ciss
800
600
2
※ Notes ;
1. VGS = 0 V
2. f = 1 MHz
Crss
400
200
0
0
0
2
4
6
8
10
12
14
16
18
1
20
Fig.7 Gate Charge Characteristics
10
2
Fig.8 Capacitance Characteristics
Operation in This Area
is Limited by R DS(on)
10
10 s
100 s
1
8
1 ms
10 ms
DC
10
10
ID, Drain Current [A]
ID, Drain Current [A]
10
100 ms
0
-1
-2
10
-1
6
4
2
Single Pulse
TJ=Max rated
TC=25℃
10
10
VDS, Drain-Source Voltage [V]
QG, Total Gate Charge [nC]
10
0
10
1
10
0
25
2
50
75
100
125
Fig.9 Maximum Safe Operating Area
Fig.10 Maximum Drain Current vs. Case
Temperature
16000
0
10
single Pulse
RthJC = 0.95℃/W
TC = 25℃
14000
D=0.5
10000
0.2
-1
Power (W)
Zθ JC(t),
Thermal Response
12000
0.1
10
0.05
0.02
0.01
Duty Factor, D=t1/t2
PEAK TJ = PDM * Zθ JC* Rθ JC(t) + TC
RΘ JC=0.95℃/W
-5
-4
10
-3
10
-2
10
-1
10
0
10
0
1E-5
1
10
t1, Rectangular Pulse Duration [sec]
1E-4
1E-3
0.01
0.1
1
10
Pulse Width (s)
Fig.12 Single Pulse Maximum Power
Dissipation
Fig.11 Transient Thermal Response Curve
Dec. 2014 Version 2.2
6000
2000
-2
10
8000
4000
※ Notes :
single pulse
10
150
TC, Case Temperature [℃]
VDS, Drain-Source Voltage [V]
4
MagnaChip Semiconductor Ltd.
MDP7N60 N-channel MOSFET 600V
1600
※ Note : ID = 7A
10
MDP7N60 N-channel MOSFET 600V
 Physical Dimension
3 Leads, TO-220
Dimensions are in millimeters unless otherwise specified
Dec. 2014 Version 2.2
5
MagnaChip Semiconductor Ltd.
MDP7N60 N-channel MOSFET 600V
DISCLAIMER:
The Products are not designed for use in hostile environments, including, without limitation, aircraft, nuclear power
generation, medical appliances, and devices or systems in which malfunction of any Product can reasonably be
expected to result in a personal injury. Seller’s customers using or selling Seller’s products for use in such
applications do so at their own risk and agree to fully defend and indemnify Seller.
MagnaChip reserves the right to change the specifications and circuitry without notice at any time. MagnaChip does not consider responsibility
for use of any circuitry other than circuitry entirely included in a MagnaChip product.
is a registered trademark of MagnaChip
Semiconductor Ltd.
Dec. 2014 Version 2.2
6
MagnaChip Semiconductor Ltd.
Similar pages