NJW4830 Single High Side Switch GENERAL DESCRIPTION PACKAGE OUTLINE The NJW4830 is the single high-side switch that can supply 0.5A. The active clamp circuit, overcurrent and thermal shutdown are built-in with Pch MOS FET. It can be controlled by a logic signal (3V/5V) directly. Therefore, it is suitable for Car accessory, Industrial Equipments and other applications. NJW4830U2 FEATURES Drain-Source Voltage 45V Drain Current 0.5A Corresponding with Logic Voltage Operation: 3V/5V Low On-Resistance 0.35Ω (typ.) Low Consumption Current 110µA (typ.) Active Clamp Circuit Over Current Protection Thermal Shutdown Package Outline SOT89-5 PIN CONFIGURATION 5 2 4 1 2 3 1. IN 2. GND 3. FLT 4. VDD 5. OUT BLOCK DIAGRAM VDD FLT Over Current Protection FLT DELAY VDD Level Shift IN Thermal Shut Down GND Ver.2014-01-08 Active Clamp OUT -1- NJW4830 ABSOLUTE MAXIMUM RATINGS PARAMETER SYNBOL Drain-Source Voltage VDS Supply Voltage VDD Input Voltage VIN FLT Pin Voltage VFLT Power Dissipation PD RATINGS +45 +45 −0.3 to +6 −0.3 to +6 625 (*1) 2,400 (*2) UNIT V V V V mW (Ta=25°C) REMARK VDD–OUT Pin VDD–GND Pin IN–GND Pin FLT–GND Pin – Active Clamp Tolerance EAS 10 mJ – (Single Pulse) Active Clamp Current IAP 0.5 A – Junction Temperature Tj – −40 to +150 °C Operating Temperature Topr – −40 to +85 °C Storage Temperature Tstg – −50 to +150 °C (*1): Mounted on glass epoxy board. (76.2×114.3×1.6mm:based on EIA/JDEC standard size, 2Layers, Cu area 100mm2) (*2): Mounted on glass epoxy board. (76.2×114.3×1.6mm:based on EIA/JDEC standard, 4Layers) (For 4Layers: Applying 74.2×74.2mm inner Cu area and a thermal via hall to a board based on JEDEC standard JESD51-5) RECOMMENDED OPERATING CONDITIONS PARAMETER SYMBOL MIN. Drain–Source Voltage VDS 0 Supply Voltage VDD 4.6 Output Current IO 0 Input Pin Voltage VIN 0 FLT Pin Voltage VFLT 0 -2- TYP. – – – – – MAX. 40 40 0.5 5.5 5.5 UNIT V V A V V REMARK VDD–OUT Pin VDD–GND Pin VDD–OUT Pin IN–GND Pin FLT–GND Pin Ver.2014-01-08 NJW4830 ELECTRICAL CHARACTERISTICS PARAMETER (Unless otherwise noted, VDS=13V, Ta=25°C) SYMBOL Drain-Source Output Clamp Voltage VDSS_CL VIH VIL CONDITIONS VIN=0V, IO=1mA, VDD=40V IO=10mA IO=100µA MIN. TYP. MAX. UNIT VDD-45 2.64 – – – – – – 0.9 V V V 2.64 – 5.5 V High Level Input Voltage Low Level Input Voltage Protection Circuit Function Input Voltage Range OUT Pin Leak Current at OFF State Quiescent Current 1 Quiescent Current 2 Input Current On-state Resistance IOLEAKOUT VIN=0V, VDD=40V – – 1 µA IDD1 IDD2 IIN RDS_ON VIN=0V, VDD=40V VIN=5V VIN=5V VIN=5V, IO=0.5A – – – – – 110 150 0.35 1 150 190 0.6 µA µA µA Ω Over Current Protection1 ILIMIT1 VIN=5V, VDS=5V 0.5 0.75 1.2 A Over Current Protection2 Turn-on Time Turn-off Time OUT–VDD Voltage Difference FLT Pin Low Level Output Voltage FLT Pin Leak Current at High Level FLT Delay Time ILIMIT2 tON tOFF VPDOV VIN=5V, VDD=VDS=40V VIN=0 to 5V, IO=0.5A VIN=5 to 0V, IO=0.5A VIN=0V, IORH=1A 0.1 – – – 0.4 20 20 0.85 – – – 1.2 A µs µs V VVFLT IFLT=500µA – 0.25 0.5 V IOLEAKFLT VFLT=5.5V – – 1 µA VIN=0 to 5V, VDS=22V – 5 – ms VIN_opr TRUTH TABLE Input Signal Operating Condition tDFLT FLT Pin Output Status L H Normal H L OFF ON L H Over Current ILIMIT1 H L OFF ILIMIT1 L H Over Current ILIMIT2 H L OFF ILIMIT2 L H Tj >150°C H H OFF OFF Ver.2014-01-08 -3- NJW4830 TIMING CHRAT ON, OFF Switching Time (VIN=0 to 5V, VDD=13V, IO=0.5A) 90% IN 10% 90% OUT 10% tON tOFF FLT Delay Time (VIN=0 to 5V, VDD=VDS=22V) IN 50% 90% FLT tDFLT FLT Delay Time Measurement Circuit + V 5V NJW4830 VDS VDD 5V 0V IN OUT FLT GND -4- Ver.2014-01-08 NJW4830 High Input signal Low ON Over Current Protection OFF ON Thermal Protection OFF VDD Output voltage VDSS_CL 0V ILIMIT1 Inductive load ILIMIT2 Output current 0A tDFLT High Fault signal Low Normal Ver.2014-01-08 Current limit1 Current limit2 Thermal shutdown Active clamp -5- NJW4830 OVER CURRENT PROTECTION CHARACTERISTIC IO [A] ILIMIT1 ILIMIT2 VDS [V] L FLT Terminal H TYPICAL APPLICATION + V Logic Voltage ex. 5V, 3V NJW4830 VDD Micro Controller Drive Signal IN FAULT -6- FLT GND OUT RL Ver.2014-01-08 NJW4830 CHARACTERISTICS Drain-Source Clamp Voltage vs.Ambient Temperature 1 63 0.9 61 0.8 Quiescent Current2 [mA] Drain-Source Clamp Voltage [V] 65 59 57 55 53 51 49 47 Quiescent Current2 vs.Ambient Temperature 0.7 0.6 0.5 0.4 0.3 0.2 0.1 45 0 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] -50 Input Current vs. Input Voltage 0.5 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] Input Current vs.Ambient Temperature 1 0.9 0.8 Input Current [mA] Input Current [mA] 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0 Ver.2014-01-08 1 2 3 4 Input Voltage [V] 5 6 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] -7- NJW4830 CHARACTERISTICS ON-state Resistance vs. Supply Voltage 0.6 0.6 0.5 ON-state Resistance [Ω] ON-state Resistance [Ω] 0.5 0.4 0.3 0.2 0.1 0.4 0.3 0.2 0.1 0 0 0 5 10 15 20 25 30 Supply Voltage [V] 35 40 -50 Over Current Protection1 vs. Ambient Temperature 1.2 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] Over Current Protection2 vs. Ambient Temperature 1.2 1 Over Current Limit2 [A] 1 Over Current Limit1 [A] ON-state Resistance vs. Ambient Temperature 0.8 0.6 0.4 0.2 0.8 0.6 0.4 0.2 0 0 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] -50 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] Output Current vs.Drain-Source Voltage 1.2 Output Current [A] 1 0.8 0.6 0.4 0.2 0 0 -8- 5 10 15 20 25 30 Drain-Source Voltage [V] 35 40 Ver.2014-01-08 NJW4830 CHARACTERISTICS Turn-on Time vs. Ambient Temperature 30 25 Turn-off Time [µs] Turn-on Time [µs] 25 20 15 10 20 15 10 5 5 0 0 -50 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] -50 FLT Pin Low Level Output Voltage vs. Ambient Temperature 0.3 7 FLT Delay Time [ms] FLT Pin Low Level Output Voltage [V] -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] FLT Delay Time vs. Ambient Temperature 6 0.25 0.2 0.15 0.1 0.05 5 4 3 2 1 0 0 -50 TSD Detect / Release Temperature [ºC] Turn-off Time vs. Ambient Temperature 30 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] -50 -25 0 25 50 75 100 125 150 Ambient Temperature [ºC] TSD Detect / Release Temperature vs. Input Voltage 180 Detection Temperature 170 160 150 Release Temperature 140 130 120 0 Ver.2014-01-08 1 2 3 4 Input Voltage [V] 5 6 -9- Application Tips NJW4830 Technical Information Regarding Active Clamp Capacity of High/Low side Switch Products What is “Active Clamp Capacity”. The IC might suffer to damage by the inductive kickback at the transient time of ON state to OFF state, when an inductive load such as a solenoid or motor is used for the load of the high-side/low-side switch. The protection circuit for the inductive kickback is the active clamp circuit. The energy that can be tolerated by the active clamp circuit is called "Active Clamp Capacity (EAS)". When using an inductive load to the high-side/low-side switch, you should design so that the ESW does not exceed the active clamp capability. IC operation without an external protection parts (Fig 1) Active Clamp Current IAP tA ID Active Clamp Period VDS Active Clamp Current IAP ID VDD 0V Time Drain-Source Clamp Voltage V DSS_CL Drain-Source Clamp Voltage V DSS_CL VDS VDD 0V VIN Time 5V VIN 0V tA Active Clamp Period 5V 0V tON tON Fig1. Active Clamp Waveform (Left: Low-side Switch / Light High-side Switch) At when the VIN turns off, the drain-source voltage (VDS) increases rapidly by the behavior of the inductive load that is keeping current flowing. However, it will be clamped at VDSS_CL by the active clamp circuit. At the same time, the drain current is flowed by adjusting the gate voltage of the output transistor, and the energy is dissipated at the output transistor. The energy: ESW is shown by the following formula. tA E SW = ∫ VDS (t ) ⋅ I D (t )dt = 0 VDSS _ CL 1 2 LI AP ⋅ 2 VDSS _ CL − VDD The ESW is consumed inside IC as heat energy. However, the thermal shutdown does not work when the VIN is 0V. Therefore in worst case the IC might break down. When using the active clamp, you should design ESW does not exceed the EAS. - 10 - Ver.2014-01-08 Application Tips NJW4830 Technical Information Application Hint The simplest protection example is to add an external flywheel diode at the load to protect IC from an inductive kickback. (Fig.2) Flywheeling Diode ID VDD VDD VIN DRAIN SOURCE VDD OUT VIN V DS V DS ID GND Flywheeling Diode Fig 2. Application Circuit of Inductance Load Driving (Left: Low-side Switch / Light High-side Switch) [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. Ver.2014-01-08 - 11 -